
COLECCIÓN:
Sistematización de
Experiencias Educativas

AUTORÍA
Mariuxi Vinueza-Morales
Delia Isabel Carrión León
Jessica Janina Cabezas Quinto
Denis Darío Mendoza Cabrera

PRIMERA EDICIÓN

INGENIERÍA DE
SOFTWARE EN LA
EDUCACIÓN
UNIVERSITARIA:
Experiencias didácticas para una formación
integral

Ingeniería de software en la educación
universitaria: experiencias didácticas

para una formación integral

Autores

Mariuxi G. Vinueza-Morales
Delia Isabel Carrión León

Jessica Janina Cabezas Quinto
Denis Darío Mendoza Cabrera

© Ediciones RISEI, 2025.
Todos los derechos reservados.
Este libro se distribuye bajo la licencia Creative Commons Atribución CC BY 4.0 Inter-
nacional.
Las opiniones expresadas en esta obra son responsabilidad exclusiva de sus autores y no
reflejan necesariamente la posición de la editorial.

Editorial: Ediciones RISEI.
Colección Sistematización de Experiencias Educativas.
Título del libro: Ingeniería de software en la educación universitaria: experiencias didác-
ticas para una formación integral.
Autoría: Mariuxi G. Vinueza-Morales / Delia Isabel Carrión León / Jessica Janina Cabe-
zas Quinto / Denis Darío Mendoza Cabrera.
Edición: Primera edición.
Año: 2025.
ISBN: 978-9942-596-28-4.
DOI: https://doi.org/10.63624/risei.book-978-9942-596-28-4

Coordinación editorial: Jorge Maza-Córdova y Tomás Fontaines-Ruiz.
Diagramación y diseño: Unidad de Diseño.
Revisión por pares: Sistema doble ciego de revisión externa.

Machala — Ecuador, diciembre de 2025.

Este libro fue diagramado en LATEX.
Disponible en: https://editorial.risei.org/
Contacto: info@risei.org

3

https://doi.org/10.63624/risei.book-978-9942-596-28-4
https://editorial.risei.org/
info@risei.org

Prólogo

Prólogo

La educación universitaria atraviesa, en este inicio del siglo XXI, un proceso de trans-
formación profunda que interpela no sólo las prácticas docentes y los modelos de ense-
ñanza, sino también la manera en que las instituciones comprenden su misión formativa,
científica y social. En ese contexto, la Red Institucional de Sistematización e Innova-
ción Educativa (RISEI) surge como una respuesta concreta, reflexiva y articulada a los
desafíos contemporáneos que enfrentan las universidades al buscar integrar la investiga-
ción, la docencia y la innovación en un mismo horizonte de sentido.

Este primer volumen, RISEI I, reúne el trabajo de un conjunto de docentes - investiga-
dores que, desde diferentes disciplinas, experiencias y sedes de la Universidad Católica
de Cuyo, han asumido el compromiso de revisar críticamente su práctica y de reconstruir,
desde la sistematización, los procesos pedagógicos que dieron lugar a innovaciones signi-
ficativas en la enseñanza universitaria. El libro no sólo documenta experiencias, sino que
las analiza, las interpreta y las proyecta, configurando así un corpus valioso para compren-
der las nuevas dinámicas del aprendizaje, la enseñanza y la investigación en la educación
superior contemporánea.

La génesis del programa RISEI
El Programa RISEI nació como una iniciativa impulsada por la Secretaría de Inves-

tigación y Vinculación Tecnológica, en articulación con las unidades académicas, con
el propósito de fortalecer la cultura investigativa y el desarrollo de la innovación pedagó-
gica en la universidad. Desde su creación, el programa se propuso consolidar un espacio
común donde la reflexión docente se traduzca en conocimiento institucional, sistemático
y transferible.

RISEI se sustenta en una premisa central: la mejora de la enseñanza universitaria no
puede depender únicamente de la adopción de nuevas tecnologías o de la actualización
curricular, sino que requiere de un proceso reflexivo y colectivo en el que los docentes se
reconozcan como productores de conocimiento sobre su propia práctica.

A través de esta red se promueve la integración de tres dimensiones esenciales:

1. La innovación pedagógica, entendida como la capacidad de crear, adaptar y expe-
rimentar estrategias didácticas que respondan a las transformaciones del contexto.

2. La investigación educativa, orientada a producir evidencia y comprensión teórica
sobre los procesos de enseñanza y aprendizaje.

i

Prólogo

3. La sistematización de experiencias, como metodología que permite reconstruir el
recorrido vivido, otorgándole significado, coherencia y posibilidad de transferencia.

Este marco dio lugar a una serie de proyectos interdisciplinarios que, en su conjunto,
conforman los capítulos de este primer volumen.

El sentido institucional del libro
El presente libro constituye un producto colectivo del proceso de investigación-acción

desarrollado dentro del marco del programa RISEI. Su sentido no es sólo académico, sino
también institucional: busca consolidar una cultura de la reflexión pedagógica documen-
tada y evaluable, que permita a la universidad aprender de su propia experiencia.

En tiempos donde las universidades enfrentan desafíos vinculados a la digitalización
acelerada, la evaluación por competencias, la diversificación de perfiles estudiantiles y
la necesidad de generar vínculos más estrechos con la comunidad, RISEI representa un
esfuerzo por recuperar la dimensión humanista de la innovación. No se trata única-
mente de incorporar recursos tecnológicos, sino de reconfigurar el modo en que se ense-
ña, se aprende y se investiga, reconociendo al docente como un actor transformador y
reflexivo, y al estudiante como un sujeto activo en la construcción del conocimiento.

Este volumen es también un testimonio del compromiso institucional por profesiona-
lizar la docencia universitaria, entendiendo que la enseñanza de calidad requiere for-
mación permanente, trabajo interdisciplinario y apertura al cambio. Cada capítulo que lo
integra es el resultado de un proceso de indagación situado, donde las preguntas emergen
de la práctica y vuelven a ella como propuestas de mejora.

La estructura del volumen
El libro se organiza en cuatro capítulos que, aunque distintos en su temática y enfo-

que, comparten una lógica común: la búsqueda de estrategias efectivas para mejorar el
aprendizaje a través de la reflexión crítica sobre la práctica docente.

El Capítulo 1, titulado “Del problema a la formulación: pensar la enseñanza como
objeto de investigación”, introduce el marco conceptual del programa y las metodologías
de sistematización aplicadas. Expone los fundamentos teóricos que orientaron la construc-
ción de las experiencias, destacando la necesidad de una docencia basada en la evidencia
y la articulación entre teoría y práctica.

El Capítulo 2, “Del problema a la solución: estrategias para enseñar análisis y dise-
ño de software en primer nivel”, constituye un ejemplo concreto de cómo la investigación
educativa permite rediseñar las estrategias pedagógicas en áreas de alta complejidad téc-
nica. El capítulo combina innovación didáctica con rigor metodológico, mostrando cómo
el aprendizaje activo, el trabajo colaborativo y la evaluación formativa pueden mejorar la
comprensión de conceptos abstractos en la formación tecnológica.

ii

Prólogo

El Capítulo 3, “De la práctica a la teoría: reflexiones sobre la enseñanza univer-
sitaria desde la experiencia”, amplía el enfoque al analizar los procesos de mediación,
acompañamiento y construcción colectiva de conocimiento que surgen en la docencia co-
tidiana. A través de la voz de los docentes participantes, se visibilizan los desafíos de
enseñar en contextos híbridos y los modos de generar comunidades de aprendizaje soste-
nibles.

Finalmente, el Capítulo 4, “De la innovación a la institucionalización: hacia una cul-
tura universitaria de la investigación educativa”, plantea las conclusiones generales del
proceso, las proyecciones del programa RISEI y los lineamientos para su consolidación
como política institucional. Este cierre invita a repensar el lugar de la innovación no co-
mo un hecho aislado o episódico, sino como parte del ADN institucional que orienta el
desarrollo académico, científico y ético de la universidad.

Una mirada sobre la docencia universitaria en transforma-
ción

El libro es testimonio de un cambio de paradigma en la enseñanza universitaria. Las
experiencias aquí sistematizadas demuestran que la innovación educativa no depende ex-
clusivamente de grandes reformas curriculares ni de costosas infraestructuras tecnológi-
cas, sino de la capacidad de los docentes para mirar críticamente su propia práctica,
reconocer los problemas que emergen en el aula y construir soluciones contextualizadas.

Esa mirada investigativa de la docencia, promovida por RISEI, contribuye a transfor-
mar el rol del profesor universitario: de transmisor de conocimientos a facilitador del
aprendizaje, diseñador de experiencias y productor de saber pedagógico. Así, la in-
vestigación se convierte en una herramienta para el cambio, y la sistematización, en un
puente entre la práctica cotidiana y la producción científica.

La universidad, en este sentido, asume su responsabilidad social al generar conoci-
miento sobre la enseñanza, contribuyendo al mejoramiento continuo de sus procesos for-
mativos y a la formación integral de los estudiantes. La investigación educativa adquiere
entonces una doble función: explicar y transformar la realidad universitaria.

RISEI como política de innovación y formación docente
El programa RISEI se inserta en un marco más amplio de desarrollo institucional,

vinculado al Plan Estratégico de Investigación (PEI) y a la Ordenanza General de
Investigación, que promueven la articulación entre la docencia, la investigación y la vin-
culación tecnológica.

La creación de esta red ha permitido que los docentes universitarios encuentren un
espacio de formación, acompañamiento y producción académica donde compartir expe-
riencias, problematizar sus prácticas y consolidar proyectos de mejora.

iii

Prólogo

El valor del programa radica en su capacidad para transformar el conocimiento tá-
cito en conocimiento explícito, contribuyendo al acervo institucional y fortaleciendo los
procesos de acreditación, evaluación y mejora continua. RISEI no sólo documenta ex-
periencias, sino que construye evidencias de impacto pedagógico y propone criterios de
replicabilidad que pueden ser transferidos a otros contextos de la universidad o del sistema
de educación superior.

Además, la articulación de RISEI con las líneas de investigación institucional y con los
programas de desarrollo docente consolida una comunidad académica reflexiva, capaz
de sostener en el tiempo procesos de innovación significativos y de generar una identidad
compartida en torno al valor de la investigación educativa.

Proyección y sostenibilidad

El desafío futuro del programa, y por extensión de este libro, consiste en consolidar
un modelo institucional sostenible de innovación pedagógica que trascienda las expe-
riencias individuales. La meta no es únicamente publicar resultados, sino asegurar que
las prácticas exitosas se integren en la planificación académica, la formación docente y la
cultura organizacional de la universidad.

De este modo, RISEI se proyecta como una política universitaria de largo alcance,
orientada a fortalecer la calidad educativa, fomentar la investigación aplicada a la docen-
cia y promover la formación de docentes-investigadores.

Cada experiencia sistematizada, cada análisis de resultados, cada reflexión incluida en
este volumen es una evidencia concreta de ese compromiso colectivo. Las innovaciones
que aquí se presentan no son meros ejercicios académicos, sino acciones transformado-
ras que impactan en el aprendizaje real de los estudiantes, en la gestión curricular y en la
construcción de una universidad más reflexiva, crítica y humana.

Una invitación a continuar el camino

Este libro no busca clausurar una etapa, sino abrir un camino. Los capítulos que lo
componen son, al mismo tiempo, punto de llegada y punto de partida: llegada de un pro-
ceso institucional que logró articular docencia, investigación y reflexión pedagógica; y
punto de partida para nuevas líneas de trabajo que amplíen el horizonte de la innovación
universitaria.

La invitación es a que cada lector —sea docente, investigador o directivo universita-
rio— encuentre en estas páginas una fuente de inspiración y de guía metodológica para
repensar su práctica, documentar sus avances y compartirlos con la comunidad académi-
ca.

La sistematización de experiencias se presenta, así, como un camino posible hacia la
construcción de un conocimiento pedagógico propio, situado y significativo.

iv

Prólogo

El programa RISEI, y este primer volumen en particular, constituyen una muestra
de que la innovación educativa no es un acto individual, sino un proceso colectivo que
se alimenta de la colaboración, la reflexión y la convicción de que enseñar es también
investigar.

En esa convergencia entre práctica y teoría, entre aula y laboratorio, entre experiencia
y evidencia, se configura la verdadera identidad de una universidad comprometida con su
tiempo.

v

Índice general

Prólogo . i

1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias 1
1.1. Fundamentos de Ingeniería de Software: del aula a la práctica profesional

reflexiva . 4
1.1.1. Apertura contextual . 4
1.1.2. Problematización . 5
1.1.3. Propósito de la sistematización 5
1.1.4. Criterios de valor . 6
1.1.5. Delimitación del objeto de estudio 7

1.2. Fundamentación conceptual y operativa de la experiencia 8
1.2.1. Transición hacia la fundamentación 8
1.2.2. Identificación de conceptos estructurantes 9
1.2.3. Formulación de dimensiones . 10
1.2.4. Construcción de indicadores . 10
1.2.5. Fuentes y métodos de verificación 13
1.2.6. Justificación teórica del conjunto 13
1.2.7. Recapitulación y proyección . 14

1.3. Vínculo con el currículo y el perfil de la Carrera 15
1.3.1. Transición hacia la fundamentación 15
1.3.2. Identificación de competencias del perfil 15
1.3.3. Resultados de aprendizaje vinculados 16
1.3.4. Actividades y evidencias de aprendizaje 16
1.3.5. Reflexión sobre la alineación curricular 18
1.3.6. Síntesis final del módulo . 19

1.4. Ecosistema estratégico (estrategias y relaciones) 20
1.4.1. Puente de Transición hacia el Análisis Estratégico 20
1.4.2. Estrategias de Soporte . 21
1.4.3. Estrategias de Contingencia . 22
1.4.4. Integración Estratégica y Proyección hacia la Evaluación 23

1.5. Evaluación, indicadores, instrumentos, análisis 24
1.5.1. Puente de Evaluación: Instrumentos, Indicadores y Criterios de

Validez . 24
1.5.2. Rúbrica analítica de desempeño 25
1.5.3. Cuestionario de percepción estudiantil 25
1.5.4. Entrevista semiestructurada . 25
1.5.5. Registro de observación sistemática 26
1.5.6. Indicadores de evaluación y criterios de validez 26
1.5.7. Justificación y cierre . 27

1.6. Reflexión crítica y transferencia de la experiencia 31

vii

Tabla de Contenidos

2. Del problema a la solución: estrategias para enseñar análisis y diseño de soft-
ware en primer nivel 38
2.1. Apertura contextual y problematización de la experiencia docente 42

2.1.1. El problema formativo . 42
2.1.2. Propósito de la sistematización 44
2.1.3. Criterios de valor . 45
2.1.4. Delimitación del objeto de estudio 46

2.2. Fundamentación conceptual y operativa: del pensamiento computacional
al aprendizaje activo . 47
2.2.1. Transición hacia la fundamentación conceptual y operativa 47
2.2.2. Aprendizaje activo: del estudiante receptor al estudiante protago-

nista . 49
2.2.3. Práctica colaborativa-reflexiva: aprender con otros para construir

significado . 50
2.2.4. Formulación de dimensiones . 50
2.2.5. Dimensión colaborativa-reflexiva: aprender con otros para cons-

truir conocimiento . 51
2.2.6. Construcción de indicadores . 52
2.2.7. Dimensión pedagógica-didáctica: enseñar a analizar antes de pro-

gramar . 53
2.2.8. Dimensión colaborativa-reflexiva: aprender con otros para cons-

truir conocimiento . 54
2.2.9. Cierre proyectivo . 55
2.2.10. Fuentes y métodos de verificación 55
2.2.11. Fuentes de verificación . 56
2.2.12. Métodos de verificación . 56
2.2.13. Ejemplo de aplicación . 57
2.2.14. Cierre proyectivo . 57
2.2.15. Justificación teórica del conjunto 57
2.2.16. Integración . 60

2.3. Vínculo curricular y resultados de aprendizaje en la enseñanza del análisis
y diseño de software . 60
2.3.1. Transición al vínculo curricular 60
2.3.2. Identificación de competencias del perfil 61
2.3.3. Resultados de aprendizaje vinculados 64
2.3.4. Actividades y evidencias . 66
2.3.5. Reflexión sobre la alineación curricular 68
2.3.6. Integración curricular del Módulo 3 70

2.4. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel . 73
2.4.1. Transición hacia la operacionalización estratégica 73
2.4.2. Estrategias núcleo en acción . 74

viii

Tabla de Contenidos

2.4.3. Estrategias de soporte aplicadas 76
2.4.4. Estrategias de contingencia desplegadas 79
2.4.5. Arquitectura del ecosistema estratégico 81
2.4.6. Integración: Justificación de la validez curricular del ecosistema

estratégico . 84
2.5. Evaluación e indicadores de logro: instrumentos, validez y análisis de evi-

dencias . 86
2.5.1. Transición hacia la evaluación 86
2.5.2. Instrumentos de evaluación aplicados 87
2.5.3. Indicadores de evaluación y criterios de validez 89
2.5.4. Indicadores aplicados . 90
2.5.5. Criterios de validez y confiabilidad 91
2.5.6. Análisis preliminar de evidencias 93
2.5.7. Tipos de evidencias y organización del análisis 93
2.5.8. Hallazgos preliminares . 94
2.5.9. Interpretación de patrones emergentes 94
2.5.10. Síntesis y proyección . 95
2.5.11. Reflexión sobre validez, sesgos y factibilidad 95
2.5.12. Validez del proceso evaluativo 95
2.5.13. Sesgos identificados y estrategias de mitigación 96
2.5.14. Factibilidad y aprendizajes derivados 97
2.5.15. Síntesis y proyección . 98
2.5.16. Integración: Síntesis de la evaluación 98

2.6. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel . 100
2.6.1. Transición hacia la reflexión final 100
2.6.2. Reflexión crítica sobre la experiencia 101
2.6.3. Aportes de la experiencia . 101
2.6.4. Tensiones y resistencias encontradas 102
2.6.5. Aprendizajes personales, colectivos e institucionales 103
2.6.6. Síntesis reflexiva y proyección 104
2.6.7. Integración final: Reflexión y transferencia 104
2.6.8. Aportes y aprendizajes globales 105
2.6.9. Tensiones, desafíos y aprendizajes emergentes 106
2.6.10. Proyección y transferencia . 106
2.6.11. Cierre del capítulo . 107

3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales 111
3.1. Buenas prácticas de programación y refactorización 114

3.1.1. Contextualización de la experiencia pedagógica 114

ix

Tabla de Contenidos

3.1.2. Identificación del problema pedagógico: hacia las buenas prácti-
cas de programación y refactorización 115

3.1.3. El rol del docente como revisor de código pedagógico 116
3.1.4. Cierre integrador . 117

3.2. Del código al pensamiento: enseñanza del código limpio en la formación
inicial de ingenieros en software . 117
3.2.1. Bisagra Textual . 118
3.2.2. Identificación de conceptos estructurantes 118
3.2.3. Formulación de dimensiones . 119
3.2.4. Construcción de indicadores . 120
3.2.5. Dimensión Cognitivo–Conceptual: Comprensión de la lógica y la

abstracción algorítmica . 121
3.2.6. Dimensión Técnico–Procedimental: Aplicación de buenas prácti-

cas y calidad del código . 122
3.2.7. Fuentes y métodos de verificación 123
3.2.8. Modelar y abstraer procesos lógicos 124
3.2.9. Comprensión de la secuencia algorítmica 124
3.2.10. Aprendizaje significativo y contextualizado 125
3.2.11. Fuentes complementarias y métodos asociados 125
3.2.12. Síntesis integradora . 125
3.2.13. Justificación teórica del conjunto 126
3.2.14. Justificación de los indicadores 127
3.2.15. Justificación de las fuentes y métodos de verificación 127
3.2.16. Síntesis final del conjunto . 128
3.2.17. Recomendaciones para profundizar 129

3.3. Aprender gestionando: experiencias innovadoras en proyectos de softwa-
re universitarios . 129
3.3.1. Transición al vínculo curricular 129
3.3.2. Identificación de competencias del perfil 130
3.3.3. Resultados de aprendizaje vinculados 133
3.3.4. Actividades y evidencias . 135
3.3.5. Reflexión sobre la alineación curricular 137

3.4. Transición hacia la operacionalización estratégica 139
3.4.1. Recomendaciones para profundizar 139
3.4.2. Clase 1: Estrategias núcleo en acción 140
3.4.3. Clase 2: Estrategias de soporte aplicadas 143
3.4.4. Clase 3: Estrategias de contingencia desplegadas 146
3.4.5. Clase 4: Arquitectura del ecosistema estratégico 149
3.4.6. Síntesis final: El ecosistema como sistema vivo 151

3.5. Transición hacia la evaluación . 151
3.5.1. Recomendaciones para profundizar 152
3.5.2. Clase 1: Instrumentos de evaluación aplicados 152

x

Tabla de Contenidos

3.5.3. Recomendaciones para profundizar 155
3.5.4. Clase 2: Indicadores de evaluación y criterios de validez 155
3.5.5. Clase 3: Análisis preliminar de evidencias 158
3.5.6. Clase 4: Reflexión sobre validez, sesgos y factibilidad 160

3.6. Transición hacia la reflexión final . 163
3.6.1. Clase 1: Reflexión crítica sobre la experiencia 164
3.6.2. Recomendaciones para profundizar 166

4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios 171
4.1. Aprender gestionando: experiencias innovadoras en proyectos de softwa-

re universitarios . 175
4.1.1. Apertura contextual . 175
4.1.2. Problematización . 175
4.1.3. Las consecuencias de este déficit se manifiestan en tres niveles . . 176
4.1.4. Propósito de la sistematización 176
4.1.5. Criterios de valor . 177
4.1.6. Delimitación del objeto de estudio 178

4.2. Fundamentación teórico-metodológica de la experiencia docente 179
4.2.1. Bisagra textual . 179
4.2.2. Identificación de conceptos estructurantes 180
4.2.3. Aprendizaje activo . 180
4.2.4. Pensamiento crítico . 181
4.2.5. Autonomía en el aprendizaje . 181
4.2.6. Aprendizaje colaborativo . 182
4.2.7. Mentoría pedagógica . 182
4.2.8. Relación entre los conceptos . 183
4.2.9. Formulación de dimensiones . 183
4.2.10. Dimensión pedagógica . 184
4.2.11. Dimensión cognitiva-formativa 185
4.2.12. Dimensión socioafectiva-colaborativa 185
4.2.13. Construcción de indicadores . 186
4.2.14. Indicadores de la dimensión pedagógica 187
4.2.15. Indicadores de la dimensión cognitiva-formativa 188
4.2.16. Indicadores de la dimensión socioafectiva-colaborativa 188
4.2.17. Fuentes . 190
4.2.18. Métodos de verificación . 191
4.2.19. Análisis comparativo de productos 191
4.2.20. Análisis de contenido . 192
4.2.21. Triangulación de evidencias . 192
4.2.22. Justificación teórica del conjunto 193

xi

Tabla de Contenidos

4.3. Integración curricular y desarrollo de competencias en la formación del
ingeniero de software . 195
4.3.1. Transición al vínculo curricular 195
4.3.2. Identificación de competencias del perfil 196
4.3.3. Resultados de aprendizaje vinculados 198
4.3.4. Actividades y evidencias . 200
4.3.5. Reflexión sobre la alineación curricular 202

4.4. Diseño e implementación del ecosistema estratégico de aprendizaje en
ingeniería de software . 204
4.4.1. Transición hacia la operacionalización estratégica 204
4.4.2. Estrategias núcleo en acción . 205
4.4.3. Estrategias de soporte aplicadas 207
4.4.4. Estrategias de contingencia desplegadas 209
4.4.5. Arquitectura del ecosistema estratégico 211

4.5. Evaluación integral de la experiencia: instrumentos, evidencias y validez
del proceso formativo . 213
4.5.1. Transición hacia la evaluación 213
4.5.2. Instrumentos de evaluación aplicados 214
4.5.3. Indicadores de evaluación y criterios de validez 216
4.5.4. Análisis preliminar de evidencias 218
4.5.5. Reflexión sobre validez, sesgos y factibilidad 220

4.6. Reflexión final y proyección institucional de la experiencia docente 222
4.6.1. Transición hacia la reflexión final 222
4.6.2. Reflexión crítica sobre la experiencia 223
4.6.3. Tensiones y resistencias encontradas 224
4.6.4. Aprendizajes personales, colectivos e institucionales 225
4.6.5. Síntesis reflexiva . 226

xii

1
Fundamentos de ingeniería de software: de
la práctica docente reflexiva a la formación

por competencias
Mariuxi G. Vinueza-Morales 1

El capítulo sistematiza una experiencia pedagógica desarrollada en la

Universidad Estatal de Milagro (UNEMI) en la asignatura Introduc-

ción a la Ingeniería de Software. A través de seis etapas, se analiza

la transición conceptual de los estudiantes desde una visión reduccio-

nista centrada en la programación hacia una comprensión integral del

proceso de desarrollo de software. La propuesta combina fundamen-

tos teóricos, estrategias activas y herramientas de evaluación válidas y

confiables, evidenciando mejoras en el aprendizaje, la reflexión docen-

te y la coherencia curricular. La experiencia demuestra la viabilidad de

un modelo formativo basado en competencias, reflexión y mejora con-

tinua.

1Universidad Estatal de Milagro, mvinuezam@unemi.edu.ec.

1

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Índice
1.1. Fundamentos de Ingeniería de Software: del aula a la práctica pro-

fesional reflexiva . 4

1.1.1. Apertura contextual . 4

1.1.2. Problematización . 5

1.1.3. Propósito de la sistematización 5

1.1.4. Criterios de valor . 6

1.1.5. Delimitación del objeto de estudio 7

1.2. Fundamentación conceptual y operativa de la experiencia 8

1.2.1. Transición hacia la fundamentación 8

1.2.2. Identificación de conceptos estructurantes 9

1.2.3. Formulación de dimensiones 10

1.2.4. Construcción de indicadores 10

1.2.5. Fuentes y métodos de verificación 13

1.2.6. Justificación teórica del conjunto 13

1.2.7. Recapitulación y proyección 14

1.3. Vínculo con el currículo y el perfil de la Carrera 15

1.3.1. Transición hacia la fundamentación 15

1.3.2. Identificación de competencias del perfil 15

1.3.3. Resultados de aprendizaje vinculados 16

1.3.4. Actividades y evidencias de aprendizaje 16

1.3.5. Reflexión sobre la alineación curricular 18

1.3.6. Síntesis final del módulo . 19

1.4. Ecosistema estratégico (estrategias y relaciones) 20

1.4.1. Puente de Transición hacia el Análisis Estratégico 20

1.4.2. Estrategias de Soporte . 21

1.4.3. Estrategias de Contingencia 22

1.4.4. Integración Estratégica y Proyección hacia la Evaluación 23

2

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

1.5. Evaluación, indicadores, instrumentos, análisis 24

1.5.1. Puente de Evaluación: Instrumentos, Indicadores y Criterios de

Validez . 24

1.5.2. Rúbrica analítica de desempeño 25

1.5.3. Cuestionario de percepción estudiantil 25

1.5.4. Entrevista semiestructurada 25

1.5.5. Registro de observación sistemática 26

1.5.6. Indicadores de evaluación y criterios de validez 26

1.5.7. Justificación y cierre . 27

1.6. Reflexión crítica y transferencia de la experiencia 31

3

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

1.1. Fundamentos de Ingeniería de Software: del aula a
la práctica profesional reflexiva

1.1.1. Apertura contextual

La experiencia que aquí se sistematiza tuvo lugar en la Universidad Estatal de Mi-
lagro, en la asignatura Introducción a la Ingeniería de Software, dentro de la carrera de
Ingeniería de Software. Se trata de un curso inicial en el que convergen estudiantes jóve-
nes, en su mayoría hombres y provenientes de diferentes provincias, que buscan insertarse
en un campo profesional de alta demanda. El aula se convierte en un espacio de diversidad
cultural y académica, donde confluyen expectativas, motivaciones y vacíos conceptuales
que condicionan los procesos de aprendizaje.

Durante una sesión inicial, al plantear un ejercicio práctico sobre cómo abordar un pe-
dido de cliente, la mayoría de los estudiantes propuso comenzar directamente a programar
sin considerar posibles cambios de requerimientos. Esta respuesta reflejó una tendencia
general: asociar la ingeniería de software exclusivamente con la escritura de código, sin
visualizar los procesos de planificación, diseño y calidad. Este episodio constituyó un
punto de inflexión, pues mostró con claridad la necesidad de trabajar en la transición con-
ceptual desde una mirada reduccionista hacia una comprensión integral de la disciplina.

Las condiciones que favorecieron el desarrollo de la experiencia incluyen la apertura
de los estudiantes a reflexionar sobre su propia práctica, así como el interés institucio-
nal por fortalecer la formación de base en ingeniería de software. Entre las limitaciones
encontradas se destacan la resistencia inicial a cuestionar creencias previas y la escasez
de materiales didácticos adaptados al contexto local. Este escenario se convierte en el ci-
miento para la sistematización, ya que visibiliza el desafío central: diferenciar entre “pro-
gramar” y “construir software”, situando este contraste como el núcleo de la experiencia
formativa.

Me parece clave que piensen en términos de diagnóstico. En la epistemología del
sur se viene cuestionando el uso del término “diagnóstico” hacia un análisis situacional.
Ustedes ayer presentaron distintos autores que los alimentan teóricamente. Yo les traigo
uno que cuestiona el uso de la palabra “diagnóstico” porque dice que es solo formulativo.
Hacer un análisis situacional implica ir más allá de solo datos, es poder intrincarme con
el otro.

4

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

1.1.2. Problematización

El problema central identificado en esta experiencia es la visión limitada que los estu-
diantes tienen sobre la ingeniería de software, restringida casi exclusivamente al acto de
programar. Este enfoque reduccionista no solo empobrece su formación académica, sino
que también genera implicaciones profesionales, ya que limita la capacidad de abordar
proyectos con calidad, sostenibilidad y visión de procesos.

La relevancia de este problema se refleja en la práctica profesional: los egresados
que priorizan únicamente la codificación suelen enfrentar dificultades para responder a
cambios de requerimientos, gestionar equipos o implementar procesos de calidad (Press-
man, 2014). En el aula, esta tendencia se traduce en propuestas desorganizadas, donde los
estudiantes privilegian soluciones rápidas sin prever la evolución del producto. Tal desco-
nexión entre formación académica y necesidades del campo evidencia la urgencia de una
intervención pedagógica.

Desde una perspectiva educativa, Schön (1992) sostiene que la práctica reflexiva per-
mite a los profesionales replantearse sus marcos de acción, lo que resulta clave para en-
frentar problemas complejos. En la experiencia descrita, el quiebre inicial al confrontar a
los estudiantes con la pregunta sobre cómo responder a un cliente mostró que existía un
vacío conceptual profundo. Esta evidencia práctica, combinada con estudios como los de
McConnell (2004), que advierten sobre los riesgos de no formar en procesos desde etapas
tempranas, confirma la pertinencia de situar este problema como núcleo de la sistemati-
zación.

La problematización, por tanto, no se limita a describir una dificultad puntual, sino
que revela un desafío formativo estructural: cómo guiar a los estudiantes en la transición
de una visión técnica fragmentada hacia una concepción integral de la ingeniería de soft-
ware. Este planteamiento será la base para definir el propósito y orientar las decisiones
narrativas del capítulo.

1.1.3. Propósito de la sistematización

El propósito de esta sistematización es documentar y analizar la estrategia pedagógica
que favoreció la transición conceptual de los estudiantes desde una visión reduccionista
hacia una comprensión procesual e integral de la ingeniería de software. Con ello se busca
formalizar una propuesta didáctica que, además de ser válida para el contexto de la Uni-

5

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

versidad Estatal de Milagro, pueda inspirar a otros docentes e instituciones interesadas en
fortalecer la formación inicial en ingeniería.

Esta intención surge de la convicción de que enseñar ingeniería de software no pue-
de reducirse a transmitir técnicas, sino que debe acompañar la construcción de un marco
conceptual sólido que prepare a los estudiantes para los retos de la práctica profesional.
En este sentido, la sistematización se convierte en una herramienta de reflexión y co-
municación, alineada con lo que Carlino (2005) y Hyland (2009) plantean respecto a la
escritura académica como medio para compartir procesos invisibilizados y generar redes
de aprendizaje.

El propósito tiene, además, una dimensión proyectiva. Como docentes, buscamos
transformar una experiencia situada en conocimiento replicable, con la capacidad de in-
cidir en la cultura pedagógica de la disciplina. Este propósito se enlaza con lo propuesto
por Somerville (2011), al destacar la importancia de comprender la ingeniería de software
como un conjunto de procesos interrelacionados, y con los principios del Manifiesto Ágil

(Beck et al., 2001), que enfatizan la adaptabilidad y la mejora continua. En consecuencia,
el propósito se constituye en brújula que orienta tanto la narrativa del capítulo como el
aporte a la comunidad académica.

1.1.4. Criterios de valor

El valor de esta experiencia radica en demostrar que la enseñanza de la ingeniería de
software puede convertirse en un espacio de innovación pedagógica cuando integra refle-
xión crítica y aprendizaje técnico. No se trata solo de transmitir conocimientos, sino de
acompañar un proceso formativo que transforma la forma en que los estudiantes entienden
la disciplina.

La innovación se fundamenta en haber vinculado la metodología de sistematización
educativa (Jara, 2018a) con la enseñanza de fundamentos técnicos, generando un modelo
pedagógico reflexivo. En lugar de limitarse a prácticas centradas en la programación, la
experiencia promovió que los estudiantes asumieran una visión integral basada en proce-
sos. Esto se inscribe en la lógica de la investigación-acción que Elliott (1993) describe,
donde el docente convierte su práctica en objeto de análisis y conocimiento compartido.

El impacto se observó en varios niveles. En los estudiantes, se produjo una evolución
desde la lógica del código hacia la valoración de la calidad y los procesos (McConnell,
2004). En los docentes, se consolidó un marco para abordar brechas conceptuales recu-

6

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

rrentes. Para la institución, los resultados ofrecen insumos validados para la mejora cu-
rricular, en sintonía con estándares internacionales como ABET (2020). Esta dimensión
reflexiva remite a Schön (1992), quien subraya la importancia de aprender a partir de la
práctica.

La transferibilidad es otro criterio clave. El contraste entre desarrollo ad hoc y modelos
formales, las actividades de reflexión guiada y los instrumentos de evaluación conceptual
pueden adaptarse a otros contextos. Stenhouse (1987) señala que el conocimiento peda-
gógico cobra sentido cuando es compartido y puesto a prueba en nuevos escenarios. En
este caso, la coherencia con los principios del Manifiesto Ágil (Beck et al., 2001) y marcos
de calidad como ANEAES (2020) refuerza la validez de la propuesta.

En conclusión, la experiencia merece ser considerada valiosa porque conjuga innova-
ción, impacto y transferibilidad. Como sostiene Jara (2018a), la sistematización adquiere
sentido cuando trasciende la práctica individual y se convierte en conocimiento comparti-
do. Con este cierre se abre camino a la delimitación del objeto de estudio, paso que otorga
foco y coherencia a la narrativa del capítulo.

1.1.5. Delimitación del objeto de estudio

El objeto de estudio de esta sistematización se centra en el proceso de transición con-
ceptual de los estudiantes desde una visión centrada en la programación hacia una com-
prensión procesual de la ingeniería de software. El propósito es analizar cómo la estrategia
pedagógica implementada favoreció este cambio, documentando tanto las dinámicas de
aula como las evidencias producidas por los estudiantes.

La elección de este foco responde a la necesidad de destacar el aspecto más signi-
ficativo de la experiencia, evitando dispersión. No se abordan de manera exhaustiva los
efectos institucionales ni la totalidad de resultados docentes, sino que se delimitan como
eje principal las prácticas didácticas y el aprendizaje estudiantil. Flick (2014a) sostiene
que toda investigación cualitativa requiere un recorte definido para alcanzar profundidad
y coherencia, criterio que guía esta delimitación.

El recorte incluye a los estudiantes de primer semestre de la carrera de Ingeniería de
Software de la Universidad Estatal de Milagro, así como el rol docente como mediador.
Las evidencias centrales consideradas son registros de aula, producciones de los estudian-
tes en actividades de contraste y evaluaciones que reflejan la comprensión conceptual. Se

7

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

excluyen seguimientos longitudinales y valoraciones externas posteriores, al exceder los
límites temporales y temáticos del análisis.

Este objeto de estudio parte del supuesto de que comprender los procesos de ingeniería
desde etapas tempranas constituye un factor decisivo para la formación profesional. Tal
elección responde a lo señalado por Jara (2018a), para quien sistematizar no es abarcarlo
todo, sino convertir una práctica particular en conocimiento comunicable y útil.

En síntesis, el capítulo se construirá en torno al análisis de esta transición conceptual,
con un marco definido que asegura coherencia y pertinencia. Con ello se cierra el primer
tramo de escritura, sobre el cual se edificará el desarrollo posterior.

1.2. Fundamentación conceptual y operativa de la expe-
riencia

La reflexión desarrollada en el capítulo anterior permitió delimitar el objeto de estudio
y fundamentar la relevancia de analizar la transición conceptual de los estudiantes desde
una visión reducida de la ingeniería de software —centrada exclusivamente en la progra-
mación— hacia una comprensión integral del proceso de desarrollo. Sobre esa base, el
presente capítulo se orienta a establecer los fundamentos teóricos y metodológicos que
sustentan dicha sistematización, articulando los conceptos estructurantes, dimensiones,
indicadores y métodos que consolidan el marco conceptual de la experiencia formativa
desarrollada en la Universidad Estatal de Milagro (UNEMI).

1.2.1. Transición hacia la fundamentación

La sistematización de la experiencia desarrollada en la Universidad Estatal de Milagro
(UNEMI) surge como una estrategia formativa orientada al fortalecimiento de la escritura
académica de los docentes universitarios. Este proceso busca promover la reflexión peda-
gógica, la mejora continua y la consolidación de una cultura institucional de investigación.
El Módulo 2, “Fundamentación conceptual y operativa de la experiencia”, constituye el
corazón del proceso, ya que en él se articulan los conceptos, dimensiones, indicadores,
fuentes y métodos que sostienen teóricamente la práctica sistematizada.

De acuerdo con Jara (2018b), sistematizar es “volver sobre la experiencia para com-
prenderla y comunicar”, lo cual exige una estructura conceptual clara y coherente. En

8

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

este sentido, la UNEMI, comprometida con la formación de docentes investigadores y
con la innovación pedagógica, encuentra en este ejercicio una oportunidad para construir
conocimiento colectivo desde su propia práctica.

1.2.2. Identificación de conceptos estructurantes

La identificación de los conceptos estructurantes fue el punto de partida para construir
el marco teórico de esta sistematización. En el contexto de la UNEMI, los conceptos
escritura académica, acompañamiento docente, práctica reflexiva e identidad profesional
emergieron de las experiencias formativas y de los procesos de tutoría desarrollados con
los docentes. Estos conceptos permiten comprender la experiencia desde una perspectiva
integral, al combinar el desarrollo de competencias comunicativas con la transformación
del rol docente.

La escritura académica, como plantean Carlino (2005) y Hyland (2009), es una prác-
tica social situada, en la que los sujetos construyen conocimiento, identidad y pertenencia
disciplinar. No se trata solo de producir textos correctos, sino de aprender a pensar, argu-
mentar y comunicar en los lenguajes de la ciencia. En la UNEMI, este concepto se traduce
en el fomento de la alfabetización académica como parte del desarrollo profesional do-
cente, en concordancia con las líneas de investigación institucionales.

El acompañamiento docente, por su parte, se entiende como una mediación pedagó-
gica orientada al desarrollo reflexivo y colaborativo. Schön (1992) describe este proceso
como “reflexión en la acción”, una práctica donde el docente aprende al analizar sus
propias decisiones y experiencias. En la UNEMI, este acompañamiento ha adoptado un
enfoque dialógico, que combina tutorías personalizadas, talleres de escritura y espacios
de coevaluación, generando comunidades de aprendizaje entre pares.

Finalmente, la práctica reflexiva y la identidad profesional actúan como ejes trans-
versales del proceso. Day (2006) sostiene que la identidad docente se construye en la
interacción entre la biografía personal, el contexto institucional y los valores profesio-
nales. En este sentido, las tutorías de escritura no solo fortalecen habilidades técnicas,
sino que contribuyen a la consolidación de una identidad académica comprometida con la
calidad y la investigación.

9

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

1.2.3. Formulación de dimensiones

La construcción de dimensiones permitió organizar y profundizar el análisis de la ex-
periencia. Según Flick (2014b), las dimensiones actúan como categorías intermedias que
permiten traducir la complejidad de una práctica en un sistema interpretativo coherente.
En este proceso, se definieron tres dimensiones: pedagógica, institucional y subjetiva, las
cuales articulan los aspectos formativos, estructurales y personales de la experiencia.

La dimensión pedagógica aborda las estrategias, metodologías y recursos que sus-
tentan el acompañamiento docente en la escritura académica. Incluye la planificación de
talleres, la retroalimentación formativa y la integración de la escritura en las prácticas
docentes. Como plantea Zabalza (2011), esta dimensión permite valorar la competencia
didáctica del profesor universitario no solo en su conocimiento disciplinar, sino también
en su capacidad para guiar procesos de aprendizaje autónomo. En la UNEMI, esta dimen-
sión cobra relevancia dentro de su modelo educativo basado en competencias y aprendi-
zaje activo.

La dimensión institucional refleja el compromiso de la UNEMI con la profesionali-
zación docente y la mejora continua. Esta universidad ha impulsado políticas de forta-
lecimiento académico, como la formación continua, la vinculación con la investigación
y la integración de tecnologías en los procesos educativos. Fullan y Hargreaves (2012)
destacan que las instituciones que promueven el desarrollo profesional colectivo logran
consolidar comunidades de práctica sostenibles, lo que coincide con los propósitos del
acompañamiento desarrollado.

Por su parte, la dimensión subjetiva da cuenta de los cambios en la percepción, motiva-
ción y autoconfianza del profesorado. Freire (1996) recuerda que todo acto educativo im-
plica una dimensión ética y emocional; por tanto, el crecimiento profesional se acompaña
de una transformación personal. En este sentido, la experiencia en la UNEMI evidenció
cómo la escritura académica se convierte también en un espacio de empoderamiento y
resignificación del rol docente.

1.2.4. Construcción de indicadores

Los indicadores representan el paso del plano conceptual al empírico, constituyendo
herramientas concretas para evaluar la transformación de las prácticas. Yin (2014) explica
que los indicadores son los puentes entre las categorías teóricas y la realidad observada;
su función es permitir la verificación y comprensión de los fenómenos estudiados. En esta

10

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

sistematización, los indicadores se construyeron a partir de los registros de tutorías, los
textos producidos y las reflexiones docentes.

En la dimensión pedagógica, los indicadores incluyeron la frecuencia de integración
de actividades de escritura en el aula, la calidad de la retroalimentación entre pares y
la adopción de estrategias de revisión. En la dimensión institucional, se consideraron la
participación en programas de capacitación, el uso de plataformas académicas y el acce-
so a recursos institucionales. En la dimensión subjetiva, se evaluó la autopercepción del
cambio, el nivel de motivación y la apropiación del rol académico. Stake (1995) subraya
que los indicadores solo adquieren sentido cuando están acompañados de evidencias ve-
rificables; por ello, su construcción estuvo guiada por criterios de claridad, pertinencia y
observabilidad.

La matriz de dimensiones–indicadores–fuentes–métodos constituye la síntesis del tra-
bajo desarrollado en el Módulo 2 y cumple la función de articular el marco conceptual
con la práctica observada. En ella se organizan los aspectos pedagógicos, institucionales
y subjetivos de la experiencia, mostrando cómo se tradujeron en indicadores observables
y verificables, respaldados con evidencias concretas y métodos de análisis rigurosos.

En la dimensión pedagógica, los indicadores se reflejaron en la calidad progresiva de
los textos académicos de los docentes, evidenciada en borradores, versiones finales y re-
gistros de tutoría. Estos materiales se analizaron mediante la comparación entre productos
y el análisis documental, lo que permitió constatar mejoras en coherencia, cohesión y uso
de referencias.

En la dimensión institucional, los indicadores se verificaron en registros formales co-
mo actas de tutoría, certificaciones y documentos del plan de desarrollo docente. Su aná-
lisis documental y la triangulación con otras fuentes demostraron el compromiso de la
universidad para respaldar y legitimar el proceso.

Finalmente, en la dimensión subjetiva, los testimonios recogidos en entrevistas, gru-
pos focales y relatos escritos permitieron verificar cambios en la confianza, la motivación
y la identidad profesional de los participantes. Para esta fuente se aplicó el análisis de con-
tenido y la codificación temática, lo que facilitó interpretar las narrativas como evidencia
de transformación personal.

En conjunto, la matriz muestra cómo las dimensiones analíticas no quedaron en el
plano abstracto, sino que se vincularon con indicadores claros, sustentados en fuentes
pertinentes y validadas mediante métodos cualitativos sólidos. De este modo, se garantiza

11

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Tabla 1.1: Matriz de dimensiones, indicadores, fuentes, métodos

Dimensión Indicadores Fuentes de
verificación

Métodos de
verificación

Pedagógica

1. Los docentes entregan
borradores semanales con
estructura académica bá-
sica.
2. Incorporan citas y refe-
rencias en sus textos.
3. Mejoran la coherencia
y cohesión entre versiones
iniciales y finales.

- Borradores
de textos
- Versiones
finales
- Observa-
ciones de
tutoría

- Compara-
ción entre
versiones
- Análisis
textual y
documental

Institucional

1. La universidad certifica
la participación de los
docentes.
2. Se asignan horas insti-
tucionales para el proceso
de formación.
3. Se reconoce formal-
mente la capacitación
dentro del plan de desa-
rrollo docente.

- Certifica-
ciones
- Actas de
tutoría
- Plan de
desarrollo
docente

- Análisis
documental
- Triangu-
lación con
otras fuentes

Subjetiva

1. Los docentes expresan
mayor confianza en sus
escritos.
2. Participan voluntaria-
mente en espacios de re-
troalimentación.
3. Reconocen avances en
su identidad como autores
de conocimiento.

- Entrevistas
- Grupos
focales
- Relatos
personales
escritos

- Análisis de
contenido
- Codi-
ficación
temática
- Triangula-
ción

Fuente: elaboración propia.

12

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

que la sistematización se base en evidencias confiables y se fortalezca su credibilidad
académica

1.2.5. Fuentes y métodos de verificación

La validez del proceso depende de la rigurosidad en la selección de fuentes y méto-
dos. Flick (2014a) recomienda la triangulación de fuentes como estrategia fundamental
para garantizar la credibilidad del análisis cualitativo. En este caso, se utilizaron diversas
fuentes: borradores de escritura, entrevistas semiestructuradas, diarios reflexivos y docu-
mentos institucionales. Esta diversidad permitió observar la experiencia desde múltiples
perspectivas.

El método de análisis de contenido facilitó la identificación de patrones y categorías
emergentes en los textos de los docentes; mientras que el análisis comparativo ayudó a
contrastar los avances en distintas etapas del proceso. Además, el análisis narrativo per-
mitió reconstruir las trayectorias formativas de los participantes, otorgando profundidad
interpretativa. Yin (2014) señala que el valor de un estudio de caso radica en su capacidad
para conectar las evidencias con el marco conceptual, y eso se logró al relacionar cada
fuente con los indicadores definidos.

1.2.6. Justificación teórica del conjunto

La coherencia del conjunto conceptual y operativo responde a una lógica fundamen-
tada en la teoría educativa y la metodología cualitativa. Jara (2018a) plantea que la sis-
tematización no solo organiza la experiencia, sino que la convierte en conocimiento so-
cialmente útil. En este caso, la articulación entre los conceptos, las dimensiones y los
métodos genera una estructura analítica sólida, coherente con la misión institucional de
la UNEMI, que busca “formar profesionales competentes con actitud proactiva y valores
éticos, desarrollar investigación relevante y ofertar servicios que contribuyan al desarrollo
de la sociedad”.

Carlino (2005) y Hyland (2009) aportan el sustento epistemológico al concebir la
escritura académica como práctica social que construye conocimiento y comunidad. Flick
(2014a) y Yin (2014) sustentan el rigor metodológico, mientras que Freire (1996) y Schön
(1992) aportan la mirada ética y reflexiva del proceso docente. Este entramado teórico
legitima las decisiones tomadas y permite proyectar el trabajo hacia la mejora continua
de la formación académica y profesional del profesorado universitario.

13

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Además, la justificación teórica se fortalece al reconocer que este proceso se inscribe
en una política institucional de UNEMI orientada a la innovación educativa y la produc-
ción científica. Tal como sostiene Bolívar (2012), la cultura organizativa de una institución
determina la sostenibilidad de los cambios pedagógicos; por ello, integrar la escritura aca-
démica dentro del desarrollo docente constituye un paso decisivo hacia la consolidación
de una comunidad universitaria más reflexiva y generadora de conocimiento. Este marco
teórico-operativo, al articular lo individual con lo institucional, reafirma que la sistemati-
zación no es un ejercicio aislado, sino una práctica que potencia el sentido de pertenencia
y el compromiso con la transformación educativa.

1.2.7. Recapitulación y proyección

Este módulo me permitió articular los fundamentos conceptuales y metodológicos que
sustentan la sistematización de mi experiencia en la UNEMI. A través de los cinco puentes
recorridos, logré integrar los conceptos de escritura académica, acompañamiento docente
y reflexión pedagógica en un marco coherente, que se traduce en dimensiones analíticas
con sus respectivos indicadores, fuentes y métodos de verificación. Este proceso no sólo
consolidó la estructura del capítulo, sino que fortaleció mi comprensión sobre cómo la
práctica puede convertirse en conocimiento comunicable.

La integración de estos elementos me da la seguridad de que el trabajo realizado cuen-
ta con validez académica y sentido formativo. Haber completado esta fundamentación se
prepara para avanzar hacia el Módulo 3, centrado en el análisis e interpretación de los
hallazgos. Desde la perspectiva institucional de la UNEMI, este avance representa una
contribución concreta al fortalecimiento de la cultura investigativa y reflexiva del profe-
sorado, reafirmando que la escritura académica, más que una exigencia, es una práctica
de crecimiento profesional y colectivo.

En síntesis, la fundamentación conceptual y operativa presentada en este capítulo per-
mitió consolidar la estructura metodológica que sustenta la sistematización de la experien-
cia. La articulación entre conceptos, dimensiones, indicadores y métodos dio coherencia
al proceso y garantizó su validez académica. Este recorrido teórico-práctico constituye
la base para el siguiente capítulo, donde se abordará el análisis e interpretación de los
hallazgos empíricos, con el propósito de visibilizar los aprendizajes, transformaciones y
desafíos que emergen de la práctica reflexiva y del acompañamiento docente en la UNE-
MI.

14

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

1.3. Vínculo con el currículo y el perfil de la Carrera

1.3.1. Transición hacia la fundamentación

El Módulo 3 representa un punto de inflexión dentro del proceso de sistematización
de la experiencia docente, al centrarse en la integración curricular como eje articulador
entre la práctica pedagógica y los propósitos formativos institucionales. En este módulo,
la reflexión se orienta a establecer conexiones claras entre la experiencia desarrollada,
las competencias del perfil de egreso, los resultados de aprendizaje, las actividades
realizadas, las evidencias generadas y la alineación curricular que sustenta la calidad
de la enseñanza en la Universidad Estatal de Milagro (UNEMI).

La UNEMI, en coherencia con su Modelo Educativo Institucional (Universidad Esta-
tal de Milagro (UNEMI), 2022), promueve un enfoque por competencias que busca for-
mar profesionales con pensamiento crítico, compromiso ético y capacidad de innovación.
En este contexto, la sistematización docente se convierte en una herramienta de investiga-
ción y mejora, permitiendo documentar cómo las estrategias pedagógicas implementadas
en el aula dialogan con el currículo y aportan al perfil de egreso.

El propósito general del Módulo 3 es evidenciar la coherencia entre lo planificado y
lo aprendido, mostrando que cada acción pedagógica responde a un marco curricular que
legitima y potencia su valor formativo. A través de los cinco puentes que lo componen
—desde la identificación de competencias hasta la integración final—, se construye una
narrativa reflexiva que da cuenta del impacto académico de la experiencia, fortaleciendo
tanto el proceso de enseñanza-aprendizaje como el desarrollo institucional.

1.3.2. Identificación de competencias del perfil

El recorrido del Módulo 3 inició con la identificación de las competencias profe-
sionales y transversales que sustentan el perfil de egreso de la carrera de Ingeniería de
Software de la UNEMI. A partir de ellas, se analizaron los resultados de aprendizaje que
operativizan dichas competencias, revelando una coherencia entre los propósitos forma-
tivos institucionales y la práctica docente desarrollada. Este proceso permitió reconocer
que las competencias específicas —como la capacidad de analizar, diseñar e implementar
soluciones informáticas eficaces— se complementan con competencias genéricas como
el trabajo colaborativo, la comunicación efectiva y el pensamiento crítico.

15

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

En este primer puente se estableció que la práctica pedagógica no puede limitarse a la
transmisión técnica de conocimientos, sino que debe orientarse al desarrollo de capaci-
dades integrales. La articulación entre competencias y resultados de aprendizaje propor-
cionó una base conceptual sólida que guio todo el proceso de sistematización, situando la
experiencia dentro del marco curricular institucional (Universidad Estatal de Milagro
(UNEMI), 2022). Este ejercicio inicial reafirma la importancia de un currículo dinámico,
centrado en el estudiante y coherente con los desafíos tecnológicos y sociales contempo-
ráneos.

1.3.3. Resultados de aprendizaje vinculados

En este segundo momento, la atención se centró en mostrar cómo las actividades
desarrolladas durante la experiencia docente materializaron los resultados de aprendiza-
je previstos. Se diseñaron y aplicaron estrategias didácticas como talleres de análisis de
casos con requerimientos cambiantes, elaboración progresiva de documentos de diseño,
sesiones de retroalimentación entre pares y ejercicios de reflexión guiada sobre el proceso
de desarrollo.

Cada una de estas actividades generó evidencias verificables —informes técnicos,
rúbricas de coevaluación, registros audiovisuales de reflexión— que validaron los logros
alcanzados. Esta relación actividad–resultado–evidencia demostró la coherencia pedagó-
gica de la práctica, tal como propone Biggs (2003) en su modelo de Alineamiento Cons-
tructivo y Shulman (2005) en su planteamiento sobre la documentación reflexiva de la
enseñanza. Así, se comprobó que la experiencia no fue improvisada, sino que se estruc-
turó con propósito curricular, generando aprendizaje profundo y demostrable.

Este puente aportó evidencia empírica al proceso de sistematización, mostrando que
la planificación didáctica, cuando se articula con los resultados esperados, se convierte en
un motor de calidad educativa (Bolívar, 2016).

1.3.4. Actividades y evidencias de aprendizaje

El tercer puente permitió realizar una mirada crítica sobre la articulación entre la
experiencia y el currículo. Se evidenció que la práctica docente contribuye significativa-
mente a la calidad formativa de la carrera al vincular teoría y práctica mediante metodolo-
gías activas, reflexivas y colaborativas. A la vez, se identificaron tensiones derivadas de la

16

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

implementación de enfoques innovadores, como la resistencia inicial de algunos actores
académicos o la necesidad de ajustar tiempos y recursos para sostener el trabajo reflexivo.

No obstante, estas tensiones se transformaron en oportunidades de aprendizaje y me-
jora institucional. La alineación curricular fortaleció la comprensión del perfil de egreso,
evidenciando que la práctica docente es un espacio de innovación que puede alimen-
tar la renovación del currículo. Esta reflexión se apoyó en los aportes de Díaz-Barriga
(2014), quien señala la importancia de un currículo flexible y contextualizado, y de Bo-
lívar (2016), quien destaca la función formativa del docente investigador de su propia
práctica.

Esta práctica promovió la capacidad crítica, la argumentación técnica y la empatía pro-
fesional, aspectos fundamentales en la formación de ingenieros reflexivos (Schön, 1992).
Las actas de retroalimentación y los comentarios escritos constituyeron evidencias tangi-
bles del desarrollo de habilidades de evaluación y comunicación, en consonancia con la
competencia genérica de trabajo colaborativo y comunicación efectiva establecida por la
Universidad Estatal de Milagro (UNEMI) (2022).

La última fase de la experiencia incluyó ejercicios de reflexión guiada sobre el pro-
ceso de desarrollo, en los que los estudiantes analizaron los aprendizajes obtenidos, las
dificultades enfrentadas y las decisiones técnicas adoptadas. Este ejercicio permitió ge-
nerar evidencias cualitativas —como informes de autoevaluación y testimonios audiovi-
suales— que documentan la interiorización de una práctica profesional consciente. Stake
(1995) señala que la triangulación de evidencias, es decir, la combinación de documentos,
observaciones y reflexiones otorga mayor validez al proceso de evaluación educativa, al
permitir contrastar percepciones y resultados de distintas fuentes.

De manera sintética, la relación entre actividad–resultado de aprendizaje–evidencia
puede expresarse así:

17

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Tabla 1.2: Relación entre actividad, resultado de aprendizaje y evidencia generada

Actividad Resultado de aprendizaje
trabajado

Evidencia generada

Taller de análisis de ca-
sos

Distingue las fases del ciclo
de vida del software

Informe técnico con diagra-
mas de proceso

Elaboración de docu-
mentos técnicos

Redacta especificaciones y
decisiones de diseño

Borradores y entregas finales
de documentación

Retroalimentación en-
tre pares

Aplica pensamiento crítico y
comunicación técnica

Rúbricas y actas de coeva-
luación

Reflexión guiada Evalúa críticamente su pro-
ceso de aprendizaje

Informes escritos y testimo-
nios audiovisuales

Nota. La tabla sintetiza la articulación entre actividad, resultado de aprendizaje y evidencia generada.
Fuente: elaboración propia.

Esta trazabilidad demuestra la coherencia pedagógica y curricular de la experiencia,
asegurando que los resultados observados no son producto del azar, sino de una secuencia
planificada que integra teoría, práctica y reflexión. En consonancia con el modelo edu-
cativo de la Universidad Estatal de Milagro (UNEMI) (2022), las evidencias generadas
se convierten en insumos para la evaluación integral de los aprendizajes y para la mejora
continua de la docencia universitaria. Así, este puente permite cerrar el ciclo formativo de
la experiencia, mostrando cómo la práctica concreta del aula se articula con los propósitos
institucionales de formación profesional.

1.3.5. Reflexión sobre la alineación curricular

A partir de la experiencia, se identificaron tres dimensiones clave del proceso de ali-
neación: fortalezas, tensiones y aprendizajes. Entre las fortalezas, destaca la coherencia
lograda entre competencias, resultados, actividades y evidencias, lo cual refleja la madu-
rez pedagógica alcanzada. Entre las tensiones, se reconocen los desafíos asociados a la
implementación de metodologías activas en contextos de enseñanza tradicional, lo que
demanda acompañamiento institucional y desarrollo profesional docente. Finalmente, los
aprendizajes obtenidos confirman que la sistematización es un proceso de construcción
colectiva que promueve una cultura de mejora continua (Jara, 2018a).

La experiencia reafirma que la práctica reflexiva es un medio eficaz para integrar el

18

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Tabla 1.3: Dimensiones, descripciones e implicaciones pedagógicas

Dimensión Descripción Implicaciones pedagógicas
Fortalezas Coherencia entre competencias,

resultados, actividades y evi-
dencias; articulación efectiva
con el currículo institucional.

Fortalece la calidad académica
y la pertinencia del aprendizaje.

Tensiones Resistencias al cambio metodo-
lógico; limitaciones de tiempo
y recursos; necesidad de ajustes
evaluativos.

Requiere apoyo institucional y
capacitación docente continua.

Aprendizajes La sistematización como prác-
tica reflexiva; la importancia de
documentar evidencias y com-
partir experiencias.

Consolida una cultura de mejo-
ra y colaboración docente.

Nota: La tabla sintetiza las principales dimensiones analizadas y sus implicaciones pedagógicas.
Fuente: elaboración propia.

saber académico con la realidad profesional, fortaleciendo la formación de ingenieros
capaces de responder a los retos tecnológicos y sociales del entorno. Como señala Schön
(1992), el profesional reflexivo aprende en y sobre la acción, convirtiendo la práctica en
una fuente legítima de conocimiento pedagógico.

1.3.6. Síntesis final del módulo

Desde una perspectiva integradora, el proceso desarrollado en el Módulo 3 constituye
una manifestación concreta del alineamiento constructivo (Biggs & Tang, 2011), aplica-
da al contexto universitario ecuatoriano. La experiencia docente sistematizada demuestra
que los aprendizajes significativos surgen de la coherencia entre lo que se enseña, cómo
se enseña y cómo se evalúa. La UNEMI, al promover la docencia por competencias y el
enfoque de aprendizaje activo, se consolida como una institución que impulsa la transfor-
mación educativa con base en evidencia pedagógica.

Este puente teórico también legitima la experiencia como un producto académico,
al articular teoría, práctica y reflexión crítica. La práctica sistematizada deja de ser una
experiencia aislada y se convierte en conocimiento transferible, susceptible de ser com-
partido con otros docentes e integrado en procesos institucionales de mejora curricular.
Además, reafirma que la calidad universitaria depende de la coherencia entre el mode-

19

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

lo educativo, las prácticas pedagógicas y la evaluación por competencias (Universidad
Estatal de Milagro (UNEMI), 2022).

En conjunto, los cinco puentes conforman un proceso de maduración académica y pro-
fesional. La identificación de competencias, la verificación de resultados de aprendizaje,
la producción de evidencias y la reflexión sobre la alineación curricular demuestran que
la docencia en Ingeniería de Software no solo forma técnicos, sino profesionales éticos,
críticos y reflexivos.

Este cierre proyecta el trabajo hacia el Módulo 4, donde el análisis de resultados per-
mitirá medir el impacto de las estrategias implementadas y formular propuestas de mejora
basadas en la evidencia generada, consolidando el ciclo de reflexión–acción–mejora con-
tinua en la práctica docente universitaria.

1.4. Ecosistema estratégico (estrategias y relaciones)

1.4.1. Puente de Transición hacia el Análisis Estratégico

Hasta este punto, se ha logrado mostrar la coherencia curricular de la experiencia,
evidenciando la conexión entre las competencias del perfil, los resultados de aprendizaje
y las actividades implementadas. Sin embargo, comprender una experiencia educativa en
su totalidad requiere ir más allá del plano curricular: es necesario explorar las estrategias
que la hicieron posible en la práctica. El propósito de esta sección es precisamente esta-
blecer la bisagra entre la planeación curricular y la acción estratégica, explicando cómo
las decisiones metodológicas se tradujeron en procesos reales que garantizaron el logro
de los aprendizajes esperados.

La mirada estratégica permite revelar el entramado operativo que sostuvo la experien-
cia, evidenciando las dinámicas de acción que convirtieron las intenciones formativas en
logros observables. Más que describir qué se enseñó, se trata de explicar cómo se des-
plegó un conjunto de estrategias coherentes, secuenciadas y adaptativas que respondieron
a los retos propios del contexto educativo de la UNEMI. En este sentido, la reflexión se
orienta hacia el análisis del diseño didáctico como un sistema vivo, compuesto por es-
trategias núcleo, de soporte y de contingencia, que interactúan de forma articulada para
sostener el proceso de enseñanza-aprendizaje. Estrategias Núcleo

Las estrategias núcleo constituyen el corazón de la experiencia, aquellas decisiones
que definieron la dirección pedagógica y el alcance de los aprendizajes. En el contexto

20

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

de la UNEMI, estas estrategias se centraron en la implementación de metodologías ac-
tivas y reflexivas que favorecieron la construcción significativa del conocimiento en los
estudiantes de Ingeniería de Software. Entre las acciones más decisivas se destacan tres:

El análisis de casos con requerimientos cambiantes, que promovió la adaptación de
los estudiantes a contextos de incertidumbre, fortaleciendo competencias de resolución de
problemas y pensamiento crítico.

La elaboración progresiva de documentos de diseño, en la que los estudiantes pa-
saron por distintas iteraciones del producto, integrando retroalimentación y demostrando
comprensión del ciclo de vida del software.

Las sesiones de retroalimentación entre pares y reflexión guiada, que propiciaron
la metacognición y el aprendizaje colaborativo, permitiendo evidenciar la comprensión
conceptual y la capacidad argumentativa.

Estas estrategias se desarrollaron siguiendo secuencias planificadas, basadas en el mo-
delo de Alineamiento Constructivo de Biggs (2003), que asegura coherencia entre los ob-
jetivos de aprendizaje, las actividades y las evaluaciones. Cada acción fue diseñada para
generar evidencias verificables: informes técnicos, rúbricas de coevaluación, y registros
de autoevaluación. Gracias a esta ingeniería didáctica intencional, los resultados obte-
nidos no fueron fortuitos, sino el reflejo de un proceso estructurado y consciente, que
convirtió la práctica docente en una experiencia formativa de alto impacto.

1.4.2. Estrategias de Soporte

Ninguna estrategia principal puede sostenerse sin un andamiaje que la respalde. Las
estrategias de soporte fueron los mecanismos que garantizaron la viabilidad y continui-
dad de la innovación. Estas incluyeron tanto recursos institucionales como herramientas
metodológicas y logísticas. Desde el apoyo del entorno virtual de aprendizaje hasta la
disposición de tiempo curricular para la reflexión y la documentación de procesos, cada
elemento de soporte contribuyó a que las estrategias núcleo pudieran implementarse de
manera efectiva.

Entre las acciones más significativas se destacan la utilización de la plataforma
Moodle de la UNEMI para centralizar recursos y tareas, la creación de rúbricas y
guías estructuradas para orientar la evaluación, y el acompañamiento formativo en-
tre docentes, que permitió afinar criterios y compartir buenas prácticas. Este conjunto
de apoyos conformó una infraestructura pedagógica que fortaleció la coherencia del pro-

21

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

ceso, asegurando que la experiencia no dependiera exclusivamente de la improvisación
individual, sino de una red institucional que la sostuvo.

Las estrategias de soporte no solo ofrecieron estabilidad, sino que potenciaron la efec-
tividad de las estrategias núcleo. Por ejemplo, el uso de guías estandarizadas permitió
a los estudiantes reconocer con claridad las expectativas de desempeño, mientras que el
trabajo colaborativo docente garantizó la consistencia metodológica entre grupos y nive-
les. En consecuencia, el soporte se consolidó como una dimensión indispensable de la
sostenibilidad pedagógica.

1.4.3. Estrategias de Contingencia

Toda práctica innovadora se enfrenta a imprevistos que ponen a prueba su solidez.
Las estrategias de contingencia fueron aquellas implementadas para responder de forma
flexible ante obstáculos sin desvirtuar los objetivos formativos. En esta experiencia, los
principales desafíos se relacionaron con la gestión del tiempo, la resistencia inicial de
algunos estudiantes al cambio metodológico y ciertos inconvenientes técnicos en el uso
de plataformas digitales.

Ante estas situaciones, se aplicaron medidas adaptativas, como ajustes en las secuen-
cias temporales, la incorporación de tutorías personalizadas, y la habilitación de ca-
nales de comunicación alternativos mediante foros y videollamadas. Estas decisiones
permitieron mantener el ritmo del aprendizaje, mostrando que la gestión de la contingen-
cia forma parte de la competencia docente contemporánea.

La importancia de estas estrategias radica en que demuestran la resiliencia pedagó-
gica del proceso. Más que “soluciones de emergencia”, las contingencias se convirtieron
en oportunidades de mejora y aprendizaje tanto para el docente como para los estudian-
tes, evidenciando la capacidad de adaptación ante contextos dinámicos. Integración del
Ecosistema Estratégico

Una vez analizadas las tres categorías de estrategias, se puede visualizar la experiencia
como un ecosistema estratégico. Este ecosistema se organiza en una arquitectura en la
que las estrategias núcleo conforman el eje central, las estrategias de soporte actúan como
cimientos que brindan estabilidad, y las de contingencia funcionan como mecanismos de
ajuste que aseguran la continuidad ante imprevistos.

Esta integración revela la coherencia interna del proceso educativo: las estrategias no
actuaron de forma aislada, sino interdependiente. Su interacción generó un sistema equi-

22

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

librado que combinó planificación, apoyo y flexibilidad. De este modo, el ecosistema es-
tratégico puede representarse como una red viva de acciones que sostienen la experiencia
desde la intención curricular hasta su implementación práctica.

Esta visión sistémica permite entender la innovación educativa como un proceso com-
plejo y articulado, donde cada decisión pedagógica tiene sentido dentro del conjunto. Así,
la experiencia de UNEMI se consolida como un modelo de práctica reflexiva que integra
teoría, acción y evaluación continua.

1.4.4. Integración Estratégica y Proyección hacia la Evaluación

El recorrido desarrollado permite concluir que las estrategias aplicadas (núcleo, so-
porte y contingencia) no solo garantizan la coherencia operativa del proceso, sino que
también aseguran su pertinencia curricular. Gracias a este ecosistema estratégico, fue po-
sible alcanzar competencias clave del perfil de egreso, tales como la capacidad de aná-
lisis crítico, la resolución de problemas en contextos reales, el trabajo colaborativo y la
gestión integral de proyectos tecnológicos.

Las evidencias obtenidas (documentos de diseño, rúbricas de evaluación, informes de
reflexión y proyectos funcionales) respaldan el logro de estos resultados, demostrando
que la experiencia docente no solo fortaleció aprendizajes técnicos, sino también dimen-
siones éticas, comunicativas y reflexivas. El mensaje que debe quedar al lector es que la
experiencia representa una propuesta pedagógica válida, transferible y coherente con los
fines formativos de la UNEMI.

El ecosistema estratégico dejó como principal aporte la confirmación de que la en-
señanza basada en competencias requiere una estructura dinámica, en la que cada tipo
de estrategia cumple un rol complementario. Las relaciones entre ellas reflejan una pe-
dagogía de la interdependencia, donde la planificación anticipa, el soporte sostiene y la
contingencia adapta. Esta integración fortalece la profesionalización docente y demuestra
que la gestión pedagógica puede abordarse como un proceso de ingeniería educativa.

Finalmente, esta visión estratégica prepara el camino hacia el Módulo 5, orientado
a la evaluación integral de los resultados obtenidos. Desde la perspectiva de la UNEMI,
esta transición implica pasar de la descripción de la práctica a su valoración sistemática,
midiendo su impacto en los aprendizajes y en la calidad del proceso formativo. De este
modo, la experiencia documentada se erige no solo como evidencia de coherencia curri-

23

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Figura 1.1: Modelo de articulación entre ecosistema estratégico, tipos de estrategias y
competencias curriculares

Fuente: elaboración propia.

cular, sino también como un referente de mejora continua en la educación universitaria
contemporánea.

1.5. Evaluación, indicadores, instrumentos, análisis

1.5.1. Puente de Evaluación: Instrumentos, Indicadores y Criterios
de Validez

El proceso de evaluación constituyó una fase clave para comprobar, de manera siste-
mática, el logro de las competencias curriculares derivadas de la experiencia pedagógica.
Evaluar implicó no solo medir resultados, sino también garantizar la transparencia y la
credibilidad del proceso mediante instrumentos adecuados y criterios de validez clara-
mente establecidos. En este sentido, se aplicaron cuatro herramientas complementarias:
la rúbrica analítica de desempeño, el cuestionario de percepción estudiantil, la en-
trevista semiestructurada y el registro de observación sistemática. Cada instrumento
respondió a una dimensión específica del aprendizaje y permitió generar evidencias di-
versas y trianguladas, fortaleciendo así la confiabilidad del proceso evaluativo.

24

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

1.5.2. Rúbrica analítica de desempeño

La rúbrica analítica fue el instrumento central de evaluación, orientado a valorar el ni-
vel de logro de las competencias profesionales, comunicativas y reflexivas de los partici-
pantes. Esta herramienta desglosó los criterios de desempeño en indicadores observables,
tales como coherencia argumentativa, aplicación del conocimiento teórico, resolu-
ción creativa de problemas y trabajo colaborativo. Se aplicó durante la revisión de
productos académicos y proyectos de aplicación, empleando una escala de cuatro niveles:
principiante, básico, competente y destacado.

Cada nivel se acompañó de descriptores cualitativos que facilitaron una interpretación
homogénea y justa de los resultados. Este instrumento generó evidencias tanto cuantita-
tivas (puntajes) como cualitativas (comentarios analíticos del evaluador). Su pertinencia
radicó en la posibilidad de medir el desempeño real de los estudiantes respecto a los re-
sultados de aprendizaje esperados, asegurando una evaluación auténtica alineada con las
competencias curriculares (Andrade, 2019).

1.5.3. Cuestionario de percepción estudiantil

El cuestionario de percepción se aplicó al finalizar la experiencia con el propósito de
recoger la valoración de los estudiantes sobre la pertinencia de las estrategias pedagógicas
y la efectividad del proceso formativo. Este instrumento incluyó ítems cerrados tipo
Likert (de 1 a 5) para medir aspectos como la claridad de las consignas, la utilidad de
las actividades, la retroalimentación docente y la percepción de aprendizaje alcanzado.
Además, incorporó preguntas abiertas que permitieron captar apreciaciones cualitativas.

Su aplicación fue anónima y digital, lo cual favoreció respuestas sinceras y reflexivas.
Los datos obtenidos sirvieron para complementar la evaluación del desempeño mediante
la voz de los participantes, fortaleciendo la validez interna del proceso. Este instrumento
permitió identificar patrones de satisfacción, niveles de motivación y percepciones sobre
la coherencia entre lo enseñado y lo aprendido (Gómez & Cárdenas, 2021).

1.5.4. Entrevista semiestructurada

La entrevista semiestructurada fue aplicada a una muestra representativa de estu-
diantes y docentes tutores con el objetivo de profundizar en las percepciones, aprendizajes
y desafíos vividos durante la experiencia. Las preguntas abordaron temas como la aplica-

25

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

ción de las estrategias núcleo, la colaboración entre pares, la autonomía en la resolución
de problemas y el impacto de la práctica en el desarrollo profesional.

Las entrevistas fueron grabadas, transcritas y analizadas mediante codificación temáti-
ca, identificando categorías emergentes como “crecimiento reflexivo”, “sentido de logro”
y “aprendizaje situado”. Este instrumento generó evidencias cualitativas que complemen-
taron los datos de la rúbrica y el cuestionario, aportando una comprensión más holística
del proceso educativo (Kvale & Brinkmann, 2015).

1.5.5. Registro de observación sistemática

El registro de observación sistemática permitió documentar, durante las sesiones
prácticas y colaborativas, el comportamiento de los estudiantes en relación con indica-
dores como la participación activa, la interacción en grupo, la toma de decisiones y la
aplicación práctica del conocimiento. El registro se estructuró en una ficha con catego-
rías predefinidas (participación, comunicación, liderazgo, resolución de conflictos) y un
espacio para observaciones libres.

Este instrumento aportó evidencias directas sobre la conducta observable en el aula y
permitió verificar la coherencia entre lo que los estudiantes expresaron en los cuestiona-
rios y lo que realmente se evidenció en la práctica. Su uso continuo facilitó el seguimiento
longitudinal de la experiencia y la identificación de patrones de mejora sostenida (Cohen
et al., 2018).

1.5.6. Indicadores de evaluación y criterios de validez

Los instrumentos se articularon en torno a un conjunto de indicadores de evaluación
diseñados para medir el logro de las competencias curriculares. Entre ellos destacaron:

Coherencia conceptual: correspondencia entre la teoría y la práctica aplicada en los
productos académicos.

Pertinencia profesional: grado en que las actividades reflejaron situaciones reales del
campo formativo.

Calidad reflexiva: capacidad del estudiante para analizar críticamente sus decisiones
y resultados.

Participación colaborativa: evidencia de trabajo en equipo, liderazgo y comunica-
ción efectiva.

26

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Autonomía en el aprendizaje: nivel de iniciativa y responsabilidad mostrado en las
tareas.

La validez del proceso se garantizó mediante la triangulación de fuentes (rúbricas,
encuestas, entrevistas y observaciones), la coherencia interna entre los instrumentos y los
objetivos de aprendizaje, y la transparencia metodológica en la aplicación y análisis de
los datos. Asimismo, se adoptaron principios de consistencia y credibilidad, inspirados
en los criterios de rigor cualitativo propuestos por Lincoln y Guba (1985), que incluyen
la credibilidad, transferibilidad y objetividad.

1.5.7. Justificación y cierre

La pertinencia de estos instrumentos e indicadores radicó en su complementariedad
y coherencia con las competencias del perfil de egreso. Cada herramienta aportó un ti-
po de evidencia que, al integrarse, permitió construir una evaluación válida, confiable y
contextualizada. Gracias a este diseño, la evaluación trascendió la mera calificación para
convertirse en un proceso reflexivo de comprensión y mejora continua.

En síntesis, los instrumentos aplicados no solo midieron el logro de los resultados de
aprendizaje, sino que posibilitaron una lectura integral de la experiencia formativa. Este
enfoque consolidó la base empírica y conceptual que, en el siguiente apartado, permitirá
analizar los indicadores en acción y las evidencias emergentes que reflejan los logros
alcanzados en el desarrollo de las competencias curriculares.

27

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Tabla 1.4: Instrumentos de evaluación y sus características

Instrumento
de evalua-
ción

Objetivo
de aplica-
ción

Forma
y mo-
mento de
aplicación

Tipo de
evidencia
generada

Indicadores
de evalua-
ción
asociados

Criterios
de validez
y confiabi-
lidad

Rúbrica
analítica de
desempeño

Valorar el
nivel de
logro de
las com-
petencias
curriculares
mediante
criterios
observa-
bles de
desempeño
académico
y profesio-
nal.

Aplicada
por el
docente
evaluador
durante
la presen-
tación de
productos
académicos
y proyectos
aplicados
(fase final
de la expe-
riencia).

Cuantitativa
(puntajes) y
cualitativa
(comen-
tarios
analíticos).

Coherencia
conceptual;
Aplicación
del cono-
cimiento
teórico; Re-
solución de
problemas;
Trabajo co-
laborativo;
Calidad
reflexiva

Triangulación
con otros
instru-
mentos;
consisten-
cia interna
en los
criterios;
revisión por
pares do-
centes para
asegurar
confia-
bilidad
interevalua-
dor.

28

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Cuestionario
de per-
cepción
estudiantil

Recoger la
valoración
de los es-
tudiantes
sobre la
pertinencia,
utilidad y
coherencia
de las es-
trategias de
aprendiza-
je.

Aplicado
en formato
digital y
anónimo al
finalizar la
experien-
cia.

Cuantitativa
(escala Li-
kert) y
cualitativa
(preguntas
abiertas).

Pertinencia
profe-
sional;
Motivación
y satis-
facción;
Claridad de
consignas;
Retroali-
mentación
docente

Validación
de con-
tenido
mediante
revisión de
expertos;
anonimato
para evitar
sesgos;
análisis
estadístico
básico (fre-
cuencias y
medias).

Entrevista
semiestruc-
turada

Profundizar
en las per-
cepciones
de docentes
y estudian-
tes sobre
el impac-
to de las
estrategias
pedagó-
gicas y
los apren-
dizajes
logrados.

Aplicada
a una
muestra
represen-
tativa de
partici-
pantes al
concluir la
experien-
cia.

Cualitativa
(transcrip-
ciones y
categorías
temáticas).

Calidad
reflexiva;
Transfe-
rencia del
apren-
dizaje;
Satisfac-
ción con
la meto-
dología;
Sentido
de logro
personal

Criterios
de credi-
bilidad y
objetividad
(Lincoln
& Guba,
1985);
registro
y codi-
ficación
sistemática;
revisión
cruzada de
categorías.

29

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Registro
de ob-
servación
sistemática

Documentar
el desem-
peño
observable
de los parti-
cipantes en
contextos
reales o
simulados
de práctica
profesio-
nal.

Aplicado
por el
docente
durante el
desarrollo
de acti-
vidades
colabo-
rativas y
sesiones
prácticas.

Cualitativa
y descrip-
tiva (notas
de campo y
categorías
predefini-
das).

Participación
activa; Co-
municación
efectiva;
Resolución
colabo-
rativa de
tareas;
Autono-
mía en el
aprendizaje

Observación
estructura-
da median-
te fichas;
triangula-
ción con
rúbrica y
entrevistas;
coheren-
cia entre
criterios
de obser-
vación y
competen-
cias del
perfil de
egreso.

Fuente: Elaboración propia a partir del diseño metodológico del proyecto.

El conjunto de instrumentos conformó un sistema de evaluación mixto que inte-
gró evidencias cuantitativas (puntajes, escalas) y cualitativas (narrativas, observaciones,
testimonios). Esta triangulación fortaleció la validez interna y externa del proceso, ga-
rantizando que los resultados obtenidos reflejaran de manera auténtica el nivel de logro
de las competencias curriculares.

Los criterios de validez y confiabilidad se sustentaron en los principios de riguro-
sidad metodológica propuestos por Lincoln y Guba (1985), quienes destacan la objetivi-
dad, transferibilidad y consistencia como ejes de credibilidad en la investigación educa-
tiva. Asimismo, se cuidó la transparencia procedimental, documentando cada etapa de
la aplicación y análisis de los instrumentos (Cohen et al., 2018).

30

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

1.6. Reflexión crítica y transferencia de la experiencia

La sistematización de la experiencia educativa desarrollada permitió no solo recons-
truir un proceso didáctico innovador, sino comprender en profundidad su sentido forma-
tivo, sus alcances y sus desafíos. Mirar hacia atrás desde la evaluación y el análisis crítico
implica reconocer que cada fase, desde la planificación curricular hasta la evaluación de
resultados, fue parte de un ecosistema estratégico de aprendizaje. Esta mirada retrospec-
tiva ofrece una comprensión integral de cómo las estrategias implementadas, los instru-
mentos aplicados y las evidencias obtenidas se articularon para transformar la práctica
docente en una experiencia significativa. La reflexión final, entonces, no se limita a cons-
tatar logros, sino a comprender su trascendencia pedagógica y a vislumbrar los caminos
futuros que se abren a partir de ellos.

Entre los principales aportes de la experiencia destaca la consolidación de un modelo
pedagógico centrado en el desarrollo de competencias, donde la articulación entre estrate-
gias núcleo, de soporte y de contingencia aseguró la coherencia y continuidad del proceso.
Este enfoque posibilitó la participación activa de los estudiantes, fortaleció su autonomía
y generó aprendizajes más duraderos y contextualizados. Asimismo, la integración de he-
rramientas digitales y metodologías activas contribuyó a dinamizar las interacciones en el
aula y a promover una cultura de colaboración. Estos resultados se reflejan en una mejora
tangible de la calidad de los productos académicos y en el fortalecimiento de la identidad
profesional de los participantes.

Otro logro relevante fue la capacidad institucional de responder de manera flexible
ante los desafíos del contexto. En el caso de la Universidad Estatal de Milagro (UNEMI),
la experiencia permitió comprobar que las innovaciones pedagógicas pueden sostenerse
incluso en entornos de transformación digital o limitaciones logísticas, siempre que se
construyan desde un enfoque colaborativo y reflexivo. Este hallazgo refuerza la idea de
que las universidades deben concebir la docencia como un espacio de experimentación
permanente, donde las prácticas se revisan, ajustan y mejoran a partir de la evidencia y la
reflexión colectiva.

Sin embargo, el proceso también enfrentó tensiones significativas. Una de ellas estu-
vo vinculada a la resistencia inicial de algunos actores al cambio metodológico, especial-
mente en lo referente a la adopción de estrategias activas y el uso de tecnología educativa.
Estas resistencias, aunque naturales, pusieron a prueba la capacidad de liderazgo pedagó-
gico y la gestión emocional del equipo docente. Otra tensión estuvo asociada a la carga de

31

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

trabajo y a la necesidad de compatibilizar la innovación con las exigencias institucionales
y administrativas, lo que evidenció la importancia de contar con estructuras de apoyo que
favorezcan la sostenibilidad de las propuestas.

En el plano metodológico, también se presentaron limitaciones vinculadas a la apli-
cación de los instrumentos de evaluación. En algunos momentos, las rúbricas o los cues-
tionarios no lograron captar con precisión la complejidad de los procesos formativos ob-
servados, lo que llevó a ajustes y reinterpretaciones. Esta situación, lejos de debilitar la
experiencia, permitió aprender sobre la necesidad de diseñar herramientas más flexibles y
sensibles a la diversidad de contextos y estilos de aprendizaje. En este sentido, la reflexión
crítica se convirtió en un motor de mejora continua.

Desde el punto de vista personal y profesional, el proceso de sistematización consti-
tuyó una oportunidad de crecimiento docente. Permitir que la práctica se vuelva objeto de
análisis transformó la forma de comprender el rol educativo: ya no como transmisor de co-
nocimiento, sino como mediador de procesos de aprendizaje. La reflexión sobre la propia
práctica, apoyada en evidencias, propició un ejercicio de autoconocimiento profesional y
consolidó una ética pedagógica basada en la coherencia, la empatía y la responsabilidad
social. Además, fortaleció la capacidad de documentar, comunicar y compartir experien-
cias, lo que incrementa el capital pedagógico institucional.

A nivel colectivo, la experiencia generó aprendizajes valiosos sobre trabajo en equipo,
construcción de consensos y gestión compartida del conocimiento. La interacción entre
docentes, estudiantes y autoridades permitió construir una visión común sobre la enseñan-
za y el aprendizaje, fortaleciendo la cultura institucional de innovación. Este aprendizaje
colaborativo constituye uno de los legados más potentes de la experiencia, ya que tras-
ciende el aula y se proyecta hacia la gestión académica y la mejora continua de la carrera.

En el ámbito institucional, la sistematización mostró que las innovaciones educativas
solo son sostenibles cuando se integran a las políticas y estructuras organizativas. UNEMI
demostró que la reflexión pedagógica puede y debe formar parte de los procesos institu-
cionales de evaluación y acreditación, favoreciendo una cultura de evidencia y mejora.
Esta conexión entre la práctica docente y la política universitaria abre un horizonte de
transferencia que puede inspirar a otras unidades académicas a documentar y reflexionar
sus propias experiencias formativas.

La sistematización permitió comprender que cada acción pedagógica tuvo un impac-
to diferenciado según los contextos y actores involucrados. Este reconocimiento llevó a
valorar la flexibilidad del proceso como una fortaleza, ya que permitió ajustar estrategias

32

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

en función de las necesidades emergentes del estudiantado. Así, la práctica docente se
consolidó como un espacio de aprendizaje adaptativo y reflexivo, donde el error y la re-
troalimentación se convirtieron en oportunidades para innovar. Esta perspectiva flexible
reafirma la idea de que la educación de calidad requiere apertura al cambio y disposición
constante para el aprendizaje continuo.

Otro aspecto relevante fue el fortalecimiento del sentido de comunidad académica.
La experiencia promovió la colaboración entre docentes y estudiantes, generando redes
de apoyo que trascendieron el aula. Este enfoque cooperativo favoreció el intercambio
de saberes y experiencias, consolidando una cultura de trabajo interdisciplinario. A nivel
institucional, este proceso contribuyó a reforzar la identidad colectiva, evidenciando que
la innovación educativa no depende únicamente de la creatividad individual, sino de la
capacidad de construir significados compartidos en torno al aprendizaje.

Desde una mirada crítica, también se reconoce que la implementación del ecosiste-
ma estratégico implicó enfrentar resistencias y limitaciones estructurales. La gestión del
tiempo, la carga laboral y las restricciones tecnológicas fueron factores que tensionaron
el proceso, obligando a replantear algunas metas iniciales. Sin embargo, estas dificultades
se convirtieron en insumos para la mejora, al permitir identificar áreas donde la institu-
ción puede fortalecer su infraestructura y sus políticas de acompañamiento docente. En
este sentido, los desafíos enfrentados no debilitaron la experiencia, sino que le otorgaron
profundidad y realismo.

Finalmente, la experiencia deja aprendizajes transferibles a otros contextos educati-
vos. Las estrategias utilizadas pueden adaptarse a distintas áreas disciplinares, siempre
que se mantenga el principio de coherencia entre competencias, metodologías y evalua-
ción. Más aún, el enfoque reflexivo adoptado promueve una visión del docente como
investigador de su práctica, capaz de generar conocimiento pedagógico desde la acción.
Este cambio de paradigma de enseñar a aprender enseñando es uno de los aportes más
valiosos para el fortalecimiento de la educación superior contemporánea.

En síntesis, la reflexión crítica final reafirma que sistematizar una experiencia no es
solo reconstruir un proceso, sino resignificarlo. A través de este recorrido, se comprendió
que la innovación educativa implica gestionar tensiones, valorar los logros y reconocer
los límites. Pero, sobre todo, implica construir conocimiento colectivo sobre cómo ense-
ñar mejor. Este capítulo, al integrar evidencias, estrategias y reflexiones, deja abierta la
invitación a seguir aprendiendo desde la práctica, proyectando sus enseñanzas hacia nue-

33

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

vas experiencias docentes que fortalezcan la calidad y la pertinencia de la educación en
UNEMI y más allá.

34

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Bibliografía

ABET. (2020). Criteria for Accrediting Computing Programs. Accreditation Board for
Engineering; Technology.

Andrade, H. (2019). Using rubrics to promote thinking and learning. Educational Lea-

dership, 57(5), 13-18.
Biggs, J. (2003). Teaching for Quality Learning at University. Open University Press.
Biggs, J., & Tang, C. (2011). Teaching for Quality Learning at University (4.a ed.).

McGraw-Hill Education.
Bolívar, A. (2016). La investigación biográfico-narrativa en educación. Editorial Síntesis.
Carlino, P. (2005). Escribir, leer y aprender en la universidad: Una introducción a la

alfabetización académica. Fondo de Cultura Económica.
Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8.a ed.).

Routledge. https://doi.org/10.4324/9781315456539
Day, C. (2006). Pasión por enseñar: La identidad personal y profesional del docente y

sus valores. Narcea.
Díaz-Barriga, Á. (2014). Currículo, enseñanza y aprendizaje: Una mirada constructivis-

ta. Trillas.
Elliott, J. (1993). El cambio educativo desde la investigación-acción. Morata.
Flick, U. (2014a). Introducción a la investigación cualitativa (5.a ed.). Morata.
Flick, U. (2014b). An Introduction to Qualitative Research (5.a ed.). SAGE Publications.
Freire, P. (1996). Pedagogía de la autonomía: Saberes necesarios para la práctica edu-

cativa. Siglo XXI.
Fullan, M., & Hargreaves, A. (2012). Professional Capital: Transforming Teaching in

Every School. Teachers College Press.
Gómez, M., & Cárdenas, S. (2021). Percepción estudiantil sobre estrategias pedagógicas

y aprendizaje significativo en educación superior. Revista de Estudios Educativos

Contemporáneos, 5(2), 45-63.
Hyland, K. (2009). Academic Discourse: English in a Global Context. Continuum.
Jara, O. (2018a). La sistematización de experiencias: Aprendizajes y desafíos para la

educación popular. Alforja.
Jara, O. (2018b). La sistematización de experiencias: Práctica y teoría para otros mundos

posibles. Alforja.

35

https://doi.org/10.4324/9781315456539

Capítulo 1. Fundamentos de ingeniería de software: de la práctica docente reflexiva a la
formación por competencias

Kvale, S., & Brinkmann, S. (2015). InterViews: Learning the Craft of Qualitative Re-

search Interviewing (3.a ed.). SAGE Publications.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. SAGE Publications.
Schön, D. (1992). La formación de profesionales reflexivos. Paidós.
Shulman, L. (2005). Signature Pedagogies in the Professions. Daedalus, 134(3), 52-59.
Stake, R. (1995). The Art of Case Study Research. SAGE Publications.
Stenhouse, L. (1987). La investigación como base de la enseñanza. Morata.
Universidad Estatal de Milagro (UNEMI). (2022). Modelo Educativo Institucional. UNE-

MI.
Yin, R. K. (2014). Case Study Research: Design and Methods (5.a ed.). SAGE Publica-

tions.
Zabalza, M. A. (2011). Competencias docentes del profesorado universitario: Calidad y

desarrollo profesional. Narcea.

36

2
Del problema a la solución: estrategias

para enseñar análisis y diseño de software
en primer nivel

Delia Isabel Carrión León 2

.

El capítulo sistematiza una experiencia pedagógica en Ingeniería de

Software (UNEMI) para enseñar análisis y diseño en primer nivel.

Parte de un doble problema: brecha digital y debilidades en pensa-

miento lógico-computacional. Con metodologías activas (aprendizaje

basado en problemas y aula invertida) se priorizó comprender el pro-

blema antes de programar, fortaleciendo análisis, modelado y razona-

miento computacional. La propuesta integra pensamiento computacio-

nal, aprendizaje activo, modelado de sistemas y práctica colaborativa-

reflexiva, articulando teoría y práctica en un entorno inclusivo. Los

resultados muestran mejoras conceptuales, mayor uso de diagramas

UML y competencias analíticas transferibles, reduciendo deserción y

elevando motivación estudiantil.

2Universidad Estatal de Milagro, dcarrionl@unemi.edu.ec.

38

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Índice
2.1. Apertura contextual y problematización de la experiencia docente . 42

2.1.1. El problema formativo . 42

2.1.2. Propósito de la sistematización 44

2.1.3. Criterios de valor . 45

2.1.4. Delimitación del objeto de estudio 46

2.2. Fundamentación conceptual y operativa: del pensamiento compu-
tacional al aprendizaje activo . 47

2.2.1. Transición hacia la fundamentación conceptual y operativa . . . 47

2.2.2. Aprendizaje activo: del estudiante receptor al estudiante prota-

gonista . 49

2.2.3. Práctica colaborativa-reflexiva: aprender con otros para cons-

truir significado . 50

2.2.4. Formulación de dimensiones 50

2.2.5. Dimensión colaborativa-reflexiva: aprender con otros para cons-

truir conocimiento . 51

2.2.6. Construcción de indicadores 52

2.2.7. Dimensión pedagógica-didáctica: enseñar a analizar antes de

programar . 53

2.2.8. Dimensión colaborativa-reflexiva: aprender con otros para cons-

truir conocimiento . 54

2.2.9. Cierre proyectivo . 55

2.2.10. Fuentes y métodos de verificación 55

2.2.11. Fuentes de verificación . 56

2.2.12. Métodos de verificación . 56

2.2.13. Ejemplo de aplicación . 57

2.2.14. Cierre proyectivo . 57

2.2.15. Justificación teórica del conjunto 57

2.2.16. Integración . 60

39

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.3. Vínculo curricular y resultados de aprendizaje en la enseñanza del
análisis y diseño de software . 60

2.3.1. Transición al vínculo curricular 60

2.3.2. Identificación de competencias del perfil 61

2.3.3. Resultados de aprendizaje vinculados 64

2.3.4. Actividades y evidencias . 66

2.3.5. Reflexión sobre la alineación curricular 68

2.3.6. Integración curricular del Módulo 3 70

2.4. Del problema a la solución: estrategias para enseñar análisis y di-
seño de software en primer nivel . 73

2.4.1. Transición hacia la operacionalización estratégica 73

2.4.2. Estrategias núcleo en acción 74

2.4.3. Estrategias de soporte aplicadas 76

2.4.4. Estrategias de contingencia desplegadas 79

2.4.5. Arquitectura del ecosistema estratégico 81

2.4.6. Integración: Justificación de la validez curricular del ecosiste-

ma estratégico . 84

2.5. Evaluación e indicadores de logro: instrumentos, validez y análisis
de evidencias . 86

2.5.1. Transición hacia la evaluación 86

2.5.2. Instrumentos de evaluación aplicados 87

2.5.3. Indicadores de evaluación y criterios de validez 89

2.5.4. Indicadores aplicados . 90

2.5.5. Criterios de validez y confiabilidad 91

2.5.6. Análisis preliminar de evidencias 93

2.5.7. Tipos de evidencias y organización del análisis 93

2.5.8. Hallazgos preliminares . 94

2.5.9. Interpretación de patrones emergentes 94

2.5.10. Síntesis y proyección . 95

2.5.11. Reflexión sobre validez, sesgos y factibilidad 95

40

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

2.5.12. Validez del proceso evaluativo 95

2.5.13. Sesgos identificados y estrategias de mitigación 96

2.5.14. Factibilidad y aprendizajes derivados 97

2.5.15. Síntesis y proyección . 98

2.5.16. Integración: Síntesis de la evaluación 98

2.6. Del problema a la solución: estrategias para enseñar análisis y di-
seño de software en primer nivel . 100

2.6.1. Transición hacia la reflexión final 100

2.6.2. Reflexión crítica sobre la experiencia 101

2.6.3. Aportes de la experiencia . 101

2.6.4. Tensiones y resistencias encontradas 102

2.6.5. Aprendizajes personales, colectivos e institucionales 103

2.6.6. Síntesis reflexiva y proyección 104

2.6.7. Integración final: Reflexión y transferencia 104

2.6.8. Aportes y aprendizajes globales 105

2.6.9. Tensiones, desafíos y aprendizajes emergentes 106

2.6.10. Proyección y transferencia . 106

2.6.11. Cierre del capítulo . 107

41

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.1. Apertura contextual y problematización de la expe-
riencia docente

En continuidad con la reflexión iniciada en el capítulo anterior sobre la enseñanza de
los fundamentos de la ingeniería de software, esta experiencia se centra en una fase com-
plementaria del proceso formativo: el desarrollo del pensamiento analítico y del diseño
estructurado de soluciones. El trabajo se enmarca en la carrera de Ingeniería de Software
de la Universidad Estatal de Milagro (UNEMI), y se orienta a los estudiantes que cursan
el primer nivel, quienes, tras su acercamiento inicial a los conceptos generales de la disci-
plina, se enfrentan ahora al desafío de aplicar el análisis y la modelización en la resolución
de problemas.

El grupo participante estuvo conformado por jóvenes de entre 18 y 20 años, prove-
nientes de distintas zonas urbanas y rurales, con trayectorias educativas diversas. Aunque
comparten el interés por la tecnología, muchos presentan limitaciones en el desarrollo
del razonamiento lógico y del pensamiento computacional, competencias necesarias para
avanzar en la carrera. Este punto de partida exige un acompañamiento docente que arti-
cule teoría y práctica, así como estrategias inclusivas que consideren las desigualdades en
el acceso a recursos digitales.

Durante las primeras clases, una actividad introductoria reveló un obstáculo recurren-
te: al enfrentarse con un problema sencillo de análisis, varios estudiantes admitieron no
haber trabajado nunca con diagramas de flujo ni representaciones gráficas de procesos.
Este hecho, lejos de ser una dificultad aislada, permitió identificar un patrón: la tendencia
a buscar soluciones inmediatas sin comprender plenamente el problema. A partir de allí,
se propuso una secuencia de actividades que priorizaran la comprensión, el análisis y la
modelización como pasos previos a la programación, fortaleciendo el vínculo entre teoría
y práctica.

2.1.1. El problema formativo

El principal problema identificado en la enseñanza de la Ingeniería de Software en
el primer nivel radica en dos dimensiones interrelacionadas: la persistente brecha digital
y las dificultades en el desarrollo del pensamiento lógico-computacional. Estos factores
limitan la capacidad de los estudiantes para comprender el análisis y diseño de sistemas
antes de llegar a la etapa de programación. Como señala Wing (2006), el pensamiento

42

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

computacional constituye una competencia esencial en la educación en ciencias de la
computación, y su ausencia inicial repercute en la manera en que los estudiantes enfrentan
los retos de la carrera.

La relevancia de este problema es evidente: cuando los estudiantes no logran com-
prender la importancia de analizar los problemas antes de proponer soluciones, se genera
un sesgo hacia la programación como única meta, dejando de lado procesos fundamenta-
les como la identificación de requerimientos y el modelado. Grover y Pea (2013) destacan
que el pensamiento computacional no solo implica programar, sino también descompo-
ner problemas, reconocer patrones y abstraer soluciones. Sin estas bases, el avance en
asignaturas posteriores se ve afectado, y la visión de la ingeniería como una disciplina
sistemática se debilita.

Las consecuencias de no atender esta problemática son significativas. Si los estudian-
tes mantienen la idea de que programar equivale a “hacer software”, se enfrentarán a
dificultades mayores en asignaturas avanzadas que exigen razonamiento formal, modela-
do de sistemas y arquitectura de software. Este desfase se traduce en desmotivación y, en
muchos casos, en riesgo de abandono de la carrera. Según Tinto (2017), la falta de domi-
nio de competencias básicas y el desajuste entre expectativas y realidades formativas son
factores críticos en la deserción estudiantil en educación superior. Resolver este problema
no es opcional: constituye una condición necesaria para asegurar la continuidad y el éxito
académico.

Una evidencia práctica de este desafío se observó en las primeras actividades de inge-
niería de requerimientos y modelado, donde se invitó a los estudiantes a construir un árbol
de problemas. Aunque la consigna era identificar causas y efectos, la mayoría se centró en
proponer soluciones inmediatas, omitiendo el análisis del problema. Este comportamiento
confirma lo señalado por Pressman y Maxim (2020), quienes advierten que el desarrollo
de software de calidad requiere un entendimiento profundo de las necesidades antes de la
codificación. Incluso docentes en formación tienden a reproducir este enfoque limitado,
privilegiando la ejecución sobre la reflexión.

En síntesis, el problema formativo se concreta en la insuficiente preparación de los
estudiantes para enfrentar los primeros niveles de la carrera, debido a la brecha digital y
a las dificultades en el desarrollo del pensamiento lógico y computacional. Como señalan
Van Dijk y Hacker (2018), la brecha digital no se limita al acceso a recursos, sino que
incluye competencias de uso y comprensión crítica. Atender este problema constituye,
por tanto, el punto de partida para el propósito de esta sistematización.

43

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.1.2. Propósito de la sistematización

El propósito de esta sistematización es visibilizar la importancia del análisis y dise-
ño como ejes fundamentales en la formación de los futuros ingenieros de software. En
los primeros niveles de la carrera, muchos estudiantes asumen que programar es sinóni-
mo de “hacer software”, sin advertir que la comprensión del problema, la identificación
de requerimientos y el modelado constituyen la base de cualquier desarrollo tecnológico
de calidad. Por ello, esta experiencia busca demostrar que el fortalecimiento del pensa-
miento lógico y computacional, desde actividades iniciales de análisis, no solo mejora el
desempeño académico inmediato, sino que prepara el terreno para afrontar con éxito las
asignaturas posteriores de la malla curricular.

Este propósito surge de la necesidad de transformar una práctica docente que, en mu-
chos casos, privilegia la solución inmediata sobre la comprensión profunda del problema.
La sistematización permite convertir lo vivido en un relato académico capaz de aportar
reflexiones y propuestas a la comunidad universitaria. Como plantea Jara (2018a), toda
sistematización debe responder a una intencionalidad clara que oriente la reconstrucción
de la experiencia y dé sentido a su difusión. En este caso, la intención es consolidar un
recurso que combine teoría y práctica, integrando ejercicios, casos y diagramas que mues-
tren a los estudiantes la relevancia de analizar antes de programar.

La relevancia de este propósito es doble. En primer lugar, responde a la necesidad
formativa de los estudiantes de Ingeniería de Software, quienes enfrentan limitaciones
derivadas de la brecha digital y de vacíos en el desarrollo del razonamiento lógico. En
segundo lugar, ofrece a los docentes un modelo replicable de enseñanza que puede in-
tegrarse en diversas asignaturas iniciales de la carrera. De acuerdo con Carlino (2005),
narrar las experiencias docentes desde un enfoque académico no solo documenta buenas
prácticas, sino que también fortalece la identidad profesional y abre espacios de innova-
ción pedagógica. La proyección hacia el lector se concreta en tres aportes específicos:

1. La posibilidad de acceder a un conjunto de actividades prácticas que ejercitan el
análisis de problemas, la construcción de árboles de causas y efectos, y la elabora-
ción de diagramas básicos en UML.

2. La presentación de casos de estudio reales y contextualizados que facilitan el desa-
rrollo de competencias analíticas y críticas.

44

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3. Un modelo didáctico adaptable por otros docentes de la carrera o de programas
afines, contribuyendo a reducir la desmotivación y el riesgo de deserción.

En síntesis, el propósito de esta sistematización es transformar una práctica pedagógi-
ca situada en la enseñanza del análisis y diseño de software en un recurso académico con
proyección institucional y disciplinar (Hyland, 2009).

2.1.3. Criterios de valor

El valor de esta experiencia radica en la posibilidad de replantear cómo se introducen
los fundamentos de la ingeniería de software en el primer nivel universitario. En lugar de
reproducir un enfoque centrado únicamente en la programación, se priorizó la enseñanza
del análisis y diseño como ejes esenciales para comprender la disciplina. Esta perspec-
tiva, poco común en los inicios de la formación, permite reconocer que el desarrollo de
software comienza con la comprensión del problema y la identificación rigurosa de re-
querimientos, y no con la escritura inmediata de código.

La innovación de esta práctica se sustenta en la integración de metodologías activas
—como el aprendizaje basado en problemas y el aula invertida— aplicadas a casos reales.
Estas estrategias aportaron dinamismo a las clases y permitieron que los estudiantes reco-
nocieran la importancia de analizar las causas y efectos de un problema antes de proponer
soluciones técnicas. Como señala Elliott (1993), la investigación-acción educativa adquie-
re valor cuando genera conocimiento situado que responde a problemas concretos de la
práctica docente.

El impacto de la experiencia se refleja en los beneficios observados en estudiantes
y docentes. Los jóvenes comenzaron a comprender que la ingeniería de software no se
limita al acto de programar, sino que implica un proceso ordenado de análisis, diseño y
construcción de soluciones. Al trabajar con árboles de problemas y diagramas de casos
de uso, muchos lograron superar su resistencia inicial y reconocer el valor de estas herra-
mientas. Para los docentes, la experiencia abrió un espacio de reflexión sobre la necesidad
de fortalecer el pensamiento lógico y computacional desde el inicio de la carrera. Schön
(1992) enfatiza que el profesional reflexivo encuentra en la práctica una oportunidad para
revisar y mejorar sus estrategias de enseñanza, lo que aquí se tradujo en una transforma-
ción en la forma de concebir la introducción a la disciplina.

En cuanto a su transferibilidad, la propuesta ofrece un modelo replicable que puede
adaptarse a otros contextos académicos. El uso de ejercicios prácticos, casos de estudio y

45

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

diagramas UML constituye un recurso aplicable a diferentes programas de formación tec-
nológica, especialmente en aquellos que enfrentan limitaciones similares —como la bre-
cha digital o la falta de preparación en lógica matemática—. Como plantea Jara (2018a),
la sistematización convierte experiencias particulares en aprendizajes colectivos que en-
riquecen a la comunidad académica.

2.1.4. Delimitación del objeto de estudio

El objeto de estudio de esta sistematización es el proceso de enseñanza-aprendizaje
del análisis y diseño de software en el primer nivel de la carrera de Ingeniería de Software
de la UNEMI. El foco se sitúa en cómo enfrentar dos desafíos principales: la brecha digital
que afecta a los estudiantes y las dificultades en el desarrollo del pensamiento lógico y
computacional. Este recorte es intencional, pues busca atender el núcleo formativo que
condiciona la continuidad y el éxito en los niveles posteriores de la carrera.

La elección de este objeto de estudio se justifica en la necesidad de visibilizar la rele-
vancia del análisis y diseño en la formación inicial de los futuros ingenieros. En esta eta-
pa, los estudiantes definen su relación con la carrera y enfrentan los primeros obstáculos
que pueden determinar su permanencia o deserción. Sistematizar esta experiencia permi-
te reconstruir la práctica docente, reflexionar sobre sus aciertos y limitaciones, y generar
un modelo de enseñanza que integre metodologías activas, recursos digitales y ejercicios
prácticos de análisis de problemas. Como señala Jara (2018a), delimitar una experiencia
educativa es una forma de darle sentido, orientando su narrativa hacia aprendizajes que
trascienden lo individual y se convierten en aporte colectivo.

El alcance contextual se circunscribe al semestre académico 2025-I, en modalidad
presencial, en las aulas de la UNEMI. Los actores principales son los estudiantes de pri-
mer nivel, con edades entre 18 y 20 años, y los docentes que acompañan el proceso.
Las evidencias centrales son los ejercicios de aula (árboles de problemas, ingeniería de
requerimientos, diagramas UML), observaciones y reflexiones docentes.

En cuanto a lo que queda fuera, no se incluyen las asignaturas de niveles superiores ni
los proyectos integradores avanzados, ya que el objetivo no es evaluar toda la trayectoria
académica, sino concentrarse en la etapa inicial. Tampoco se abordan políticas educativas
nacionales ni comparaciones externas, puesto que el interés está en la práctica situada en
la UNEMI. Este recorte garantiza la coherencia del análisis y evita dispersar la reflexión
hacia aspectos que exceden el propósito del capítulo.

46

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Finalmente, el valor de esta delimitación reside en centrar la reflexión en un escenario
concreto y manejable, asegurando un hilo conductor claro para el desarrollo del capítulo.
Como advierte Flick (2014a), toda investigación o sistematización requiere acotar su ob-
jeto de estudio para producir conocimiento comunicable y con validez contextual. En este
caso, la delimitación asegura que la narrativa mantenga coherencia y que las conclusiones
aporten insumos útiles tanto a estudiantes como a docentes e instituciones.

2.2. Fundamentación conceptual y operativa: del pensa-
miento computacional al aprendizaje activo

2.2.1. Transición hacia la fundamentación conceptual y operativa

Luego de haber contextualizado el problema formativo y delimitado el objeto de es-
tudio en la primera parte de este capítulo, esta segunda entrega profundiza en los funda-
mentos conceptuales y metodológicos que sustentan la experiencia sistematizada.

La primera parte de este capítulo permitió reconstruir la experiencia docente desde
una mirada narrativa, situando el contexto institucional, el problema formativo y el pro-
pósito de la práctica pedagógica desarrollada en el primer nivel de la carrera de Ingeniería
de Software de la Universidad Estatal de Milagro (UNEMI). A través de ese recorrido se
identificaron los desafíos asociados a la brecha digital y a las dificultades en el desarrollo
del pensamiento lógico-computacional, así como la necesidad de fortalecer la compren-
sión del análisis y diseño de software como fase previa a la programación. Este proceso
narrativo sentó las bases para reconocer los aprendizajes y aportes de la experiencia, otor-
gándole sentido y coherencia dentro de la formación de futuros ingenieros.

Sin embargo, lo narrado hasta aquí requiere ahora ser sustentado teóricamente. Para
dotar de mayor rigor académico y validez a la experiencia, se hace necesario integrar los
marcos conceptuales que explican sus fundamentos pedagógicos, cognitivos y tecnoló-
gicos. En este nuevo apartado se realizará esa fundamentación, articulando las nociones
centrales con la literatura especializada. De este modo, el texto transita del relato viven-
cial a la argumentación académica, mostrando cómo las decisiones didácticas se apoyan
en teorías del pensamiento computacional, del aprendizaje activo y del modelado de sis-
temas.

47

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

A partir de esta transición, se presentarán los conceptos estructurantes que organizan
la experiencia y orientan su análisis: el pensamiento computacional como competencia
clave en la formación de ingenieros de software, el aprendizaje activo como enfoque me-
todológico, y la práctica colaborativa y reflexiva como medio para construir conocimiento
significativo. Estos conceptos servirán de base para la formulación de las dimensiones y
los indicadores que permitirán observar con precisión cómo se manifestó la experiencia
en el aula.

Identificación de conceptos estructurantes

Entre los conceptos que sustentan teóricamente la experiencia de enseñanza del aná-
lisis y diseño de software en el primer nivel de la carrera de Ingeniería de Software de la
Universidad Estatal de Milagro (UNEMI), se destacan cuatro ejes fundamentales: pensa-
miento computacional, aprendizaje activo, modelado de sistemas y práctica colaborativa-
reflexiva. Estos conceptos emergen tanto de la práctica docente como de la literatura espe-
cializada, y constituyen los pilares conceptuales sobre los cuales se edifica la fundamen-
tación del capítulo. Su identificación permite comprender las decisiones pedagógicas que
guiaron la experiencia y facilita, posteriormente, la formulación de dimensiones analíticas
e indicadores observables.

1. Pensamiento computacional: base cognitiva del análisis y diseño de software

El pensamiento computacional constituye una competencia esencial para los futuros
ingenieros de software, pues permite abordar los problemas desde una lógica estructurada
y sistemática. Wing (2006) lo define como el proceso mental que implica descomponer
problemas, abstraer patrones y diseñar soluciones algorítmicas transferibles a distintos
contextos. En el ámbito educativo, Grover y Pea (2013) subrayan que el pensamiento
computacional no se reduce a programar, sino que integra la capacidad de analizar, mo-
delar y representar procesos antes de codificarlos.

En la experiencia desarrollada, este concepto se concretó a través de actividades que
exigían a los estudiantes analizar el problema antes de proponer la solución, utilizando
herramientas como los árboles de problemas y los diagramas de flujo. Al hacerlo, los
estudiantes comprendieron que el desarrollo de software implica una secuencia lógica de
pasos orientados a la comprensión del contexto y a la delimitación del alcance del sistema.
En este sentido, el pensamiento computacional no solo fue un contenido de enseñanza,
sino también una metodología de razonamiento aplicada en el aula.

48

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

2.2.2. Aprendizaje activo: del estudiante receptor al estudiante pro-
tagonista

El segundo concepto estructurante es el aprendizaje activo, entendido como un enfo-
que que sitúa al estudiante en el centro del proceso formativo. Bonwell y Eison (1991) lo
describen como un método que involucra a los estudiantes en actividades que fomentan
el análisis, la evaluación y la aplicación del conocimiento, en lugar de la simple recep-
ción de información. A su vez, Prince (2004) sostiene que las estrategias de aprendizaje
activo, como el aprendizaje basado en problemas (ABP) o el aula invertida, incrementan
la motivación y la retención del conocimiento al promover la participación directa del
estudiante.

En esta experiencia, el aprendizaje activo se evidenció en la resolución colaborativa
de enunciados de problemas, donde los estudiantes debían discutir, analizar y consensuar
una propuesta de diseño. Esta dinámica permitió que asumieran un papel protagónico,
transformando la clase en un espacio de construcción conjunta de conocimiento. Así, el
docente pasó a ser un mediador que orienta, guía y retroalimenta los procesos de razona-
miento, consolidando una práctica coherente con la enseñanza por competencias.

3. Modelado de sistemas: de la comprensión del problema a la representación formal

El modelado de sistemas constituye otro concepto clave, pues vincula la compren-
sión del problema con su representación técnica. Pressman y Maxim (2020) señalan que
el modelado es una fase esencial en el desarrollo de software, ya que permite visualizar
la estructura y el comportamiento del sistema antes de su implementación. Asimismo,
Booch et al. (2005) —creadores del Lenguaje Unificado de Modelado (UML)— destacan
que el modelado ayuda a abstraer los elementos críticos del sistema y facilita la comuni-
cación entre los miembros del equipo.

Durante las clases, los estudiantes tradujeron sus análisis en diagramas de casos de
uso y de flujo, representando los procesos del sistema a partir de la identificación de
actores, funcionalidades y relaciones. Este paso fue decisivo para superar la tendencia a
“programar sin pensar”, ya que permitió establecer un puente entre el análisis conceptual y
la construcción técnica. Por tanto, el modelado de sistemas operó no solo como contenido
técnico, sino también como un recurso cognitivo para estructurar el pensamiento analítico.

49

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.2.3. Práctica colaborativa-reflexiva: aprender con otros para cons-
truir significado

El cuarto concepto estructurante es la práctica colaborativa-reflexiva, que reconoce la
importancia del trabajo en equipo y la reflexión compartida en la formación de ingenie-
ros. Wenger (1998) introduce el concepto de comunidades de práctica para describir los
espacios donde el conocimiento se construye colectivamente a través del diálogo y la in-
teracción. En el ámbito educativo, Schön (1992) plantea que el docente reflexivo revisa
sus acciones y decisiones para mejorar su práctica profesional, generando aprendizajes
tanto individuales como colectivos.

En la experiencia desarrollada, los estudiantes trabajaron en grupos colaborativos para
resolver problemas y diseñar propuestas conjuntas, mientras el docente promovía la discu-
sión y la reflexión sobre los procesos seguidos. Este intercambio fortaleció la comunica-
ción, el pensamiento crítico y la toma de decisiones compartidas, aspectos fundamentales
en la formación de profesionales de software que deben trabajar en entornos interdisci-
plinarios. De esta manera, la práctica colaborativa-reflexiva operó como un medio para
construir sentido y consolidar aprendizajes duraderos.

2.2.4. Formulación de dimensiones

A partir de los conceptos estructurantes identificados en el apartado anterior —pensa-
miento computacional, aprendizaje activo, modelado de sistemas y práctica colaborativa-
reflexiva—, la experiencia docente desarrollada en la carrera de Ingeniería de Software
de la Universidad Estatal de Milagro (UNEMI) se organiza en tres dimensiones analíticas
que permiten comprenderla en profundidad: pedagógica-didáctica, cognitiva-tecnológica
y colaborativa-reflexiva. Siguiendo a Flick (2014b), las dimensiones funcionan como re-
cortes analíticos que ayudan a ordenar la complejidad de la práctica, mientras que Jara
(2018a) sostiene que constituyen un medio para traducir las experiencias en conocimien-
to comunicable. Estas dimensiones, por tanto, operan como un marco de lectura que da
densidad conceptual y académica al proceso vivido.

1. Dimensión pedagógica-didáctica: enseñar a analizar antes de programar
Esta dimensión aborda las estrategias y decisiones de enseñanza que priorizan la com-

prensión del problema como punto de partida para el desarrollo de software. Stenhouse
(1984) y Elliott (1993) coinciden en que la práctica docente debe concebirse como un
proceso de investigación y reflexión permanente. En esta experiencia, los estudiantes par-

50

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

ticiparon en actividades que los llevaron a construir árboles de problemas, identificando
causas, efectos y relaciones antes de proponer una solución técnica. Esta metodología
permitió que comprendieran la importancia de delimitar el alcance del proyecto y defi-
nir los objetivos del sistema antes de programar. Así, la dimensión pedagógica-didáctica
da cuenta del tránsito desde un enfoque instrumental hacia una enseñanza orientada al
pensamiento analítico y a la planificación estratégica.

2. Dimensión cognitiva-tecnológica: fortalecer el pensamiento lógico-computacional
Esta dimensión se relaciona con los procesos mentales y las herramientas técnicas que
sustentan el aprendizaje del análisis y diseño de software. Wing (2006) define el pensa-
miento computacional como la capacidad de descomponer problemas, abstraer patrones y
diseñar soluciones algorítmicas transferibles. Grover y Pea (2013) añaden que esta com-
petencia implica la integración del razonamiento lógico con la representación simbólica
de los procesos. En la experiencia, los estudiantes elaboraron diagramas de casos de uso y
de flujo para traducir su comprensión conceptual en representaciones gráficas del sistema.
Este ejercicio integró la cognición con la tecnología, reforzando la idea de que el mode-
lado no es una actividad técnica aislada, sino un medio para estructurar el pensamiento y
visualizar soluciones.

De manera integrada, los estudiantes avanzaron desde el análisis del enunciado hasta
la construcción de una propuesta técnica completa. Tras elaborar el árbol de problemas,
identificaron causas y efectos, y con base en esa comprensión aplicaron los principios de
ingeniería de requerimientos, diferenciando las necesidades del usuario de las funciona-
lidades del sistema. Posteriormente, trasladaron estos requerimientos al modelado UML,
mediante diagramas de casos de uso, secuencia y clases, representando la interacción entre
actores, procesos y componentes del sistema. Este recorrido formativo evidencia cómo las
herramientas del análisis y del diseño se articulan en un proceso continuo de razonamien-
to, planificación y representación técnica. Así, la dimensión cognitiva-tecnológica se con-
solida como el eje que integra la comprensión conceptual con la aplicación práctica, ase-
gurando una progresión coherente en el desarrollo del pensamiento lógico-computacional.

2.2.5. Dimensión colaborativa-reflexiva: aprender con otros para cons-
truir conocimiento

La tercera dimensión pone énfasis en la interacción social y la reflexión comparti-
da como componentes esenciales del aprendizaje. Schön (1992) plantea que la práctica

51

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

reflexiva permite a docentes y estudiantes revisar sus acciones para transformarlas en co-
nocimiento, mientras que Wenger (1998) sostiene que las comunidades de práctica se
constituyen como espacios donde el aprendizaje se produce en interacción. En esta ex-
periencia, los estudiantes trabajaron en equipos colaborativos para analizar enunciados
de problemas y proponer soluciones conjuntas. Este proceso de diálogo y confrontación
de ideas fomentó la argumentación, la toma de decisiones compartidas y la responsabi-
lidad colectiva sobre el aprendizaje. La dimensión colaborativa-reflexiva evidencia que
el conocimiento se construye en la interacción y que la reflexión conjunta potencia la
comprensión y la autonomía.

Estas tres dimensiones permiten analizar la experiencia docente de manera integral,
mostrando cómo se articulan las decisiones pedagógicas, los procesos cognitivos y las di-
námicas colaborativas. En conjunto, configuran un marco que explica cómo la enseñanza
del análisis y diseño de software puede transformarse en una práctica reflexiva, activa y
significativa. Este marco dimensional sienta las bases para el siguiente paso del proceso
de sistematización: la construcción de indicadores, a través de los cuales se podrá obser-
var y evidenciar con mayor precisión cómo se manifestó cada dimensión en la práctica y
qué impacto tuvo en el aprendizaje de los estudiantes.

2.2.6. Construcción de indicadores

La formulación de dimensiones permitió organizar la experiencia docente en catego-
rías analíticas que dieron coherencia al proceso reflexivo. Sin embargo, para evidenciar
cómo esas dimensiones se concretan en la práctica, es necesario traducirlas en indicado-
res observables y verificables. Como señalan Flick (2014a) y Yin (2014), los indicadores
son instrumentos que permiten operacionalizar conceptos teóricos, garantizando la con-
sistencia entre lo que se plantea en la fundamentación y lo que realmente ocurre en el
campo. De este modo, cada indicador se convierte en una señal tangible del avance y la
efectividad de la experiencia, conectando teoría, práctica y evidencia empírica.

En esta experiencia, los indicadores se construyeron a partir de la observación directa
en clase, la revisión de entregas en la plataforma virtual y las evaluaciones de proyectos
finales. Los productos elaborados por los estudiantes —árboles de problemas, requeri-
mientos de usuario y diagramas UML— constituyen evidencias verificables de su progre-
so. Stake (1995) sostiene que la credibilidad de un proceso de sistematización depende

52

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

de su vínculo con evidencias reales, razón por la cual los indicadores aquí presentados se
apoyan en resultados concretos obtenidos en el aula.

2.2.7. Dimensión pedagógica-didáctica: enseñar a analizar antes de
programar

Esta dimensión se expresa en la capacidad de los estudiantes para comprender un
problema antes de pasar a la fase de diseño y codificación. Se observan avances cuando
los estudiantes aplican estrategias de análisis, delimitan el alcance del sistema y proponen
soluciones coherentes con el enunciado.

Indicadores:

1. Los estudiantes elaboran árboles de problemas que identifican causas, efectos y
relaciones lógicas del escenario presentado.

2. Los estudiantes definen con claridad los límites y objetivos de la solución antes de
proponer los módulos del sistema.

3. En las actividades de aula, los estudiantes sustentan oralmente sus análisis, mos-
trando comprensión de la problemática y coherencia argumentativa.

Ejemplo de aplicación:

Durante los talleres en clase, los equipos trabajaron con casos como la gestión de sis-
temas académicos o de pacientes. Antes de modelar, debían representar el problema en un
árbol causal y justificar su delimitación. La observación y evaluación de estas actividades
mostraron un avance significativo en la comprensión analítica y en la planificación previa
al diseño del software.

2. Dimensión cognitiva-tecnológica: fortalecer el pensamiento lógico-computacional
Esta dimensión se evidencia en la aplicación de herramientas y representaciones técnicas
que integran el razonamiento lógico con la abstracción del sistema. Se observan logros
cuando los estudiantes traducen sus análisis en representaciones formales mediante dia-
gramas UML coherentes y completos.

Indicadores:

1. Los estudiantes aplican la ingeniería de requerimientos diferenciando correctamen-
te las necesidades del usuario y del sistema.

53

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2. Los estudiantes elaboran diagramas UML (casos de uso, secuencia y clases) cohe-
rentes con el análisis previo del problema.

3. Los proyectos finales integran tecnologías externas (IA, GPS, reconocimiento fa-
cial) correctamente modeladas en las representaciones del sistema.

Ejemplo de aplicación:
En los talleres y proyectos integradores, los estudiantes desarrollaron modelos de sis-

temas de control de vehículos y roles de pago. A partir de los requerimientos definidos,
generaron diagramas de casos de uso, secuencia y clases en UML. La observación direc-
ta y la revisión en el aula virtual mostraron mejoras en la correspondencia entre análi-
sis, requerimientos y modelado técnico, demostrando desarrollo del pensamiento lógico-
computacional.

2.2.8. Dimensión colaborativa-reflexiva: aprender con otros para cons-
truir conocimiento

Esta dimensión se manifiesta en la interacción entre pares, la reflexión conjunta y la
construcción colaborativa del conocimiento. Se observa progreso cuando los estudiantes
participan activamente en la resolución grupal de problemas y en la exposición de resul-
tados.

Indicadores:

1. Los estudiantes trabajan en equipos colaborativos, discutiendo y consensuando de-
cisiones sobre el diseño del sistema.

2. Los grupos presentan sus resultados en clase, reflexionando sobre los aciertos y
dificultades de su proceso de análisis y modelado.

3. El docente facilita instancias de retroalimentación colectiva, promoviendo la revi-
sión de estrategias y la comparación de diferentes enfoques de solución.

Ejemplo de aplicación:
En las sesiones presenciales, los grupos discutieron los resultados de sus análisis,

contrastando modelos y proponiendo mejoras. Estas actividades promovieron el diálo-
go técnico y la argumentación, evidenciando que la práctica colaborativa incrementa la
comprensión y la autonomía.

54

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Tabla 2.1: Dimensiones, indicadores observables y evidencias asociadas

Dimensión Indicadores observables Evidencias asociadas
Pedagógica-didáctica 1. Elaboración de árboles de

problemas.
2. Definición clara del alcance
y objetivos del sistema.
3. Sustentación oral del análi-
sis.

Talleres en clase; deberes eva-
luados; registros de retroali-
mentación.

Cognitiva-tecnológica 1. Aplicación de ingeniería de
requerimientos.
2. Elaboración de diagramas
UML coherentes.
3. Integración de tecnologías
externas en los modelos.

Diagramas UML; proyectos
integradores; entregas en el
aula virtual.

Colaborativa-reflexiva 1. Trabajo grupal y toma de
decisiones compartidas.
2. Presentación y discusión de
resultados en clase.
3. Retroalimentación colectiva
con el docente.

Observaciones en clase; pre-
sentaciones orales; registros
de participación.

Nota: La tabla presenta las dimensiones evaluadas, los indicadores observables y las evidencias asocia-
das en el proceso de análisis.
Fuente: elaboración propia.

2.2.9. Cierre proyectivo

Los indicadores formulados permiten comprobar el impacto formativo de la expe-
riencia en los tres planos analíticos: pedagógico, cognitivo y colaborativo. Además, pro-
porcionan la base para construir la matriz de verificación, donde cada indicador podrá
asociarse con fuentes de evidencia (productos de aula, observaciones, evaluaciones) y
métodos de análisis. Así, la sistematización avanza desde la descripción narrativa hacia
la validación empírica, asegurando que las dimensiones teóricas puedan demostrarse me-
diante resultados concretos del proceso educativo.

2.2.10. Fuentes y métodos de verificación

El proceso de sistematización requiere evidencias que respalden de forma verificable
las dimensiones y los indicadores definidos. En este sentido, las fuentes y métodos de

55

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

verificación permiten demostrar que los avances observados en la práctica docente son
reales, medibles y consistentes con los objetivos formativos. Como señala Flick (2014a),
la credibilidad de un análisis educativo depende de la definición clara de las fuentes que
sustentan las observaciones y del modo en que se las interpreta. En esta experiencia, las
fuentes y métodos empleados garantizan la validez del proceso y fortalecen el carácter
académico de la sistematización.

2.2.11. Fuentes de verificación

Las fuentes utilizadas para comprobar los indicadores provienen de tres tipos: docu-
mentales, testimoniales y de producto. Las fuentes documentales incluyen los talleres,
deberes, informes y evaluaciones almacenadas en la plataforma virtual institucional, don-
de cada actividad queda registrada con calificaciones y retroalimentación. Las fuentes
testimoniales se obtienen a través de la observación directa del docente durante las clases
y exposiciones, en las cuales los estudiantes discuten y justifican sus decisiones de análisis
o modelado. Finalmente, las fuentes de producto se componen de los materiales elabora-
dos por los estudiantes: árboles de problemas, documentos de requerimientos, diagramas
UML (casos de uso, secuencia y clases) y proyectos integradores finales.

Además, se incluyen prácticas experimentales adicionales, en las que los estudian-
tes resuelven varios ejercicios complementarios para consolidar el conocimiento. Estas
actividades permiten verificar la comprensión y la transferencia de los aprendizajes. Las
rúbricas de evaluación son una fuente clave, ya que registran con precisión los criterios
de desempeño en cada actividad y evidencian el logro de los resultados de aprendizaje
esperados.

2.2.12. Métodos de verificación

Para garantizar la validez del análisis se aplican varios métodos de verificación. En
primer lugar, la observación directa en clase permite registrar el desempeño de los es-
tudiantes durante el desarrollo de talleres y prácticas, especialmente su capacidad para
analizar problemas y argumentar decisiones en grupo. En segundo lugar, el análisis com-
parativo de productos se utiliza para contrastar los resultados de las primeras actividades
con los proyectos finales, observando mejoras en la identificación de requerimientos y en
la coherencia de los diagramas UML. Yin (2014) sostiene que la comparación entre evi-

56

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

dencias fortalece la consistencia interna de los estudios de caso, al mostrar la evolución
del aprendizaje.

Asimismo, se emplea el análisis de desempeño mediante rúbricas, que permite verifi-
car de manera objetiva los niveles alcanzados en cada criterio: comprensión del problema,
aplicación de metodologías, claridad del modelado y argumentación en la exposición. Fi-
nalmente, la triangulación entre observaciones, rúbricas y evaluaciones asegura que los
resultados no dependan de una sola fuente, sino que surjan de un conjunto de evidencias
convergentes, lo que incrementa la fiabilidad del proceso (Stake, 1995).

2.2.13. Ejemplo de aplicación

En el proyecto final, los estudiantes exponen un modelo de negocio, presentan los
requerimientos identificados, los diagramas UML elaborados y justifican el modelo de
ciclo de vida que aplicarían. Durante estas exposiciones, el docente verifica tanto la con-
ceptualización teórica como la coherencia entre los elementos del análisis y el diseño. A
partir de las rúbricas y observaciones, se evalúa la integración de los aprendizajes previos
—desde el análisis del problema hasta el modelado y la planificación metodológica—,
consolidando así la evidencia de las tres dimensiones: pedagógica, cognitiva y colabora-
tiva.

2.2.14. Cierre proyectivo

Las fuentes y métodos de verificación descritos garantizan que la experiencia no se
base en intuiciones, sino en evidencias tangibles y múltiples. Siguiendo a Jara (2018a),
la documentación rigurosa de la práctica convierte los relatos docentes en conocimiento
validado, al vincular las transformaciones observadas con datos comprobables. Este apar-
tado, por tanto, cierra la fundamentación operativa del capítulo y prepara el camino para
la matriz final de dimensiones–indicadores–fuentes–métodos, donde se integrarán todos
los elementos analizados en este módulo.

2.2.15. Justificación teórica del conjunto

El proceso de sistematización desarrollado hasta este punto ha permitido construir un
andamiaje conceptual y metodológico coherente, capaz de transformar una práctica do-
cente en conocimiento académico. La identificación de los conceptos estructurantes, su

57

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

organización en dimensiones, la formulación de indicadores y la definición de fuentes y
métodos de verificación conforman un entramado que articula teoría, práctica y eviden-
cia. Este apartado tiene como propósito justificar teóricamente ese conjunto, demostrando
que las decisiones tomadas no responden al azar, sino a una lógica epistemológica y pe-
dagógica fundamentada en la literatura académica y en la naturaleza de la enseñanza de
la ingeniería de software en la Universidad Estatal de Milagro (UNEMI).

En primer lugar, la selección de conceptos estructurantes —pensamiento computacio-
nal, aprendizaje activo, modelado de sistemas y práctica colaborativa-reflexiva— respon-
de a la necesidad de vincular las competencias propias de la disciplina con los principios
pedagógicos de la educación superior contemporánea. Wing (2006) concibe el pensamien-
to computacional como una competencia transversal que permite descomponer y abstraer
problemas, mientras que Grover y Pea (2013) subrayan su valor educativo al integrar el
razonamiento lógico con la representación formal del conocimiento. Estos marcos teóri-
cos se complementan con los aportes de Schön (1992) y Elliott (1993), quienes entienden
la práctica docente como un espacio de reflexión e investigación-acción. Desde esta pers-
pectiva, los conceptos seleccionados no solo describen lo que se enseña, sino también
cómo se aprende a pensar dentro de la ingeniería de software.

En segundo lugar, la definición de dimensiones analíticas permitió ordenar la comple-
jidad de la experiencia en tres grandes ejes: pedagógico-didáctico, cognitivo-tecnológico
y colaborativo-reflexivo. Tal como plantea Flick (2014a), las dimensiones operan como
recortes analíticos que otorgan estructura y consistencia al análisis, mientras que Jara
(2018b) afirma que en la sistematización las dimensiones traducen la práctica en un len-
guaje comunicable y evaluable.

En este caso, la dimensión pedagógica organiza las estrategias de enseñanza orienta-
das a la comprensión del problema antes de programar; la dimensión cognitiva-tecnológica
articula el razonamiento lógico con el uso de herramientas de modelado; y la dimensión
colaborativa-reflexiva reconoce la importancia del aprendizaje compartido y la práctica
docente como acto dialógico. Esta organización asegura una lectura integral y transferible
de la experiencia educativa.

La formulación de indicadores observables aportó rigor operativo y verificabilidad al
proceso. Según Stake (1995), la credibilidad de un estudio de caso depende de la cohe-
rencia entre las categorías teóricas y las evidencias empíricas que las sustentan. En la
misma línea, Yin (2014) enfatiza que la definición de indicadores es lo que garantiza la
validez interna de un estudio, al establecer criterios claros para observar los fenómenos

58

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

en el campo. En este capítulo, los indicadores permitieron concretar cómo se manifies-
tan las dimensiones en la práctica: desde la elaboración de árboles de problemas hasta la
construcción de diagramas UML y la aplicación de metodologías ágiles o tradicionales
en los proyectos finales. Los indicadores, por tanto, transformaron la reflexión docente en
un proceso medible, visible y replicable.

En cuarto lugar, la selección de fuentes y métodos de verificación refuerza la credibi-
lidad del proceso de sistematización. Flick (2014a) advierte que la validez de los análisis
cualitativos depende de la claridad en la definición de las fuentes, mientras que Yin (2014)
y Jara (2018a) coinciden en que la triangulación de datos fortalece la solidez interpretati-
va.

En este caso, se recurrió a múltiples fuentes: talleres y evaluaciones en la plataforma
virtual, observaciones en clase, proyectos finales, rúbricas de desempeño y prácticas expe-
rimentales. Estas evidencias fueron analizadas mediante métodos de observación directa,
análisis comparativo y triangulación, garantizando que las conclusiones no se basaran en
impresiones, sino en resultados verificables. De esta manera, la práctica docente se con-
virtió en un campo de indagación empírica sustentado en datos concretos.

El conjunto de decisiones tomadas —conceptuales, analíticas y metodológicas— po-
see coherencia teórica y pertinencia disciplinar. Carlino (2005) sostiene que la escritura
académica constituye una práctica social que forma identidad profesional, mientras que
Hyland (2009) resalta que el texto académico no solo comunica resultados, sino que cons-
truye comunidades de conocimiento. Este capítulo, en ese sentido, se inscribe en una línea
de investigación docente que reconoce la escritura como una forma de reflexión sistemá-
tica y de validación del saber pedagógico. En el ámbito de la ingeniería de software, esta
práctica adquiere particular relevancia porque permite conectar los procesos de análisis y
diseño técnico con la comprensión epistemológica del aprendizaje.

Finalmente, este andamiaje conceptual y operativo consolida la validez académica de
la experiencia sistematizada. La coherencia entre los conceptos, las dimensiones, los in-
dicadores y los métodos demuestra un equilibrio entre la teoría y la práctica, cumpliendo
con los criterios de credibilidad planteados por Stake (1995) y la rigurosidad metodológi-
ca defendida por Flick (2014a). Asimismo, el uso de fuentes y métodos triangulados ga-
rantiza que el conocimiento producido sea transferible a otros contextos educativos. Este
conjunto, fundamentado en la reflexión pedagógica y en la práctica profesional, fortalece
el vínculo curricular del capítulo: muestra cómo enseñar análisis y diseño de software
puede convertirse en un proceso formativo integral que une la cognición, la tecnología y

59

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

la colaboración. Con ello, se cierra la fundamentación teórica del módulo, preparando el
terreno para el análisis de resultados y aprendizajes que se abordará en el Módulo 3.

2.2.16. Integración

Este módulo me permitió articular un andamiaje conceptual y operativo sólido que
transforma mi práctica docente en un proceso académico fundamentado. A lo largo de los
cinco puentes recorridos, identifiqué los conceptos estructurantes que definen mi expe-
riencia, los organicé en dimensiones analíticas, construí indicadores verificables y precisé
las fuentes y métodos que garantizan la credibilidad del análisis. Todo este proceso cul-
minó en una justificación teórica que demuestra la coherencia entre los elementos y el
respaldo bibliográfico que los sustenta. En conjunto, estos avances consolidan un marco
riguroso que integra teoría, práctica y evidencia, otorgando sentido y consistencia a la
enseñanza del análisis y diseño de software en la carrera de Ingeniería de Software de la
UNEMI.

La integración de estos elementos me da la seguridad de que el capítulo ya posee
una fundamentación conceptual y metodológica robusta, capaz de sostener el análisis que
vendrá en el siguiente módulo. Haber transitado este recorrido me confirma que la sis-
tematización no solo organiza la experiencia, sino que la convierte en conocimiento co-
municable y transferible a otros contextos docentes. El trabajo realizado garantiza validez
académica, coherencia interna y respaldo teórico, brindándome la confianza para avanzar
hacia el Módulo 3, donde el foco estará en el análisis e interpretación de los resultados y
en la identificación de los aportes formativos de esta experiencia educativa.

2.3. Vínculo curricular y resultados de aprendizaje en la
enseñanza del análisis y diseño de software

2.3.1. Transición al vínculo curricular

Al culminar el Módulo 2, la experiencia docente sistematizada alcanzó una fundamen-
tación conceptual y operativa sólida. El proceso permitió definir los conceptos estructu-
rantes, organizarlos en dimensiones, formular indicadores y respaldarlos con fuentes y
métodos de verificación que garantizan su validez académica. Este andamiaje fortaleció
la comprensión teórica y metodológica de la práctica, transformándola en un referente

60

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

analítico que demuestra cómo la enseñanza del análisis y diseño de sistemas de software
puede investigarse y comunicarse con rigor científico.

En este nuevo tramo, el foco se desplaza hacia la articulación curricular. La experien-
cia no se circunscribe a una sola asignatura, sino que integra contenidos clave de varias
materias que imparto dentro de la carrera de Ingeniería de Software, Ingeniería de Re-
querimientos, Modelado con UML y Patrones y Arquitecturas de Software. Este conjunto
de temas se relaciona directamente con las competencias del perfil de egreso, que bus-
ca formar profesionales capaces de analizar, modelar, diseñar e implementar soluciones
informáticas sólidas, aplicando metodologías ágiles, pensamiento lógico y criterios de
calidad en el desarrollo de software.

De este modo, el trabajo sistematizado se convierte en una experiencia curricular inte-
gradora, que articula teoría, práctica y reflexión. Las dimensiones e indicadores formula-
dos en el módulo anterior —pedagógica-didáctica, cognitiva-tecnológica y colaborativa-
reflexiva— encuentran ahora correspondencia en las competencias que promueven el ra-
zonamiento analítico, la abstracción de sistemas, la comunicación efectiva y el trabajo en
equipo. Este apartado marca el inicio del análisis curricular, orientado a mostrar cómo
la práctica docente dialoga con el plan de estudios y cómo contribuye a consolidar los
aprendizajes profesionales que la carrera de Ingeniería de Software propone como eje de
formación

2.3.2. Identificación de competencias del perfil

El análisis de la experiencia docente muestra que el trabajo transversal en análisis y
diseño de sistemas de software —integrando ingeniería de requerimientos, modelado con
UML y patrones/arquitecturas— contribuye de manera directa al perfil de egreso de la
carrera de Ingeniería de Software. Esta contribución no es circunstancial, sino estructu-
ral: se alinea con competencias específicas de la disciplina (analizar, modelar y diseñar
soluciones) y con competencias genéricas (pensamiento crítico, trabajo colaborativo, co-
municación técnica y responsabilidad ética). En términos curriculares, la experiencia se
sitúa como un espacio integrador que articula saberes conceptuales, procedimentales y
actitudinales, y que permite a los estudiantes transitar desde la comprensión del problema
hasta la representación formal de la solución, antes de escribir una sola línea de código.

En el plano de las competencias específicas, la experiencia fortalece de manera central
la competencia de análisis y diseño de software. Al exigir que el estudiante parta de una

61

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

problemática real, construya un árbol de problemas, derive requerimientos de usuario
y del sistema, y los traslade a diagramas UML (casos de uso, secuencia y clases), se
desarrolla una forma de pensar propia de la ingeniería: descomponer, abstraer, modelar y
justificar. Este itinerario sitúa el pensamiento lógico-computacional como base cognitiva
del desempeño profesional, en sintonía con Wing (2006) y con la síntesis que realizan
Grover y Pea (2013) respecto de su valor educativo. En consecuencia, el curso de acción
de la experiencia —análisis → requerimientos → modelado— es, al mismo tiempo, un
curso de formación de la competencia que el perfil demanda.

La competencia de pensamiento crítico y lógico-computacional se activa cuando los
estudiantes deben interpretar correctamente el modelo de negocio y sus procesos antes
de modelar, y leer/validar sus propios diagramas y los de sus pares. El hecho de diferen-
ciar lo esencial de lo accesorio, detectar inconsistencias entre requerimientos y casos de
uso, o analizar si un diagrama de secuencia refleja la lógica temporal de las interaccio-
nes, son prácticas que evidencian la madurez analítica. Tales prácticas conectan, además,
con la idea de evaluación auténtica: el estudiante demuestra su comprensión en productos
profesionales (diagramas y documentos de requerimientos) y no solo en pruebas teóri-
cas, alineándose con recomendaciones de ABET y de los lineamientos ACM/IEEE para
programas de Ingeniería de Software.

En relación con la competencia de responsabilidad ética y profesional, la experiencia
incorpora discusiones sobre impactos y criterios de calidad de las decisiones de diseño.
Cuando los equipos justifican la inclusión de entidades externas (IA, GPS, reconocimien-
to facial) o la elección de un modelo de ciclo de vida (tradicional o ágil), deben considerar
implicaciones de privacidad, sesgo, seguridad y mantenibilidad, así como la viabilidad de
la solución en el contexto organizacional. Este componente ético —frecuentemente sub-
estimado en etapas tempranas— aparece aquí como un criterio transversal que orienta el
diseño responsable: no todo lo técnicamente posible es educativo o socialmente deseable,
y el perfil de egreso exige explicitar ese razonamiento.

Entre las competencias genéricas, la experiencia potencia trabajo colaborativo y co-
municación técnica. En los talleres y proyectos, los equipos organizan roles, negocian
criterios de diseño y distribuyen tareas; la sinergia y la toma de decisiones compartidas
son observables durante la construcción de los modelos. A su vez, en las exposiciones
del proyecto final, los estudiantes presentan el modelo de negocio, justifican requerimien-
tos, defienden sus diagramas UML y argumentan la elección de patrones o arquitecturas,
lo que demanda claridad expositiva y dominio del discurso técnico. Este desempeño se

62

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

ajusta a la concepción de competencia colaborativa como práctica situada (Villa & Po-
blete, 2007) y a la noción de escritura/ comunicación académica como práctica social e
identitaria (Carlino, 2005); (Hyland, 2009).

La relevancia curricular de la experiencia se evidencia en la trazabilidad entre acti-
vidades, productos y logros. El portafolio de entregas (árboles de problemas, especifi-
caciones de requerimientos, casos de uso, secuencias y clases) y las rúbricas asociadas
permiten mapear con precisión qué componentes del perfil se movilizan y con qué nivel
de desempeño. Por ejemplo, la coherencia entre requerimientos y casos de uso indica do-
minio del análisis funcional; la consistencia entre casos de uso y clases revela dominio
de abstracción y diseño; las presentaciones orales y la documentación técnica muestran
comunicación profesional; y la gestión del equipo a lo largo del proyecto evidencia co-
laboración y liderazgo. Esta evidencia empírica respalda la afirmación de que el proceso
fortalece las competencias declaradas en el perfil de egreso.

Un aporte distintivo de tu práctica es la integración temprana de tecnologías y contex-
tos (IA, GPS, reconocimiento facial), que obliga a los estudiantes a ajustar su modelado
a restricciones reales y a considerar patrones y arquitecturas adecuados. Elegir, por ejem-
plo, un patrón MVC para organizar responsabilidades, o discutir si un estilo orientado a
servicios o microservicios tiene sentido para el dominio planteado, activa competencias
de pensamiento arquitectónico y diseño justificable. Este nivel de reflexión técnica, guia-
do por criterios, prepara a los estudiantes para escenarios de mayor complejidad y acorta
la distancia entre el aula y la práctica profesional.

Ahora bien, identificar competencias no es solo nombrarlas, sino describir su mani-
festación. En la experiencia, los resultados observables son claros: (a) en colaboración,
los equipos muestran organización de roles, sinergia y liderazgo; (b) en pensamiento ana-
lítico, se aprecia precisión en UML y capacidad de interpretar diagramas y procesos de
negocio antes del modelado; (c) en comunicación técnica, hay exposiciones estructura-
das que justifican el porqué de los requerimientos, patrones y arquitecturas elegidos; (d)
en ética profesional, los estudiantes argumentan impactos y trade-offs de las decisiones
de diseño. Estos resultados forman un corpus verificable que se registra en aula virtual,
rúbricas y presentaciones.

Desde la perspectiva del diseño curricular basado en competencias, esta experiencia se
alinea con marcos internacionales (ABET, 2020); (ACM & IEEE, 2020) que enfatizan la
integración de análisis, diseño, trabajo en equipo y comunicación como resultados espe-
rados de la formación. En particular, SE2020 destaca la necesidad de que los estudiantes

63

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

practiquen especificación de requerimientos y modelado con trazabilidad hacia arquitec-
turas y criterios de calidad, algo que tu práctica sitúa en el centro. Por ello, el apartado no
solo identifica competencias, sino que demuestra con evidencia de desempeño que dichas
competencias se ejercitan y se evalúan con instrumentos pertinentes.

Esta identificación también permite proyectar con claridad hacia los resultados de
aprendizaje (RA) de asignaturas afines. El dominio del análisis y diseño antes de pro-
gramar incide positivamente en RA como “elabora modelos coherentes con requerimien-
tos”, “aplica criterios de calidad en el diseño” o “comunica soluciones técnicas con pre-
cisión”. Al cierre del ciclo, el proyecto final opera como evaluación integradora: la co-
rrespondencia entre una situación real, requerimientos, modelos y justificación de patro-
nes/arquitecturas ofrece una visión holística del progreso, y constituye un indicador fuerte
de alineación con el perfil de egreso.

En síntesis, la experiencia sistematizada fortalece competencias específicas (análisis
y diseño, pensamiento lógico-computacional, responsabilidad ética) y genéricas (trabajo
colaborativo, comunicación técnica), y lo hace con trazabilidad y verificación. Este apar-
tado muestra que no se trata de una práctica aislada, sino de un dispositivo curricular que
dialoga con el perfil profesional y con los estándares de la disciplina. Al quedar clara la in-
tegración entre conceptos, dimensiones, indicadores y evidencias, el capítulo avanza con
bases sólidas hacia el análisis del Módulo 3, donde se examinarán con mayor precisión
los resultados de aprendizaje derivados de esta experiencia y su transferibilidad a otros
contextos formativos.

2.3.3. Resultados de aprendizaje vinculados

La vinculación entre las competencias del perfil de egreso y los resultados de apren-
dizaje alcanzados constituye el eje articulador entre la práctica docente y el currículo de
la carrera de Ingeniería de Software. En la Universidad Estatal de Milagro (UNEMI), el
Modelo Educativo (2021) y el Reglamento de Régimen Académico del CES (2019) es-
tablecen que los resultados de aprendizaje son manifestaciones observables de lo que el
estudiante demuestra al finalizar un proceso formativo. En esta experiencia, los resulta-
dos se materializaron en contextos auténticos, donde los estudiantes analizaron situacio-
nes reales —como sistemas de riego, citas médicas, reservaciones o procesos bancarios—
para diseñar soluciones de software viables, fortaleciendo la coherencia entre el saber, el
hacer y el ser profesional.

64

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

El primer resultado de aprendizaje identificado corresponde al análisis y definición
de requerimientos. Los estudiantes lograron identificar y delimitar problemas mediante la
construcción de árboles de causas y efectos, diferenciando los requerimientos de usuario
y del sistema. Este resultado refleja la capacidad de comprender el contexto y abstraer la
lógica de un problema real, alineándose con la competencia específica de análisis y diseño
de software. De acuerdo con Biggs y Tang (2011), el aprendizaje significativo se produce
cuando los estudiantes relacionan lo que aprenden con situaciones auténticas, y en este
caso, la elaboración de requerimientos se convirtió en un ejercicio de pensamiento crítico
aplicado a escenarios concretos.

Un segundo resultado se observa en la representación de procesos y estructuras me-
diante diagramas UML. Los estudiantes modelaron casos de uso, secuencias y clases,
estableciendo correspondencia entre los requerimientos y los elementos del modelo. Este
resultado evidencia el desarrollo del pensamiento lógico-computacional y de la compe-
tencia técnica para abstraer y representar sistemas, siguiendo los lineamientos internacio-
nales de ABET (2020) y del currículo SE2020 (ACM & IEEE, 2020). En las prácticas
experimentales, los estudiantes demostraron precisión y coherencia al traducir escenarios
cotidianos —como la gestión de citas médicas o de reservas hoteleras— en modelos de
interacción y estructura, aplicando los principios de trazabilidad entre análisis y diseño.

El tercer resultado se relaciona con la selección y justificación de soluciones técnicas,
en especial la capacidad para elegir patrones o arquitecturas apropiadas al dominio del
problema. Los estudiantes aprendieron a justificar sus decisiones considerando criterios
de calidad del software y variables éticas, como la protección de datos o la sostenibili-
dad tecnológica. Este aprendizaje está estrechamente vinculado con la competencia de
responsabilidad ética y profesional, promovida en el perfil de egreso. Pressman y Maxim
(2020) sostienen que el ingeniero de software debe fundamentar sus elecciones técnicas
en principios de calidad, ética y viabilidad, un enfoque que se aplicó en las discusiones y
exposiciones finales de los proyectos.

Un cuarto resultado corresponde al trabajo colaborativo y liderazgo en entornos de
desarrollo. Los equipos de estudiantes organizaron roles —analista, modelador, diseña-
dor—, tomaron decisiones conjuntas y gestionaron la integración de sus entregables. Este
logro se alinea con la competencia genérica de trabajo en equipo y comunicación efectiva,
planteada en el plan de estudios de la carrera. Las rúbricas y observaciones de aula mos-
traron evidencias de sinergia, liderazgo y resolución conjunta de problemas. Según Villa
y Poblete (2007), la colaboración auténtica se construye en contextos donde las tareas

65

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

exigen responsabilidad compartida y negociación de criterios, condiciones que caracteri-
zaron esta experiencia docente.

El quinto resultado de aprendizaje se asocia con la comunicación y argumentación
técnica. Los estudiantes presentaron oral y documentalmente sus modelos, justificaron
requerimientos, explicaron diagramas y defendieron las decisiones arquitectónicas adop-
tadas. Este desempeño se vincula tanto con la competencia de comunicación técnica co-
mo con la ética profesional, al implicar la exposición transparente y fundamentada de
procesos y resultados. Hyland (2009) y Carlino (2005) coinciden en que la escritura y
la oralidad académicas son prácticas sociales que consolidan la identidad profesional;
en este sentido, las presentaciones de los proyectos finales se constituyeron en espacios
formativos de alto valor académico y comunicativo.

Los cinco resultados de aprendizaje identificados están respaldados por evidencias
verificables —portafolios digitales, entregas en el aula virtual, rúbricas de evaluación y
exposiciones orales— que muestran la coherencia entre las competencias declaradas en
el perfil de egreso y los aprendizajes logrados en la experiencia. Esta correspondencia
cumple con el principio de alineamiento constructivo propuesto por Biggs y Tang (2011),
en el que los objetivos, las actividades y las evaluaciones forman un todo coherente. Así,
la experiencia no solo fortaleció la comprensión técnica de los estudiantes, sino también
su capacidad de aplicar el conocimiento en contextos reales, confirmando la validez cu-
rricular y profesional del proceso formativo.

2.3.4. Actividades y evidencias

La identificación de actividades y evidencias constituye un componente esencial en
la sistematización de experiencias docentes, pues permite demostrar la coherencia peda-
gógica entre los resultados de aprendizaje alcanzados y las acciones desarrolladas en el
aula. De acuerdo con Biggs y Tang (2011), la calidad educativa se garantiza cuando existe
alineamiento constructivo entre los objetivos, las estrategias de enseñanza y las evaluacio-
nes. En esta experiencia, las actividades diseñadas respondieron intencionadamente a las
competencias y resultados de aprendizaje definidos en el currículo de la carrera de In-
geniería de Software, generando evidencias verificables que demuestran la pertinencia y
efectividad del proceso formativo.

Una de las primeras actividades fue el análisis de enunciados basados en situaciones
reales, tales como sistemas de riego automatizado, gestión de citas médicas, control de

66

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

vehículos de carga o plataformas de reservaciones hoteleras. Estas problemáticas, extraí-
das de contextos cotidianos, permitieron que los estudiantes se aproximaran a la práctica
profesional de forma contextualizada. La actividad culminó con la elaboración de árboles
de problemas y documentos de requerimientos, en los que identificaron causas, efectos y
necesidades del usuario. Estas evidencias reflejan el desarrollo del pensamiento analítico
y lógico-computacional, así como la comprensión de los procesos del dominio antes de
proponer soluciones técnicas.

Posteriormente, se llevó a cabo una actividad de modelado de procesos y estructuras
mediante UML, en la que los estudiantes utilizaron herramientas digitales como Draw.io,
Lucidchart o Visual Paradigm. En esta fase, construyeron diagramas de casos de uso,
secuencia y clases, garantizando la trazabilidad entre los requerimientos y los modelos
generados. Los productos obtenidos constituyen evidencias tangibles del resultado de
aprendizaje vinculado al diseño de sistemas de software, y demuestran la capacidad de
los estudiantes para abstraer, estructurar y representar información compleja. Según To-
bón (2013), el aprendizaje basado en competencias requiere de tareas que promuevan
el desempeño auténtico; en este caso, el modelado sirvió como escenario de aplicación
práctica y evaluación directa de la comprensión conceptual.

Otra de las actividades clave fue la selección y justificación de patrones y arquitecturas
de software, en la que los equipos analizaron alternativas como MVC, Cliente-Servidor o
Microservicios, considerando criterios de calidad, mantenibilidad y viabilidad. Este ejer-
cicio fomentó el pensamiento crítico y la toma de decisiones fundamentadas, en conso-
nancia con la competencia de responsabilidad ética y profesional. Las evidencias deriva-
das —informes técnicos, debates y exposiciones orales— mostraron la madurez reflexiva
de los estudiantes y su capacidad para argumentar desde una perspectiva técnica y éti-
ca. Kolb (1984) señala que el aprendizaje experiencial se consolida cuando la acción se
acompaña de reflexión; por ello, la discusión sobre las implicaciones de cada elección
permitió transformar la práctica técnica en un proceso formativo integral.

El trabajo colaborativo representó otra dimensión central del proceso. Las activida-
des en equipo implicaron la asignación de roles —analista, modelador, diseñador— y la
coordinación del desarrollo de los proyectos. Cada grupo debió consolidar un portafolio
de entregas, donde integraron sus diagramas, documentos de requerimientos y reflexiones
individuales. Estas evidencias no solo dieron cuenta del logro de los resultados de aprendi-
zaje vinculados con la comunicación técnica y el liderazgo colaborativo, sino que también
fortalecieron habilidades blandas como la planificación, la negociación y la responsabi-

67

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

lidad compartida. Villa y Poblete (2007) destacan que el trabajo cooperativo auténtico
potencia la responsabilidad individual y la interdependencia positiva; estos principios es-
tuvieron presentes en todas las dinámicas del aula.

Finalmente, el proceso culminó con una presentación final del proyecto integrador, en
la que los equipos defendieron su propuesta de solución, sustentando el modelo de ne-
gocio, los requerimientos, los diagramas UML y la elección de patrones arquitectónicos.
Esta actividad permitió evaluar las competencias de comunicación oral y escrita, así como
la coherencia global del diseño. Las evidencias recogidas incluyeron grabaciones de las
exposiciones, informes escritos y rúbricas de evaluación. Estas fuentes demostraron la ca-
pacidad de los estudiantes para argumentar sus decisiones y para integrar el conocimiento
teórico con la práctica profesional.

En conjunto, las evidencias recogidas —árboles de problemas, documentos de reque-
rimientos, diagramas UML, informes de diseño, presentaciones orales, rúbricas y porta-
folios digitales— muestran la trazabilidad completa entre el currículo, las competencias,
los resultados de aprendizaje y las actividades implementadas. Su pertinencia radica en
que todas ellas representan desempeños observables, evaluables y contextualizados, en
correspondencia con el Modelo Educativo de la Universidad Estatal de Milagro (UNE-
MI) (2021), que promueve la formación práctica, reflexiva y orientada a resultados. De
esta manera, la experiencia sistematizada se consolida como un ejemplo de coherencia
curricular y pedagógica, donde cada acción docente responde a un propósito formativo
verificable y cada evidencia respalda la validez del proceso educativo.

2.3.5. Reflexión sobre la alineación curricular

Reflexionar sobre la alineación curricular implica reconocer que toda práctica docente
adquiere verdadero sentido cuando se conecta con el proyecto formativo de la carrera. En
la experiencia sistematizada, esta alineación fue un proceso consciente y progresivo que
buscó vincular la enseñanza del análisis y diseño de sistemas de software con las com-
petencias y resultados de aprendizaje del perfil de egreso de Ingeniería de Software en
la Universidad Estatal de Milagro. Desde esta perspectiva, la experiencia permitió evi-
denciar cómo las estrategias didácticas —centradas en la resolución de problemas reales
y el modelado técnico— se articularon con los objetivos curriculares y fortalecieron la
formación profesional de los estudiantes.

68

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Una primera fortaleza de la alineación fue su coherencia pedagógica. Las actividades
diseñadas —como el análisis de enunciados, la construcción de árboles de problemas, la
especificación de requerimientos y el modelado UML— mantuvieron una relación directa
con las competencias declaradas en el currículo, asegurando que cada acción en el aula
respondiera a un propósito formativo. Este principio coincide con lo que Biggs y Tang
(2011) denominan alineamiento constructivo, en el que los objetivos, las actividades y
las evaluaciones conforman un sistema coherente que guía el aprendizaje. Gracias a ello,
los resultados observables —diagramas, informes, exposiciones— no fueron productos
aislados, sino evidencias integradas que demostraron el cumplimiento de los resultados
de aprendizaje previstos.

Otra fortaleza radicó en la pertinencia profesional de las actividades, las cuales trasla-
daron los conocimientos teóricos a contextos reales de aplicación. Los estudiantes traba-
jaron con enunciados basados en situaciones del entorno —como bancos, clínicas, hoteles
o sistemas de riego—, lo que les permitió desarrollar competencias técnicas y transver-
sales de manera significativa. Según Tobón (2013), el currículo basado en competencias
debe propiciar aprendizajes situados que articulen saber, hacer y ser; y esta experiencia
cumplió ese propósito al fomentar el pensamiento analítico, la colaboración y la responsa-
bilidad ética en escenarios cercanos a la práctica profesional. Además, la vinculación con
el perfil de egreso consolidó el enfoque de aprendizaje experiencial, en el que la práctica
se convierte en fuente directa de conocimiento (Kolb, 1984).

Desde el punto de vista institucional, la experiencia también aporta al fortalecimien-
to del currículo de la carrera al visibilizar prácticas docentes transferibles y replicables.
La metodología aplicada —integrando análisis, diseño y reflexión— puede adaptarse a
otras asignaturas del área técnica o de proyectos, contribuyendo a la coherencia horizon-
tal del plan de estudios. Este enfoque coincide con Stenhouse (1987), quien sostiene que
el docente que investiga su práctica se convierte en agente de innovación curricular. En
este sentido, la experiencia no solo cumplió con la intención de formar en competencias,
sino que generó un modelo didáctico que podría inspirar mejoras colectivas dentro de la
carrera.

No obstante, el proceso de alineación también reveló tensiones y desafíos. Una de las
principales dificultades fue equilibrar el tiempo destinado al desarrollo técnico con los es-
pacios de reflexión y metacognición. En carreras de ingeniería, la urgencia por avanzar en
contenidos instrumentales puede reducir los momentos de análisis pedagógico, generando
una brecha entre la acción y la comprensión profunda del aprendizaje. Zabalza (2003b)

69

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

advierte que los currículos deben mantener flexibilidad para incorporar innovaciones do-
centes, pero esto requiere apoyo institucional y ajustes en la planificación académica.
Asimismo, otro desafío fue la heterogeneidad del estudiantado, pues coexistían diferentes
niveles de preparación técnica, lo que obligó a diversificar estrategias para alcanzar los
resultados de aprendizaje con equidad.

También se identificaron limitaciones estructurales en torno a la evaluación. Aunque
las rúbricas y los portafolios permitieron evidenciar los logros, aún es necesario consoli-
dar mecanismos institucionales que integren estas prácticas en la evaluación formal de la
carrera. Barnett (2001) plantea que el currículo universitario debe preparar a los estudian-
tes para actuar en contextos inciertos y complejos; lograrlo requiere no solo competencias
técnicas, sino también procesos de evaluación que midan la autonomía, la reflexión y la
capacidad de adaptación. En ese sentido, esta experiencia evidenció avances significati-
vos, pero también la necesidad de seguir fortaleciendo los instrumentos de seguimiento
curricular.

Como resultado de esta reflexión, se puede afirmar que la experiencia estuvo altamen-
te alineada con el currículo en términos de competencias, resultados y evidencias, pero
aún requiere ajustes en la consolidación institucional de sus prácticas innovadoras. Este
ejercicio deja aprendizajes valiosos: la importancia de planificar con visión curricular, de
articular el trabajo de aula con los propósitos de la carrera y de asumir la docencia como
un proceso de investigación permanente. La sistematización permitió comprender que la
calidad educativa se construye desde la práctica reflexiva y colaborativa, en un diálogo
continuo entre la teoría, el currículo y la realidad profesional.

2.3.6. Integración curricular del Módulo 3

El desarrollo del Módulo 3 permitió consolidar la articulación curricular de la expe-
riencia docente en el ámbito del análisis y diseño de sistemas de software, integrando la
enseñanza de la ingeniería de requerimientos, el modelado con UML y la aplicación de
patrones y arquitecturas de software. Este proceso evidenció que la práctica no se reduce
a un conjunto de ejercicios técnicos, sino que constituye un espacio de formación inte-
gral que moviliza competencias cognitivas, procedimentales y actitudinales del perfil de
egreso de la carrera de Ingeniería de Software. Al identificar las competencias específi-
cas y genéricas más relevantes —análisis y diseño, pensamiento lógico-computacional,
comunicación técnica, trabajo colaborativo y responsabilidad ética—, se estableció una

70

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

base sólida que permitió trazar la relación entre los aprendizajes logrados en el aula y los
objetivos institucionales del currículo.

El análisis mostró que las actividades diseñadas en la experiencia respondieron a una
lógica de coherencia pedagógica. Cada tarea se planificó como parte de un itinerario for-
mativo orientado al logro de resultados observables: desde la lectura y comprensión de
enunciados reales, pasando por la delimitación de problemas y la definición de requeri-
mientos, hasta el modelado estructurado y la defensa oral de los proyectos. Este recorrido
práctico-teórico permitió que los estudiantes aplicaran los contenidos de las asignaturas
a situaciones auténticas, fortaleciendo su capacidad de análisis y abstracción. De acuer-
do con Tobón (2013), el aprendizaje por competencias exige escenarios en los que los
estudiantes actúen sobre contextos reales; bajo este principio, la experiencia representó
un ejemplo de alineamiento constructivo (Biggs & Tang, 2011), donde las competencias,
resultados, actividades y evidencias conforman un circuito coherente que garantiza la va-
lidez curricular.

Entre los principales aportes de la experiencia al currículo se destaca la consolida-
ción de una metodología didáctica integradora, que vincula teoría, práctica y reflexión.
La secuencia de actividades basada en problemas del entorno —como sistemas de rie-
go, reservas, control vehicular o gestión de pacientes— contribuyó al desarrollo de una
mirada profesional aplicada, en la que los estudiantes comprendieron la importancia de
diseñar antes de programar, de modelar antes de construir, y de argumentar antes de de-
cidir. Esta progresión cognitiva favoreció el pensamiento sistémico y la comprensión del
ciclo de vida del software, competencias clave para el perfil del ingeniero. Asimismo, la
incorporación de herramientas digitales de modelado fomentó la apropiación tecnológica
y la autonomía en el aprendizaje, componentes fundamentales del Modelo Educativo de
la Universidad Estatal de Milagro (UNEMI) (2021), que promueve la formación práctica
y el aprendizaje activo.

Otro aporte significativo se relaciona con la evaluación auténtica del aprendizaje. Las
evidencias recogidas —árboles de problemas, especificaciones de requerimientos, diagra-
mas UML, informes técnicos, presentaciones orales y rúbricas de desempeño— permitie-
ron verificar de manera concreta los avances logrados en cada resultado de aprendizaje.
Estas evidencias se registraron en la plataforma institucional, generando trazabilidad y
transparencia en el proceso formativo. En línea con Kolb (1984), la práctica reflexiva se
consolida cuando el aprendizaje se evidencia a través de la experiencia; así, cada producto
entregado no solo funcionó como un instrumento de evaluación, sino como un documen-

71

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

to de aprendizaje. Esta estructura de evidencias demuestra que el currículo puede hacerse
visible en la práctica docente, convirtiendo la experiencia en un medio legítimo para ve-
rificar competencias y no solo en un espacio de aplicación instrumental.

La experiencia también aporta al fortalecimiento del perfil de egreso, al demostrar que
las competencias técnicas no pueden desligarse de las competencias sociales y éticas. El
trabajo colaborativo y la comunicación técnica fueron elementos transversales presentes
en todo el proceso. La distribución de roles, la toma de decisiones conjunta y la defen-
sa oral de los resultados contribuyeron al desarrollo de habilidades de liderazgo, trabajo
en equipo y argumentación fundamentada. Villa y Poblete (2007) señalan que las com-
petencias genéricas, como la cooperación y la comunicación, son las que permiten la
transferencia de los aprendizajes a diferentes contextos profesionales. En este sentido, la
experiencia docente analizada fomenta una formación integral, donde los futuros ingenie-
ros de software desarrollan tanto la capacidad de diseñar soluciones tecnológicas como la
de participar responsablemente en equipos de desarrollo interdisciplinarios.

A nivel curricular, el proceso permitió identificar y superar tensiones propias del di-
seño por competencias. Una de ellas es la necesidad de equilibrar la carga técnica con
los espacios de reflexión y retroalimentación formativa. En carreras tecnológicas, suele
priorizarse el dominio de herramientas y lenguajes, pero esta experiencia mostró que el
pensamiento analítico y la justificación de decisiones son igualmente importantes para
el perfil profesional. Además, se evidenció la conveniencia de ajustar los tiempos acadé-
micos para garantizar que la evaluación no sea un acto final, sino un proceso continuo de
observación y mejora. En este aspecto, la experiencia coincide con Zabalza (2003b), quien
defiende un currículo flexible que integre innovación, evaluación y reflexión permanente.

Asimismo, el proceso dejó aprendizajes institucionales relevantes. En primer lugar,
la importancia de documentar las prácticas docentes como parte del desarrollo curricu-
lar continuo, aspecto esencial para procesos de acreditación como el futuro EUR-ACE,
hacia el cual la carrera se orienta. En segundo lugar, la necesidad de fortalecer los espa-
cios de socialización pedagógica entre docentes, para compartir estrategias que vinculen
competencias, resultados y evidencias de manera sistemática. Finalmente, la experiencia
demostró que la innovación metodológica puede provenir desde la práctica, reafirmando
la idea de Stenhouse (1987) de que el profesor investigador contribuye al currículo al
reflexionar y sistematizar su propia enseñanza.

La integración lograda en este módulo confirma que la experiencia docente no fue
una iniciativa aislada, sino una propuesta curricular con impacto comprobable. Las com-

72

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

petencias desarrolladas se evidencian en desempeños observables y las actividades im-
plementadas muestran coherencia con el plan de estudios de Ingeniería de Software. Esta
alineación refuerza la pertinencia del proceso de enseñanza-aprendizaje dentro del mode-
lo educativo institucional, al mismo tiempo que proyecta posibilidades de replicabilidad
en otras asignaturas técnicas. Tal como plantea Barnett (2001), el currículo universitario
debe preparar a los estudiantes para enfrentar la complejidad y la incertidumbre de los
entornos reales; en esa línea, el trabajo desarrollado prepara a los futuros ingenieros no
solo para diseñar sistemas, sino para comprender y adaptarse críticamente a los contextos
donde esos sistemas se implementan.

Finalmente, esta integración curricular deja establecida una base sólida para el Mó-
dulo 4, que abordará el análisis de resultados y aprendizajes. A partir de las evidencias
obtenidas, se examinarán los impactos formativos de la experiencia, las transformaciones
observadas en los estudiantes y las implicaciones para la mejora continua del currículo.
Este cierre confirma que la experiencia sistematizada es, en sí misma, un ejercicio de in-
vestigación pedagógica aplicada, donde el docente actúa como mediador entre la teoría y
la práctica, y donde el currículo se convierte en un espacio vivo, flexible y en constante
construcción.

2.4. Del problema a la solución: estrategias para enseñar
análisis y diseño de software en primer nivel

2.4.1. Transición hacia la operacionalización estratégica

Hasta este punto, el capítulo ha mostrado la coherencia curricular de la experiencia:
las competencias del perfil de egreso fueron identificadas, vinculadas con resultados de
aprendizaje y evidenciadas a través de actividades y productos verificables. Esta estructu-
ra consolidó una visión articulada del proceso formativo, donde cada acción pedagógica
respondió a un propósito curricular claro. Sin embargo, comprender cómo se alcanza-
ron estos logros requiere mirar más allá de la planeación académica y adentrarse en la
dimensión estratégica de la práctica docente. En este nuevo tramo del capítulo, la aten-
ción se desplaza hacia la manera en que las estrategias diseñadas y aplicadas en el aula
permitieron que esas competencias se convirtieran en desempeños reales.

73

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

Observar la experiencia desde lo estratégico significa reconocer que los aprendizajes
no emergen solo de las intenciones declaradas, sino del andamiaje de decisiones, secuen-
cias y recursos que el docente pone en juego para sostener el proceso educativo. En el caso
de la enseñanza del análisis y diseño de sistemas de software, las estrategias se convirtie-
ron en el motor que articuló la teoría con la práctica. Las estrategias núcleo —como el
aprendizaje basado en problemas reales, el trabajo colaborativo y el modelado progresivo
con UML— fueron acompañadas por estrategias de soporte, como la retroalimentación
continua y el uso del aula virtual, y complementadas con estrategias de contingencia que
permitieron adaptar la experiencia ante limitaciones técnicas o de tiempo. Este entrama-
do de acciones configuró la base operativa del ecosistema pedagógico, garantizando la
coherencia entre el currículo y la práctica.

Este paso hacia la operacionalización estratégica marca el inicio de una nueva mirada
sobre la experiencia: ya no se trata únicamente de describir los aprendizajes logrados,
sino de analizar cómo se lograron y por qué las decisiones tomadas resultaron efectivas.
A partir de aquí, se presentarán las estrategias núcleo que estructuraron la experiencia,
seguidas por las estrategias de soporte y de contingencia que la sostuvieron, mostrando
cómo, en conjunto, dieron forma a un ecosistema de aprendizaje integral y sostenible.

2.4.2. Estrategias núcleo en acción

El desarrollo de la experiencia se sostuvo en un conjunto de estrategias núcleo que
funcionaron como el eje articulador entre la planificación curricular y la práctica en el
aula. Estas estrategias no fueron elementos accesorios, sino la base operativa que garan-
tizó la coherencia entre las competencias, los resultados de aprendizaje y las evidencias
producidas. En este contexto, tres estrategias resultaron decisivas: el aprendizaje basado
en problemas reales (ABP), el modelado progresivo con UML y el trabajo colaborativo
con evaluación por desempeño. Su aplicación articulada configuró una ingeniería didácti-
ca centrada en la comprensión profunda de los procesos, la reflexión sobre la práctica y la
producción de soluciones tecnológicas contextualizadas. La primera estrategia, el apren-
dizaje basado en problemas reales, permitió situar el aprendizaje en contextos auténticos
del entorno profesional. A lo largo del semestre —de quince semanas con sesiones de tres
horas— se combinaron casos elaborados por la docente con problemáticas propuestas por
los propios estudiantes, relacionadas con sistemas de riego, gestión de citas médicas, con-

74

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

trol de vehículos de carga o reservas hoteleras. Esta doble vía fomentó la creatividad, la
autonomía y el pensamiento crítico.

El trabajo se estructuró en una secuencia clara: primero, comprensión del problema;
luego, identificación de requerimientos funcionales y no funcionales; y finalmente, pro-
puesta de solución tecnológica. Para ello, los estudiantes debían investigar los procesos
del dominio, analizar flujos de información y delimitar el alcance de la solución mediante
árboles de problemas. Esta metodología se alinea con los principios del ABP planteados
por Barrows (1986), donde el conocimiento surge de la resolución de problemas signi-
ficativos, y con el ciclo de aprendizaje experiencial de Kolb (1984), que integra acción,
reflexión y conceptualización. Las evidencias obtenidas —documentos de requerimientos,
diagramas causales y presentaciones orales— demostraron que los estudiantes lograron
abstraer los elementos esenciales de los casos y vincularlos con principios de ingeniería
de software.

La segunda estrategia núcleo fue el modelado progresivo con UML, que transformó el
análisis conceptual en representación formal del sistema. El proceso se desarrolló con el
apoyo de herramientas digitales como Draw.io y Visual Paradigm, que facilitaron el tra-
bajo tanto individual como colaborativo. La secuencia de modelado se organizó en etapas
graduales: primero, los diagramas de casos de uso, donde los estudiantes identificaron los
actores y las funcionalidades principales del sistema; luego, los diagramas de secuencia,
que describieron la interacción temporal entre los objetos; seguidamente, los diagramas
de actividades, que representaron los flujos de procesos y decisiones. Finalmente, se ela-
boraron los diagramas de clases y objetos, correspondientes a la vista estructural, que
mostraron la organización estática del sistema y las relaciones entre sus componentes.
Cada ejercicio fue revisado en clase, propiciando retroalimentación formativa y correc-
ciones iterativas hasta alcanzar coherencia entre los requerimientos, los comportamientos
modelados y la estructura general del sistema.

Este enfoque progresivo responde a los principios del constructive alignment de Biggs
y Tang (2011), al garantizar que los estudiantes no sólo reproduzcan modelos, sino que
comprendan su lógica interna y su correspondencia con los procesos del negocio. Asimis-
mo, se apoya en la perspectiva de Booch et al. (2005), quienes sostienen que el modelado
orientado a objetos es un medio de pensamiento estructurado más que una simple técnica
de documentación.

La tercera estrategia, el trabajo colaborativo y la evaluación por desempeño, fortaleció
las competencias comunicativas, éticas y de liderazgo compartido. Los equipos se confor-

75

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

maron de manera equilibrada, procurando diversidad de experiencias y niveles de dominio
técnico. En cada grupo se designó un líder de coordinación, encargado de organizar las
tareas y asegurar la participación de todos, pero sin fragmentar los aprendizajes: cada es-
tudiante debía comprender, documentar y diseñar todos los diagramas en las herramientas
utilizadas.

De esta manera, el aprendizaje se mantuvo colectivo e integral, garantizando que todos
los miembros desarrollaran competencias en análisis, modelado y argumentación técnica.
Las presentaciones finales se realizaron de manera presencial, con exposiciones orales que
permitieron evaluar tanto el dominio técnico como la capacidad de comunicar y justificar
decisiones.

La evaluación se basó en rúbricas analíticas, diseñadas para valorar la coherencia entre
los requerimientos, los modelos y la argumentación del grupo. Este enfoque responde a
los principios del aprendizaje cooperativo propuestos por Johnson y Johnson (1999), y a
la visión de Villa y Poblete (2007), quienes sostienen que la evaluación por competencias
debe integrar desempeño, colaboración y reflexión conjunta.

La integración de estas tres estrategias permitió que los estudiantes transitaran de la
comprensión conceptual al dominio aplicado, articulando el saber técnico con el saber
hacer y el saber ser. Cada estrategia se complementó con la siguiente: el ABP generó el
contexto y la motivación; el modelado con UML brindó las herramientas de representa-
ción; y el trabajo colaborativo consolidó la comunicación y la argumentación profesional.
En conjunto, conformaron el núcleo del ecosistema estratégico de la experiencia, demos-
trando que los logros alcanzados no fueron fortuitos, sino producto de una planificación
coherente, reflexiva y orientada al desarrollo de competencias integrales. Este núcleo me-
todológico sirvió, además, como base para las estrategias de soporte que se presentarán
en el siguiente apartado, dedicadas a sostener, acompañar y consolidar los aprendizajes
logrados durante la implementación.

2.4.3. Estrategias de soporte aplicadas

La implementación de las estrategias núcleo en la experiencia docente de Ingeniería
de Software en la Universidad Estatal de Milagro (UNEMI) fue posible gracias a un con-
junto de estrategias de soporte institucional, tecnológica y pedagógica que garantizaron
la viabilidad del proceso y su coherencia con el modelo educativo. Estas acciones com-
plementarias fueron decisivas para sostener la innovación en el aula y asegurar que las

76

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

estrategias principales —aprendizaje basado en problemas reales, modelado progresivo
con UML y trabajo colaborativo— se consolidaran como experiencias significativas y
sostenibles. Las estrategias de soporte, por tanto, no fueron periféricas, sino el entramado
operativo que permitió concretar los resultados de aprendizaje y fortalecer la articulación
entre currículo, práctica docente y acompañamiento estudiantil.

Una primera estrategia de soporte fue el uso articulado del Sistema de Gestión Aca-
démica (SGA) y del Aula Virtual institucional (Moodle), que constituyen la columna
vertebral de la gestión educativa en la UNEMI. Desde el SGA, los docentes planifican
la asignatura, cargan el sílabo, los resultados de aprendizaje, las actividades tipo AA
(Aprendizaje Autónomo), ACD (Aprendizaje Colaborativo y Dirigido) y APE (Apren-
dizaje Práctico y Experimental), además del componente práctico y del examen final.
Posteriormente, todos estos elementos se migran automáticamente al entorno Moodle,
donde se desarrolla el trabajo formativo.

En esta plataforma se alojan los materiales de apoyo —diapositivas, guías, bibliografía
de la biblioteca universitaria y recursos de UTECA—, así como las rúbricas de evalua-
ción, los simuladores y las evidencias de las actividades. Esta sincronización entre SGA
y Moodle garantiza la trazabilidad del proceso, la transparencia en la evaluación y la con-
tinuidad pedagógica, en concordancia con el Modelo Educativo de la Universidad Estatal
de Milagro (UNEMI) (2021), que promueve el uso de entornos digitales integrados para
favorecer la autonomía y la innovación educativa.

Otra estrategia de soporte fundamental fue la integración de herramientas digitales y
metodológicas que enriquecieron la práctica docente. Los salones de la UNEMI cuentan
con dispositivos Chromebook, que los estudiantes utilizan para realizar ejercicios de mo-
delado en herramientas como Draw.io y Visual Paradigm, fortaleciendo la comprensión
de los diagramas UML desde una práctica activa.

A su vez, se incorporaron aplicaciones como Canva, Padlet, Wayground y Kahoot para
el desarrollo de presentaciones interactivas, lluvias de ideas, debates visuales y evaluacio-
nes formativas. Estas herramientas fomentaron la participación, el aprendizaje colaborati-
vo y la creatividad, promoviendo un entorno dinámico y flexible. Siemens (2005) plantea
que el aprendizaje en red se basa en la interconexión de nodos de información y en la
construcción colectiva del conocimiento; de manera similar, este ecosistema digital per-
mitió que los estudiantes trabajaran en red, compartieran recursos y construyeran saberes
de manera conjunta.

77

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

Las rúbricas analíticas y las guías de aprendizaje se convirtieron en instrumentos esen-
ciales de soporte metodológico y evaluativo. Cada actividad, ya sea individual o grupal, se
acompañó de una rúbrica previamente compartida con los estudiantes, lo que les permitió
comprender los criterios de desempeño y autorregular su aprendizaje. Estas rúbricas se
utilizaron tanto para la autoevaluación como para la coevaluación, reforzando la transpa-
rencia del proceso. Tobón (2013) destaca que la evaluación formativa por competencias
requiere instrumentos que articulen desempeño, reflexión y mejora continua; en esta ex-
periencia, las rúbricas cumplieron esa función, convirtiéndose en un elemento transversal
de mediación pedagógica.

Otra estrategia de soporte fue el acompañamiento docente constante, tanto dentro co-
mo fuera del aula. Durante las sesiones presenciales de tres horas semanales, la docente
revisaba los avances de los grupos, orientaba sobre la coherencia entre los requerimientos
y los modelos UML, y resolvía dudas específicas sobre el flujo de procesos o la interpre-
tación de los diagramas.

Este acompañamiento se extendía mediante asesorías individuales y retroalimenta-
ciones en el aula virtual. Además, los simuladores institucionales y los talleres prácticos
ofrecieron espacios adicionales para fortalecer las habilidades de análisis y diseño de
software. Fullan (2007) sostiene que las innovaciones sostenibles se construyen sobre el
liderazgo pedagógico y el acompañamiento reflexivo; en este sentido, el acompañamiento
continuo fue decisivo para garantizar la calidad y profundidad de los aprendizajes alcan-
zados.

Finalmente, la experiencia se vio fortalecida por la infraestructura institucional y la
suite de herramientas de Google, que facilitaron el trabajo colaborativo y la gestión de
proyectos. El acceso a internet estable, los laboratorios de computación y el uso de Google
Drive, Docs, Slides, Meet y Forms favorecieron la colaboración asincrónica y sincrónica,
el almacenamiento de evidencias y la comunicación fluida entre docente y estudiantes.
Kolb (1984) subraya que el aprendizaje experiencial requiere espacios que integren ac-
ción, reflexión y conceptualización; los recursos institucionales de UNEMI ofrecieron
precisamente esas condiciones, permitiendo un tránsito fluido entre la práctica técnica y
la reflexión pedagógica.

En conjunto, las estrategias de soporte implementadas en la experiencia configuraron
un ecosistema institucional integrado, donde la tecnología, la organización académica y
el acompañamiento docente trabajaron de manera sinérgica. Sin estos apoyos, las estra-
tegias núcleo no habrían tenido la estabilidad ni la proyección necesarias para generar

78

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

aprendizajes significativos. La articulación entre SGA, Moodle, herramientas digitales y
recursos institucionales consolidó la sostenibilidad del proceso y aseguró la coherencia
entre la planificación curricular y la práctica docente. Estas estrategias sentaron las bases
para el siguiente nivel del ecosistema estratégico: las estrategias de contingencia, que res-
pondieron a los imprevistos y desafíos surgidos durante la implementación del semestre.

2.4.4. Estrategias de contingencia desplegadas

Toda innovación educativa, por más planificada que esté, se enfrenta a imprevistos que
ponen a prueba la flexibilidad del docente y la solidez de la planificación. En el desarro-
llo de la experiencia en la carrera de Ingeniería de Software de la Universidad Estatal de
Milagro (UNEMI), se presentaron diversas contingencias de orden logístico, tecnológico,
pedagógico y motivacional. Lejos de representar obstáculos insalvables, estas situacio-
nes se convirtieron en oportunidades de aprendizaje y ajuste, permitiendo fortalecer el
ecosistema estratégico del proceso. La capacidad de respuesta ante estas eventualidades
fue clave para mantener la coherencia con las competencias y resultados de aprendizaje
establecidos en el sílabo, reafirmando que la innovación educativa también se construye
desde la adaptabilidad.

Una de las primeras contingencias enfrentadas estuvo relacionada con la gestión del
tiempo y la carga de actividades. Las 15 semanas del semestre y las tres horas presencia-
les por semana resultaban ajustadas para cubrir las fases de análisis de requerimientos,
diseño y modelado UML, además de las evaluaciones formativas. Para responder a esta
limitación temporal, se implementaron ajustes de secuencia didáctica: se integraron en
una misma sesión la exposición teórica, la discusión práctica y la elaboración guiada de
diagramas, optimizando el tiempo sin sacrificar la profundidad del aprendizaje.

Asimismo, se amplió el trabajo asincrónico en la plataforma Moodle, permitiendo a
los estudiantes desarrollar ejercicios adicionales o cargar entregas fuera del horario pre-
sencial. Este uso flexible del aula virtual, articulada al Sistema de Gestión Académica
(SGA), fue decisivo para sostener la continuidad del curso y evitar retrasos, evidenciando
lo que Zabalza (2003b) denomina currículo flexible, una estructura capaz de adaptarse sin
perder coherencia formativa.

Otro tipo de contingencia frecuente fue la limitación tecnológica, especialmente al
trabajar con herramientas de modelado. En algunos casos, los estudiantes tuvieron di-
ficultades de conectividad o incompatibilidad al usar Visual Paradigm, una herramienta

79

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

más demandante en recursos. Para evitar interrupciones, se aplicó una estrategia de flexi-
bilidad tecnológica: se permitió el uso alternativo de Draw.io o Lucidchart, herramientas
más ligeras y accesibles desde los Chromebook institucionales o dispositivos personales.

Además, se fomenta el uso compartido de carpetas en Google Drive, donde los equi-
pos podían guardar versiones en PDF o imágenes de sus diagramas para evitar pérdida de
información. Estas acciones garantizaron la continuidad de las prácticas y promovieron
el desarrollo de competencias digitales transversales. Según Siemens (2005), la sosteni-
bilidad de los entornos de aprendizaje depende de la capacidad de adaptación y de la
migración entre plataformas sin interrumpir el flujo de conocimiento; la experiencia con-
firma esa premisa en el contexto de la docencia tecnológica universitaria.

También se presentaron contingencias pedagógicas derivadas de la heterogeneidad del
grupo. Algunos estudiantes mostraban un dominio avanzado de herramientas digitales,
mientras que otros requerían mayor acompañamiento en la comprensión de los procesos
de negocio o en la lectura de diagramas. Para equilibrar estos ritmos de aprendizaje, se
aplicaron estrategias de mentorías entre pares, donde los estudiantes con más dominio
apoyaban a quienes presentaban dificultades, y se implementó la retroalimentación co-
lectiva al cierre de cada clase. Esta dinámica fomentó la colaboración y el aprendizaje
horizontal, transformando la diversidad del grupo en un recurso didáctico. Tobón (2013)
sostiene que la formación integral exige reconocer la complejidad del contexto y adaptar
las estrategias a las condiciones reales de los aprendices, principio que guio las decisiones
pedagógicas adoptadas.

La motivación estudiantil también representó un desafío, especialmente en las etapas
intermedias del semestre, cuando la carga de trabajo aumentaba y las entregas se acu-
mulaban. Para contrarrestar la desmotivación y el cansancio, se incorporaron estrategias
lúdicas y participativas: actividades en Kahoot para reforzar contenidos teóricos, deba-
tes en Padlet sobre buenas prácticas de modelado y presentaciones creativas en Canva o
Wayground.

Estas acciones revitalizaron el ambiente de aula, fortaleciendo la participación y el
compromiso. Kolb (1984) plantea que la motivación se renueva cuando el estudiante pue-
de conectar su experiencia con la aplicación práctica; por ello, se priorizó el análisis de
casos reales de la industria tecnológica (bancos, hospitales, urbanizaciones) para reforzar
el sentido de pertinencia del aprendizaje.

Finalmente, se adoptaron medidas preventivas frente a posibles brechas logísticas o
institucionales, como reprogramaciones por eventos académicos o limitaciones de infra-

80

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

estructura. Se mantuvo un plan de contingencia simple pero eficaz: los materiales se car-
gaban anticipadamente en Moodle, las rúbricas se entregaban desde la primera semana,
y se estableció comunicación constante mediante la suite de Google (Gmail y Meet) pa-
ra coordinar actividades o recuperar sesiones. Fullan (2007) resalta que la sostenibilidad
de las innovaciones radica en la capacidad de las instituciones para anticipar, ajustar y
mantener el rumbo ante el cambio; este principio se reflejó en la cultura de planificación
anticipada que caracterizó la experiencia.

En conjunto, las estrategias de contingencia desplegadas demostraron que la flexibili-
dad y la gestión oportuna son componentes esenciales del éxito pedagógico. Las respues-
tas aplicadas —desde la reorganización del tiempo hasta la diversificación de herramien-
tas— no solo mitigaron los imprevistos, sino que fortalecieron la cohesión del ecosistema
estratégico. Cada dificultad enfrentada derivó en un aprendizaje institucional y docente:
planificar con margen, diversificar recursos y fomentar la resiliencia académica. Estas lec-
ciones se integran al modelo operativo de la experiencia, que en su siguiente fase analizará
la arquitectura global del ecosistema, mostrando cómo las estrategias núcleo, de sopor-
te y contingencia conformaron una estructura coherente y sostenible para el logro de las
competencias curriculares.

2.4.5. Arquitectura del ecosistema estratégico

La experiencia desarrollada en asignaturas que integran el Análisis y Diseño de Siste-
mas de Software en la Universidad Estatal de Milagro (UNEMI) puede entenderse como
un ecosistema estratégico de aprendizaje, en el que múltiples componentes —pedagógi-
cos, tecnológicos e institucionales— interactuaron de manera articulada para alcanzar los
resultados curriculares propuestos. Este ecosistema no fue una suma de acciones aisladas,
sino una estructura compleja y dinámica en la que cada tipo de estrategia (núcleo, soporte
y contingencia) cumplió una función específica dentro de un mismo sistema operativo.
Tal como plantea Morin (2001), los procesos educativos deben comprenderse desde una
perspectiva de interdependencia y recursividad, donde las partes se sostienen mutuamente
y el todo retroalimenta a sus componentes. En este sentido, la arquitectura del ecosistema
permitió que las decisiones pedagógicas se transformaran en un entramado coherente de
acción, soporte y adaptación continua.

En el centro de este sistema se ubicaron las estrategias núcleo, que constituyeron el
corazón didáctico de la innovación. Estas estrategias —aprendizaje basado en problemas

81

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

reales, modelado progresivo con UML y trabajo colaborativo— definieron la orientación
metodológica y el sentido pedagógico de la experiencia. Desde ellas se estructuraron las
secuencias de aprendizaje, se diseñaron los casos reales y se promovió la construcción de
conocimiento a partir de la resolución de situaciones auténticas.

Estas estrategias dieron forma al eje pedagógico central, donde los estudiantes se en-
frentaron a desafíos reales, comprendieron los procesos de negocio y tradujeron sus aná-
lisis en diagramas de comportamiento y estructura. Según Kolb (1984), la experiencia se
consolida como aprendizaje cuando el sujeto actúa, reflexiona y conceptualiza; en este
caso, las estrategias núcleo hicieron posible ese tránsito continuo entre acción práctica y
comprensión conceptual.

Sosteniendo este núcleo, las estrategias de soporte actuaron como la base institucio-
nal, tecnológica y metodológica que garantizó la estabilidad del proceso. La articulación
entre el Sistema de Gestión Académica (SGA) y el Aula Virtual Moodle fue clave para
la trazabilidad de todas las actividades, desde la planificación del sílabo hasta la entre-
ga de evidencias y la evaluación con rúbricas. El uso de herramientas digitales como
Draw.io, Visual Paradigm, Canva, Padlet y Kahoot fortaleció la interacción, la creatividad
y la evaluación formativa. Además, la disponibilidad de Chromebooks institucionales, los
recursos de la biblioteca y UTECA, y la suite de Google generaron un entorno de apren-
dizaje híbrido, inclusivo y flexible. Tal como señalan Biggs y Tang (2011), un ecosistema
pedagógico logra coherencia cuando los objetivos, las actividades y la evaluación se ali-
nean mediante recursos que aseguren la continuidad del aprendizaje; precisamente ese
principio se materializó en el soporte estructural de la experiencia.

Finalmente, las estrategias de contingencia representaron la capa adaptativa del eco-
sistema, es decir, el mecanismo de autorregulación que permitió mantener el rumbo frente
a imprevistos. Estas estrategias respondieron a desafíos de diversa índole —limitaciones
de tiempo, conectividad, heterogeneidad del grupo o desmotivación— mediante ajustes
flexibles y oportunos.

La reorganización temporal de actividades, la posibilidad de usar alternativas tecnoló-
gicas, las mentorías entre pares y las actividades lúdicas fueron recursos que sostuvieron
la participación y la calidad del aprendizaje. Siemens (2005) describe los entornos digita-
les como redes adaptativas donde el conocimiento fluye entre nodos; en esta experiencia,
las contingencias cumplieron esa función de red de ajuste y resiliencia, permitiendo que
el sistema siguiera funcionando aun ante condiciones variables.

Desde una perspectiva sistémica, la relación entre los tres tipos de estrategias puede

82

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

representarse como una arquitectura por capas, similar a la estructura de un sistema de
software:

En la capa base, se encuentran las estrategias de soporte, que equivalen al middlewa-
re que sostiene la operación del sistema: recursos, plataformas y acompañamiento
institucional.

Sobre ella se construye la capa lógica o núcleo, donde se ejecutan los procesos
principales del aprendizaje, representados por las estrategias didácticas que generan
conocimiento y competencias.

Finalmente, la capa superior de contingencia actúa como el sistema de control y
adaptación, encargado de responder a errores, ajustar el flujo y garantizar la estabi-
lidad general.

Esta metáfora técnica, inspirada en la arquitectura de software, permite comprender
la experiencia como un sistema educativo en ejecución, en el que cada nivel interactúa
y retroalimenta al otro, asegurando el funcionamiento integral del aprendizaje. De acuer-
do con Tobón (2013), los procesos formativos deben concebirse como sistemas abiertos,
capaces de integrar diversas dimensiones (cognitiva, operativa, emocional e institucional)
para alcanzar la formación integral del estudiante; precisamente esta lógica de integración
sustentó el ecosistema pedagógico desarrollado.

En síntesis, la arquitectura del ecosistema estratégico permitió visualizar la experien-
cia como un sistema coherente, sustentable y replicable. La interacción entre estrategias
núcleo, de soporte y de contingencia garantizó no solo el logro de los resultados de apren-
dizaje, sino también la consolidación de un modelo flexible y alineado con el perfil de
egreso de la carrera. Esta estructura dinámica mostró que la innovación educativa no
depende de acciones aisladas, sino de un entramado de decisiones interconectadas que
generan estabilidad y mejora continua.

Tal como advierte Fullan (2007), el cambio educativo duradero se construye cuando
las innovaciones logran institucionalizarse en una arquitectura que articula visión, medios
y capacidad de adaptación. Este ecosistema, por tanto, constituye la ingeniería didáctica
de la experiencia: un sistema vivo que evoluciona aprende y se adapta, manteniendo siem-
pre su foco en la calidad y pertinencia de la formación en Ingeniería de Software.

83

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.4.6. Integración: Justificación de la validez curricular del ecosiste-
ma estratégico

El desarrollo del ecosistema estratégico en la asignatura de Análisis y Diseño de Sis-
temas de Software permitió consolidar un proceso de enseñanza-aprendizaje coherente
con el perfil de egreso de la carrera de Ingeniería de Software de la Universidad Estatal
de Milagro (UNEMI). Este ecosistema, compuesto por estrategias núcleo, de soporte y
de contingencia, no solo garantizó la articulación entre teoría y práctica, sino que evi-
denció la pertinencia curricular de la experiencia al contribuir directamente al desarrollo
de las competencias profesionales definidas institucionalmente. Tal como sostiene Tobón
(2013), la validez de una práctica educativa se confirma cuando los procesos formativos
logran articular el “cómo se enseña” con el “para qué se aprende”, generando aprendizajes
significativos y verificables.

Entre las competencias curriculares fortalecidas se destacan: el pensamiento crítico
y lógico-computacional, el análisis y diseño de sistemas de software, la comunicación
técnica y trabajo colaborativo, y la responsabilidad ética en la definición de soluciones
tecnológicas. Cada una de ellas fue alcanzada mediante la acción conjunta de las estrate-
gias pedagógicas y operativas que conformaron el ecosistema. El aprendizaje basado en
problemas reales (ABP), por ejemplo, permitió que los estudiantes ejercitaran su capaci-
dad de análisis crítico al descomponer los casos propuestos en causas, efectos y posibles
soluciones, aplicando el razonamiento lógico para la definición de requerimientos. Se-
gún Kolb (1984), el aprendizaje experiencial ocurre cuando los estudiantes reflexionan
sobre la práctica y construyen conocimiento desde la acción; en esta experiencia, el ABP
se convirtió en un laboratorio cognitivo que fortaleció el razonamiento sistemático y la
comprensión integral de los procesos de negocio.

En cuanto a la competencia de análisis y diseño de sistemas de software, las estrategias
núcleo de modelado progresivo con UML fueron decisivas. La secuencia de diagramas
—casos de uso, secuencia, actividades, clases y objetos— guió a los estudiantes desde la
comprensión del problema hasta la representación formal del sistema. Esta progresión les
permitió integrar las dimensiones estructurales y de comportamiento, consolidando una
visión holística del diseño de software.

La práctica constante con herramientas como Draw.io y Visual Paradigm facilitó el de-
sarrollo de habilidades técnicas y el pensamiento abstracto necesario para representar la
realidad mediante modelos formales. El uso de rúbricas analíticas y la retroalimentación

84

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

continua aseguraron que los aprendizajes fueran observables y evaluables, en consonancia
con el enfoque de alineación constructiva planteado por Biggs y Tang (2011), donde la
coherencia entre objetivos, actividades y evaluación constituye el eje de la calidad educa-
tiva.

La comunicación técnica y el trabajo colaborativo se fortalecieron mediante la inte-
gración de estrategias de soporte y metodologías activas. La estructura del aula virtual
—donde se alojaron los materiales, guías y recursos complementarios— y la implemen-
tación de herramientas de comunicación sincrónica y asincrónica de la suite de Google
promovieron la colaboración en tiempo real y la elaboración conjunta de productos.

Las exposiciones presenciales, sustentadas en presentaciones elaboradas en Canva,
Genially y Padlet, favorecieron la argumentación oral y el uso del lenguaje técnico propio
de la disciplina. Además, la coevaluación entre pares fomentó la reflexión colectiva sobre
los procesos de diseño y documentación, en sintonía con la idea de Siemens (2005), quien
sostiene que el conocimiento en entornos digitales se construye en red y se distribuye a
través de interacciones colaborativas.

Por otra parte, la responsabilidad ética y profesional emergió como competencia trans-
versal en todas las etapas del proceso. La revisión crítica de los enunciados de casos
y la discusión de las implicaciones tecnológicas de las soluciones promovieron la toma
de decisiones fundamentadas y conscientes de su impacto. Las contingencias afrontadas
—limitaciones tecnológicas, diferencias de ritmo y motivación— se gestionaron desde
una ética del cuidado, la cooperación y la equidad, priorizando la inclusión y el apren-
dizaje compartido. De acuerdo con Fullan (2007), la innovación educativa sostenible se
construye sobre la base de valores éticos y compromiso institucional; en este sentido,
la experiencia reflejó una cultura docente orientada a la mejora continua y al desarrollo
humano.

El conjunto de estrategias implementadas permitió alcanzar evidencias concretas de
logro. Entre ellas se destacan: los diagramas UML elaborados y documentados, los infor-
mes técnicos, las presentaciones orales, las coevaluaciones registradas en la plataforma
Moodle y los proyectos finales de modelado de sistemas reales, que demostraron el do-
minio de los estudiantes sobre el proceso de análisis y diseño. Estas evidencias, revisadas
y evaluadas mediante rúbricas, confirmaron la adquisición de las competencias y la co-
herencia entre el diseño instruccional y los resultados observados. Como señala Morin
(2001), los sistemas educativos deben ser capaces de integrar los saberes teóricos con la

85

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

acción práctica; este principio se materializó en la experiencia, donde cada evidencia fue
reflejo de una competencia puesta en práctica.

En síntesis, la arquitectura del ecosistema estratégico no solo organizó los recursos
y procesos, sino que se constituyó en un modelo pedagógico de pertinencia curricular,
demostrando que la enseñanza del análisis y diseño de software puede integrar la rigu-
rosidad técnica con la flexibilidad pedagógica. La interacción entre estrategias núcleo,
de soporte y de contingencia posibilitó la formación de profesionales con pensamiento
crítico, habilidades de diseño estructurado y capacidad de adaptación a entornos reales.
Este cierre confirma que la experiencia docente fue académica, metodológicamente con-
sistente y curricularmente válida, consolidando un camino replicable hacia la enseñanza
innovadora de la Ingeniería de Software en la UNEMI.

2.5. Evaluación e indicadores de logro: instrumentos, va-
lidez y análisis de evidencias

2.5.1. Transición hacia la evaluación

La evaluación constituye una fase esencial dentro de la sistematización de esta ex-
periencia docente, porque representa el momento en que las estrategias implementadas
se someten a verificación y análisis. Tras haber descrito la arquitectura del ecosistema
estratégico —con sus estrategias núcleo, de soporte y de contingencia—, resulta necesa-
rio demostrar cómo y con qué criterios se comprobó que dichos recursos contribuyeron
efectivamente al logro de las competencias curriculares de la carrera de Ingeniería de
Software de la Universidad Estatal de Milagro (UNEMI). Este nuevo apartado no busca
repetir lo vivido, sino validar los resultados alcanzados, mostrando el rigor metodológico
que respalda la experiencia y su valor formativo.

Evaluar fue una necesidad y no un complemento, porque permitió confirmar que las
estrategias aplicadas lograron fortalecer competencias clave, tales como el análisis crítico,
el pensamiento lógico-computacional, el diseño estructurado de software y la comunica-
ción técnica. Este proceso de evaluación integró múltiples instrumentos e indicadores,
diseñados para observar tanto los productos como los procesos: rúbricas analíticas, ob-
servaciones directas, talleres prácticos, test de conocimientos, autoevaluaciones y coeva-
luaciones entre pares. Además, la plataforma institucional Moodle, vinculada al Sistema

86

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

de Gestión Académica (SGA), sirvió como medio de registro y verificación de todas las
evidencias, garantizando la trazabilidad, la transparencia y la validez de los datos recolec-
tados.

Este módulo se centra, por tanto, en mostrar cómo se evaluó la experiencia y cómo se
interpretaron las evidencias obtenidas, con base en criterios de pertinencia, confiabilidad
y coherencia curricular. La evaluación se concibe aquí como una herramienta de mejora
y reflexión, no solo como medición del logro, sino como proceso formativo que retroali-
menta la práctica docente y valida la innovación pedagógica. En las secciones siguientes
se detallarán los instrumentos aplicados, los indicadores de evaluación utilizados, los re-
sultados preliminares obtenidos y una reflexión crítica sobre la validez y factibilidad del
proceso evaluativo, con el fin de dar al lector una comprensión completa y fundamentada
de los alcances de esta experiencia.

2.5.2. Instrumentos de evaluación aplicados

La evaluación de la experiencia docente en las asignaturas relacionadas al Análisis
y Diseño de Sistemas de Software se sustentó en un conjunto de instrumentos variados,
complementarios y coherentes con el enfoque por competencias. Su finalidad fue com-
probar, de manera sistemática, que las estrategias implementadas permitieron alcanzar
los resultados de aprendizaje y fortalecer las competencias curriculares definidas por la
carrera de Ingeniería de Software de la Universidad Estatal de Milagro (UNEMI). Es-
tos instrumentos se aplicaron en distintos momentos del proceso formativo, combinando
componentes diagnósticos, formativos y sumativos, con el objetivo de garantizar una eva-
luación integral y transparente.

El instrumento central de evaluación fue la rúbrica analítica de desempeño, aplicada
en todas las actividades clave del semestre. Cada rúbrica fue diseñada con base en los
resultados de aprendizaje definidos en el sílabo y contempló criterios e indicadores espe-
cíficos para valorar las dimensiones técnica, comunicativa y actitudinal del estudiante. En
el plano técnico, las rúbricas evaluaron la coherencia del modelado UML, la identifica-
ción correcta de actores y casos de uso, la representación estructural en los diagramas de
clases y la precisión en los flujos de procesos.

En la dimensión comunicativa, se valoró la capacidad para explicar decisiones de
diseño, argumentar soluciones y sustentar mejoras en tiempo real durante las revisiones
orales. Finalmente, en la dimensión actitudinal, se midió la colaboración en equipo, la

87

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

responsabilidad frente a las entregas y la ética profesional en el uso de herramientas y
fuentes. Estas rúbricas, compartidas previamente en la plataforma Moodle, aseguraron
la transparencia del proceso evaluativo y permitieron a los estudiantes autoevaluar su
desempeño antes de cada entrega.

Complementando este instrumento principal, se aplicaron cuestionarios de autoeva-
luación y coevaluación para fortalecer la reflexión crítica y la participación responsable.
Los estudiantes valoraron su propio aporte y el de sus compañeros, analizando tanto el
desempeño técnico como el compromiso en las tareas grupales.

Estas coevaluaciones, gestionadas mediante formularios en Google Forms, promo-
vieron la conciencia metacognitiva sobre los procesos de aprendizaje y la equidad en la
evaluación. Tobón (2013) señala que la autoevaluación y la coevaluación son pilares de
la evaluación por competencias, porque fomentan la autorregulación y la corresponsabili-
dad del estudiante en su formación; en esta experiencia, dichas prácticas consolidaron la
madurez académica y el sentido ético de los equipos.

Otro instrumento clave fue el registro de observación docente, aplicado de manera
continua durante las sesiones presenciales y en línea. A través de este registro, se do-
cumentaron las interacciones entre los grupos, las dificultades técnicas observadas y las
mejoras progresivas en la comprensión de los procesos de negocio y del modelado de
software.

Estas observaciones, además de servir como evidencia cualitativa, orientaron las re-
troalimentaciones personalizadas que la docente ofrecía a cada grupo. Según Zabalza
(2003a), la observación sistemática del aula es una herramienta de evaluación esencial
para comprender las dinámicas de aprendizaje en contextos reales y para ajustar las estra-
tegias en función de la evidencia directa del desempeño.

Asimismo, se aplicaron test diagnósticos y formativos, diseñados en la plataforma
Moodle y en herramientas como Kahoot y Wayground, con el fin de medir el dominio
conceptual de los estudiantes sobre la ingeniería de requerimientos, los modelos UML y
las metodologías de desarrollo. Estos test, realizados en diferentes etapas del semestre,
permitieron monitorear el avance del grupo, identificar vacíos conceptuales y reforzar los
temas necesarios antes de avanzar hacia el proyecto final. Los resultados cuantitativos
obtenidos en estas pruebas complementaron las evidencias cualitativas de los talleres y
proyectos, asegurando una visión equilibrada del aprendizaje.

Los talleres prácticos en clase funcionaron, a su vez, como un instrumento de evalua-
ción experiencial. En ellos, los estudiantes resolvían casos reales de análisis y diseño, ge-

88

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

neraban árboles de problemas, definían requerimientos y modelaban diagramas, recibien-
do retroalimentación inmediata. Cada taller era evaluado mediante una rúbrica específica
y registrado en el aula virtual, lo que garantizó la trazabilidad del proceso. Kolb (1984)
sostiene que la experiencia directa y la reflexión inmediata son componentes inseparables
del aprendizaje significativo; en este sentido, los talleres prácticos no solo sirvieron para
aplicar los conocimientos, sino también para observar y evaluar el aprendizaje en acción.

Todos estos instrumentos fueron gestionados, registrados y analizados a través del
SGA y Moodle, que actúan como el sistema institucional de evaluación de la UNEMI.
Estas plataformas permitieron centralizar las calificaciones, los comentarios y las eviden-
cias de aprendizaje, facilitando el seguimiento longitudinal de los estudiantes. La integra-
ción de múltiples instrumentos aseguró que la evaluación fuera triangulada (Yin, 2014),
es decir, validada por diferentes fuentes y métodos, lo que aumentó la confiabilidad de los
resultados obtenidos.

En conjunto, los instrumentos de evaluación aplicados garantizaron un proceso trans-
parente, inclusivo y coherente con el modelo educativo institucional. Cada herramienta
cumplió una función complementaria: las rúbricas aseguraron el rigor técnico, los cues-
tionarios promovieron la reflexión ética y colaborativa, las observaciones ofrecieron evi-
dencia cualitativa, y los test aportaron medición cuantitativa. Este conjunto permitió obte-
ner una visión integral del desempeño estudiantil y sentó las bases para el análisis de los
indicadores de evaluación, que se abordará en el siguiente apartado, donde se mostrará
cómo estos instrumentos se tradujeron en criterios observables y medibles del logro de
competencias.

2.5.3. Indicadores de evaluación y criterios de validez

Los indicadores de evaluación constituyeron el eje que permitió traducir las evidencias
del aprendizaje en resultados verificables, otorgando rigor y credibilidad al proceso. A
partir de los instrumentos aplicados —rúbricas, test, talleres, coevaluaciones y registros
observacionales—, se definieron indicadores precisos que posibilitaron medir el nivel de
logro de las competencias curriculares trabajadas en la experiencia. Estos indicadores
se diseñaron con base en los resultados de aprendizaje establecidos en el sílabo de las
asignaturas relacionadas al Análisis y Diseño de Sistemas de Software, y se alinearon al
enfoque por competencias del Modelo Educativo de la Universidad Estatal de Milagro

89

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

(Universidad Estatal de Milagro (UNEMI), 2021), garantizando que la evaluación fuera
coherente con la formación profesional del ingeniero de software.

2.5.4. Indicadores aplicados

Los indicadores se estructuraron en correspondencia con las competencias que se bus-
caban desarrollar: pensamiento lógico-computacional, análisis y diseño de software, co-
municación técnica y trabajo colaborativo, y responsabilidad ética. Cada conjunto de in-
dicadores permitió observar un tipo particular de desempeño:

1. Pensamiento lógico-computacional

Analiza el problema identificando actores, procesos y flujos de información.

Aplica razonamiento lógico en la elaboración de árboles de problemas y re-
querimientos.

Muestra consistencia entre el análisis del problema y la propuesta de solución
tecnológica.

Evidencias: talleres en clase, entregas de diagramas de casos de uso y secuencia,
ejercicios de requerimientos.

2. Análisis y diseño de sistemas de software

Representa correctamente los diagramas UML de comportamiento (casos de
uso, secuencia, actividades).

Construye diagramas estructurales (clases y objetos) con relaciones adecuadas
y coherencia en los atributos y métodos.

Argumenta decisiones de modelado y justifica cambios solicitados durante la
retroalimentación.

Evidencias: rúbricas de modelado, informes de diseño, presentaciones orales y pro-
yectos finales.

3. Comunicación técnica y trabajo colaborativo

Expone los resultados del análisis y diseño con vocabulario técnico y claridad
conceptual.

90

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Participa activamente en discusiones grupales y tareas colaborativas.

Contribuye al trabajo de equipo respetando los acuerdos y tiempos estableci-
dos.

Evidencias: exposiciones presenciales, coevaluaciones, foros de Moodle y presen-
taciones colaborativas en Canva o Padlet.

4. Responsabilidad ética y profesional

Entrega puntualmente las actividades y respeta la autoría de sus producciones.

Evalúa críticamente el impacto de la solución propuesta en el contexto social
o institucional.

Muestra compromiso con la calidad y la mejora continua de su trabajo.

Evidencias: rúbricas de desempeño, informes reflexivos y revisiones del proyecto
final.

Cada indicador fue formulado como un criterio observable, lo que permitió regis-
trar desempeños concretos y establecer niveles de logro (insuficiente, básico, competente,
destacado). En las rúbricas analíticas, los indicadores funcionaron como descriptores de
desempeño, garantizando la transparencia del proceso y la coherencia entre los apren-
dizajes esperados y las evidencias obtenidas. Como señalan Biggs y Tang (2011), una
evaluación de calidad debe basarse en indicadores explícitos que aseguren la alineación
entre los objetivos, las actividades y los resultados.

2.5.5. Criterios de validez y confiabilidad

Para asegurar la validez y confiabilidad del proceso evaluativo, se aplicaron cuatro
criterios principales:

Triangulación de fuentes e instrumentos.

Se combinaron diversas evidencias —productos, observaciones y calificaciones—
provenientes de distintos instrumentos (rúbricas, test, coevaluaciones, talleres). Este
enfoque permitió corroborar la información desde múltiples perspectivas, minimi-
zando sesgos. Flick (2014a) destaca que la triangulación es una estrategia clave para
aumentar la credibilidad de los hallazgos en contextos educativos complejos.

91

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

Transparencia y trazabilidad.

Todas las calificaciones, rúbricas y retroalimentaciones fueron registradas en Mood-
le e importadas al Sistema de Gestión Académica (SGA), lo que garantizó el acceso
constante a los datos por parte de los estudiantes. Este registro digital fortaleció la
confianza y la posibilidad de auditoría académica, asegurando la validez externa del
proceso.

Coherencia curricular.

Los indicadores se diseñaron directamente a partir de las competencias y resultados
de aprendizaje del sílabo, revisando que cada criterio de evaluación respondiera a un
objetivo formativo. Este principio, conocido como alineación constructiva (Biggs &
Tang, 2011), garantizó que la evaluación midiera exactamente lo que se pretendía
enseñar.

Consistencia interevaluador.

Las rúbricas fueron revisadas con docentes del área para unificar criterios de inter-
pretación y valorar la pertinencia de los niveles de desempeño. Esta revisión conjun-
ta permitió detectar posibles ambigüedades y asegurar uniformidad en la aplicación
de los indicadores, aumentando la fiabilidad de los resultados (Yin, 2014).

Estos criterios permitieron validar la calidad del proceso evaluativo y demostrar que
los resultados obtenidos fueron consistentes, pertinentes y verificables. La combinación
de triangulación, trazabilidad y coherencia curricular fortaleció la transparencia y la cre-
dibilidad de la sistematización, ofreciendo al lector una base sólida para comprender los
análisis que se presentan en el siguiente apartado.

En síntesis, los indicadores de evaluación aplicados reflejan una práctica docente
orientada al desarrollo de competencias integrales y a la evaluación rigurosa del apren-
dizaje. Los criterios de validez adoptados garantizaron que el proceso no solo midiera
logros, sino que generara información confiable para la mejora continua. En el siguiente
apartado se presentará el análisis preliminar de las evidencias, donde se interpretarán los
resultados obtenidos a partir de estos indicadores y se identificarán los patrones y apren-
dizajes emergentes.

92

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

2.5.6. Análisis preliminar de evidencias

El análisis de evidencias constituyó la etapa que permitió verificar de manera concreta
los logros alcanzados por los estudiantes y evaluar la eficacia de las estrategias didácticas
implementadas. Las evidencias recolectadas provinieron de múltiples fuentes: rúbricas
analíticas, talleres en clase, test formativos, coevaluaciones, observaciones docentes y
proyectos finales. La integración de estas fuentes permitió construir una visión comple-
ta del proceso formativo, basada en la triangulación de datos cualitativos y cuantitativos
(Yin, 2014). Este análisis inicial no busca ofrecer resultados estadísticos definitivos, sino
identificar tendencias y patrones emergentes que revelen el impacto pedagógico y curri-
cular de la experiencia.

2.5.7. Tipos de evidencias y organización del análisis

Las rúbricas de evaluación fueron el principal instrumento para la recopilación de
datos. Cada calificación se registró en el aula virtual Moodle, donde los criterios e indica-
dores de desempeño estaban previamente configurados conforme al sílabo institucional.
Desde esta plataforma, las calificaciones y comentarios se migraron automáticamente al
Sistema de Gestión Académica (SGA), que actúa como repositorio oficial de la evaluación
institucional. Esta trazabilidad garantizó transparencia, acceso permanente y coherencia
con el modelo educativo de la Universidad Estatal de Milagro (UNEMI).

Para el análisis preliminar, se exportaron los reportes de calificaciones desde Mood-
le a hojas de cálculo, lo que permitió organizar los resultados por actividad, estudiante
e indicador. En este entorno, se aplicaron operaciones básicas de estadística descriptiva
(promedios, porcentajes y comparaciones) para identificar patrones de logro y áreas de
mejora. Esta práctica sustituyó la elaboración de matrices manuales y aseguró un trata-
miento sistemático, automatizado y verificable de los datos.

Paralelamente, las observaciones docentes y las reflexiones derivadas de la retroali-
mentación se agruparon en categorías vinculadas a los indicadores de desempeño cogni-
tivo, procedimental y actitudinal (Tobón, 2013). Esta combinación de resultados cuanti-
tativos (provenientes de Moodle) y cualitativos (derivados de la observación en clase y de
los informes reflexivos) fortaleció la triangulación de evidencias, principio clave para la
validez del análisis (Flick, 2014).

93

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.5.8. Hallazgos preliminares

El análisis de las rúbricas de modelado UML evidenció que aproximadamente un 82%
de los estudiantes alcanzaron niveles altos o muy altos de desempeño en la representación
de diagramas de casos de uso y secuencia, mostrando dominio del análisis funcional y
comprensión del flujo de mensajes entre actores y objetos. En cambio, los diagramas de
clases presentaron mayores dificultades, particularmente en la identificación de relaciones
de herencia y composición, lo que sugiere la necesidad de reforzar la transición entre el
pensamiento lógico y la abstracción estructural.

Las coevaluaciones y autoevaluaciones reflejaron un alto grado de compromiso con
el trabajo colaborativo: el 90% de los estudiantes manifestó sentirse partícipe de las de-
cisiones del grupo, mientras que el 87% reconoció haber aprendido al analizar las solu-
ciones de sus compañeros. Estos resultados coinciden con lo observado en las sesiones
presenciales, donde la exposición de los proyectos fomentó el intercambio técnico y la
argumentación profesional.

En las observaciones docentes, se registraron mejoras notables en la comunicación
técnica: los estudiantes incorporaron terminología propia del análisis de software y mos-
traron capacidad para justificar sus decisiones de diseño. Asimismo, se observó una dis-
minución progresiva en los errores de modelado conforme avanzaba el semestre, lo que
indica una consolidación gradual del pensamiento lógico-computacional.

Por otro lado, las evidencias actitudinales demostraron que la responsabilidad ética
fue una competencia fortalecida a través de la práctica constante. El 100% de los grupos
entregó sus trabajos dentro de los plazos establecidos y respetó la autoría de los materiales
presentados. Además, los informes reflexivos mostraron una creciente conciencia sobre
el impacto social y técnico del desarrollo de software, en sintonía con el perfil profesional
definido por la carrera.

2.5.9. Interpretación de patrones emergentes

El análisis preliminar permitió identificar tres patrones transversales:

1. Progresión cognitiva sostenida, evidenciada en la mejora del razonamiento lógico y
la comprensión de procesos de negocio a lo largo del semestre.

2. Fortalecimiento del trabajo colaborativo, que se tradujo en una mayor cohesión de
los equipos, comunicación técnica fluida y responsabilidad compartida.

94

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3. Consolidación de la autonomía y la autorregulación, gracias al uso de autoevalua-
ciones y rúbricas previamente socializadas.

Estos hallazgos reflejan que la evaluación no solo midió resultados, sino que retroali-
mentó el aprendizaje y transformó las prácticas de los estudiantes, convirtiéndose en un
proceso formativo en sí mismo.

2.5.10. Síntesis y proyección

El análisis preliminar de las evidencias confirma que la experiencia contribuyó signi-
ficativamente al desarrollo de las competencias del perfil de egreso, especialmente en las
áreas de análisis, diseño y razonamiento computacional. Los resultados obtenidos mues-
tran una correspondencia directa entre las estrategias didácticas aplicadas, los indicadores
definidos y los productos generados por los estudiantes. Este ejercicio analítico sienta las
bases para la reflexión crítica del siguiente apartado, en el que se discutirán las implicacio-
nes pedagógicas, los aprendizajes institucionales y las posibles líneas de mejora derivadas
de la experiencia.

2.5.11. Reflexión sobre validez, sesgos y factibilidad

El proceso de evaluación desarrollado en esta experiencia se diseñó con criterios de
validez, transparencia y coherencia curricular, buscando garantizar que los resultados re-
flejaran de manera precisa el desempeño y aprendizaje de los estudiantes. Sin embargo,
como todo proceso educativo situado, estuvo sujeto a condiciones institucionales, tempo-
rales y humanas que es necesario reconocer para dar credibilidad y profundidad analítica
al capítulo. Esta reflexión crítica no pretende debilitar la evaluación, sino fortalecer su
legitimidad al evidenciar los esfuerzos, decisiones y ajustes que la hicieron posible.

2.5.12. Validez del proceso evaluativo

La validez del proceso se sustentó en la alineación constructiva entre los objetivos,
las actividades y la evaluación (Biggs & Tang, 2011). Cada instrumento —rúbricas, test,
talleres, coevaluaciones y observaciones— se diseñó directamente a partir de los resul-
tados de aprendizaje definidos en el sílabo de la asignatura, garantizando que se midiera
exactamente lo que se pretendía enseñar. Además, la utilización del Moodle y el Sistema

95

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

de Gestión Académica (SGA) permitió asegurar la trazabilidad digital de cada evidencia,
pues todas las calificaciones y retroalimentaciones quedaron registradas y disponibles tan-
to para los estudiantes como para los procesos de auditoría académica.

Otro aspecto clave de validez fue la triangulación metodológica (Flick, 2014), al com-
binar evidencias cuantitativas —resultados numéricos de rúbricas y test— con eviden-
cias cualitativas —observaciones docentes, reflexiones escritas y coevaluaciones—. Esta
triangulación permitió confirmar los logros desde diferentes perspectivas, evitando que
un solo instrumento definiera la interpretación final. Además, la consistencia interevalua-
dor se fortaleció mediante la revisión cruzada de rúbricas con otros docentes del área,
quienes analizaron los criterios y escalas antes de su aplicación, reduciendo así posibles
ambigüedades de interpretación (Yin, 2014).

El principio de transparencia fue igualmente determinante para garantizar la validez.
Los estudiantes conocieron las rúbricas antes de cada entrega y pudieron autoevaluarse
utilizando los mismos indicadores, lo que promovió la corresponsabilidad y la autorre-
gulación del aprendizaje (Tobón, 2013). En este sentido, la validez no solo se entendió
como una característica técnica del proceso, sino también como una dimensión ética y
pedagógica que asegura justicia y claridad en la evaluación.

2.5.13. Sesgos identificados y estrategias de mitigación

Durante el desarrollo de la experiencia, se identificaron algunos sesgos inherentes al
contexto académico, que fueron gestionados mediante acciones correctivas y reflexivas.
En primer lugar, existió un sesgo de autoevaluación, ya que algunos estudiantes tendieron
a sobrevalorar su desempeño o el de sus compañeros en las coevaluaciones. Para miti-
gar este efecto, se reforzó la aplicación de retroalimentaciones comparativas, donde la
docente contrastaba las percepciones de los estudiantes con la evidencia objetiva de las
rúbricas, lo que permitió ajustar calificaciones y fomentar mayor conciencia crítica sobre
la autoevaluación.

En segundo lugar, se reconoció un sesgo de selección de evidencias, ya que no todas
las producciones de los estudiantes reflejaban de igual manera su progreso real. Por ejem-
plo, algunos trabajos sobresalían por su presentación formal más que por su contenido
técnico. Para reducir este riesgo, se priorizó la evaluación de los procesos, observando la
evolución del estudiante a través de varias entregas en lugar de juzgar solo el producto

96

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

final. Este enfoque procesual permitió valorar el aprendizaje como una trayectoria y no
como un resultado puntual (Stiggins, 2005).

Otro posible sesgo estuvo vinculado a las condiciones institucionales y tecnológicas.
En ocasiones, la conectividad o la disponibilidad de recursos digitales afectó la realización
de test o la carga de evidencias en Moodle. Para resolverlo, se implementaron estrategias
de flexibilización evaluativa, ampliando los plazos de entrega o habilitando medios al-
ternativos de envío (correo institucional, presentaciones presenciales o envío directo al
SGA). Esta medida no solo garantizó la equidad, sino que reflejó la adaptabilidad del
proceso evaluativo ante contingencias técnicas.

Finalmente, se detectó un sesgo temporal relacionado con la carga de trabajo docente.
El seguimiento personalizado, la corrección de diagramas UML y la revisión de coevalua-
ciones demandaron una inversión considerable de tiempo fuera del aula. Para manejarlo,
se utilizó una estrategia de retroalimentación formativa escalonada, centrando los comen-
tarios en los indicadores esenciales y reservando las revisiones extensas para el proyecto
final. Esta práctica permitió mantener la calidad del acompañamiento sin comprometer la
factibilidad operativa del proceso.

2.5.14. Factibilidad y aprendizajes derivados

La factibilidad de la evaluación estuvo estrechamente ligada a las condiciones institu-
cionales y tecnológicas de la UNEMI. Contar con el ecosistema digital integrado (Mood-
le–SGA–Google Workspace) facilitó el seguimiento continuo, la retroalimentación y la
generación de reportes consolidados. Sin embargo, esta factibilidad también dependió de
la competencia digital docente y estudiantil, pues algunos estudiantes al inicio del semes-
tre requirieron apoyo para el manejo de las plataformas. Se ofrecieron sesiones breves de
orientación digital, lo que mejoró la participación y redujo la dependencia técnica.

En el plano operativo, la evaluación resultó viable gracias a la existencia de rúbricas
estandarizadas, que aceleraron el proceso de calificación y permitieron mantener criterios
homogéneos a lo largo del semestre. No obstante, se reconoce que la gestión simultánea
de múltiples instrumentos —rúbricas, test, talleres y observaciones— demandó una pla-
nificación rigurosa y un equilibrio entre la carga académica y administrativa. Este desafío
deja como aprendizaje la necesidad de automatizar ciertos procesos de retroalimentación
y continuar aprovechando las herramientas de análisis disponibles en Moodle y Google
Sheets para optimizar la gestión del tiempo docente.

97

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.5.15. Síntesis y proyección

En síntesis, la reflexión sobre validez, sesgos y factibilidad confirma que el proceso
evaluativo de esta experiencia fue sólido, ético y contextualizado, pero no exento de li-
mitaciones. La validez se aseguró mediante la triangulación, la coherencia curricular y
la transparencia, mientras que los sesgos fueron reconocidos y mitigados con acciones
correctivas. La factibilidad, por su parte, se sostuvo gracias a la infraestructura institu-
cional, aunque evidenció la necesidad de seguir fortaleciendo la formación digital y la
planificación temporal del docente.

Reconocer estos aspectos otorga credibilidad a la sistematización y ofrece aprendiza-
jes transferibles a otros escenarios educativos. La evaluación, entendida no como un acto
de control, sino como un proceso reflexivo y perfectible, se convierte en una herramienta
de mejora continua que alimenta la práctica docente y la calidad académica institucional.
El siguiente apartado integrará estos hallazgos para mostrar cómo la evaluación consolida
los resultados y proyecta líneas de innovación educativa sostenibles.

2.5.16. Integración: Síntesis de la evaluación

El proceso de evaluación desarrollado en esta experiencia no fue un trámite adminis-
trativo ni un requisito técnico, sino un componente formativo y verificable que confirmó
la pertinencia curricular, la coherencia metodológica y la validez académica de la innova-
ción docente implementada en la asignatura relacionada al Análisis y Diseño de Sistemas
de Software. A lo largo del módulo se evidenció que la evaluación, entendida desde un en-
foque de competencias, constituyó un eje articulador que permitió medir los aprendizajes
alcanzados, retroalimentar los procesos y consolidar los resultados de manera transparen-
te y fundamentada.

La integración de los instrumentos, indicadores y evidencias mostró una evaluación
equilibrada entre dimensiones técnicas, cognitivas y actitudinales, en consonancia con el
Modelo Educativo de la Universidad Estatal de Milagro (Universidad Estatal de Milagro
(UNEMI), 2021). Las rúbricas analíticas sirvieron como principal herramienta de valo-
ración, garantizando criterios claros y niveles de logro observables; los test formativos y
cuestionarios permitieron monitorear el progreso conceptual de los estudiantes; las obser-
vaciones docentes y coevaluaciones aportaron información cualitativa sobre el desempeño
colaborativo y la comunicación técnica; mientras que las entregas prácticas en Moodle y
proyectos finales ofrecieron evidencias concretas del pensamiento lógico-computacional

98

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

y de la capacidad de diseñar soluciones tecnológicas coherentes. Esta diversidad de ins-
trumentos dio soporte a un proceso de evaluación integral y triangulado, coherente con la
estructura curricular de la carrera de Ingeniería de Software.

Los indicadores de evaluación —definidos a partir de las competencias del perfil de
egreso— permitieron medir con precisión el grado de desarrollo del pensamiento analíti-
co, la capacidad de modelar sistemas, la comunicación técnica y la responsabilidad pro-
fesional. La sistematización de las calificaciones en Moodle, posteriormente migradas al
Sistema de Gestión Académica (SGA), facilitó la generación de reportes y análisis cuanti-
tativos que mostraron tendencias claras de avance en el desempeño. Por ejemplo, más del
80% de los estudiantes alcanzó niveles altos de logro en los diagramas de comportamiento
(casos de uso, secuencia y actividades), mientras que los diagramas estructurales (clases
y objetos) reflejaron un progreso más gradual, evidenciando la necesidad de reforzar la
comprensión entre análisis funcional y diseño estructural.

El análisis de las evidencias cualitativas complementó estos resultados numéricos,
mostrando mejoras sostenidas en la argumentación técnica y en la apropiación del lengua-
je disciplinar. Los registros de observación indicaron que los estudiantes no solo apren-
dieron a modelar, sino también a reflexionar sobre la lógica de los procesos, a justificar
decisiones de diseño y a trabajar de manera colaborativa, fortaleciendo así competencias
transversales como el pensamiento crítico, la comunicación y la autonomía. La evaluación
se consolidó así como un proceso reflexivo y formativo, que acompañó al aprendizaje y
no como un juicio final sobre los resultados.

En la revisión crítica sobre validez, sesgos y factibilidad se confirmó que el proceso
evaluativo fue consistente, transparente y contextualizado, aunque no exento de desafíos.
Los principales sesgos identificados —autoestima evaluativa en coevaluaciones, condi-
ciones tecnológicas desiguales y limitaciones temporales del docente— fueron mitigados
mediante estrategias de ajuste y flexibilidad, como la triangulación de fuentes, la retroali-
mentación comparativa y el uso de herramientas digitales alternativas. Estos aprendizajes
evidencian que la validez en la evaluación no depende de la perfección de los instrumen-
tos, sino de la capacidad docente para interpretar y ajustar con criterio pedagógico los
resultados obtenidos (Flick, 2014a); (Stiggins, 2005).

En síntesis, la evaluación permitió verificar el logro efectivo de las competencias cu-
rriculares y confirmar la relevancia formativa de la experiencia. Se consolidaron espe-
cialmente las competencias de pensamiento lógico-computacional, análisis y diseño de
sistemas de software, comunicación técnica y responsabilidad ética. Estas competencias

99

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

fueron observadas y validadas a través de múltiples evidencias, lo que otorga confiabilidad
a los resultados y legitimidad académica al capítulo. Asimismo, la experiencia evaluativa
aportó aprendizajes institucionales sobre cómo utilizar el ecosistema digital de la UNEMI
—Moodle, SGA y Google Workspace— como soporte integral de la gestión académica y
de la mejora continua del proceso docente.

Este cierre reafirma que la evaluación no es el final del proceso, sino el puente hacia la
reflexión crítica y la transferencia, que constituyen el foco del siguiente módulo. Evaluar
significó comprender, evidenciar y aprender del propio proceso de enseñanza, demos-
trando que la sistematización de una práctica educativa innovadora solo adquiere sentido
cuando permite retroalimentar la docencia, fortalecer el currículo y generar conocimiento
útil para otros contextos académicos.

2.6. Del problema a la solución: estrategias para enseñar
análisis y diseño de software en primer nivel

2.6.1. Transición hacia la reflexión final

Con la evaluación de la experiencia se alcanzó una comprensión integral de los logros,
limitaciones y evidencias que sustentan el impacto formativo del proceso. Sin embargo,
evaluar no agota el sentido de la sistematización; lo verdaderamente transformador ocu-
rre cuando el docente reflexiona críticamente sobre lo vivido, identifica los aprendizajes
construidos y reconoce el valor de compartir su experiencia con otros. Este momento
marca el paso de la comprobación al entendimiento, de la evidencia empírica a la inter-
pretación pedagógica, y abre el espacio para pensar en la transferencia y sostenibilidad de
la innovación educativa implementada.

Esta transición invita a mirar la experiencia no solo como un conjunto de estrategias
exitosas, sino como un proceso de aprendizaje profesional que transformó la práctica
docente, la interacción con los estudiantes y la comprensión del currículo. Reflexionar
críticamente implica preguntarse por el sentido de cada decisión, por las condiciones que
hicieron posible el logro de las competencias y por las nuevas preguntas que el proceso
deja abiertas. Como afirma Schön (1992), la docencia se fortalece cuando el profesional
se convierte en un “practicante reflexivo”, capaz de analizar su propia acción y producir
conocimiento desde ella.

100

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Más allá de los indicadores y resultados medibles, este cierre se orienta a comprender
qué significó la experiencia en términos humanos, pedagógicos e institucionales, y có-
mo puede proyectarse hacia otros espacios de la universidad o incluso de la comunidad
educativa en general. La sistematización alcanza aquí su mayor valor: el de convertirse
en un conocimiento compartible y transferible que aporta a la mejora de la enseñanza en
Ingeniería de Software y a la innovación docente en la UNEMI.

En las secciones siguientes se presentarán, primero, los aprendizajes docentes e ins-
titucionales que surgieron a partir de la experiencia; luego, las posibilidades de transfe-
rencia y sostenibilidad; y finalmente, una reflexión de cierre que integrará el sentido, la
validez y el legado de todo el proceso desarrollado.

2.6.2. Reflexión crítica sobre la experiencia

La sistematización de esta experiencia docente permitió no solo evidenciar los re-
sultados alcanzados por los estudiantes, sino también comprender el valor pedagógico,
institucional y humano que se generó a lo largo del proceso. Reflexionar críticamente so-
bre la práctica significó mirar más allá de los datos y los indicadores, para entender cómo
las decisiones metodológicas, las estrategias empleadas y las condiciones institucionales
contribuyeron a transformar la enseñanza en el campo de la Ingeniería de Software. Tal
como plantea Schön (1992), la reflexión sobre la acción convierte la práctica en fuente de
conocimiento profesional, permitiendo al docente analizar las tensiones, los aprendizajes
y los cambios que emergen en su ejercicio formativo.

2.6.3. Aportes de la experiencia

Uno de los aportes más relevantes de la experiencia fue la integración efectiva de la
teoría y la práctica a través de un enfoque basado en problemas reales. Los estudiantes
no se limitaron a reproducir modelos teóricos, sino que diseñaron soluciones tecnológi-
cas contextualizadas, abordando casos inspirados en sistemas académicos, hospitalarios
o logísticos. Este enfoque permitió desarrollar competencias clave, como el pensamiento
lógico-computacional, la capacidad de análisis de procesos y el diseño estructurado de
sistemas, que se reflejaron en los diagramas UML, la definición de requerimientos y la
argumentación técnica de sus proyectos. Además, el uso de herramientas digitales como
draw.io, Visual Paradigm, Moodle y Wayground fortaleció la alfabetización tecnológica
y fomentó la autonomía en el aprendizaje.

101

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

En el plano pedagógico, la experiencia consolidó una didáctica centrada en el apren-
dizaje activo y la evaluación formativa, sustentada en el uso de rúbricas, autoevaluaciones
y retroalimentaciones continuas. Esta metodología transformó la dinámica del aula, pro-
moviendo la participación y la reflexión crítica de los estudiantes sobre su propio proceso.
En términos institucionales, el trabajo aportó al fortalecimiento de la cultura evaluativa de
la UNEMI, demostrando que el ecosistema digital (SGA–Moodle–Google Workspace)
puede ser un soporte eficaz para procesos de enseñanza-aprendizaje transparentes y de
alta trazabilidad académica.

2.6.4. Tensiones y resistencias encontradas

Como toda innovación educativa, la experiencia enfrentó tensiones estructurales y
operativas. Una de las principales fue el desafío de equilibrar el tiempo docente con la
complejidad de la evaluación continua. La aplicación de múltiples instrumentos (rúbri-
cas, observaciones, test y coevaluaciones) demandó una carga significativa de seguimien-
to y retroalimentación. Aunque esto enriqueció la evaluación, también puso en evidencia
la necesidad de automatizar ciertos procesos de revisión mediante herramientas digita-
les que reduzcan el esfuerzo administrativo sin sacrificar la calidad del acompañamiento
pedagógico.

Otra tensión se relacionó con las diferencias en los niveles de competencia digital de
los estudiantes, especialmente en las primeras semanas. Algunos mostraron inseguridad
frente al uso de plataformas o herramientas de modelado. Esta brecha se abordó mediante
tutorías rápidas y explicaciones en clase, lo que permitió nivelar gradualmente el grupo,
pero también evidenció la importancia de mantener una política institucional de alfabeti-
zación digital continua.

A nivel metodológico, surgieron resistencias iniciales frente al enfoque de aprendi-
zaje colaborativo y basado en problemas. Algunos estudiantes manifestaron preferencia
por métodos tradicionales más directivos, acostumbrados a una docencia centrada en la
exposición teórica. Sin embargo, con el avance del semestre y la demostración de los re-
sultados, esta resistencia se transformó en una valoración positiva del trabajo cooperativo
y de la aplicación práctica de los conceptos. Como sugiere Fullan (2007), las resisten-
cias no son un obstáculo sino un indicador del cambio, ya que toda innovación educativa
implica una reconfiguración de roles, rutinas y expectativas.

102

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Finalmente, una tensión persistente fue la disparidad entre la evaluación formativa y
la evaluación institucional sumativa, ya que los tiempos del semestre y las normativas
de cierre no siempre se ajustan al ritmo reflexivo del aprendizaje por competencias. Esto
llevó a realizar ajustes en la ponderación de las actividades y a fortalecer la comunicación
con la coordinación académica para asegurar que los resultados formativos tuvieran el
mismo reconocimiento que las evaluaciones finales.

2.6.5. Aprendizajes personales, colectivos e institucionales

En el plano personal, este proceso reafirmó la convicción de que enseñar ingeniería
de software implica acompañar procesos de pensamiento, no solo enseñar herramientas
o diagramas. La docencia se transformó en un espacio de reflexión continua, donde cada
clase fue una oportunidad para reinterpretar los métodos, adaptar los recursos y repensar
las formas de guiar el aprendizaje. La experiencia confirmó que el aprendizaje significa-
tivo ocurre cuando el estudiante comprende el problema antes de buscar la solución, y
cuando el docente actúa como mediador entre la lógica técnica y la comprensión pedagó-
gica del proceso.

Colectivamente, los aprendizajes fueron múltiples. Los estudiantes desarrollaron ma-
yor autonomía, capacidad de argumentación y trabajo colaborativo, fortaleciendo sus ha-
bilidades para el análisis de requerimientos, la comunicación técnica y la toma de decisio-
nes compartidas. También se evidenció un fortalecimiento del sentido ético profesional,
expresado en la responsabilidad y originalidad de los proyectos entregados. La práctica
del trabajo en grupos heterogéneos, la coevaluación y la exposición oral permitió que cada
integrante asumiera un rol activo en la construcción del conocimiento y en la validación
de los resultados.

A nivel institucional, la experiencia aportó aprendizajes significativos sobre la inte-
gración de los sistemas tecnológicos en los procesos académicos. La gestión coordinada
entre Moodle, el SGA y los recursos de Google Workspace mostró que la digitalización
educativa puede favorecer la transparencia, la eficiencia y la trazabilidad de los procesos
evaluativos. Asimismo, se fortaleció la cultura de trabajo docente colaborativo: compar-
tir rúbricas, revisar criterios y ajustar prácticas se convirtió en un ejercicio colectivo de
mejora. Como indica Bolívar (2012), la innovación pedagógica solo puede consolidarse
cuando se comparte y se discute, porque “la cultura institucional del cambio se construye
en diálogo con las prácticas de los otros”.

103

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.6.6. Síntesis reflexiva y proyección

En síntesis, la experiencia no solo permitió alcanzar los objetivos curriculares pre-
vistos, sino también redefinir la práctica docente desde una perspectiva reflexiva, ética y
contextualizada. Los logros alcanzados —mejor comprensión del análisis de sistemas, de-
sarrollo del pensamiento lógico-computacional, fortalecimiento del trabajo colaborativo
y dominio del modelado UML— se acompañaron de aprendizajes humanos igualmente
valiosos: la empatía, la paciencia, la adaptabilidad y la conciencia del impacto social del
quehacer tecnológico.

Las tensiones experimentadas se transformaron en fuentes de aprendizaje profesio-
nal, recordando que la innovación educativa es un proceso en construcción permanente.
Esta reflexión deja en claro que evaluar, reflexionar y transferir son momentos de un mis-
mo ciclo formativo, y que su continuidad depende de mantener abierta la posibilidad de
mejorar.

La sistematización, en su conjunto, evidenció que la práctica docente puede ser una
fuente legítima de producción de conocimiento educativo, capaz de dialogar con la teoría
y aportar a la mejora de la enseñanza en contextos reales. Este ejercicio abre la puerta a
la transferencia: a compartir, replicar y adaptar la experiencia en otros espacios de forma-
ción en ingeniería y en carreras afines, fortaleciendo el compromiso institucional con una
educación superior de calidad e innovación sostenida.

2.6.7. Integración final: Reflexión y transferencia

La sistematización de esta experiencia ha sido, ante todo, un proceso de transforma-
ción profesional y académica. A lo largo de los seis módulos, se construyó una compren-
sión integral del ciclo docente: desde la fundamentación conceptual y curricular, pasando
por la planificación estratégica y la evaluación, hasta llegar a esta etapa final de refle-
xión crítica y proyección. Este recorrido permitió comprender que toda práctica educativa
significativa trasciende su espacio inmediato cuando logra generar conocimiento compar-
tible, capaz de inspirar nuevas formas de enseñar, aprender y evaluar.

En el ámbito de la docencia universitaria, la experiencia desarrollada de las asignatu-
ras relacionadas al Análisis y Diseño de Sistemas de Software demostró que la enseñanza
en ingeniería puede ser profundamente pedagógica y humana, sin perder su rigor técni-
co. Integrar el análisis de problemas reales, la ingeniería de requerimientos, el modelado
UML y la argumentación técnica en un solo marco metodológico permitió a los estudian-

104

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

tes aprender haciendo, pero, sobre todo, pensando críticamente. Este proceso transformó
el aula en un laboratorio de innovación, donde los conceptos se aplicaron a contextos
reales, las ideas se debatieron colectivamente y las soluciones se construyeron de forma
colaborativa.

En términos institucionales, la experiencia consolidó una cultura de evaluación for-
mativa y transparencia académica, apoyada en el ecosistema tecnológico de la UNEMI.
El uso articulado del Sistema de Gestión Académica (SGA) y Moodle permitió garantizar
la trazabilidad, la equidad y la confiabilidad de los procesos evaluativos. Este logro no
solo fortaleció la gestión docente, sino que también demostró que la digitalización edu-
cativa puede ser una aliada de la innovación didáctica, siempre que esté acompañada de
reflexión pedagógica y acompañamiento continuo.

2.6.8. Aportes y aprendizajes globales

El aprendizaje más profundo que deja este proceso es la conciencia del valor formativo
de la reflexión. Evaluar y sistematizar no fueron solo etapas del proyecto, sino oportuni-
dades para repensar la enseñanza como un proceso de investigación y mejora continua.
En el plano personal, el ejercicio confirmó que la innovación educativa no consiste úni-
camente en incorporar nuevas herramientas o metodologías, sino en revisar críticamente
las propias prácticas y reconocer en ellas oportunidades de transformación. Como señala
Jara (2018a), sistematizar es “volver a mirar” lo vivido, descubrir el sentido de la práctica
y compartirlo con otros para generar conocimiento pedagógico colectivo.

A nivel colectivo, el proceso reafirmó que el trabajo colaborativo entre estudiantes, do-
centes y la institución produce aprendizajes sostenibles. Los estudiantes fortalecieron su
capacidad de análisis, argumentación y comunicación técnica, mientras que la comunidad
docente de la carrera avanzó hacia un enfoque más integral de la evaluación por compe-
tencias. Asimismo, se consolidó una red de aprendizaje compartido dentro de la Facultad
de Ingeniería, donde las experiencias y rúbricas creadas para esta práctica comenzaron
a ser adaptadas por otros docentes. Esta transferencia horizontal constituye uno de los
mayores aportes del proceso: convertir la innovación individual en práctica institucional
compartida.

105

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

2.6.9. Tensiones, desafíos y aprendizajes emergentes

Reflexionar también implicó reconocer las tensiones estructurales y humanas que
acompañan toda innovación. Entre ellas, la gestión del tiempo, la carga administrativa y
la diversidad de ritmos de aprendizaje de los estudiantes. Sin embargo, estas dificultades
se transformaron en aprendizajes sobre la importancia de la planificación, la flexibilidad
pedagógica y la empatía. Como sostiene Fullan (2007), el cambio educativo no ocurre sin
resistencia, y su sostenibilidad depende de la capacidad institucional para acompañar los
procesos y no solo evaluarlos.

Otro aprendizaje clave fue comprender que la docencia reflexiva requiere espacios de
formación permanente. La implementación de estrategias como el Aprendizaje Basado en
Problemas (ABP) y la evaluación por competencias evidenció la necesidad de fortalecer el
desarrollo profesional docente y la integración de comunidades de práctica que permitan
compartir estrategias, materiales y resultados. Esta experiencia demostró que la innova-
ción no es un acto aislado, sino una construcción colectiva que debe institucionalizarse
mediante políticas de acompañamiento, capacitación y reconocimiento académico.

2.6.10. Proyección y transferencia

El principal aporte de esta experiencia radica en su potencial de transferencia. Los re-
sultados alcanzados y las estrategias aplicadas pueden ser replicados o adaptados en otras
asignaturas de la carrera de Ingeniería de Software y en programas afines, especialmente
aquellos que integran componentes de diseño, análisis de sistemas o trabajo colaborativo.
Las metodologías utilizadas —aprendizaje basado en problemas, modelado incremental,
evaluación formativa con rúbricas y reflexión metacognitiva— pueden constituir la base
de un modelo pedagógico replicable, adaptable a diferentes contextos curriculares.

Asimismo, la experiencia ofrece insumos para el fortalecimiento de la formación do-
cente en la UNEMI. Los aprendizajes sobre planificación, acompañamiento y evaluación
formativa pueden incorporarse en talleres de actualización pedagógica o en la formación
de nuevos docentes, promoviendo una cultura de docencia reflexiva y basada en eviden-
cias. Esta proyección es coherente con los lineamientos del Modelo Educativo de la Uni-
versidad Estatal de Milagro (UNEMI) (2021), que concibe la enseñanza como un proceso
integrador entre investigación, práctica y reflexión.

En el ámbito más amplio de la educación en ingeniería, esta experiencia muestra que
la enseñanza técnica puede dialogar con la pedagogía crítica. Modelar un sistema in-

106

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

formático no es solo un ejercicio lógico, sino también una práctica social que implica
comprender necesidades, diseñar soluciones y reflexionar sobre su impacto. Transferir
este enfoque significa enseñar a los futuros ingenieros no solo a codificar sistemas, sino a
pensar éticamente y diseñar con propósito.

2.6.11. Cierre del capítulo

Culminar este proceso de sistematización representa más que el cierre de un ciclo;
simboliza la consolidación de una mirada docente basada en la reflexión, la evidencia y
la mejora continua. Esta experiencia permitió confirmar competencias curriculares, desa-
rrollar innovación pedagógica y fortalecer la identidad profesional docente, reafirmando
que la educación universitaria debe sostenerse en la articulación entre teoría, práctica y
crítica.

El camino recorrido deja aprendizajes profundos: la importancia de planificar con sen-
tido, evaluar con transparencia, retroalimentar con empatía y reflexionar con honestidad.
Cada módulo fue un paso hacia la comprensión de que enseñar también es investigar y
que la práctica docente, cuando se documenta y se analiza, se convierte en un acto de
construcción de conocimiento.

El capítulo se cierra con la certeza de que esta experiencia no termina aquí: puede
y debe ser compartida, adaptada y replicada en nuevos escenarios educativos. Su valor
no radica solo en los logros alcanzados, sino en haber demostrado que la innovación
docente es posible cuando se une la rigurosidad técnica de la ingeniería con la sensibilidad
pedagógica de la educación.

107

Capítulo 2. Del problema a la solución: estrategias para enseñar análisis y diseño de
software en primer nivel

Bibliografía

ABET. (2020). Criteria for Accrediting Computing Programs. Accreditation Board for
Engineering; Technology.

ACM & IEEE. (2020). Curriculum Guidelines for Undergraduate Programs in Software

Engineering (SE2020). ACM/IEEE Joint Task Force.
Barnett, R. (2001). Los límites de la competencia: El conocimiento, la educación superior

y la sociedad. Gedisa.
Barrows, H. (1986). A taxonomy of problem-based learning methods. Medical Education,

20(6), 481-486.
Biggs, J., & Tang, C. (2011). Teaching for Quality Learning at University (4.a ed.).

McGraw-Hill Education.
Bonwell, C. C., & Eison, J. A. (1991). Active Learning: Creating Excitement in the Class-

room. George Washington University.
Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Unified Modeling Language User

Guide (2.a ed.). Addison-Wesley.
Carlino, P. (2005). Escribir, leer y aprender en la universidad: Una introducción a la

alfabetización académica. Fondo de Cultura Económica.
Elliott, J. (1993). El cambio educativo desde la investigación-acción. Morata.
Flick, U. (2014a). Introducción a la investigación cualitativa (5.a ed.). Morata.
Flick, U. (2014b). La gestión de la calidad en investigación cualitativa. Ediciones Morata.
Fullan, M. (2007). The New Meaning of Educational Change (4.a ed.). Teachers College

Press.
Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State

of the Field. Educational Researcher, 42(1), 38-43. https : / / doi . org / 10 . 3102 /
0013189x12463051

Hyland, K. (2009). Academic Discourse: English in a Global Context. Continuum.
Jara, O. (2018a). La sistematización de experiencias: Aprendizajes y desafíos para la

educación popular. Alforja.
Jara, O. (2018b). La sistematización de experiencias: Práctica y teoría para otros mundos

posibles. Alforja.
Johnson, D. W., & Johnson, R. T. (1999). Learning Together and Alone: Cooperative,

Competitive, and Individualistic Learning. Allyn & Bacon.

108

https://doi.org/10.3102/0013189x12463051
https://doi.org/10.3102/0013189x12463051

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and

Development. Prentice Hall.
Morin, E. (2001). Los siete saberes necesarios para la educación del futuro. UNESCO.
Pressman, R. S., & Maxim, B. R. (2020). Software Engineering: A Practitioner’s Ap-

proach (9.a ed.). McGraw-Hill Education.
Prince, M. (2004). Does Active Learning Work? A Review of the Research. Journal of

Engineering Education, 93(3), 223-231. https://doi.org/10.1002/j.2168-9830.
2004.tb00809.x

Schön, D. (1992). La formación de profesionales reflexivos. Paidós.
Siemens, G. (2005). Connectivism: A Learning Theory for the Digital Age. International

Journal of Instructional Technology and Distance Learning, 2(1).
Stake, R. (1995). The Art of Case Study Research. SAGE Publications.
Stenhouse, L. (1984). Investigación y desarrollo del currículo. Morata.
Stenhouse, L. (1987). La investigación como base de la enseñanza. Morata.
Stiggins, R. (2005). Student-Involved Assessment for Learning (4.a ed.). Merrill/Prentice

Hall.
Tobón, S. (2013). Formación integral y competencias: Pensamiento complejo, currículo,

didáctica y evaluación. ECOE Ediciones.
Universidad Estatal de Milagro (UNEMI). (2021). Modelo Educativo de la Universidad

Estatal de Milagro.
Villa, A., & Poblete, M. (2007). Aprendizaje basado en competencias: Una propuesta

para la evaluación de las competencias genéricas. Ediciones Mensajero.
Wenger, E. (1998). Communities of Practice: Learning, Meaning, and Identity. Cambrid-

ge University Press.
Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-36.

https://doi.org/10.1145/1118178.1118215
Yin, R. K. (2014). Case Study Research: Design and Methods (5.a ed.). SAGE Publica-

tions.
Zabalza, M. A. (2003a). Competencias docentes del profesorado universitario: Calidad y

desarrollo profesional. Narcea Ediciones.
Zabalza, M. A. (2003b). Diseño y desarrollo curricular. Narcea Ediciones.

109

https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.1145/1118178.1118215

3
La enseñanza del código limpio:

estrategias para formar desarrolladores
con estándares profesionales

Jessica Janina Cabezas Quinto 3

.

El Capítulo 3 concibe la enseñanza universitaria como construcción

colectiva de conocimiento, donde la práctica docente es fuente de re-

flexión y transformación institucional. Con base en experiencias del

programa RISEI, analiza tensiones entre teoría y práctica y los retos

de integrar investigación educativa en la labor cotidiana. Destaca el

acompañamiento pedagógico, la colaboración interdisciplinaria y las

comunidades de aprendizaje para impulsar innovación didáctica. Exa-

mina situaciones reales de aula, mediación docente y evaluación forma-

tiva que promueven participación activa y mejores resultados. Resalta

la sistematización como herramienta para reconstruir sentido y trans-

ferir aprendizajes. Propone una visión crítica basada en investigación-

acción, ética y mejora continua.

3Universidad Estatal de Milagro, jcabezasq2@unemi.edu.ec.

111

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Índice
3.1. Buenas prácticas de programación y refactorización 114

3.1.1. Contextualización de la experiencia pedagógica 114

3.1.2. Identificación del problema pedagógico: hacia las buenas prác-

ticas de programación y refactorización 115

3.1.3. El rol del docente como revisor de código pedagógico 116

3.1.4. Cierre integrador . 117

3.2. Del código al pensamiento: enseñanza del código limpio en la for-
mación inicial de ingenieros en software 117

3.2.1. Bisagra Textual . 118

3.2.2. Identificación de conceptos estructurantes 118

3.2.3. Formulación de dimensiones 119

3.2.4. Construcción de indicadores 120

3.2.5. Dimensión Cognitivo–Conceptual: Comprensión de la lógica y

la abstracción algorítmica . 121

3.2.6. Dimensión Técnico–Procedimental: Aplicación de buenas prác-

ticas y calidad del código . 122

3.2.7. Fuentes y métodos de verificación 123

3.2.8. Modelar y abstraer procesos lógicos 124

3.2.9. Comprensión de la secuencia algorítmica 124

3.2.10. Aprendizaje significativo y contextualizado 125

3.2.11. Fuentes complementarias y métodos asociados 125

3.2.12. Síntesis integradora . 125

3.2.13. Justificación teórica del conjunto 126

3.2.14. Justificación de los indicadores 127

3.2.15. Justificación de las fuentes y métodos de verificación 127

3.2.16. Síntesis final del conjunto . 128

3.2.17. Recomendaciones para profundizar 129

112

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.3. Aprender gestionando: experiencias innovadoras en proyectos de
software universitarios . 129

3.3.1. Transición al vínculo curricular 129

3.3.2. Identificación de competencias del perfil 130

3.3.3. Resultados de aprendizaje vinculados 133

3.3.4. Actividades y evidencias . 135

3.3.5. Reflexión sobre la alineación curricular 137

3.4. Transición hacia la operacionalización estratégica 139

3.4.1. Recomendaciones para profundizar 139

3.4.2. Clase 1: Estrategias núcleo en acción 140

3.4.3. Clase 2: Estrategias de soporte aplicadas 143

3.4.4. Clase 3: Estrategias de contingencia desplegadas 146

3.4.5. Clase 4: Arquitectura del ecosistema estratégico 149

3.4.6. Síntesis final: El ecosistema como sistema vivo 151

3.5. Transición hacia la evaluación . 151

3.5.1. Recomendaciones para profundizar 152

3.5.2. Clase 1: Instrumentos de evaluación aplicados 152

3.5.3. Recomendaciones para profundizar 155

3.5.4. Clase 2: Indicadores de evaluación y criterios de validez 155

3.5.5. Clase 3: Análisis preliminar de evidencias 158

3.5.6. Clase 4: Reflexión sobre validez, sesgos y factibilidad 160

3.6. Transición hacia la reflexión final . 163

3.6.1. Clase 1: Reflexión crítica sobre la experiencia 164

3.6.2. Recomendaciones para profundizar 166

113

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

3.1. Buenas prácticas de programación y refactorización

3.1.1. Contextualización de la experiencia pedagógica

En continuidad con los capítulos anteriores, que abordaron la transición conceptual
hacia una comprensión integral de la Ingeniería de Software y la importancia del análisis y
diseño como ejes de formación, este capítulo se enfoca en una etapa posterior del proceso
formativo: la enseñanza del código limpio y las buenas prácticas de programación como
fundamentos de la calidad profesional.

La experiencia se desarrolló en la Universidad Estatal de Milagro (UNEMI), en la
asignatura Algoritmos y Lógica de Programación, correspondiente al primer nivel de la
carrera de Ingeniería en Software, durante el período académico 2024–2025. El escenario
pertenece a la Facultad de Ciencias de la Ingeniería y reúne a estudiantes que, tras su
acercamiento inicial a los fundamentos de la disciplina, comienzan a enfrentarse a los
desafíos de escribir código estructurado, legible y sostenible.

El grupo estuvo conformado mayoritariamente por jóvenes de entre 17 y 20 años,
con predominio del género masculino (65%) y un 35% de participación femenina, lo
que refleja avances graduales en la inclusión de mujeres en las carreras tecnológicas. La
diversidad territorial fue también un rasgo característico: algunos estudiantes residen en
Milagro, mientras que otros provienen de cantones cercanos como Naranjito, Yaguachi
y El Triunfo, e incluso de zonas rurales que implican largos desplazamientos. Estas con-
diciones generan realidades diferenciadas de aprendizaje, particularmente en el acceso a
equipos y conectividad, que condicionan el tiempo y la autonomía para el trabajo indivi-
dual.

Durante las primeras semanas, se observaron dificultades recurrentes. Algunos estu-
diantes confundían símbolos en los diagramas de flujo (colocando operaciones dentro de
rombos, por ejemplo), mientras otros presentaban errores en la estructura de los algorit-
mos, demostrando una comprensión memorística sin interiorización lógica. La falta de
experiencia previa en programación, unida a las limitaciones de infraestructura, eviden-
ció la necesidad de metodologías que vinculen la enseñanza técnica con el desarrollo de
competencias cognitivas y metacognitivas. Esta reflexión dio origen al eje de la experien-
cia: enseñar a escribir código de calidad desde las primeras etapas de la formación
universitaria.

114

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.1.2. Identificación del problema pedagógico: hacia las buenas prác-
ticas de programación y refactorización

El problema central identificado fue la ausencia de comprensión de los principios
fundamentales de las buenas prácticas de programación, manifestada en la incapaci-
dad de los estudiantes para aplicar conceptos de claridad, modularidad y estructura lógica
al construir algoritmos. Esta deficiencia se expresa en tres dimensiones críticas:

1. Legibilidad: los estudiantes utilizan valores literales (“números mágicos”) en lugar
de variables con nombres semánticos.

2. Estructura modular: presentan dificultades para descomponer problemas complejos
en subproblemas manejables.

3. Mantenibilidad: producen pseudocódigos sin documentación ni lógica secuencial
coherente, imposibles de verificar o depurar.

Según Hermans (2021), la comprensibilidad del código depende de dimensiones cog-
nitivas como la viscosidad (resistencia al cambio), la difusividad (dispersión de la infor-
mación relacionada) y la visibilidad (facilidad para localizar componentes), características
que suelen verse vulneradas cuando los estudiantes carecen de guía explícita sobre princi-
pios de calidad. El problema, por tanto, trasciende lo técnico: revela un déficit pedagógico
en la formación inicial, que permite la producción de “código sucio” desde las primeras
experiencias de aprendizaje.

Las consecuencias de esta carencia se reflejan a corto, mediano y largo plazo. A corto
plazo, se genera una “deuda técnica cognitiva”, en la que cada error refuerza hábitos
inadecuados que luego deben desaprenderse (Sweller, Ayres & Kalyuga, 2019).

A mediano plazo, los estudiantes avanzan sin dominar principios como DRY (Don’t
Repeat Yourself) o KISS (Keep It Simple, Stupid), dificultando el trabajo en equipo y
la reutilización del código.

A largo plazo, se gradúan profesionales con escasa capacidad de integrarse en proyec-
tos colaborativos, donde la legibilidad, modularidad y documentación son esenciales.

Las evidencias empíricas recogidas en aula confirman estas dificultades: un estudiante
escribió resultado = 5 * 3 en lugar de area_rectangulo = base * altura, omi-
tiendo la semántica del nombre de la variable; otros ubicaron operaciones dentro de rom-
bos en diagramas de flujo, confundiendo los símbolos de decisión y proceso. Además,

115

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

varios intentaron resolver todo el problema en una sola secuencia, sin aplicar descompo-
sición modular, generando sobrecarga cognitiva.

Sentance et al. (2019b) destacan que la metodología PRIMM (Predict – Run – Inves-

tigate – Modify – Make) resulta efectiva precisamente porque fomenta la descomposición
progresiva y la refactorización incremental, principios ausentes en los enfoques tradicio-
nales que exigen soluciones completas desde el primer intento.

En este sentido, el problema detectado exige un replanteamiento pedagógico profun-
do, que incorpore la enseñanza explícita de estándares de calidad del código como parte
del proceso formativo.

3.1.3. El rol del docente como revisor de código pedagógico

Superar estas deficiencias requiere un cambio de enfoque en la enseñanza de la pro-
gramación. El docente debe asumir el rol de “revisor de código pedagógico”, capaz de
identificar violaciones a los estándares de calidad y guiar procesos de mejora iterativa. Sin
embargo, la gran cantidad de estudiantes y el tiempo limitado dificultan ofrecer retroali-
mentación personalizada. Frente a ello, Kafai et al. (2019) proponen el uso de revisiones
de código entre pares (peer code review), que distribuyen la carga de evaluación y fa-
vorecen la comprensión mutua: quien revisa consolida su propio conocimiento, mientras
quien recibe la revisión obtiene múltiples perspectivas sobre la legibilidad y estructura de
su código.

El rol institucional también es clave: se requiere infraestructura que promueva las
buenas prácticas, como entornos de desarrollo con análisis estático, control de versiones
y evaluaciones automáticas que valoren tanto la corrección funcional como la calidad es-
tructural del código. De igual manera, los diseñadores curriculares deben integrar estos
principios desde los primeros niveles de la carrera, fomentando hábitos de calidad profe-
sional desde el inicio.

Hermans (2021) sugiere estrategias concretas para enseñar buenas prácticas:

Presentar ejemplos contrastantes: comparar código correcto con código funcio-
nal pero deficiente.

Implementar sesiones de refactorización guiada: donde el docente verbaliza el
proceso de mejora iterativa.

116

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Aplicar evaluaciones formativas que consideren legibilidad, modularidad y docu-
mentación, no solo funcionalidad.

Persistir en modelos de enseñanza que valoran únicamente si el algoritmo “funciona”
implica formar técnicos que resuelven problemas inmediatos, pero no desarrollan solucio-
nes sostenibles. Por ello, la enseñanza de la programación debe integrar explícitamente
los principios de código limpio, formando profesionales capaces de escribir soluciones
escalables y mantenibles, alineadas con los estándares de la industria tecnológica con-
temporánea.

3.1.4. Cierre integrador

La experiencia aquí sistematizada demuestra que la enseñanza de la programación
no debe limitarse a la lógica o la sintaxis, sino que debe incorporar desde los primeros
niveles una cultura de calidad del código. La comprensión del código limpio como
práctica cognitiva, ética y profesional constituye un paso fundamental para la formación
de ingenieros de software reflexivos y competentes.

De este modo, el proceso de enseñanza de la Ingeniería de Software se concibe como
una cadena coherente que une concepto, análisis y calidad, promoviendo la formación
de profesionales capaces de pensar, diseñar y construir software con sentido crítico y
responsabilidad profesional.

3.2. Del código al pensamiento: enseñanza del código lim-
pio en la formación inicial de ingenieros en software

La primera parte de este capítulo permitió situar la problemática pedagógica de la
enseñanza del código limpio en la formación inicial de los ingenieros en software, desta-
cando la necesidad de incorporar principios de legibilidad, modularidad y mantenibilidad
desde las primeras experiencias de programación. En continuidad con ese análisis, la pre-
sente entrega profundiza en la fundamentación conceptual y operativa que sustenta la
experiencia, definiendo los conceptos estructurantes, dimensiones, indicadores, fuen-
tes y métodos que permiten comprender cómo los estudiantes transitan desde la ejecu-
ción mecánica del código hacia una práctica reflexiva, ordenada y profesional. Este tramo
teórico-metodológico se propone, así, consolidar el andamiaje que articula la compren-

117

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

sión cognitiva del pensamiento computacional con la aplicación técnica de las buenas
prácticas de programación en el contexto universitario.

3.2.1. Bisagra Textual

Introducción: El módulo anterior expuso el contexto institucional y pedagógico de la
experiencia, identificando el problema formativo vinculado a la falta de comprensión de
las buenas prácticas de programación y su impacto en la calidad del aprendizaje. Desde
esa base, se delimitó el propósito de promover el código limpio como eje de formación
profesional y se establecieron criterios de valor centrados en la claridad, la modulari-
dad y la mantenibilidad. A partir de aquí, el capítulo transita del relato descriptivo hacia
una fundamentación conceptual y operativa, en la que se desarrollan los principios
teóricos, dimensiones e indicadores que orientan la enseñanza de la programación ba-
jo estándares de calidad, sustentados en fuentes y métodos propios de la ingeniería de
software y la didáctica universitaria.

3.2.2. Identificación de conceptos estructurantes

Los conceptos clave que orientan esta etapa de la experiencia son: identificación de
variables, uso semántico de nombres significativos, comprensión de símbolos en diagra-
mas de flujo, estructura secuencial, correspondencia lógica entre símbolos y operaciones,
y documentación básica. Estos elementos constituyen los pilares del pensamiento compu-
tacional, pues permiten que el estudiante construya algoritmos comprensibles, organiza-
dos y sostenibles desde sus primeras experiencias de aprendizaje.

La elección de estos conceptos responde a las falencias observadas durante las
prácticas de laboratorio, donde los estudiantes mostraron vacíos al reconocer variables,
confusión al emplear símbolos en los diagramas de flujo y dificultades para expresar la
secuencia lógica de los procesos. Estas carencias no son solo técnicas, sino cognitivas
y metodológicas, pues evidencian que el aprendizaje de la programación aún se aborda
desde la memorización de formas en lugar de la comprensión del razonamiento lógico.
Por ello, estos conceptos fueron seleccionados como núcleos de intervención pedagógica,
orientados a mejorar la claridad, la modularidad y la mantenibilidad del código.

La identificación de variables constituye un punto de partida esencial. Según Guz-
dial y Morrison (2020), enseñar a reconocer y nombrar variables con sentido semántico
desarrolla la capacidad de abstraer y organizar información, favoreciendo la transición

118

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

del pensamiento matemático al pensamiento computacional. De manera complementaria,
la comprensión de los símbolos de los diagramas de flujo actúa como un puente entre lo
visual y lo lógico. Como señalan Sentance et al. (2019a), estos recursos gráficos ayudan
al estudiante a “ver” la estructura del algoritmo, siempre que su enseñanza se base en la
interpretación y no en la repetición mecánica de símbolos.

A estos conceptos se suman la estructura secuencial y la documentación del pseu-
docódigo, que contribuyen a la coherencia y trazabilidad del pensamiento algorítmico.
Sweller, Van Merriënboer y Paas (2019) sostienen que una secuencia clara y bien or-
ganizada reduce la carga cognitiva, facilitando la comprensión de las relaciones entre
entradas, procesos y salidas. La documentación, por su parte, introduce desde el inicio la
práctica de escribir código legible y explicativo, fortaleciendo la reflexión sobre el propio
proceso de programación.

En síntesis, estos conceptos organizan y orientan la experiencia pedagógica al pro-
porcionar un marco estructurado para el desarrollo de la lógica computacional. Su en-
señanza requiere ejemplos concretos, situaciones cercanas y ejercicios que conecten la
programación con la realidad cotidiana del estudiante. De esta forma, la comprensión de
las variables y los diagramas de flujo se convierte en la base para introducir las dimen-
siones de análisis del siguiente apartado, centradas en la refactorización, la evaluación y
la aplicación de buenas prácticas de programación como parte del proceso formativo en
Ingeniería en Software.

3.2.3. Formulación de dimensiones

El Puente 2 aborda la formulación de dimensiones analíticas como una estrategia
para organizar la interpretación de la experiencia pedagógica en la enseñanza de la pro-
gramación. En la sistematización, las dimensiones funcionan como ejes articuladores
entre la teoría y la práctica, permitiendo transformar observaciones concretas en cate-
gorías de análisis que revelan el modo en que los estudiantes construyen conocimiento y
aplican habilidades técnicas.

A partir de los conceptos estructurantes —identificación de variables, comprensión de
símbolos de diagramas de flujo, secuencia lógica y aplicación de buenas prácticas— se de-
finieron dos dimensiones centrales: la Cognitivo–Conceptual y la Técnico–Procedimental,
ambas inspiradas en enfoques recientes sobre pensamiento computacional y enseñanza del
código limpio.

119

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

La Dimensión Cognitivo–Conceptual se orienta al desarrollo de la lógica y la abs-
tracción algorítmica. Según Guzdial y Morrison (2020), comprender la programación im-
plica mucho más que dominar la sintaxis: requiere desarrollar estructuras mentales que
permitan pensar computacionalmente. De modo complementario, Sweller, Van Merriën-
boer y Paas (2019) sostienen que un diseño instruccional basado en la reducción de la car-
ga cognitiva facilita que los estudiantes integren de manera significativa conceptos como
variables y secuencias. En la práctica, esta dimensión se manifestó cuando los estudiantes
confundían valores numéricos con variables, revelando la necesidad de reforzar la com-
prensión simbólica y el razonamiento lógico mediante ejemplos cotidianos y ejercicios
guiados.

Por su parte, la Dimensión Técnico–Procedimental examina cómo los estudiantes
aplican principios de claridad, legibilidad y mantenibilidad del código, consolidando
las buenas prácticas de programación. Hermans (2021) plantea que la calidad del software
depende tanto de su funcionalidad como de su comprensibilidad, mientras que Sentance
et al. (2019b) destacan el valor pedagógico de la refactorización progresiva para fortalecer
la calidad estructural del código. En la experiencia, esta dimensión se evidenció cuando,
tras ejercicios de refactorización guiada, los estudiantes lograron mejorar la organización
de sus pseudocódigos, incorporando comentarios explicativos, nombres descriptivos y
separación clara de etapas.

En conjunto, ambas dimensiones ofrecen un marco que integra la comprensión con-
ceptual con la aplicación técnica, articulando el aprendizaje cognitivo con la práctica
profesional. Este esquema permite avanzar hacia la formulación de indicadores obser-
vables que evalúen tanto la evolución del pensamiento lógico como la apropiación de las
buenas prácticas de programación, alineando la enseñanza universitaria con los estándares
contemporáneos de la ingeniería de software.

3.2.4. Construcción de indicadores

La construcción de indicadores constituye una etapa clave en el proceso de sistema-
tización, pues permite operativizar las dimensiones analíticas previamente definidas y
traducirlas en elementos observables y evaluables. En el ámbito educativo, los indicadores
funcionan como herramientas de medición cualitativa y cuantitativa que posibilitan
valorar el grado de desarrollo de competencias, conocimientos y habilidades alcanzadas
por los estudiantes (Lodi & Martini, 2021). En el contexto de la enseñanza de la progra-

120

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

mación, los indicadores no solo evidencian el dominio técnico, sino también la evolución
del pensamiento lógico y la apropiación de buenas prácticas de codificación, funda-
mentales para la formación de ingenieros de software competentes. Su diseño responde a
la necesidad de transformar conceptos teóricos —como la abstracción, la modularidad o
la claridad del código— en comportamientos concretos que pueden observarse en el aula
o en el laboratorio.

Desde esta perspectiva, se han formulado seis indicadores distribuidos en dos di-
mensiones: la Dimensión Cognitivo–Conceptual, centrada en la comprensión de la ló-
gica y la abstracción algorítmica, y la Dimensión Técnico–Procedimental, orientada a la
aplicación de buenas prácticas y la calidad del código. Cada indicador expresa un nivel de
logro esperable, sustentado en la literatura sobre pensamiento computacional y enseñanza
de la programación.

3.2.5. Dimensión Cognitivo–Conceptual: Comprensión de la lógica y
la abstracción algorítmica

Esta dimensión aborda la capacidad del estudiante para comprender los principios
lógicos y representativos de la programación, movilizando procesos mentales de abs-
tracción, análisis y secuenciación. Lodi y Martini (2021) sostienen que la enseñanza del
pensamiento computacional implica ayudar al estudiante a construir modelos mentales
que le permitan conectar los conceptos algorítmicos con su significado funcional. Asi-
mismo, Grover y Pea (2013) afirman que el desarrollo de competencias en programación
requiere integrar la comprensión conceptual con la capacidad de traducir ideas en pasos
secuenciales.

Indicadores propuestos:

1. Identificación y uso semántico de variables.

2. Comprensión funcional de los símbolos en los diagramas de flujo.

3. Coherencia en la secuencia lógica del pseudocódigo.

Cada uno de estos indicadores traduce el grado de internalización del razonamiento al-
gorítmico. Por ejemplo, el indicador 1.1 se manifiesta cuando el estudiante reemplaza nú-
meros literales por variables significativas, como en el caso de escribir area_rectangulo

121

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

= base * altura, lo que demuestra comprensión semántica del problema. En el indica-
dor 1.2, la evidencia surge del uso adecuado de los símbolos de proceso y decisión en los
diagramas de flujo; es decir, cuando los estudiantes emplean el rombo para decisiones y
el rectángulo para operaciones, demostrando dominio de la representación simbólica. Fi-
nalmente, el indicador 1.3 se verifica en pseudocódigos que siguen una secuencia lógica
Entrada–Proceso–Salida, evitando saltos o desórdenes en la estructura.

Curzon y McOwan (2019) destacan que el aprendizaje significativo de la programa-
ción se consolida cuando el estudiante es capaz de visualizar la lógica detrás de los
algoritmos y relacionarla con situaciones concretas, lo que permite transitar de la memo-
rización mecánica a la comprensión estructural. En la experiencia pedagógica desarrolla-
da en la Universidad Estatal de Milagro, este enfoque se manifestó cuando los estudiantes
comenzaron a identificar patrones de razonamiento comunes entre ejercicios distintos,
mostrando progresos en su comprensión cognitiva del proceso algorítmico.

3.2.6. Dimensión Técnico–Procedimental: Aplicación de buenas prác-
ticas y calidad del código

Esta dimensión se orienta a la observación del comportamiento práctico y profesio-
nal del estudiante al escribir, organizar y documentar su código. De acuerdo con Lodi
y Martini (2021), el aprendizaje técnico se consolida cuando el estudiante logra aplicar
principios de calidad que garantizan la mantenibilidad y legibilidad del software. Grover
y Pea (2020) complementan esta idea señalando que las buenas prácticas no deben en-
señarse como normas aisladas, sino como parte de un proceso formativo que vincula la
claridad técnica con el pensamiento crítico.

Indicadores propuestos:

1. Legibilidad y claridad del código.

2. Modularidad y refactorización progresiva.

3. Documentación y mantenibilidad del código.

Estos indicadores permiten evaluar la madurez profesional del aprendizaje. En el
indicador 2.1, se busca que el estudiante estructure su código con sangrías, espacios
y comentarios, garantizando legibilidad. La evidencia se observa en comparativas entre
versiones iniciales (sin formato ni explicación) y versiones refactorizadas (con orden y

122

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

comentarios). El indicador 2.2 mide la capacidad de dividir un problema en subproce-
sos o módulos, mostrando comprensión de la refactorización progresiva. En las prácticas,
esto se evidenció cuando los estudiantes implementaron funciones como calcularProme-
dio() o mostrarResultado(), reorganizando su código de manera más eficiente. Finalmen-
te, el indicador 2.3 evalúa la incorporación de anotaciones y encabezados descriptivos,
reflejando la comprensión de la importancia de documentar para otros y para el futuro
mantenimiento del software.

Curzon y McOwan (2019) afirman que la programación se enseña mejor cuando se
combina la práctica técnica con la reflexión sobre el proceso, de modo que los estudiantes
comprendan por qué una solución limpia y modular no solo funciona, sino que puede
ser entendida y reutilizada. En el contexto de esta experiencia, tras aplicar sesiones de
refactorización guiada, los estudiantes lograron mejorar la legibilidad y mantenibilidad de
sus algoritmos, lo que sugiere que la práctica metódica consolida los principios de calidad
de código desde etapas tempranas de formación.

3.2.7. Fuentes y métodos de verificación

En una sistematización de experiencias, las fuentes y métodos de verificación cons-
tituyen los pilares que garantizan la validez, coherencia y rigor del análisis. Las fuentes
representan el origen de la información —textual, empírica o testimonial—, mientras que
los métodos de verificación permiten comprobar la consistencia entre lo que se obser-
va, lo que se interpreta y lo que se concluye. Según Jara (2018a), las evidencias en una
sistematización no son simples datos, sino “rastros significativos de la práctica” que, in-
terpretados con criterio teórico, permiten construir conocimiento educativo situado. Por
ello, la elección de fuentes y métodos debe responder a una doble finalidad: comprobar
la validez de los hallazgos y asegurar la coherencia entre teoría y experiencia en el
proceso de enseñanza-aprendizaje de la programación.

Flick (2014) enfatiza que la pertinencia de las fuentes radica en su capacidad para
responder a las preguntas del estudio; es decir, deben ser seleccionadas no por su cantidad,
sino por su relevancia para comprender el fenómeno. En este caso, las fuentes principales
se estructuran en torno a los dos ejes de análisis del proyecto: la comprensión cognitivo-
conceptual y la aplicación técnico-procedimental.

Se eligieron tres fuentes teóricas fundamentales —Lodi y Martini (2021), Grover y
Pea (2020), y Curzon y McOwan (2019)— complementadas por evidencias empíricas

123

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

obtenidas a través de la observación, los pseudocódigos producidos por los estudiantes y
sus reflexiones en entrevistas breves. Estas fuentes permiten triangular teoría y práctica,
asegurando que los resultados no dependan de una sola perspectiva, sino que se fortalez-
can mediante contrastes y convergencias, siguiendo el enfoque de triangulación múltiple
propuesto por Yin (2014).

3.2.8. Modelar y abstraer procesos lógicos

Lodi y Martini (2021) plantean que el pensamiento computacional implica la capaci-
dad de modelar procesos lógicos mediante representaciones simbólicas, lo cual funda-
menta el Indicador 1.1: Identificación y uso semántico de variables. Para verificar este
principio, se aplicó el análisis de pseudocódigos y diagramas de flujo iniciales, con el
fin de observar si los estudiantes lograban abstraer y representar las relaciones entre los
elementos de un problema antes de codificar.

Los resultados evidenciaron progresos significativos: estudiantes que al inicio ope-
raban con valores literales, posteriormente comenzaron a emplear variables con nombres
semánticamente coherentes. Siguiendo la propuesta de R. Stake (1995), este método man-
tiene coherencia entre la fuente conceptual y el procedimiento empírico, pues traduce una
idea teórica —la abstracción lógica— en un indicador verificable a partir del producto
educativo real.

3.2.9. Comprensión de la secuencia algorítmica

Para Grover y Pea (2020), el pensamiento computacional integra comprensión con-
ceptual y acción secuencial; aprender a programar implica pensar en términos de pasos
ordenados y relaciones causales. Este principio fundamenta el Indicador 1.2: Compren-
sión funcional de los símbolos en los diagramas de flujo, el cual se verificó mediante entre-
vistas reflexivas y cuestionarios. En estas actividades, los estudiantes explicaron por qué
seleccionaban ciertos símbolos o cómo interpretaban la secuencia de decisiones dentro
del algoritmo. Este método de verificación permitió evaluar no solo el resultado técnico,
sino la lógica interna de su razonamiento. En coherencia con Yin (2014), combinar instru-
mentos discursivos con productos visuales amplía la validez de la evidencia, al incorporar
tanto la voz del estudiante como su representación gráfica del pensamiento lógico.

124

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.2.10. Aprendizaje significativo y contextualizado

Curzon y McOwan (2019) destacan la importancia de situar la enseñanza de la pro-
gramación en contextos significativos, donde los ejemplos prácticos actúan como puentes
entre la teoría y la experiencia. Esta fuente sustenta el Indicador 1.3: Coherencia en la se-
cuencia lógica del pseudocódigo, verificado mediante la observación directa en sesiones
de laboratorio. Durante estas actividades, se registró si los estudiantes aplicaban ejemplos
cotidianos —como el cálculo de promedios o materiales de construcción— para estructu-
rar algoritmos coherentes.

Los resultados mostraron que contextualizar las tareas permitió mejorar la secuencia-
ción lógica, reforzando la comprensión de la estructura Entrada–Proceso–Salida. Como
plantea Flick (2014), este tipo de observación participante fortalece la calidad interpreta-
tiva de la sistematización, al permitir comprender cómo el conocimiento se construye en
interacción.

3.2.11. Fuentes complementarias y métodos asociados

Además de las tres fuentes principales, se integraron autores que sustentan el rigor me-
todológico de la verificación. Jara (2018a) enfatiza que toda evidencia debe interpretarse
desde su sentido pedagógico, no solo desde su función comprobatoria; por ello, los pseu-
docódigos, entrevistas y observaciones fueron tratados como huellas de aprendizaje y no
como datos aislados. Yin (2014) propone la triangulación como estrategia de validación,
articulando tres niveles: el teórico (fuentes bibliográficas), el empírico (productos y ob-
servaciones) y el reflexivo (auto-evaluaciones estudiantiles). Finalmente, R. Stake (1995)
recuerda que la coherencia entre fuente y método es esencial: la manera de recolectar y
analizar los datos debe corresponder al tipo de evidencia que se busca generar. Así, en
esta experiencia, los métodos de análisis fueron seleccionados no por conveniencia, sino
por su correspondencia con los indicadores definidos.

3.2.12. Síntesis integradora

El uso combinado de fuentes y métodos de verificación otorga robustez y credibili-
dad a la sistematización, garantizando que los hallazgos emergen de un proceso reflexivo
y contrastado. Las fuentes teóricas (Lodi & Martini, 2021); (Grover & Pea, 2020); (Cur-
zon & McOwan, 2019) ofrecieron los marcos conceptuales que definieron los indicadores,

125

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

mientras que los métodos empíricos —análisis de productos, entrevistas y observación—
proporcionaron la evidencia concreta de aprendizaje. Esta triangulación, en el sentido de
Yin (2014), permite afirmar que la comprensión algorítmica y la aplicación técnica ob-
servadas no son hechos aislados, sino resultados consistentes de una práctica pedagógica
fundamentada. En definitiva, la combinación de teoría, evidencia y reflexión genera un
proceso de sistematización válido, coherente y transferible, en línea con la concepción
de Jara (2018a), quien afirma que toda experiencia educativa innovadora alcanza su valor
cuando logra convertir la práctica en conocimiento compartido.

3.2.13. Justificación teórica del conjunto

El conjunto de conceptos y dimensiones definidos en esta sistematización se funda-
menta en la necesidad de comprender la enseñanza de la programación no solo como un
proceso técnico, sino como una práctica cognitiva, comunicativa y formativa. Siguiendo
a Jara (2018a), las categorías de análisis deben construirse desde la experiencia y reflejar
las tensiones y aprendizajes reales que emergen en la práctica pedagógica. En este senti-
do, los conceptos de identificación de variables, comprensión de símbolos en diagramas
de flujo y secuencia lógica del pseudocódigo surgieron como nudos problemáticos detec-
tados en el aula, que permiten analizar la relación entre la comprensión conceptual y la
acción técnica.

Asimismo, la organización de los conceptos en dos dimensiones — Cognitivo – Con-
ceptual y Técnico – Procedimental — responde a la recomendación metodológica de
Flick (2014), quien destaca que las categorías deben articular el “qué” y el “cómo” del
fenómeno estudiado. La primera dimensión busca indagar en la capacidad de los estu-
diantes para abstraer, simbolizar y razonar de forma lógica; la segunda analiza la manera
en que esa comprensión se traduce en prácticas de codificación limpias y sostenibles. Así,
las dimensiones se constituyen en ejes interpretativos que integran teoría, experiencia y
observación empírica, generando un marco coherente para el análisis de la calidad del
aprendizaje.

En el plano teórico, los aportes de Lodi y Martini (2021), Grover y Pea (2020) y
Curzon y McOwan (2019) sustentan la dimensión cognitiva, al situar el pensamiento
computacional como una competencia que combina modelamiento, abstracción y razona-
miento lógico. Por su parte, M. Zanatta y da Silva (2022), Ahmad y Hashim (2020), y
Petre y van der Hoek (2021) fundamentan la dimensión técnico–procedimental, al en-

126

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

fatizar que la enseñanza de buenas prácticas de programación desde los primeros niveles
académicos favorece la comprensión de estándares profesionales y el desarrollo de una
ética de la calidad del código.

3.2.14. Justificación de los indicadores

Los indicadores definidos constituyen la traducción operativa de las dimensiones y
permiten observar de forma empírica los avances en el aprendizaje. En coherencia con Yin
(2014), cada indicador actúa como una variable analítica que vincula el marco conceptual
con la evidencia concreta. Por ejemplo, la identificación y uso semántico de variables
se verifica mediante pseudocódigos que muestran la comprensión del valor simbólico de
los datos, mientras que la coherencia en la secuencia lógica del pseudocódigo refleja el
tránsito desde la memorización hacia la comprensión algorítmica.

De acuerdo con R. Stake (1995), los indicadores deben mantener una coherencia di-
recta con los objetivos de la experiencia y con las dimensiones teóricas que los sustentan.
En este caso, los seis indicadores —tres por dimensión— fueron diseñados para captar
los niveles de apropiación del pensamiento computacional y de las buenas prácticas de
programación. Su formulación busca equilibrio entre la validez conceptual (relación con
los autores de referencia) y la validez empírica (posibilidad de observación en la prácti-
ca). Este enfoque posibilita un análisis riguroso de los aprendizajes sin descontextualizar
la experiencia educativa en la que emergen.

3.2.15. Justificación de las fuentes y métodos de verificación

Las fuentes teóricas y metodológicas seleccionadas permiten una triangulación sólida
entre los marcos de referencia académicos y las evidencias recogidas en aula. Siguiendo a
Flick (2014), la pertinencia de una fuente radica en su capacidad de responder al objeto de
estudio, más que en su cantidad. Por ello, se priorizaron autores que abordan directamente
el pensamiento computacional y la calidad del código, garantizando una relación directa
entre teoría y práctica.

En cuanto a los métodos, esta investigación aplica estrategias de verificación que in-
tegran análisis de pseudocódigos y diagramas de flujo, entrevistas reflexivas, observación
de sesiones prácticas y revisión entre pares. Según Yin (2014), esta diversidad metodoló-
gica fortalece la validez interna mediante la triangulación de datos; mientras que para R.

127

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Stake (1995), la coherencia entre fuente y método garantiza que las evidencias respondan
al tipo de conocimiento que se busca construir.

La incorporación de Jara (2018b) resulta clave para comprender las evidencias no
como simples datos, sino como “huellas significativas” de la práctica docente. De esta
manera, cada pseudocódigo corregido, cada reflexión de los estudiantes o cada versión
refactorizada del código se interpreta como una manifestación de aprendizaje situada.
Esta lectura cualitativa complementa el análisis técnico y permite sostener una mirada
integral del proceso formativo.

Por otro lado, los aportes de Carlino (2005) y Hyland (2009) enriquecen la interpreta-
ción al reconocer la escritura académica como una práctica social, colaborativa y situada.
En este sentido, los comentarios, las rúbricas y las revisiones entre pares no solo consti-
tuyen mecanismos de evaluación, sino también formas de comunicación disciplinar que
configuran una comunidad de aprendizaje. Así, el código, sus comentarios y las discusio-
nes que genera se convierten en textos académicos en sí mismos, donde los estudiantes
aprenden a argumentar, justificar y documentar sus decisiones técnicas.

3.2.16. Síntesis final del conjunto

En conjunto, la estructura teórica y metodológica desarrollada articula los tres niveles
esenciales de la sistematización: conceptualización, operativización y verificación. Los
conceptos y dimensiones ofrecen el andamiaje analítico; los indicadores proporcionan
las unidades observables; y las fuentes y métodos de verificación aseguran la validez y
coherencia del proceso. Esta arquitectura responde a la orientación de Jara (2018a), quien
concibe la sistematización como un proceso reflexivo que transforma la experiencia en
conocimiento.

El equilibrio entre teoría y práctica, entre la abstracción lógica y la acción técnica,
permite evidenciar cómo los estudiantes transitan de un pensamiento lineal y memorístico
hacia una comprensión estructurada y profesional del código. Al integrar autores como
Lodi, Grover, Curzon, Zanatta, Ahmad y Petre con referentes metodológicos como
Flick, Yin, Stake, Carlino y Hyland, este conjunto alcanza una justificación teórica ro-
busta, capaz de sostener la validez conceptual y pedagógica del proceso de enseñanza de
la programación como práctica formativa, ética y comunicativa.

128

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.2.17. Recomendaciones para profundizar

1. Equilibrar teoría y práctica en la justificación:

Asegurar que cada argumento teórico se vincula con un ejemplo empírico concreto,
evitando la separación entre reflexión conceptual y evidencia pedagógica.

1. Verificar que todas las partes del conjunto estén fundamentadas:

Revisar que cada dimensión, indicador y método cuente con al menos una referencia
explícita, fortaleciendo la coherencia argumentativa y la validez del texto.

1. Evitar redundancias y mantener cohesión discursiva:

Integrar las citas de forma fluida, priorizando la interpretación sobre la acumulación
de autores, y mantener un hilo narrativo que una los conceptos, dimensiones e indicadores
como partes de un mismo sistema analítico.

3.3. Aprender gestionando: experiencias innovadoras en
proyectos de software universitarios

3.3.1. Transición al vínculo curricular

Al culminar el proceso de fundamentación teórica y operativa de la experiencia de-
sarrollada en la asignatura Introducción a la Ingeniería de Software, se evidencia que
los aprendizajes alcanzados no se limitan al plano metodológico, sino que se integran
de manera coherente con el proyecto formativo de la carrera. Las dimensiones construi-
das -pedagógica, cognitiva-formativa y socioafectiva-colaborativa- permiten comprender
cómo la práctica docente contribuye al desarrollo de competencias profesionales clave,
fortaleciendo la relación entre teoría y práctica en los primeros niveles de formación uni-
versitaria.

Desde una perspectiva curricular, la experiencia se articula con el perfil de egreso
del Ingeniero de Software de la UNEMI, quien se caracteriza por su capacidad para de-
sarrollar soluciones tecnológicas de calidad, trabajar colaborativamente, liderar equipos
multidisciplinarios y actuar con responsabilidad ética y compromiso social.

129

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

En este sentido, los aprendizajes logrados en el aula -aprendizaje activo, pensamien-
to crítico, autonomía y trabajo colaborativo- responden directamente a los resultados de
aprendizaje del programa, al promover la aplicación de estándares profesionales, la comu-
nicación efectiva y la innovación mediante el uso de tecnologías emergentes. La incorpo-
ración de estrategias como la mentoría pedagógica y el aprendizaje basado en proyectos
favorece la formación de estudiantes autónomos y reflexivos, capaces de enfrentar pro-
blemas reales del campo de la ingeniería con una visión integral y ética.

Esta experiencia, además, se convierte en un punto de inflexión en el proceso for-
mativo, al evidenciar que la enseñanza de la ingeniería de software debe trascender la
instrucción técnica para situarse en el desarrollo de competencias blandas, cognitivas y
socioemocionales que sustentan la empleabilidad y la actualización profesional continua.
Así, la práctica sistematizada no solo refuerza el perfil de egreso institucional, sino que
también aporta una mirada pedagógica innovadora para la formación inicial en ingeniería,
constituyéndose en una referencia para el rediseño de estrategias curriculares orientadas al
aprendizaje significativo y al fortalecimiento del vínculo entre la docencia y el desarrollo
profesional.

3.3.2. Identificación de competencias del perfil

La experiencia desarrollada en la asignatura Introducción a la Ingeniería de Software
permitió evidenciar cómo la práctica docente puede articularse con las competencias del
perfil de egreso de la carrera, convirtiéndose en un espacio de formación integral para los
estudiantes de primer semestre.

En este nivel inicial, el desafío no radica únicamente en la adquisición de conoci-
mientos técnicos, sino en la construcción de una base competencial que combine la com-
prensión conceptual, la colaboración efectiva y la autonomía en el aprendizaje. Por ello,
identificar las competencias que se fortalecen a través de esta experiencia resulta clave
para evidenciar su alineación con el currículo y el proyecto formativo institucional.

De acuerdo con el perfil de egreso de la carrera de Ingeniería de Software de la UNE-
MI, el profesional debe ser capaz de desarrollar, mantener e innovar sistemas de software
de calidad, aplicando estándares internacionales y buenas prácticas; trabajar en equipos
multidisciplinarios; liderar proyectos; y actuar con ética y responsabilidad social.

En esta línea, las competencias que se consolidaron en la práctica docente fueron
principalmente: trabajo colaborativo, pensamiento crítico, autonomía en el aprendizaje,

130

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

responsabilidad ética y comunicación efectiva. Estas competencias, tanto genéricas como
específicas, se integran de forma transversal al proceso formativo, constituyendo el núcleo
de la formación del ingeniero de software contemporáneo.

La competencia de trabajo colaborativo se manifestó en la experiencia a través del
desarrollo de proyectos en equipo, donde los estudiantes asumieron roles complemen-
tarios -analista, programador y validador-, simulando entornos reales de producción de
software.

Esta metodología permitió fortalecer habilidades de coordinación, negociación y co-
rresponsabilidad, aspectos que según Johnson, Johnson et al. (2020) resultan esenciales
para el aprendizaje cooperativo en contextos de ingeniería. Asimismo, el trabajo en equipo
fomenta la empatía profesional y la capacidad de resolver conflictos de manera construc-
tiva, competencias destacadas en el perfil de egreso institucional. En un campo altamente
interdependiente como el desarrollo de software, estas habilidades sociales y de colabo-
ración constituyen un pilar fundamental para la empleabilidad y el éxito profesional.

Por su parte, la competencia de pensamiento crítico se relacionó con la capacidad de
los estudiantes para analizar y evaluar los problemas planteados durante la construcción
de proyectos, argumentando sus decisiones técnicas con base en evidencia y criterios de
calidad. Tal como sostiene Facione (2020), el pensamiento crítico permite a los futuros
profesionales emitir juicios fundamentados y asumir decisiones responsables en contextos
complejos.

En la asignatura, esta competencia se promovió mediante la revisión de código, la
detección de errores lógicos y la reflexión sobre las estrategias de resolución implemen-
tadas. Estas prácticas fomentaron en los estudiantes la capacidad de razonar con rigor,
una competencia que, según Lai (2022), constituye un indicador de madurez cognitiva y
profesional en entornos STEM.

La autonomía en el aprendizaje fue otra competencia central, consolidada a través de
la planificación semanal de avances, la gestión de tareas y la autoevaluación continua de
los logros alcanzados. Zimmerman (2020) define la autorregulación del aprendizaje como
la capacidad de planificar, monitorear y evaluar el propio proceso formativo.

En el contexto de la ingeniería de software, esta habilidad permite que los estudiantes
desarrollen la disciplina y la resiliencia necesarias para enfrentar proyectos de largo plazo
y adaptarse a las demandas cambiantes del mercado tecnológico. La autonomía, además,
se conecta directamente con la competencia de aprendizaje permanente, presente en el

131

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

perfil de egreso, que enfatiza la importancia de mantenerse actualizado en tecnologías
emergentes y buenas prácticas de desarrollo.

La responsabilidad ética y social se evidenció en la forma en que los estudiantes asu-
mieron el impacto de las decisiones tecnológicas en la sociedad, discutiendo dilemas éti-
cos relacionados con la privacidad de datos, la equidad digital y la sostenibilidad del
software.

Según Morales et al. (2021), integrar la dimensión ética en la formación tecnológica
favorece la construcción de profesionales conscientes del alcance social de sus acciones.
Esta competencia, presente en el perfil de egreso, trasciende el plano técnico para conso-
lidar una formación humanista y responsable, coherente con el compromiso de la UNEMI
hacia el desarrollo sostenible y el bienestar colectivo.

Finalmente, la comunicación efectiva emergió como una competencia transversal, in-
dispensable tanto para la gestión de proyectos como para la documentación técnica y la
presentación de resultados. Hargie (2021) subraya que la comunicación profesional en in-
geniería requiere precisión, claridad y empatía, habilidades que se fortalecen mediante la
exposición oral, la escritura técnica y la retroalimentación entre pares. En las actividades
realizadas, los estudiantes presentaron sus avances, defendieron decisiones de diseño y
compartieron aprendizajes, fortaleciendo así la capacidad de expresarse con propiedad en
entornos académicos y laborales.

Estas cinco competencias - colaboración, pensamiento crítico, autonomía, ética y co-
municación - conforman un entramado coherente que responde a las demandas del perfil
de egreso y a los retos contemporáneos de la educación en ingeniería.

En la experiencia sistematizada, dichas competencias se articularon de forma integral,
mostrando que el proceso formativo no se limita a la enseñanza de contenidos técnicos,
sino que abarca el desarrollo de capacidades transversales que preparan a los estudiantes
para desempeñarse con eficacia, liderazgo y compromiso social en su vida profesional.

De este modo, la identificación de las competencias del perfil no solo evidencia la per-
tinencia curricular de la experiencia, sino que proyecta el proceso hacia los resultados de
aprendizaje que serán analizados en el siguiente apartado. Estas competencias se consti-
tuyen, por tanto, en los pilares sobre los cuales se construyen los aprendizajes observables
que reflejan la transformación del estudiante a lo largo del proceso educativo.

132

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.3.3. Resultados de aprendizaje vinculados

La sistematización de la experiencia desarrollada en la asignatura Introducción a la
Ingeniería de Software permitió constatar la correspondencia entre las competencias del
perfil de egreso y los resultados de aprendizaje propuestos en el plan curricular de la
carrera. En la práctica docente, los resultados de aprendizaje funcionan como un punto
de conexión entre las metas formativas del programa y los logros observables alcanzados
por los estudiantes.

En el contexto de la Universidad Estatal de Milagro (UNEMI), estos resultados se for-
mulan en coherencia con el Modelo Educativo Institucional (MEI) y el Marco Curricular
Institucional (MCI), que establecen como principio fundamental el desarrollo integral de
los estudiantes mediante el aprendizaje activo, reflexivo y colaborativo (Universidad Es-
tatal de Milagro (UNEMI), 2021).

En este sentido, los resultados de aprendizaje fortalecidos a partir de la experiencia se
agrupan en tres dimensiones que responden al enfoque por competencias definido por la
UNEMI: desarrollo del pensamiento crítico y la resolución de problemas, colaboración y
comunicación efectiva en entornos de ingeniería, y actuación ética y compromiso con el
aprendizaje continuo. Estas dimensiones, además de alinearse con el perfil de egreso de
la carrera, evidencian la coherencia entre la práctica pedagógica y el modelo curricular
institucional orientado a resultados.

El primer resultado de aprendizaje evidenciado fue la capacidad para analizar proble-
mas de software y proponer soluciones fundamentadas en principios de ingeniería y cri-
terios de calidad. Durante la experiencia, los estudiantes aplicaron estrategias de análisis,
diseño y validación de sistemas, desarrollando la competencia de pensamiento crítico me-
diante la revisión de código, la evaluación de alternativas y la justificación argumentada
de sus decisiones. Este resultado se vincula directamente con el componente de razona-
miento lógico y pensamiento crítico establecido en el MCI, que enfatiza la formación de
profesionales capaces de identificar, analizar y resolver problemas complejos de manera
autónoma (Universidad Estatal de Milagro (UNEMI), 2023). En las actividades de aula,
esta competencia se materializó cuando los equipos discutían errores en sus programas,
analizaban sus causas y elaboraban soluciones fundamentadas en estándares de desarro-
llo.

Un segundo resultado de aprendizaje alcanzado fue la capacidad para comunicarse y
trabajar de manera efectiva en equipos multidisciplinarios. Este aprendizaje se desarrolló

133

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

a través de la planificación, ejecución y presentación de proyectos colaborativos en los
que cada estudiante asumió roles específicos, integrando la teoría con la práctica.

De acuerdo con el MCI, la comunicación efectiva y el trabajo en equipo son compe-
tencias transversales que contribuyen a la construcción de conocimiento compartido, al
fortalecimiento de la empatía y al liderazgo en contextos diversos (Universidad Estatal de
Milagro (UNEMI), 2021). En la práctica, los estudiantes demostraron avances significati-
vos al utilizar plataformas de control de versiones y entornos colaborativos, evidenciando
mejoras tanto en la organización de tareas como en la exposición oral y escrita de los
resultados.

El tercer resultado de aprendizaje consolidado fue la demostración de responsabilidad
ética y compromiso con el aprendizaje autónomo y permanente. Este resultado se expresó
en la reflexión de los estudiantes sobre el impacto social de las tecnologías que desarro-
llan, la gestión responsable del tiempo y la autogestión de su propio progreso académico.

Según el Modelo Educativo Institucional de la UNEMI, la formación ética consti-
tuye un eje transversal del currículo, orientado al ejercicio profesional responsable y al
desarrollo sostenible (Universidad Estatal de Milagro (UNEMI), 2021). En este marco,
la autonomía y la ética se entienden como pilares que permiten a los futuros ingenie-
ros enfrentar los desafíos tecnológicos con conciencia social y capacidad de adaptación
continua.

La relación entre estos resultados de aprendizaje y las competencias del perfil de egre-
so es directa y verificable. El pensamiento crítico y la resolución de problemas se asocian
con la competencia de innovar y aplicar tecnologías emergentes, la colaboración y la
comunicación efectiva se relacionan con la capacidad de liderar proyectos y trabajar en
equipos multidisciplinarios, mientras que la ética y el aprendizaje autónomo se alinean
con el compromiso institucional de formar profesionales responsables y comprometidos
con el desarrollo sostenible. Esta trazabilidad, destacada por el MCI (Universidad Estatal
de Milagro (UNEMI), 2023), garantiza la coherencia entre las experiencias formativas del
aula y las metas de desempeño profesional esperadas al final de la carrera.

En síntesis, los resultados de aprendizaje alcanzados en la experiencia evidencian la
efectividad del enfoque por competencias adoptado por la UNEMI. Los estudiantes no
solo adquirieron conocimientos técnicos, sino que también fortalecieron habilidades cog-
nitivas, comunicativas y éticas que sustentan su perfil profesional.

Este proceso demuestra que la integración entre docencia, práctica y currículo no es
un ejercicio formal, sino una estrategia pedagógica que potencia la formación integral del

134

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

futuro ingeniero de software. En el siguiente apartado, estos aprendizajes se proyectarán
en las actividades y evidencias que permiten verificar empíricamente la transformación
educativa lograda en el aula.

3.3.4. Actividades y evidencias

El desarrollo de la experiencia en la asignatura Introducción a la Ingeniería de Soft-
ware se sustentó en una secuencia de actividades planificadas intencionalmente para for-
talecer las competencias y resultados de aprendizaje vinculados al perfil de egreso de la
carrera. Estas actividades respondieron al principio de coherencia pedagógica entre la teo-
ría y la práctica, promoviendo el aprendizaje activo, el trabajo colaborativo y la reflexión
crítica como ejes centrales del proceso formativo.

De este modo, cada acción en el aula fue concebida no solo como una tarea acadé-
mica, sino como una oportunidad para generar evidencias verificables de los aprendizajes
alcanzados por los estudiantes.

Las actividades se estructuraron en tres momentos pedagógicos: exploración, apli-
cación y reflexión. En la fase de exploración, los estudiantes participaron en sesiones de
diagnóstico y discusión guiada sobre los fundamentos de la ingeniería de software, identi-
ficando los problemas comunes en la gestión de proyectos tecnológicos. Estas dinámicas
permitieron activar los conocimientos previos y contextualizar los desafíos que enfren-
tarían posteriormente. Las evidencias generadas en esta etapa fueron fichas de análisis
individual, foros de discusión en el aula virtual y registros reflexivos, que mostraron la
comprensión inicial de los conceptos básicos y la disposición para el trabajo colaborativo.

Durante la fase de aplicación, se implementaron actividades basadas en el aprendizaje
activo y la simulación de entornos profesionales. Los estudiantes trabajaron en equipos
para desarrollar un proyecto de software de pequeña escala, aplicando principios de aná-
lisis de requerimientos, diseño modular y control de versiones mediante GitHub.

Cada grupo asumió roles diferenciados -analista, programador, validador y líder de
proyecto- con el fin de promover la corresponsabilidad y el liderazgo colaborativo. Entre
las principales evidencias producidas se encuentran los repositorios de código en GitHub,
los informes técnicos del proyecto, las actas de reuniones semanales y las rúbricas de
evaluación de desempeño, que documentaron tanto los procesos como los productos del
aprendizaje.

135

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Estas evidencias resultaron especialmente relevantes porque permitieron observar la
consolidación de los resultados de aprendizaje vinculados a la resolución de problemas,
el trabajo en equipo y la comunicación efectiva. Tal como señalan Biggs y Tang (2011), la
coherencia entre objetivos, actividades y evaluación es esencial para garantizar la validez
del proceso formativo.

En este caso, la experiencia demostró que los proyectos colaborativos constituyen un
medio eficaz para integrar los saberes técnicos y las competencias transversales del inge-
niero de software, permitiendo que el aprendizaje sea significativo, observable y transfe-
rible.

Finalmente, en la fase de reflexión, se promovió la autoevaluación y la metacognición
mediante la elaboración de bitácoras individuales de aprendizaje y sesiones de retroali-
mentación grupal. Los estudiantes analizaron los aciertos y dificultades encontradas du-
rante el desarrollo del proyecto, reflexionando sobre la aplicación de los principios éticos,
la responsabilidad en la gestión del tiempo y la toma de decisiones.

Estas evidencias, junto con las encuestas de satisfacción y las observaciones del do-
cente, ofrecieron una visión integral del impacto de la experiencia en la formación de
los participantes. Según Kolb (2015), la reflexión sobre la práctica permite transformar la
experiencia vivida en conocimiento profundo, consolidando la autonomía y la capacidad
crítica del aprendiz.

La pertinencia de las evidencias recogidas radica en que reflejan de manera tangible
el cumplimiento de los resultados de aprendizaje propuestos en el plan curricular de la
carrera y en el Marco Curricular Institucional de la UNEMI. Cada evidencia -ya sea un
producto tecnológico, un registro reflexivo o un indicador de desempeño- constituye una
muestra verificable de que los estudiantes avanzaron hacia el perfil profesional esperado:
un ingeniero de software con pensamiento crítico, ética profesional, habilidades colabo-
rativas y compromiso con la calidad del desarrollo tecnológico.

En conclusión, las actividades y evidencias descritas demuestran que la práctica do-
cente fue diseñada con coherencia pedagógica y pertinencia curricular, asegurando la tra-
zabilidad entre actividad → resultado → evidencia. Este enfoque permitió evidenciar que
la experiencia no solo fortaleció los aprendizajes técnicos, sino también las competen-
cias cognitivas, socioafectivas y éticas necesarias para la formación integral del futuro
profesional. En el siguiente apartado, estas evidencias servirán de base para analizar la
alineación curricular y el grado de correspondencia entre la práctica sistematizada y el
modelo educativo institucional de la UNEMI.

136

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.3.5. Reflexión sobre la alineación curricular

Reflexionar sobre la alineación curricular implica reconocer la importancia de que
cada práctica docente se integre de manera coherente al perfil de egreso, a los resultados
de aprendizaje y a los principios formativos de la carrera. En el caso de la experiencia
desarrollada en la asignatura Introducción a la Ingeniería de Software, esta alineación fue
clave para garantizar que las estrategias implementadas no fueran acciones aisladas, sino
componentes articulados del proceso formativo que caracteriza al ingeniero de software
de la Universidad Estatal de Milagro.

En coherencia con lo que plantea el Marco Curricular Institucional (Universidad Esta-
tal de Milagro (UNEMI), 2023), la práctica docente debe promover aprendizajes signifi-
cativos y transferibles, alineados con un currículo flexible y orientado por competencias,
donde la docencia se conciba como un espacio de innovación y reflexión continua.

La experiencia permitió constatar una sólida correspondencia entre las actividades de
aula y los propósitos curriculares de la carrera. Las estrategias de aprendizaje activo, la
resolución colaborativa de problemas y la integración de herramientas tecnológicas (como
GitHub y entornos de simulación) evidenciaron la conexión directa con las competencias
del perfil de egreso relacionadas con la comunicación efectiva, la ética profesional y la
innovación tecnológica.

Esta coherencia refleja lo que Biggs y Tang (2011) denominan alineación constructiva:
la necesidad de que los objetivos, las actividades y la evaluación respondan de forma inte-
grada a los resultados de aprendizaje esperados. En este sentido, la experiencia fortaleció
la formación integral del estudiante al fomentar tanto las competencias técnicas propias
de la ingeniería como las socioemocionales y metacognitivas que demanda la práctica
profesional contemporánea.

Entre las principales fortalezas observadas destaca la pertinencia metodológica de las
actividades diseñadas. La secuencia de exploración, aplicación y reflexión permitió avan-
zar de lo conceptual a lo práctico, haciendo visible la progresión del aprendizaje. Los
proyectos colaborativos y las bitácoras de autoevaluación demostraron que los estudiantes
no solo comprendieron los fundamentos de la disciplina, sino que también desarrollaron
autonomía, pensamiento crítico y capacidad de autorregulación.

Como señalan Barnett y Jackson (2019), la educación superior debe preparar a los
estudiantes para gestionar la complejidad y la incertidumbre del conocimiento profesio-
nal, promoviendo la reflexión crítica sobre su propio aprendizaje. Desde esta perspectiva,

137

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

la alineación curricular se convierte en un proceso dinámico que articula la formación
técnica con la capacidad de adaptación y el pensamiento ético.

No obstante, también se identificaron algunas brechas y tensiones en el proceso. Una
de ellas fue la necesidad de fortalecer la conexión entre los resultados de aprendizaje
del primer semestre y los desafíos de cursos posteriores, especialmente en la aplicación
sistemática de metodologías ágiles y en la evaluación continua de proyectos.

Esta situación coincide con lo que expone Zabalza (2019), quien plantea que los cu-
rrículos universitarios deben revisarse periódicamente para mantener su coherencia hori-
zontal y vertical, evitando fragmentaciones en la formación por competencias.

Asimismo, se evidenció que la carga académica y el tiempo destinado a la tutoría per-
sonalizada resultaron limitantes para acompañar a todos los grupos con la profundidad
requerida. Estas brechas sugieren la necesidad de reforzar la integración entre docentes
de distintas asignaturas, promoviendo espacios de co-docencia y articulación interdisci-
plinaria.

A nivel institucional, el ejercicio de vincular la práctica con el currículo reafirma la
importancia de comprender la docencia como una práctica reflexiva. La Universidad Es-
tatal de Milagro (UNEMI) (2023) plantea que la alineación curricular no debe entenderse
como un cumplimiento formal, sino como una estrategia para garantizar la calidad acadé-
mica y la pertinencia social de la formación.

En este sentido, el proceso de sistematización se convierte en una herramienta para
revisar críticamente las propias decisiones pedagógicas, reconocer aciertos y proyectar
mejoras. Entre los aprendizajes más significativos derivados de esta reflexión se encuentra
la convicción de que la enseñanza en ingeniería debe integrar la innovación tecnológica
con una mirada humanista y ética, fortaleciendo la relación entre la práctica profesional y
la responsabilidad social.

En conclusión, la experiencia desarrollada estuvo sólidamente alineada con el currícu-
lo de la carrera, contribuyendo a la consolidación de un modelo pedagógico basado en
competencias y en la formación integral del estudiante. Sin embargo, esta reflexión invita
también a mantener una actitud crítica frente al propio diseño curricular, promoviendo
una actualización constante y un diálogo permanente entre las prácticas docentes y las
demandas del entorno profesional.

De este modo, la alineación curricular se convierte en un ejercicio de mejora continua
que reafirma el compromiso docente con la calidad educativa y la innovación formativa,

138

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

principios que sustentan la misión de la UNEMI y el propósito de formar ingenieros
capaces de transformar su realidad desde el conocimiento, la ética y la creatividad.

3.4. Transición hacia la operacionalización estratégica

El cierre del Módulo 3 permitió consolidar la coherencia entre la práctica pedagógi-
ca y el perfil de egreso del Ingeniero en Software, evidenciando cómo las competencias
curriculares y los resultados de aprendizaje se concretan en experiencias formativas que
integran el razonamiento lógico con la calidad técnica del código. Esta articulación entre
teoría, práctica y reflexión sentó las bases para comprender que el aprendizaje de la pro-
gramación no se limita a la ejecución de algoritmos, sino que implica la formación de un
pensamiento estructurado, crítico y ético.

A partir de este marco curricular, el proceso de sistematización se orienta ahora hacia
la operacionalización estratégica de la experiencia, donde las acciones didácticas se
transforman en un entramado de estrategias deliberadas que sustentan el logro de los
resultados formativos.

El siguiente apartado aborda el ecosistema estratégico de la experiencia, entendido
como el conjunto de estrategias nucleares, de soporte y de contingencia que dieron vida
a la propuesta pedagógica. Desde los talleres de análisis algorítmico hasta las sesiones de
refactorización y revisión entre pares, se analizará cómo cada decisión metodológica res-
pondió a un propósito formativo y cómo estas estrategias se articularon para sostener una
“ingeniería didáctica” coherente con las competencias del currículo. Este tránsito marca
el paso de la fundamentación curricular a la descripción operativa de la práctica, abrien-
do un espacio para comprender cómo las acciones concretas en el aula materializan los
principios pedagógicos y consolidan una enseñanza innovadora en ingeniería de software.

3.4.1. Recomendaciones para profundizar

Evitar redundancias: No repetir descripciones de competencias o resultados ya
desarrollados en el Módulo 3; centrarse en cómo las estrategias transforman esos
elementos en acciones concretas.

Mantener claridad en la transición: Usar conectores como “a partir de”, “en esta
nueva fase” o “el siguiente módulo” para reforzar la idea de continuidad narrativa.

139

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Usar el puente como bisagra narrativa: Presentar este texto como un punto de
enlace entre el qué (currículo y resultados) y el cómo (estrategias y métodos), des-
tacando el paso del plano teórico al operativo dentro del proceso de sistematización.

3.4.2. Clase 1: Estrategias núcleo en acción

Introducción a las estrategias núcleo

Las estrategias nucleares representan el eje articulador de toda experiencia educativa
innovadora, pues configuran las acciones que garantizan la coherencia entre la intención
formativa y los resultados alcanzados. En la experiencia desarrollada en la asignatura Al-
goritmos y Lógica de Programación, estas estrategias fueron concebidas no solo como
métodos de enseñanza, sino como estructuras operativas que orientaron el aprendizaje
hacia la comprensión profunda y la calidad profesional. Desde esta perspectiva, la refac-
torización pedagógica, los talleres de análisis algorítmico, el uso de herramientas visuales
de programación y la revisión entre pares constituyeron los pilares que sustentaron el
éxito del proceso formativo.

Estas prácticas materializan el principio de aprendizaje activo, reflexivo y colaborati-
vo, en el que el estudiante asume un rol protagónico en la construcción del conocimiento,
coherente con las recomendaciones de Grover y Pea (2020) y Jara (2018a) sobre la cen-
tralidad de la experiencia significativa en la formación universitaria.

Refactorización pedagógica: mejorar pensando

La primera estrategia nuclear fue la refactorización pedagógica, entendida como un
proceso sistemático de revisión, análisis y mejora del código desde una lógica educativa.
Inspirada en los principios del desarrollo ágil, esta estrategia permitió que los estudiantes
reescribieran sus algoritmos tras la retroalimentación docente, enfocándose en criterios de
legibilidad, modularidad y documentación. De esta manera, el código se convirtió en una
herramienta de reflexión sobre el propio pensamiento, en un ejercicio de metacognición
donde cada corrección implicaba una comprensión más profunda de la lógica subyacente
(R. Zanatta & da Silva, 2022).

Por ejemplo, durante los laboratorios, los estudiantes comparaban sus primeras versio-
nes de pseudocódigos con las versiones refactorizadas, identificando errores de estructura
o repetición innecesaria de instrucciones. Este proceso fomentó el desarrollo de habili-

140

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

dades analíticas y una conciencia sobre la calidad del trabajo técnico, tal como proponen
Ahmad y Hashim (2020) al destacar la refactorización como un medio de aprendizaje
iterativo. En este contexto, la mejora del código se transformó en una metáfora del apren-
dizaje mismo: continuo, autocrítico y orientado a la excelencia.

Talleres de análisis algorítmico: pensar antes de programar

La segunda estrategia clave consistió en la implementación de talleres de análisis al-
gorítmico, diseñados para fortalecer el pensamiento lógico y computacional a partir de
problemas contextualizados. Estos espacios formativos promovieron la capacidad de los
estudiantes para descomponer situaciones reales en sus componentes esenciales, identifi-
car variables relevantes y establecer relaciones lógicas entre ellas antes de proceder a la
codificación.

En la práctica, los talleres se desarrollaron mediante ejercicios guiados donde los es-
tudiantes debían representar gráficamente los pasos de un algoritmo, justificando sus de-
cisiones y secuencias. Esta metodología permitió pasar de la memorización de estructuras
a la comprensión funcional del proceso algorítmico, en coherencia con lo planteado por
Lodi y Martini (2021), quienes sostienen que el pensamiento computacional emerge de
la capacidad de modelar y abstraer la realidad. Además, los talleres sirvieron como es-
pacios de diagnóstico y retroalimentación inmediata, facilitando la detección de errores
conceptuales y el fortalecimiento del razonamiento estructurado.

Uso de herramientas visuales: conectar teoría y práctica

El empleo de herramientas visuales como Flowgorithm y PSeInt constituyó otra es-
trategia nuclear que potenció la comprensión del flujo lógico de los algoritmos. Estas pla-
taformas permitieron visualizar la secuencia de ejecución de los procesos, facilitando la
comprensión de símbolos de decisión, conexión y proceso, lo que ayudó a los estudiantes
a vincular la teoría con la práctica.

Su implementación generó un entorno de aprendizaje interactivo, donde los errores
de diseño se detectaban de forma inmediata, promoviendo la autonomía y la exploración.
Grover y Pea (2020) destacan que el aprendizaje de la programación se fortalece cuando
los entornos visuales permiten al estudiante observar la relación entre el razonamiento
lógico y el comportamiento del programa. En este sentido, el uso de herramientas visuales
no solo mejoró la comprensión conceptual, sino que también incrementó la motivación y

141

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

el compromiso de los participantes, al ofrecer una experiencia tangible del pensamiento
computacional.

Revisión entre pares: aprender con otros

La revisión entre pares (peer code review) se consolidó como una estrategia central
que integró la dimensión técnica con la ética y la colaboración profesional. A través de
este ejercicio, los estudiantes revisaban los códigos de sus compañeros, identificaban erro-
res, proponían mejoras y justificaban sus observaciones, replicando dinámicas propias de
los entornos profesionales de ingeniería de software.

Esta estrategia promovió una cultura de aprendizaje compartido, basada en la crítica
constructiva y la responsabilidad colectiva. Según Petre y van der Hoek (2021), la revisión
de código fomenta la transparencia y la calidad en los procesos de desarrollo, al tiempo
que fortalece las habilidades comunicativas y la autoconfianza técnica. En la experiencia,
las evidencias recolectadas —comentarios escritos, fichas de retroalimentación y versio-
nes revisadas del código— demostraron que los estudiantes no solo mejoraron la calidad
técnica de sus productos, sino también su capacidad de argumentar y justificar decisiones
de diseño, consolidando así una competencia profesional integral.

Importancia de las estrategias núcleo

Estas estrategias núcleo se convirtieron en el motor que articuló la experiencia edu-
cativa, garantizando que el aprendizaje no se redujera a la ejecución técnica, sino que
implicara comprensión, reflexión y mejora continua. La refactorización, los talleres, el
uso de herramientas visuales y la revisión entre pares generaron un ecosistema de apren-
dizaje dinámico y coherente con los principios de la ingeniería de software. En conjunto,
permitieron que los estudiantes se apropiaran del conocimiento a través de la práctica
guiada, el error consciente y la colaboración, asegurando la alineación entre los propósi-
tos curriculares, los resultados de aprendizaje y el perfil de egreso (Yin, 2014); (R. Stake,
1995).

Cierre hacia las estrategias de soporte

La efectividad de estas estrategias nucleares se potenció gracias a un conjunto de es-
trategias de soporte, centradas en la mediación docente, la retroalimentación formativa y
el acompañamiento continuo. Estas estrategias complementarias, que se desarrollarán en

142

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

el siguiente apartado, permitieron sostener el proceso de aprendizaje, garantizando la con-
tinuidad entre la exploración individual, el trabajo colaborativo y la validación curricular.
De este modo, la experiencia consolidó una ingeniería didáctica orientada a la forma-
ción de ingenieros reflexivos, críticos y comprometidos con la calidad del desarrollo de
software.

Recomendaciones para profundizar

Evitar redundancias con los apartados anteriores, priorizando una narrativa cen-
trada en la acción y no en la descripción de resultados.

Mantener claridad en la transición hacia las estrategias de soporte, explicando
cómo estas complementan las estrategias núcleo.

Equilibrar teoría y práctica, asegurando que cada estrategia descrita esté acom-
pañada de ejemplos observables y respaldo conceptual.

Usar lenguaje operativo y reflexivo, destacando cómo las decisiones pedagógicas
se traducen en aprendizajes verificables y sostenibles.

3.4.3. Clase 2: Estrategias de soporte aplicadas

La implementación de estrategias de soporte en una experiencia educativa innovado-
ra constituye un pilar esencial para garantizar la efectividad y sostenibilidad del proceso
formativo. En el marco del ecosistema estratégico, los soportes actúan como estructuras
de acompañamiento que fortalecen las estrategias núcleo, brindando las condiciones pe-
dagógicas, tecnológicas y reflexivas necesarias para que el aprendizaje se consolide de
forma integral (Flick, 2014; (Jara, 2018a)).

Estas estrategias no solo facilitan la comprensión de los contenidos, sino que promue-
ven la autonomía del estudiante, la autorregulación del aprendizaje y la consolidación de
competencias profesionales. En la asignatura Algoritmos y Lógica de Programación,
los soportes implementados se orientaron a integrar la teoría con la práctica, asegurando
que los estudiantes no se limitaran a reproducir estructuras algorítmicas, sino que com-
prendieran su sentido y aplicabilidad en contextos reales de la ingeniería de software.

Entre los principales soportes aplicados se destacan:

143

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

1. Acompañamiento docente reflexivo, enfocado en guiar el proceso de aprendizaje
desde la comprensión conceptual hasta la práctica aplicada.

2. Retroalimentación formativa y continua, dirigida a promover la mejora progre-
siva del código y la autorregulación cognitiva.

3. Uso de herramientas digitales (Flowgorithm y PSeInt), como medios de visuali-
zación y validación de estructuras algorítmicas.

4. Trabajo colaborativo y revisión entre pares, que fortalecieron el aprendizaje
cooperativo y la responsabilidad compartida.

5. Documentación reflexiva del aprendizaje, destinada a consolidar la metacogni-
ción y la capacidad de explicar el propio proceso de desarrollo.

El acompañamiento docente reflexivo fue un soporte esencial que aseguró la cohe-
rencia del proceso formativo. A través de tutorías personalizadas y orientación constante
durante los laboratorios, el docente actuó como mediador cognitivo, ayudando a los estu-
diantes a comprender los errores y a reformular sus estrategias de resolución. Este acom-
pañamiento, entendido como guía constructiva y no directiva, permitió vincular la teoría
con la práctica, generando confianza y autonomía en los estudiantes (Vygotsky, 1978;
Bruner, 1997). La presencia activa del docente facilitó la interiorización de los conceptos,
promoviendo una comprensión profunda del pensamiento algorítmico.

La retroalimentación formativa y continua fue otro soporte clave para la mejo-
ra del aprendizaje. Después de cada entrega de pseudocódigos, los estudiantes recibían
observaciones orientadas no solo a corregir errores, sino a comprender el razonamiento
subyacente. Esta práctica permitió instaurar una cultura de evaluación formativa que, se-
gún Black y Wiliam (2018), fomenta la autoevaluación, la reflexión y la mejora continua.
En este contexto, la retroalimentación funcionó como una herramienta dialógica que for-
taleció la autorregulación y el aprendizaje autónomo, al tiempo que aumentó la calidad de
las producciones de código.

El uso de herramientas digitales como Flowgorithm y PSeInt proporcionó un so-
porte tecnológico que facilitó la visualización de la lógica algorítmica. Estas plataformas
permitieron a los estudiantes observar en tiempo real la ejecución de sus algoritmos, iden-
tificar errores estructurales y reforzar la comprensión de los símbolos de proceso, decisión
y conexión. De acuerdo con García-Peñalvo y Mendes (2018), las herramientas digitales

144

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

aplicadas al pensamiento computacional potencian la representación mental de la secuen-
cia lógica, al vincular lo abstracto con lo visual. Su incorporación en la experiencia per-
mitió consolidar aprendizajes significativos al traducir la lógica en acción.

Por su parte, el trabajo colaborativo y la revisión entre pares (peer code review)
constituyeron un soporte fundamental para fortalecer la dimensión ética y profesional del
aprendizaje. Estas prácticas, inspiradas en enfoques de aprendizaje cooperativo (Johnson
& Johnson, 2019), promovieron la co-construcción del conocimiento y la responsabili-
dad compartida. A través de la revisión mutua de códigos, los estudiantes aprendieron a
argumentar sus decisiones, justificar su estructura y aceptar sugerencias de mejora. Este
proceso no solo reforzó la calidad del producto final, sino que cultivó habilidades sociales
y comunicativas esenciales en la ingeniería de software contemporánea.

Finalmente, la documentación reflexiva del aprendizaje sirvió como soporte me-
tacognitivo, permitiendo a los estudiantes analizar su propio progreso y reconocer los
cambios en su comprensión a lo largo del proceso. Las bitácoras y reportes finales no
solo registraron las versiones del código, sino también las reflexiones sobre los apren-
dizajes alcanzados, errores superados y decisiones tomadas. Esta práctica, en línea con
sch<empty citation>, consolidó una actitud reflexiva y crítica frente al propio hacer, re-
forzando la formación de un profesional capaz de aprender de su experiencia y proyectarla
en contextos futuros.

Los soportes aplicados potenciaron directamente las estrategias núcleo de la expe-
riencia. La refactorización pedagógica se fortaleció con la retroalimentación y el acompa-
ñamiento docente, asegurando la comprensión de los principios de calidad del código. Los
talleres de análisis algorítmico se consolidaron mediante el uso de herramientas digitales
y la orientación guiada, que facilitaron el paso de la teoría a la práctica. Asimismo, la re-
visión entre pares se amplió gracias al trabajo colaborativo y la documentación reflexiva,
promoviendo un aprendizaje ético y compartido. En conjunto, estos soportes generaron
un ambiente de aprendizaje integrado, donde la técnica y la reflexión convergieron en un
proceso continuo de mejora y profesionalización.

La evidencia de su efectividad se reflejó en la calidad de los productos elaborados, la
evolución del razonamiento de los estudiantes y la mejora progresiva en la comprensión
algorítmica y estructural del código. Las observaciones docentes, los informes reflexivos
y las versiones comparativas de los programas evidenciaron un tránsito claro desde la eje-
cución mecánica hacia la comprensión profunda y crítica. Estos resultados confirman que

145

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

los soportes no solo acompañaron el proceso, sino que lo hicieron sostenible, coherente y
transferible a otros contextos educativos de la ingeniería.

Recomendaciones para profundizar

Evitar confundir los soportes con las estrategias núcleo: los primeros habilitan, sos-
tienen y fortalecen el proceso, mientras que las segundas lo estructuran.

Mostrar siempre la función habilitadora de cada soporte y su vínculo con las com-
petencias o resultados de aprendizaje.

Equilibrar la descripción práctica con su fundamento teórico, integrando autores co-
mo Schön (1983), Black y Wiliam (2018) o García-Peñalvo (2018) para sustentar
el papel reflexivo y tecnológico de los soportes.

Cerrar el apartado destacando la sostenibilidad de la innovación educativa gracias a
la interacción entre estrategias núcleo y soportes pedagógicos.

3.4.4. Clase 3: Estrategias de contingencia desplegadas

La incorporación de las contingencias en una sistematización de experiencias edu-
cativas resulta fundamental para comprender la naturaleza dinámica y adaptativa de los
procesos de innovación docente. Mostrar los imprevistos y las estrategias implementadas
para enfrentarlos no debilita la experiencia, sino que la enriquece, pues evidencia la capa-
cidad de resiliencia pedagógica y de toma de decisiones situada del docente (R. E. Stake,
2020); (Yin, 2014).

En contextos complejos como la enseñanza de la programación, donde confluyen fac-
tores tecnológicos, cognitivos y emocionales, la flexibilidad y la capacidad de ajuste se
convierten en componentes esenciales del ecosistema de aprendizaje (Jara, 2018a). En
este sentido, las contingencias no solo son respuestas a las dificultades emergentes, sino
también oportunidades de mejora que fortalecen la coherencia, la equidad y la sostenibi-
lidad del proceso educativo.

Imprevistos enfrentados y contingencias aplicadas

Durante la implementación de la experiencia se presentaron varios desafíos que de-
mandaron respuestas inmediatas y estratégicas. El primero de ellos fue la limitación tec-

146

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

nológica, ya que algunos estudiantes no contaban con equipos adecuados o conectividad
estable para ejecutar herramientas como Flowgorithm y PSeInt.

Para resolverlo, se aplicó una estrategia de flexibilización didáctica, basada en el
principio de accesibilidad educativa (Flick, 2014). Se elaboraron guías impresas, se per-
mitieron entregas diferidas y se promovió el uso de laboratorios compartidos. Esta contin-
gencia permitió mantener la equidad en la participación y garantizar que las condiciones
materiales no se convirtieran en una barrera para el desarrollo de competencias digitales.

Un segundo imprevisto fue la diversidad de niveles de conocimiento previo. Mien-
tras algunos estudiantes tenían experiencia básica en programación, otros se enfrentaban
por primera vez a la lógica algorítmica. Para atender esta heterogeneidad, se implemen-
tó una diferenciación pedagógica progresiva Tomlinson (2017), mediante el diseño de
ejercicios escalonados y tutorías personalizadas.

Además, se promovió la mentoría entre pares, de modo que los estudiantes con ma-
yor dominio apoyaran a sus compañeros, fortaleciendo la colaboración y la construcción
colectiva del conocimiento.

El tercer desafío fue la resistencia inicial al trabajo colaborativo y a la revisión en-
tre pares. Algunos estudiantes mostraban desconfianza al exponer sus códigos o recibir
observaciones. Para contrarrestar esta situación, se aplicaron estrategias de clima socio-
emocional y corresponsabilidad (Johnson & Johnson, 2019), incluyendo dinámicas de
reconocimiento mutuo y la elaboración de un código ético de retroalimentación. Este pro-
ceso transformó la crítica en una herramienta de mejora colectiva y consolidó una cultura
de respeto y aprendizaje compartido.

Un cuarto imprevisto estuvo relacionado con la gestión del tiempo didáctico. Las
fases de refactorización y retroalimentación requerían más tiempo del planificado. En res-
puesta, se aplicó una reorganización curricular flexible (Yin, 2014); (Fullan & Quinn,
2017), priorizando actividades de mayor impacto cognitivo y reestructurando los tiempos
de laboratorio. De este modo, se favoreció la profundización conceptual y la calidad del
trabajo sobre la cantidad de ejercicios completados.

Finalmente, surgió una dificultad en la documentación reflexiva. Muchos estudiantes
tenían escasa experiencia en la escritura técnica y argumentativa. Para abordarla, se desa-
rrollaron microtalleres de escritura académica aplicada, inspirados en Carlino (2005)
y Hyland (2009). Estas sesiones incluyeron ejemplos guiados, rúbricas y ejercicios de
redacción explicativa sobre los algoritmos, fortaleciendo la capacidad metacognitiva y
comunicativa de los participantes.

147

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Resultados garantizados gracias a las contingencias

Las contingencias aplicadas no solo mitigaron los efectos de los imprevistos, sino que
garantizaron la consecución de los resultados de aprendizaje. La flexibilización tecno-
lógica y el acompañamiento personalizado permitieron mantener el desarrollo del pen-
samiento lógico y computacional, evidenciado en la elaboración de algoritmos cohe-
rentes y funcionales incluso en condiciones adversas. La diferenciación pedagógica y la
mentoría entre pares sostuvieron la aplicación de buenas prácticas de programación,
fomentando la autonomía y la responsabilidad en el diseño de código de calidad.

Asimismo, las estrategias de construcción de confianza y revisión colaborativa for-
talecieron la comunicación técnica y el trabajo en equipo, generando un entorno de
cooperación y retroalimentación ética. Por su parte, los talleres de escritura reflexiva con-
solidaron la capacidad de argumentación y documentación profesional, mostrando
que la escritura puede ser una herramienta de pensamiento en la formación en ingeniería
(Carlino, 2005). En conjunto, estas contingencias permitieron mantener la alineación en-
tre las competencias curriculares, los resultados esperados y las evidencias de aprendizaje
significativo.

Reflexión sobre los aprendizajes derivados

El despliegue de estrategias de contingencia dejó aprendizajes valiosos tanto para la
práctica docente como para la gestión pedagógica institucional. En primer lugar, eviden-
ció que la innovación no depende únicamente del diseño inicial, sino de la capacidad de
ajuste continuo y respuesta contextual (Fullan & Quinn, 2017); (Jara, 2018a). En se-
gundo lugar, mostró que los imprevistos pueden convertirse en fuentes de mejora si se
asumen con una lógica reflexiva y colaborativa.

La experiencia permitió al docente reconocer la importancia del acompañamiento
emocional, la escritura reflexiva y la planificación flexible como pilares de sostenibili-
dad pedagógica (Yin, 2014); (Johnson & Johnson, 2019).

Finalmente, este proceso reafirmó que la enseñanza de la programación, más allá de
los contenidos técnicos, implica formar en resiliencia, adaptabilidad y pensamiento críti-
co. Las contingencias gestionadas con coherencia ética y pedagógica fortalecen no solo
los aprendizajes inmediatos, sino también la cultura institucional de innovación y mejora
continua (Tomlinson, 2017); (Flick, 2014); (Petre & van der Hoek, 2021).

148

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.4.5. Clase 4: Arquitectura del ecosistema estratégico

La arquitectura del ecosistema pedagógico diseñado en la experiencia se construyó
bajo una lógica de interdependencia entre estrategias núcleo, soportes y contingencias,
configurando un sistema educativo flexible, reflexivo y sostenible. Cada componente cum-
plió una función específica, pero su verdadero valor emergió de la sinergia que se generó
al interactuar entre sí. Las estrategias núcleo actuaron como el motor estructural del
proceso, orientado al desarrollo del pensamiento lógico, la calidad del código y la éti-
ca profesional; los soportes funcionaron como el andamiaje pedagógico que sostuvo y
potenció dichas estrategias; mientras que las contingencias representaron el mecanismo
adaptativo, que permitió mantener la coherencia y continuidad del aprendizaje ante si-
tuaciones imprevistas (Yin, 2014); (Fullan & Quinn, 2017).

Esta lógica de conexión evidencia que la innovación educativa no se limita a la plani-
ficación inicial, sino que reside en la capacidad del docente para construir un sistema que
aprenda, se ajuste y evolucione con sus propios desafíos.

Relato de la arquitectura del ecosistema

El diseño de este ecosistema partió de la premisa de que la enseñanza de la pro-
gramación requiere un equilibrio entre estructura y flexibilidad. En el núcleo del
proceso se establecieron estrategias activas —como los talleres de análisis algorítmico, la
refactorización del código y la revisión entre pares—, que promovieron la comprensión
conceptual y el aprendizaje autónomo.

Estas estrategias se articularon directamente con los resultados de aprendizaje curricu-
lares, generando un flujo constante entre la teoría y la práctica. A su alrededor, se incorpo-
raron estrategias de soporte —como la retroalimentación formativa, el acompañamiento
docente y el trabajo colaborativo— que aseguraron la continuidad del aprendizaje y fo-
mentaron un clima de confianza y participación (Johnson & Johnson, 2019); (Carlino,
2005).

A su vez, las estrategias de contingencia funcionaron como mecanismos de resilien-
cia ante las limitaciones y desafíos que surgieron. La flexibilización didáctica, la diferen-
ciación pedagógica y la reorganización del tiempo docente se integraron para garantizar la
equidad y la sostenibilidad del proceso. Lejos de ser respuestas aisladas, estas medidas se
convirtieron en acciones estratégicas complementarias que fortalecieron la estructura

149

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

base del ecosistema, demostrando que la adaptabilidad es parte esencial de una pedagogía
innovadora (Tomlinson, 2017); (Flick, 2014).

Esta interdependencia generó un modelo circular de aprendizaje donde cada elemento
retroalimentaba al otro. Las estrategias núcleo impulsaban la comprensión; los soportes
aseguraban su implementación efectiva; y las contingencias protegían la continuidad del
proceso. Así, la experiencia se configuró como un ecosistema autorregulado, capaz de
mantener su coherencia interna y su orientación hacia los resultados de aprendizaje inclu-
so ante condiciones adversas.

Explicación del diagrama visual acompañante

El diagrama del ecosistema representa una estructura circular, inspirada en la metá-
fora del “jardín algorítmico”. En el centro se ubican las estrategias núcleo, simbolizadas
como el tronco o tallo del sistema, ya que son el eje que sostiene el crecimiento forma-
tivo: talleres de análisis algorítmico, laboratorios digitales, refactorización pedagógica,
revisión entre pares y evaluación reflexiva.

Rodeando este núcleo, las estrategias de soporte aparecen como las raíces que nu-
tren y estabilizan el proceso: acompañamiento docente, retroalimentación continua, tra-
bajo colaborativo y documentación reflexiva. Estas raíces garantizan la transferencia de
nutrientes —en términos pedagógicos, de conocimientos, valores y habilidades— entre el
suelo conceptual y la práctica formativa.

Finalmente, en la capa exterior del diagrama se encuentran las estrategias de con-
tingencia, representadas como hojas y ramas flexibles que responden a los cambios del
entorno: flexibilización didáctica, diferenciación por niveles, gestión del tiempo y forta-
lecimiento de la escritura técnica. Su disposición periférica simboliza la capacidad del
ecosistema para adaptarse y mantener su vitalidad ante las inclemencias del contexto edu-
cativo.

En conjunto, el diagrama no solo ilustra la organización funcional del sistema, sino
también su carácter orgánico, mostrando cómo cada parte crece y se transforma a partir
de la interacción constante con las demás. Este enfoque refleja lo que Fullan y Quinn
(2017) denominan “coherencia adaptativa”, entendida como la capacidad de los sistemas
educativos de mantenerse estables mientras se transforman.

150

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

3.4.6. Síntesis final: El ecosistema como sistema vivo

El ecosistema pedagógico construido en esta experiencia se consolidó como un sis-
tema vivo, dinámico y en equilibrio continuo, donde la enseñanza y el aprendizaje se
retroalimentan de manera recíproca. Las estrategias núcleo ofrecieron estructura y propó-
sito; los soportes brindaron estabilidad y acompañamiento; y las contingencias aportaron
resiliencia y capacidad de respuesta. En su conjunto, estos componentes conformaron un
entramado coherente que permitió sostener los resultados de aprendizaje y fortalecer las
competencias profesionales del futuro Ingeniero en Software.

Esta arquitectura demuestra que la innovación educativa efectiva surge de la inter-
conexión entre planificación, acción y reflexión. Enseñar programación se transformó
así en un ejercicio de diseño sistémico, donde cada decisión docente —por mínima que
parezca— contribuye a un propósito mayor: formar profesionales críticos, éticos y creati-
vos. Como en un jardín algorítmico, cada estrategia fue una semilla que, al nutrirse de los
soportes y resistir las contingencias, floreció en un aprendizaje sostenible y significativo
(Jara, 2018a); (Grover & Pea, 2020); (M. Zanatta & da Silva, 2022).

3.5. Transición hacia la evaluación

Tras el desarrollo del ecosistema estratégico, conformado por estrategias núcleo, de
soporte y de contingencia, la experiencia pedagógica en Algoritmos y Lógica de Progra-
mación alcanzó un nivel de coherencia integral entre la teoría, la práctica y la reflexión.
Estas estrategias, orientadas al fortalecimiento del pensamiento lógico, la calidad del códi-
go y la colaboración ética, permitieron construir un proceso formativo dinámico, inclusivo
y contextualizado. Concluida esta fase operativa, el siguiente paso consiste en evaluar de
manera sistemática su efectividad, a fin de comprender en qué medida dichas accio-
nes contribuyeron al logro de los resultados de aprendizaje y a la consolidación de las
competencias del perfil de egreso del Ingeniero en Software.

En este sentido, el Módulo 5 marca el tránsito desde la descripción de la práctica ha-
cia su análisis evaluativo, donde los instrumentos, indicadores y evidencias adquieren un
papel central. Evaluar las estrategias implementadas no se limita a medir logros cuanti-
tativos, sino a validar la coherencia, pertinencia y sostenibilidad del modelo pedagógico
construido.

151

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Como plantean Yin (2014) y Jara (2018a), la evaluación otorga validez, credibilidad
y transferibilidad a las experiencias innovadoras, transformando la práctica en conoci-
miento sistematizado y útil para otros contextos educativos. Así, la evaluación se presenta
no como un cierre, sino como una oportunidad para aprender de la experiencia, fortale-
cer la toma de decisiones docentes y proyectar mejoras continuas en el currículo y en las
metodologías de enseñanza de la programación.

3.5.1. Recomendaciones para profundizar

Mantener claridad en la transición, evitando repetir descripciones del ecosistema
estratégico y centrando el foco en la lógica evaluativa.

Enfatizar que la evaluación es una extensión natural del proceso de sistematiza-
ción, no una etapa aislada.

Presentar los instrumentos e indicadores como puentes entre la práctica y la evi-
dencia, mostrando cómo permiten medir, comprender y validar los logros del pro-
ceso.

Usar este puente como bisagra narrativa, conectando las acciones implementadas
con los mecanismos que garantizarán su análisis riguroso y su impacto comproba-
ble.

3.5.2. Clase 1: Instrumentos de evaluación aplicados

La evaluación constituye una dimensión clave en toda experiencia educativa innova-
dora, pues permite otorgar validez, credibilidad y transferibilidad a los procesos formati-
vos (R. Stake, 1995). En el marco de esta sistematización, los instrumentos de evaluación
se configuraron como herramientas esenciales para recoger evidencias del desarrollo de
competencias cognitivas, técnicas y reflexivas, articulando así el ecosistema pedagógico
previamente descrito.

Tal como plantea Casanova (1999), la evaluación formativa debe concebirse como un
proceso de acompañamiento y mejora, más que como un simple juicio de resultados. En
este sentido, los instrumentos aplicados en la experiencia no solo midieron el logro de los
aprendizajes, sino que también favorecieron la reflexión, la autoevaluación y la mejora
continua del proceso educativo.

152

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Los instrumentos de evaluación utilizados fueron cinco: rúbricas de observación y
evaluación del código, bitácoras reflexivas del estudiante, registros de revisión entre pa-
res (Peer Review Logs), entrevistas o cuestionarios de retroalimentación y portafolio de
evidencias.

Cada uno de ellos aportó una perspectiva complementaria del aprendizaje, permitien-
do triangular la información recogida y consolidar una visión integral del proceso. Esta
diversidad instrumental, inspirada en los planteamientos de Scriven (1991) sobre la eva-
luación como juicio fundamentado, garantizó que las valoraciones no se limitaran a un
enfoque técnico, sino que integraran también las dimensiones ética, comunicativa y me-
tacognitiva del aprendizaje.

Las rúbricas de observación y evaluación del código fueron diseñadas para valorar
indicadores técnicos asociados a la legibilidad, modularidad, coherencia lógica y docu-
mentación de los algoritmos elaborados por los estudiantes. Su aplicación se realizó tanto
en sesiones de laboratorio como en los espacios de revisión entre pares, permitiendo una
evaluación objetiva y transparente.

Estas rúbricas se convirtieron en instrumentos formativos al orientar la mejora con-
tinua y la autoexigencia profesional, tal como propone Casanova (1999) al destacar que
la evaluación debe ser también una guía para el aprendizaje. Las evidencias generadas
—informes rubricados y comparaciones entre versiones de código— demostraron avan-
ces progresivos en la calidad técnica y conceptual del trabajo estudiantil.

Las bitácoras reflexivas del estudiante se implementaron como un espacio de autorre-
gulación y metacognición. En ellas, los participantes registraron sus percepciones sobre
los desafíos enfrentados, las decisiones tomadas y las estrategias de resolución aplicadas.

Según Carlino (2005), la escritura académica permite transformar la práctica en co-
nocimiento, al hacer visible el proceso de pensamiento que subyace al aprendizaje. Estas
bitácoras produjeron evidencias narrativas del desarrollo cognitivo y reflexivo, mostrando
cómo los estudiantes vinculaban la teoría algorítmica con su práctica técnica, fortalecien-
do así la comprensión y la autonomía.

Los registros de revisión entre pares (Peer Review Logs) funcionaron como un medio
de evaluación colaborativa y ética. En ellos, los estudiantes documentaron comentarios
técnicos, observaciones constructivas y sugerencias de mejora sobre el trabajo de sus
compañeros.

Su aplicación sistemática promovió la comunicación profesional, la empatía y la res-
ponsabilidad compartida. En línea con Johnson y Johnson (2019), este tipo de evaluación

153

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

fomenta el aprendizaje cooperativo y la conciencia crítica, al situar al estudiante en un
rol activo de coevaluador. Las fichas de revisión se constituyeron en evidencias del desa-
rrollo de habilidades comunicativas, éticas y técnicas, esenciales en la formación de un
ingeniero en software.

Las entrevistas y cuestionarios de retroalimentación complementaron la evaluación
desde una perspectiva perceptiva, al recoger la opinión de los estudiantes sobre la utilidad
y efectividad de las estrategias pedagógicas implementadas. Su aplicación al cierre de ca-
da unidad permitió ajustar tiempos, metodologías y recursos, fortaleciendo la pertinencia
del proceso.

Scriven (1991) sostiene que toda evaluación debe fundamentarse en juicios argumen-
tados, basados tanto en resultados como en percepciones; por ello, este instrumento con-
tribuyó a consolidar la validez interpretativa del estudio, integrando la voz de los partici-
pantes en la valoración global de la experiencia.

El portafolio de evidencias operó como un instrumento integrador que reunió los pro-
ductos elaborados a lo largo de la experiencia: pseudocódigos, diagramas de flujo, ver-
siones refactorizadas, informes y reflexiones finales. Este recurso permitió visualizar la
evolución del aprendizaje de manera longitudinal, mostrando la relación entre la com-
prensión conceptual, la aplicación práctica y la reflexión técnica. De acuerdo con Yin
(2014), la triangulación de fuentes y evidencias fortalece la confiabilidad del estudio de
caso; así, el portafolio se constituyó en una base empírica sólida para validar la coherencia
entre estrategias, resultados y competencias.

La pertinencia de estos instrumentos radicó en su alineación con los objetivos for-
mativos y las competencias del perfil de egreso. Tal como subraya Jara (2018b), en la
sistematización de experiencias la evaluación no debe entenderse como cierre, sino como
una fase de reflexión y aprendizaje que otorga sentido al proceso vivido.

En este caso, los instrumentos aplicados permitieron capturar tanto el desarrollo téc-
nico como la transformación pedagógica y ética de los estudiantes, generando una eva-
luación integral y contextualizada. Además, la combinación de herramientas cuantitativas
y cualitativas garantizó la validez metodológica y la riqueza interpretativa del análisis (R.
Stake, 1995); (Biggs, 2014).

En síntesis, los instrumentos de evaluación aplicados no solo cumplieron una fun-
ción valorativa, sino también formativa y reconstructiva. A través de ellos, fue posible
demostrar la coherencia entre la planificación estratégica y los resultados obtenidos, for-
taleciendo la credibilidad del proceso y la transferibilidad de la experiencia.

154

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Tal como afirman Fullan y Quinn (2017), una innovación educativa alcanza sosteni-
bilidad cuando incorpora la evaluación como parte orgánica del aprendizaje institucional.
En este sentido, la aplicación sistemática y reflexiva de los instrumentos otorgó validez al
ecosistema pedagógico desarrollado, convirtiéndolo en un modelo replicable para futuras
prácticas de enseñanza en el ámbito de la ingeniería de software.

3.5.3. Recomendaciones para profundizar

Asegurar que cada instrumento se describa con claridad, explicando qué evalúa,
cómo se aplicó y qué tipo de evidencia generó.

Evitar la redundancia entre la descripción del instrumento y la presentación de las
evidencias: priorizar la función y el aporte específico de cada uno.

Destacar cómo los instrumentos se complementan entre sí para garantizar una eva-
luación holística y triangulada.

Mantener el equilibrio entre la descripción práctica (cómo se usaron) y el funda-
mento teórico (por qué son pertinentes).

Usar este puente como transición hacia el análisis de resultados y las interpretacio-
nes globales del proceso evaluativo.

3.5.4. Clase 2: Indicadores de evaluación y criterios de validez

Reflexionar sobre los indicadores de evaluación es un paso fundamental dentro del
proceso de sistematización, pues permite vincular la evidencia empírica del aprendizaje
con los propósitos formativos de la experiencia. Como señalan Scriven (1991) y Casanova
(1999), los indicadores constituyen los referentes observables que traducen las competen-
cias y resultados esperados en manifestaciones concretas del desempeño. En este sentido,
su función no se limita a medir, sino a dar sentido y dirección a la evaluación formati-
va, garantizando que las decisiones pedagógicas se sustenten en juicios fundamentados
y coherentes con el perfil de egreso (Biggs, 2014); (R. Stake, 1995). En la experiencia
desarrollada en Algoritmos y Lógica de Programación, los indicadores se organizaron en
tres dimensiones complementarias: cognitivo–conceptual, técnico–procedimental y refle-
xivo–colaborativa, articulando el saber, el saber hacer y el saber reflexionar del futuro
Ingeniero en Software.

155

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Indicadores aplicados

1. Dimensión cognitivo–conceptual:

Este indicador midió la comprensión de la lógica algorítmica, la capacidad de aná-
lisis y la abstracción de problemas reales. Evaluó la identificación de variables,
estructuras condicionales y secuencias coherentes dentro de la resolución de ejer-
cicios. Se aplicó mediante rúbricas y análisis de pseudocódigos elaborados por los
estudiantes ediagramas de flujo correctamente estructurados y algoritmos que de-
mostraron una comprensión progresiva del razonamiento lógico y la traducción de
la teoría a la práctica (Grover Pea, 2020).

2. Dimensión técnico–procedimental:

Evaluó la aplicación de buenas prácticas de programación y la calidad del código
en términos de legibilidad, modularidad, documentación y eficiencia. Este indicador
se aplicó principalmente durante las fases de refactorización y revisión entre pares,
utilizando rúbricas específicas basadas en estándares profesionales (R. Zanatta &
da Silva, 2022). Las evidencias incluyeron versiones comparativas de código antes
y después de la optimización, mostrando mejoras en la estructura y en la aplicación
de principios de calidad como DRY y KISS. Este indicador permitió observar el
paso del aprendizaje inicial hacia la competencia técnica autónoma.

3. Dimensión reflexivo–colaborativa:

Midió la capacidad de autorregulación, la participación en procesos de revisión en-
tre pares y la argumentación ética y profesional de las decisiones técnicas. Se aplicó
mediante bitácoras reflexivas y registros de revisión (Peer Review Logs), donde los
estudiantes documentaron sus observaciones y aprendizajes colaborativos (Johnson
& Johnson, 2019). Las evidencias obtenidas incluyeron fichas de retroalimentación
mutua, comentarios técnicos y reflexiones escritas sobre el proceso de mejora. Este
indicador permitió valorar la dimensión social y ética del aprendizaje, fortaleciendo
la responsabilidad y la comunicación profesional.

4. Dimensión metacognitiva y de transferencia:

Evaluó la capacidad de los estudiantes para explicar sus razonamientos, justificar
decisiones de programación y transferir lo aprendido a nuevos contextos o proble-
mas. Se aplicó a través de entrevistas y portafolios finales, donde se analizaron

156

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

los informes de laboratorio y las reflexiones sobre la evolución personal (Carlino,
2005); (Hyland, 2009). Las evidencias mostraron cómo los estudiantes fueron capa-
ces de conectar su comprensión conceptual con la aplicación técnica, proyectando
aprendizajes hacia escenarios de ingeniería reales.

En conjunto, estos indicadores permitieron observar una progresión integral del apren-
dizaje, desde la comprensión conceptual hasta la aplicación profesional, validando la co-
herencia entre enseñanza, evaluación y resultados.

Criterios de validez adoptados

La solidez del proceso evaluativo se sustentó en la aplicación de criterios rigurosos
de validez y credibilidad. En primer lugar, se garantizó la validez de contenido, aseguran-
do que los instrumentos evaluaran aspectos esenciales del pensamiento lógico, la calidad
técnica del código y la reflexión ética (Casanova, 1999). La validez de constructo se garan-
tizó mediante la alineación entre competencias, indicadores y resultados de aprendizaje,
siguiendo los principios de alineación constructiva propuestos por Biggs (2014). Asimis-
mo, se aplicó validez interna a través de la triangulación de datos —rúbricas, bitácoras,
revisiones y portafolios—, lo que permitió contrastar distintas fuentes y perspectivas del
mismo fenómeno.

La validez externa se alcanzó al comparar los hallazgos con estándares internacionales
de formación en ingeniería de software (M. Zanatta & da Silva, 2022) y con modelos de
enseñanza reflexiva (Yin, 2014). Finalmente, la credibilidad y confiabilidad del proceso
se reforzaron mediante la aplicación transparente y sistemática de los instrumentos, ga-
rantizando que los resultados representaran de manera fiel el aprendizaje alcanzado y su
pertinencia curricular (R. Stake, 1995).

Síntesis final

Los indicadores y criterios de validez aplicados en esta experiencia permitieron trans-
formar la evaluación en un proceso reflexivo, formativo y éticamente responsable. Al
integrar medición técnica, análisis conceptual y reflexión metacognitiva, la evaluación
trascendió la simple calificación para convertirse en un espacio de aprendizaje y mejora
continua (Scriven, 1991); (Fullan & Quinn, 2017). Gracias a estos indicadores, fue posible
evidenciar la coherencia entre la práctica docente, las competencias del perfil de egreso y

157

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

los resultados esperados, otorgando al proceso de sistematización validez, credibilidad y
transferibilidad hacia otros contextos educativos de ingeniería.

Recomendaciones para profundizar

Mantener una correspondencia explícita entre indicadores y competencias para re-
forzar la coherencia curricular.

Describir con claridad cómo los criterios de validez se aplican en la práctica, no
solo como conceptos teóricos.

Evitar generalizaciones: cada indicador debe ser operativo, observable y medible.

Integrar la voz de los estudiantes como parte de la validez interpretativa, fortale-
ciendo la evaluación participativa.

Utilizar los indicadores no solo para valorar resultados, sino para retroalimentar y
ajustar estrategias en futuros ciclos formativos.

3.5.5. Clase 3: Análisis preliminar de evidencias

Durante la experiencia educativa desarrollada en la asignatura Algoritmos y Lógica
de Programación, se recopilaron múltiples tipos de evidencias que permitieron analizar
el proceso formativo de manera integral, abarcando las dimensiones conceptual, técnica
y reflexiva. En el plano técnico, las rúbricas de evaluación del código generaron registros
objetivos sobre los productos elaborados por los estudiantes —pseudocódigos, diagramas
de flujo y versiones refactorizadas—, en los que se evidenció una progresiva mejora en
la legibilidad, coherencia y documentación. Paralelamente, las bitácoras del estudiante y
los informes de laboratorio ofrecieron evidencias reflexivas que dieron cuenta del proceso
interno de aprendizaje, las decisiones tomadas y la capacidad de autorregulación.

Las revisiones entre pares aportaron evidencias colaborativas que mostraron cómo la
crítica constructiva y la comunicación técnica fortalecieron el trabajo ético y cooperati-
vo. Finalmente, las entrevistas y cuestionarios permitieron obtener evidencias perceptivas
sobre la pertinencia y utilidad de las estrategias pedagógicas. En conjunto, estas fuentes
configuraron un corpus diverso y complementario que permitió comprender el aprendiza-
je como un fenómeno multidimensional (Casanova, 1999); (R. Stake, 1995).

158

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

El método de organización y análisis de las evidencias se desarrolló bajo un enfo-
que mixto y triangulado, combinando procedimientos cuantitativos y cualitativos (Yin,
2014). En una primera etapa, se clasificaron las evidencias conforme a las tres dimensio-
nes evaluativas: cognitivo–conceptual, técnico–procedimental y reflexivo–colaborativa.
Esta categorización permitió establecer relaciones entre los indicadores de desempeño y
las competencias esperadas del perfil de egreso.

Posteriormente, se aplicó un análisis descriptivo de los resultados rubricados y de los
portafolios estudiantiles para identificar tendencias en la calidad del código y el dominio
de las estructuras algorítmicas. Paralelamente, se desarrolló un análisis de contenido sobre
las bitácoras, revisiones entre pares y entrevistas, utilizando procedimientos de codifica-
ción temática para detectar patrones de razonamiento, actitudes colaborativas y niveles
de autorreflexión (Miles, Huberman Saldaña, 2018). La triangulación de estos datos, tal
como proponen R. Stake (1995) y Flick (2014), permitió contrastar distintas perspectivas
del mismo proceso, reforzando la credibilidad y consistencia de los hallazgos obtenidos.

Los hallazgos preliminares revelaron avances significativos en las tres dimensiones
de evaluación. En la dimensión cognitivo–conceptual, los estudiantes demostraron una
mayor capacidad para analizar problemas y abstraerlos en estructuras algorítmicas, iden-
tificando variables relevantes y secuencias lógicas adecuadas. En la dimensión técni-
co–procedimental, se constató una mejora en la calidad del código: los participantes apli-
caron principios de programación limpia, refactorización coherente y documentación es-
tandarizada, evidenciando dominio progresivo de los entornos Flowgorithm y PSeInt (R.
Zanatta & da Silva, 2022).

Finalmente, en la dimensión reflexivo–colaborativa, se destacó el fortalecimiento del
trabajo en equipo, la retroalimentación entre pares y la argumentación ética de las decisio-
nes técnicas. Estas transformaciones, observadas en el conjunto de evidencias, confirman
que el aprendizaje no se limitó a la adquisición de habilidades técnicas, sino que se ex-
pandió hacia una comprensión crítica y profesional de la práctica ingenieril (Johnson &
Johnson, 2019); (Biggs, 2014).

Los ejemplos ilustrativos proporcionan una mirada concreta sobre cómo las estrategias
implementadas se tradujeron en logros observables. En los talleres de análisis algorítmico,
por ejemplo, los estudiantes pasaron de resolver ejercicios aritméticos básicos a modelar
problemas contextualizados, sustituyendo operaciones numéricas simples por expresio-
nes con variables significativas como “área = base * altura”. En las sesiones de laborato-
rio, utilizaron Flowgorithm y PSeInt para construir diagramas de flujo y detectar errores

159

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

lógicos, desarrollando autonomía en la depuración del código. Durante los procesos de
refactorización pedagógica, mejoraron versiones iniciales de sus programas mediante in-
dentación, comentarios explicativos y la aplicación de principios DRY y KISS, mostrando
comprensión de la sostenibilidad del código.

Finalmente, en las revisiones entre pares, los estudiantes ofrecieron retroalimentación
constructiva sustentada en rúbricas técnicas, fortaleciendo su pensamiento crítico y su
sentido de responsabilidad compartida. Estos ejemplos, más allá de ilustrar logros indivi-
duales, reflejan la consolidación de un ecosistema de aprendizaje participativo y reflexivo
(Carlino, 2005); (Jara, 2018a).

En síntesis, el análisis preliminar de las evidencias permitió constatar la coherencia
entre los instrumentos aplicados, los indicadores definidos y los resultados de aprendizaje
alcanzados. La combinación de evidencias técnicas, reflexivas, colaborativas y perceptivas
posibilitó una comprensión profunda de la experiencia educativa, asegurando la validez y
transferibilidad de los hallazgos (Scriven, 1991); (Yin, 2014). Estos resultados iniciales no
solo validan la eficacia de las estrategias pedagógicas implementadas, sino que también
preparan el terreno para una reflexión más amplia sobre los criterios de validez, sesgos y
sostenibilidad del proceso evaluativo. En esta línea, el análisis de evidencias se consolida
como una etapa esencial en la sistematización, al permitir que la innovación educativa se
traduzca en conocimiento compartido, verificable y replicable.

3.5.6. Clase 4: Reflexión sobre validez, sesgos y factibilidad

Estrategias aplicadas para asegurar validez

La validez del proceso evaluativo se aseguró mediante la implementación de estrate-
gias metodológicas orientadas a garantizar la coherencia, credibilidad y consistencia de
los resultados. En primer lugar, se aplicó la triangulación de fuentes y métodos (R.
Stake, 1995); (Yin, 2014), combinando evidencias provenientes de rúbricas, bitácoras re-
flexivas, registros de revisión entre pares, entrevistas y portafolios. Esta convergencia de
datos permitió contrastar distintas perspectivas del aprendizaje y fortalecer la confiabili-
dad de los hallazgos.

Además, se cuidó la validez de contenido al alinear los instrumentos con los indicado-
res de desempeño y las competencias del perfil de egreso, garantizando que la evaluación
abordara los componentes esenciales del pensamiento lógico, la calidad del código y la
reflexión profesional ((Casanova, 1999); (Biggs, 2014).

160

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Del mismo modo, se consideró la validez de constructo, asegurando que las catego-
rías de análisis reflejaran fielmente las dimensiones cognitivo–conceptual, técnico–procedimental
y reflexivo–colaborativa. La revisión entre pares docentes y la retroalimentación forma-
tiva fueron mecanismos complementarios que validaron las interpretaciones y aseguraron
una lectura plural de los resultados.

Finalmente, se fortaleció la credibilidad y transferibilidad mediante la documenta-
ción sistemática de las decisiones metodológicas y la trazabilidad de las evidencias, de
acuerdo con los criterios de calidad propuestos por Yin (2014) y Maxwell (2013). En
conjunto, estas estrategias consolidaron una evaluación válida, transparente y coherente
con los objetivos formativos del programa.

Sesgos identificados y cómo se mitigaron

A lo largo del proceso se identificaron varios tipos de sesgos potenciales que podían
afectar la objetividad de los resultados. El sesgo del observador fue uno de los primeros
reconocidos, mitigado mediante la aplicación de rúbricas estandarizadas y la revisión
cruzada entre docentes, lo que permitió mantener criterios uniformes y evitar valoracio-
nes subjetivas.

Asimismo, el sesgo de autopercepción en las bitácoras y cuestionarios de los estu-
diantes se controló mediante guías de autorreflexión estructuradas y la triangulación
con evidencias técnicas y colaborativas (R. Stake, 1995); (Yin, 2014).

Otro sesgo relevante fue el de confirmación, que surgió durante el análisis de resul-
tados al contrastar datos empíricos con hipótesis previas. Para mitigarlo, se promovió la
contrastación constante entre los hallazgos y los objetivos curriculares, priorizando la
interpretación inductiva frente a la deducción preconcebida (Maxwell, 2013).

También se detectó el sesgo de participación, asociado a diferencias en la implicación
estudiantil. Este se redujo ofreciendo múltiples canales y tiempos de recolección de
información, garantizando la inclusión y la diversidad de perspectivas. En conjunto, estas
acciones metodológicas reforzaron la validez interna y la credibilidad interpretativa
del proceso, demostrando que el reconocimiento y manejo consciente de los sesgos es
una condición indispensable para una sistematización rigurosa y honesta.

161

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Dificultades de factibilidad

Durante la evaluación se enfrentaron diversas dificultades que comprometieron la fac-
tibilidad del proceso, principalmente relacionadas con los recursos tecnológicos, el tiempo
disponible y la participación activa del estudiantado. En primer lugar, las limitaciones de
conectividad y el acceso desigual a equipos informáticos afectaron la implementación si-
multánea de ciertos instrumentos digitales. Para contrarrestar esta situación, se diseñaron
materiales impresos y actividades offline, asegurando la continuidad pedagógica y la
equidad en la participación (Patton, 2002).

Otra dificultad importante fue la restricción temporal derivada de la carga académi-
ca de los estudiantes y de la complejidad de las actividades prácticas. Este obstáculo se
superó mediante la reorganización del cronograma, priorizando la profundidad analí-
tica sobre la cantidad de tareas. Finalmente, la resistencia inicial al trabajo reflexivo y
colaborativo limitó en un inicio la riqueza de las evidencias metacognitivas.

Para abordarlo, se implementaron espacios de acompañamiento docente y se pro-
movió una cultura de confianza y corresponsabilidad ética. Estas soluciones demostraron
que la factibilidad no solo depende de los recursos disponibles, sino también de la fle-
xibilidad pedagógica y la capacidad adaptativa del equipo docente (Fullan & Quinn,
2017).

Aprendizajes de esta reflexión

El proceso reflexivo sobre validez, sesgos y factibilidad dejó aprendizajes valiosos
que fortalecieron tanto la práctica pedagógica como la comprensión de la evaluación co-
mo proceso formativo. En primer lugar, se reafirmó que la validez no se reduce a la
precisión técnica de los instrumentos, sino que se construye desde la coherencia entre
los objetivos, las estrategias y los resultados obtenidos. Igualmente, se consolidó la im-
portancia de la triangulación metodológica como principio ético y científico que otorga
equilibrio, profundidad y credibilidad a los hallazgos (Yin, 2014); (R. Stake, 1995).

Se aprendió también que los sesgos son inevitables, pero su reconocimiento y tra-
tamiento transparente fortalecen la integridad del proceso investigativo (Maxwell, 2013).
Del mismo modo, se evidenció que las limitaciones de factibilidad pueden convertirse en
oportunidades de innovación cuando se gestionan con creatividad y sentido pedagógico.
Finalmente, esta reflexión permitió comprender que evaluar no es solo medir resulta-
dos, sino comprender procesos, reconocer avances y transformar la práctica docente en

162

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

conocimiento compartido. En conjunto, estos aprendizajes consolidaron una visión más
ética, reflexiva y sostenible de la evaluación educativa, coherente con los principios de la
innovación y la mejora continua (Patton, 2002); (Jara, 2018a).

3.6. Transición hacia la reflexión final

La evaluación integral de la experiencia pedagógica en Algoritmos y Lógica de Pro-

gramación permitió confirmar logros significativos y reconocer con madurez las limita-
ciones inherentes a todo proceso innovador. Los resultados mostraron avances sustancia-
les en la comprensión del pensamiento computacional, la calidad técnica del código y el
fortalecimiento del trabajo colaborativo, evidenciando un desarrollo integral del perfil del
Ingeniero en Software.

Sin embargo, también se identificaron restricciones tecnológicas, temporales y comu-
nicativas que condicionaron parcialmente la profundidad de ciertos análisis y pusieron
de relieve la necesidad de fortalecer la competencia reflexiva y la gestión del tiempo en
futuras implementaciones. Estos hallazgos, más que debilidades, se constituyen en opor-
tunidades de mejora que enriquecen la comprensión del proceso evaluado.

Con base en estos resultados, el proceso de sistematización se abre ahora hacia una
etapa de reflexión crítica y proyección pedagógica. Esta nueva sección no busca solo
cerrar el ciclo evaluativo, sino interpretar los aprendizajes obtenidos y explorar su po-
tencial de transferibilidad hacia otros contextos formativos. La mirada reflexiva permitirá
comprender cómo los logros alcanzados y las limitaciones enfrentadas se transforman
en conocimiento útil para la mejora continua, la innovación sostenida y la construcción
colectiva de una práctica docente más consciente y significativa.

En este sentido, la transición hacia la reflexión final marca el paso de la verificación
empírica a la comprensión profunda, invitando a analizar la experiencia no como un punto
de llegada, sino como un punto de partida para futuras transformaciones educativas.

Recomendaciones para profundizar

Evita redundar en la descripción de logros o limitaciones ya desarrollados en el
módulo anterior; resume solo lo necesario para mantener la continuidad narrativa.

Mantén un tono de apertura y expectativa, preparando al lector para un análisis
más interpretativo y reflexivo en el siguiente módulo.

163

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Usa conectores de transición (“a partir de estos hallazgos”, “con base en los resul-
tados evaluados”, “en esta nueva etapa. . . ”) que evidencien el cambio de enfoque
de la evaluación hacia la reflexión crítica.

Destaca la proyección futura de la experiencia: cómo los aprendizajes servirán
para transformar otras prácticas o contextos educativos.

3.6.1. Clase 1: Reflexión crítica sobre la experiencia

La experiencia pedagógica desarrollada en la asignatura Algoritmos y Lógica de Pro-
gramación aportó contribuciones sustantivas tanto al aprendizaje de los estudiantes como
a la reflexión docente e institucional. En el plano formativo, consolidó un modelo de en-
señanza que integró el pensamiento lógico, la práctica técnica y la reflexión ética como
dimensiones complementarias del aprendizaje. Este enfoque, sustentado en la articula-
ción de estrategias núcleo, de soporte y de contingencia, permitió transformar el aula
en un ecosistema activo, donde la experimentación, la colaboración y la autorregulación
fueron parte esencial del proceso (Grover & Pea, 2020); (Jara, 2018a).

Además, la aplicación de una evaluación continua y triangulada, basada en rúbricas,
portafolios y revisiones entre pares, demostró que la evaluación puede convertirse en una
herramienta de comprensión profunda más que en un mecanismo de control (Casanova,
1999); (R. Stake, 1995). En el plano institucional, la experiencia aportó un modelo de in-
novación educativa coherente con el perfil de egreso del Ingeniero en Software, ofreciendo
una ruta replicable para integrar currículo, evaluación y formación ética profesional.

Sin embargo, el desarrollo de la experiencia también enfrentó tensiones y resistencias
que enriquecieron el proceso reflexivo. Una de las más notorias fue la resistencia inicial
de los estudiantes al trabajo colaborativo y a la revisión entre pares, debido al temor a la
crítica o a la exposición de sus errores. Esta dificultad se fue transformando mediante la
creación de un clima de confianza, orientado al respeto y la mejora colectiva (Johnson &
Johnson, 2019).

Asimismo, se identificaron desafíos vinculados a la autorreflexión y la escritura téc-
nica, especialmente en las primeras etapas, donde la argumentación de decisiones algo-
rítmicas resultaba limitada. A nivel operativo, las restricciones tecnológicas y de tiem-
po condicionaron el uso simultáneo de herramientas digitales y la revisión exhaustiva
de productos, obligando a adoptar medidas de flexibilización pedagógica (Flick, 2014).
Finalmente, la diversidad de niveles de conocimiento previo generó brechas de ritmo y

164

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

comprensión, lo que demandó estrategias diferenciadas y acompañamiento docente per-
manente (Tomlinson, 2017). Estas tensiones, lejos de debilitar el proceso, se convirtieron
en catalizadores de innovación y en aprendizajes compartidos sobre la gestión de la diver-
sidad y la resiliencia pedagógica.

Los aprendizajes derivados del proceso fueron múltiples y se expresaron en los nive-
les personal, colectivo e institucional. En el plano personal, los docentes fortalecieron su
capacidad para reflexionar críticamente sobre su práctica, reconociendo la necesidad de
equilibrar lo técnico con lo humano en la enseñanza de la programación. Esta reflexión
permitió comprender que la innovación no se trata únicamente de incorporar herramien-
tas, sino de transformar las relaciones pedagógicas y de promover la autonomía del
estudiante como protagonista de su aprendizaje (Carlino, 2005).

En el nivel colectivo, los estudiantes desarrollaron habilidades comunicativas, colabo-
rativas y éticas, aprendiendo a valorar la revisión entre pares como un ejercicio de con-
fianza, diálogo y mejora continua. A nivel institucional, la experiencia aportó evidencia
concreta de que es posible articular metodologías activas, evaluación formativa y acompa-
ñamiento reflexivo en carreras de ingeniería, consolidando un modelo educativo alineado
con el perfil profesional y las demandas tecnológicas contemporáneas (Fullan & Quinn,
2017); (Biggs, 2014)). En conjunto, estos aprendizajes fortalecieron una cultura educativa
orientada a la calidad, la sostenibilidad y la mejora continua.

Finalmente, la sistematización permitió comprender que reflexionar sobre la prác-
tica educativa es un acto de transformación. Más que un registro de acciones, este
proceso se constituyó en una oportunidad para aprender del propio quehacer docente y
resignificar la enseñanza de la programación como una experiencia humana, ética y so-
cial. Siguiendo a Jara (2018a), la sistematización no solo permite reconstruir lo vivido,
sino otorgarle sentido, visibilizando la coherencia entre teoría y práctica, entre lo planifi-
cado y lo aprendido.

A través de esta mirada crítica, se logró identificar cómo cada decisión metodológica
impactó en la formación del estudiante, cómo las tensiones se transformaron en apren-
dizajes y cómo la innovación puede consolidarse como una práctica sostenida. En este
sentido, la reflexión final reafirma que sistematizar no es concluir un proceso, sino abrir
un ciclo nuevo de aprendizaje colectivo, orientado a la transferencia, la mejora y la con-
solidación de comunidades educativas que aprenden de su propia experiencia.

165

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

3.6.2. Recomendaciones para profundizar

Evitar una visión idealizada de la experiencia: reconocer logros, tensiones y límites
como parte de un mismo proceso formativo.

Balancear la mirada personal (del docente y del estudiante) con la institucional,
destacando cómo ambas se complementan en la innovación educativa.

Incorporar ejemplos concretos que ilustren la transformación pedagógica, mostran-
do evidencias del cambio en la práctica.

Usar esta reflexión como bisagra hacia la transferencia, preparando el terreno
para el análisis de cómo los aprendizajes y hallazgos pueden replicarse o adaptarse
en otros contextos educativos.

166

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Bibliografía

Ahmad, N., & Hashim, N. (2020). Peer code review as a pedagogical strategy for software
quality learning. Journal of Software Engineering Education.

Barnett, R., & Jackson, N. (2019). Learning for an Unknown Future: Higher Education

and the Human Condition. Routledge.
Biggs, J. (2014). Constructive alignment in university teaching. Higher Education, 67(3),

231-243. https://doi.org/10.1007/s10734-013-9700-7
Biggs, J., & Tang, C. (2011). Teaching for Quality Learning at University (4.a ed.).

McGraw-Hill Education.
Carlino, P. (2005). Escribir, leer y aprender en la universidad: Una introducción a la

alfabetización académica. Fondo de Cultura Económica.
Casanova, M. A. (1999). La evaluación educativa: Escuela, aula y alumno. La Muralla.
Curzon, P., & McOwan, P. W. (2019). The Power of Computational Thinking: Games,

Magic and Puzzles to Help You Become a Computational Thinker. Cambridge
University Press.

Facione, P. A. (2020). Critical Thinking: What It Is and Why It Counts. Insight Assess-
ment.

Flick, U. (2014). Introducción a la investigación cualitativa (5.a ed.). Morata.
Fullan, M., & Quinn, J. (2017). Coherence: The Right Drivers in Action for Schools,

Districts, and Systems. Corwin Press.
Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State

of the Field. Educational Researcher, 42(1), 38-43. https : / / doi . org / 10 . 3102 /
0013189x12463051

Grover, S., & Pea, R. (2020). Computational thinking: A competency whose time has
come. Computer Science Education, 30(1), 100-120.

Guzdial, M., & Morrison, B. (2020). Computing education: From designing programs to
designing learning experiences. Communications of the ACM, 63(2), 30-33.

Hargie, O. (2021). Skilled Interpersonal Communication: Research, Theory and Practice

(7.a ed.). Routledge.
Hermans, F. (2021). The Programmer’s Brain: What Every Programmer Needs to Know

About Cognition. Manning Publications.
Hyland, K. (2009). Academic Discourse: English in a Global Context. Continuum.

167

https://doi.org/10.1007/s10734-013-9700-7
https://doi.org/10.3102/0013189x12463051
https://doi.org/10.3102/0013189x12463051

Capítulo 3. La enseñanza del código limpio: estrategias para formar desarrolladores con
estándares profesionales

Jara, O. (2018a). La sistematización de experiencias: Aprendizajes y desafíos para la

educación popular. Alforja.
Jara, O. (2018b). La sistematización de experiencias: Práctica y teoría para otros mundos

posibles. Alforja.
Johnson, D. W., & Johnson, R. T. (2019). Cooperation and Competition: Theory and

Research. Interaction Book Company.
Johnson, D. W., Johnson, R. T., & Smith, K. A. (2020). Cooperative learning: Improving

university instruction by basing practice on validated theory. Journal on Excellen-

ce in College Teaching, 31(2), 34-68.
Kafai, Y. B., Proctor, C., & Lui, D. (2019). From theory bias to theory dialogue: Embra-

cing cognitive, situated, and critical framings of computational thinking in K–12.
ACM Inroads, 10(4), 64-71. https://doi.org/10.1145/3363181

Kolb, D. A. (2015). Experiential Learning: Experience as the Source of Learning and

Development (2.a ed.). Pearson Education.
Lai, E. R. (2022). Critical Thinking in the 21st Century: A Framework for Learning and

Innovation. Pearson Education.
Lodi, M., & Martini, S. (2021). Computational thinking, between Papert and Wing. Phi-

losophy & Technology, 34(4), 1043-1068.
Maxwell, J. A. (2013). Qualitative Research Design: An Interactive Approach. SAGE

Publications.
Morales, J., Paredes, R., & Cifuentes, A. (2021). Formación ética en ingeniería: desafíos

para la educación superior latinoamericana. Revista Iberoamericana de Educación

Superior, 12(33), 45-62.
Patton, M. Q. (2002). Qualitative Research and Evaluation Methods. SAGE Publications.
Petre, M., & van der Hoek, A. (2021). Software Design in Practice: Collaboration and

Learning in Context. Cambridge University Press.
Scriven, M. (1991). Evaluation Thesaurus (4.a ed.). SAGE Publications.
Sentance, S., Waite, J., & Kallia, M. (2019a). Teaching computer programming with

PRIMM: A sociocultural perspective. Computer Science Education, 29(2–3), 136-176.
Sentance, S., Waite, J., & Kallia, M. (2019b). Teaching Computer Programming: Prin-

ciples into Practice. Computing Education Practice Conference, 1-8. https://doi.
org/10.1145/3294016.3294018

Stake, R. (1995). The Art of Case Study Research. SAGE Publications.
Stake, R. E. (2020). The Art of Case Study Research (Revised). SAGE Publications.

168

https://doi.org/10.1145/3363181
https://doi.org/10.1145/3294016.3294018
https://doi.org/10.1145/3294016.3294018

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Sweller, J., Ayres, P., & Kalyuga, S. (2019). Cognitive Load Theory. Springer.
Sweller, J., Van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instruc-

tional design: 20 years later. Educational Psychology Review, 31(2), 261-292.
Tomlinson, C. A. (2017). How to Differentiate Instruction in Academically Diverse Class-

rooms (3.a ed.). ASCD.
Universidad Estatal de Milagro (UNEMI). (2021). Modelo Educativo de la Universidad

Estatal de Milagro.
Universidad Estatal de Milagro (UNEMI). (2023). Marco curricular institucional de la

Universidad Estatal de Milagro.
Yin, R. K. (2014). Case Study Research: Design and Methods (5.a ed.). SAGE Publica-

tions.
Zabalza, M. A. (2019). Competencias docentes del profesorado universitario: Calidad y

desarrollo profesional (3.a ed.). Narcea.
Zanatta, M., & da Silva, M. (2022). Software engineering education and code quality

practices. IEEE Transactions on Education, 65(4), 532-540.
Zanatta, R., & da Silva, P. (2022). Clean code principles for novice programmers: A pe-

dagogical approach. Journal of Computing Education.
Zimmerman, B. J. (2020). Motivating self-regulated learners: The future of educational

psychology. Journal of Educational Psychology, 112(2), 331-343.

169

4
Aprender gestionando: experiencias

innovadoras en proyectos de software
universitarios

Denis Darío Mendoza Cabrera4

.

El Capítulo 4 resume aprendizajes y proyecciones del programa RI-

SEI, destacando el paso de innovaciones pedagógicas individuales a

una política institucional. Plantea construir una cultura universitaria

de investigación educativa que articule docencia, formación docente y

gestión académica. Señala que la sistematización convierte prácticas

innovadoras en conocimiento validado, compartible y transferible, for-

taleciendo la profesionalización docente y la calidad educativa. Analiza

mecanismos de acompañamiento, evaluación y difusión para asegurar

sostenibilidad. Propone un modelo basado en articulación entre unida-

des académicas, trabajo en red, formación permanente e investigación

aplicada a la enseñanza. Cierra con desafíos para consolidar una uni-

versidad que aprende de su práctica.

4Universidad Estatal de Milagro, dmendozac2@unemi.edu.ec.

171

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

Índice
4.1. Aprender gestionando: experiencias innovadoras en proyectos de

software universitarios . 175

4.1.1. Apertura contextual . 175

4.1.2. Problematización . 175

4.1.3. Las consecuencias de este déficit se manifiestan en tres niveles . 176

4.1.4. Propósito de la sistematización 176

4.1.5. Criterios de valor . 177

4.1.6. Delimitación del objeto de estudio 178

4.2. Fundamentación teórico-metodológica de la experiencia docente . . 179

4.2.1. Bisagra textual . 179

4.2.2. Identificación de conceptos estructurantes 180

4.2.3. Aprendizaje activo . 180

4.2.4. Pensamiento crítico . 181

4.2.5. Autonomía en el aprendizaje 181

4.2.6. Aprendizaje colaborativo . 182

4.2.7. Mentoría pedagógica . 182

4.2.8. Relación entre los conceptos 183

4.2.9. Formulación de dimensiones 183

4.2.10. Dimensión pedagógica . 184

4.2.11. Dimensión cognitiva-formativa 185

4.2.12. Dimensión socioafectiva-colaborativa 185

4.2.13. Construcción de indicadores 186

4.2.14. Indicadores de la dimensión pedagógica 187

4.2.15. Indicadores de la dimensión cognitiva-formativa 188

4.2.16. Indicadores de la dimensión socioafectiva-colaborativa 188

4.2.17. Fuentes . 190

4.2.18. Métodos de verificación . 191

172

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

4.2.19. Análisis comparativo de productos 191

4.2.20. Análisis de contenido . 192

4.2.21. Triangulación de evidencias 192

4.2.22. Justificación teórica del conjunto 193

4.3. Integración curricular y desarrollo de competencias en la forma-
ción del ingeniero de software . 195

4.3.1. Transición al vínculo curricular 195

4.3.2. Identificación de competencias del perfil 196

4.3.3. Resultados de aprendizaje vinculados 198

4.3.4. Actividades y evidencias . 200

4.3.5. Reflexión sobre la alineación curricular 202

4.4. Diseño e implementación del ecosistema estratégico de aprendizaje
en ingeniería de software . 204

4.4.1. Transición hacia la operacionalización estratégica 204

4.4.2. Estrategias núcleo en acción 205

4.4.3. Estrategias de soporte aplicadas 207

4.4.4. Estrategias de contingencia desplegadas 209

4.4.5. Arquitectura del ecosistema estratégico 211

4.5. Evaluación integral de la experiencia: instrumentos, evidencias y
validez del proceso formativo . 213

4.5.1. Transición hacia la evaluación 213

4.5.2. Instrumentos de evaluación aplicados 214

4.5.3. Indicadores de evaluación y criterios de validez 216

4.5.4. Análisis preliminar de evidencias 218

4.5.5. Reflexión sobre validez, sesgos y factibilidad 220

4.6. Reflexión final y proyección institucional de la experiencia docente . 222

4.6.1. Transición hacia la reflexión final 222

4.6.2. Reflexión crítica sobre la experiencia 223

4.6.3. Tensiones y resistencias encontradas 224

4.6.4. Aprendizajes personales, colectivos e institucionales 225

173

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

4.6.5. Síntesis reflexiva . 226

174

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

4.1. Aprender gestionando: experiencias innovadoras en
proyectos de software universitarios

4.1.1. Apertura contextual

En continuidad con los capítulos previos, este texto se enfoca en una dimensión com-
plementaria y necesaria para consolidar la formación integral del ingeniero de software:
el desarrollo del pensamiento crítico y de las habilidades blandas que sustentan la au-
tonomía, la colaboración y la resolución creativa de problemas. Mientras los capítulos
anteriores abordaron la comprensión conceptual, el análisis, el diseño y la calidad del có-
digo, este capítulo se adentra en los aspectos formativos que permiten a los estudiantes
integrar estos saberes en un desempeño reflexivo y profesionalmente competente.

La experiencia se desarrolla en la Universidad Estatal de Milagro (UNEMI), en
la carrera de Ingeniería de Software, dentro de la asignatura Introducción a la Ingenie-
ría de Software. El escenario corresponde al primer semestre, con aproximadamente 40
estudiantes provenientes de distintos cantones de la provincia del Guayas. Este grupo he-
terogéneo, con trayectorias educativas diversas y condiciones socioeconómicas variables,
representa un espacio de aprendizaje caracterizado por la pluralidad de experiencias, ex-
pectativas y niveles de familiaridad tecnológica.

En las primeras semanas de clase se evidenció una marcada dependencia del docen-
te: los estudiantes esperaban instrucciones precisas para cada tarea y mostraban escasa
iniciativa para la autoexploración o la resolución autónoma. Esta situación motivó la im-
plementación de una propuesta pedagógica orientada a fomentar el pensamiento crítico,
la reflexión sobre el propio aprendizaje y la cooperación entre pares como pilares de la
formación universitaria. La estrategia se centró en transformar la heterogeneidad del
grupo en una oportunidad para fortalecer la autonomía y la colaboración, promoviendo
una cultura de aprendizaje activo.

4.1.2. Problematización

El principal problema identificado en la asignatura fue la escasa puesta en práctica
de habilidades blandas, especialmente aquellas vinculadas con el pensamiento crítico, la
resolución de problemas y la autonomía en el aprendizaje. A pesar de mostrar entusiasmo,
los estudiantes tendían a depender excesivamente de las explicaciones del docente y evi-

175

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

denciaban dificultades para gestionar su proceso formativo. Este fenómeno se asocia con
modelos educativos previos basados en la memorización, que obstaculizan el desarrollo
de la reflexión y la toma de decisiones fundamentadas.

Diversos autores coinciden en que el pensamiento crítico constituye un componente
esencial para la educación superior. Facione (2020) y Paul Elder (2014) destacan que
sin estas competencias los estudiantes no logran analizar situaciones complejas ni cons-
truir juicios informados. En el ámbito de la ingeniería de software, esta carencia adquiere
especial relevancia, ya que la disciplina exige una combinación de razonamiento lógico,
análisis contextual y creatividad técnica.

4.1.3. Las consecuencias de este déficit se manifiestan en tres niveles

En primer lugar, los estudiantes reducen su experiencia universitaria al cumplimiento
de tareas, sin desarrollar capacidades transferibles al ámbito profesional.

En segundo lugar, la falta de autonomía genera una dependencia excesiva del docente,
que limita el aprendizaje autorregulado.

Finalmente, en contextos socioeconómicos complejos, las responsabilidades laborales
o familiares restringen el tiempo de estudio y profundizan las desigualdades. Como sos-
tiene Tünnermann (2018), cuando las condiciones externas impiden una dedicación plena
al estudio, la universidad debe compensar mediante estrategias de acompañamiento que
promuevan la autorreflexión y la autogestión del conocimiento.

Durante las primeras semanas de clases, se observaron evidencias concretas: en ejer-
cicios grupales, algunos estudiantes evitaban debatir o proponer alternativas; en tareas de
análisis de casos, se limitaban a repetir ejemplos previos sin cuestionar los supuestos. Es-
tas actitudes reflejan la necesidad de un enfoque pedagógico que impulse la participación
activa, la reflexión crítica y la cooperación estructurada como medios para desarrollar
habilidades cognitivas y sociales fundamentales.

4.1.4. Propósito de la sistematización

El propósito de esta sistematización es mostrar cómo, mediante estrategias pedagó-
gicas activas y procesos de mentoría, es posible fortalecer el pensamiento crítico y las
habilidades blandas de los estudiantes de primer semestre de Ingeniería de Software,
transformando la heterogeneidad del grupo en una fuente de aprendizaje colaborativo
y significativo.

176

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

La propuesta se fundamenta en la idea de que las limitaciones pueden convertirse en
oportunidades de aprendizaje. La docencia universitaria no debe limitarse a transmitir
contenidos, sino a acompañar procesos de desarrollo integral que estimulen la reflexión,
la argumentación y la autonomía. Tal como plantea Jara (2018), la sistematización cobra
valor cuando permite reconstruir las prácticas docentes para convertirlas en conocimiento
compartido y transferible a otros contextos.

El propósito busca, por tanto, evidenciar cómo un modelo de enseñanza basado en
la motivación, la colaboración y el aprendizaje activo puede favorecer el desarrollo
de competencias transversales —como la comunicación, la adaptabilidad y la toma de
decisiones—, esenciales para el ejercicio profesional de la ingeniería. En este sentido, el
docente asume el rol de mentor académico y mediador cognitivo, capaz de orientar,
desafiar y acompañar al estudiante en la construcción de su propio aprendizaje.

4.1.5. Criterios de valor

La experiencia resulta valiosa por varias razones. En primer lugar, representa una
innovación pedagógica frente a prácticas tradicionales centradas exclusivamente en la
técnica. La incorporación de estrategias activas —debates guiados, estudios de caso y
actividades de aprendizaje colaborativo— permitió integrar el desarrollo cognitivo con el
socioemocional.

En segundo lugar, los estudiantes evidenciaron un cambio en su forma de aprender:
pasaron de la dependencia a la participación, del silencio a la argumentación y del segui-
miento de instrucciones a la toma de decisiones fundamentadas. Este cambio fue obser-
vable en sus producciones escritas, en su desempeño en presentaciones grupales y en la
calidad de sus intervenciones durante las clases.

Otro criterio de valor es la transferibilidad del modelo. Las estrategias de mentoría,
reflexión guiada y trabajo cooperativo pueden aplicarse en distintas asignaturas de la ca-
rrera e incluso en otros programas académicos. Además, la experiencia pone de relieve
la necesidad de integrar explícitamente las habilidades blandas en los planes de estudio
de ingeniería, alineándose con tendencias internacionales que reconocen el valor del pen-
samiento crítico como parte de las competencias profesionales del siglo XXI (Jaramillo
Gómez et al., 2025); Karakuş et al., 2024).

Finalmente, el aporte de esta práctica radica en su capacidad para construir comuni-
dad de aprendizaje. Al promover el trabajo colaborativo y la reflexión sobre la práctica,

177

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

los estudiantes desarrollaron actitudes de empatía, respeto y responsabilidad comparti-
da. La sistematización de esta experiencia constituye, por tanto, un testimonio del poder
transformador de la educación cuando combina exigencia académica con acompañamien-
to humano.

4.1.6. Delimitación del objeto de estudio

El objeto de estudio de esta sistematización se centra en el proceso de enseñanza y
acompañamiento pedagógico desarrollado en la asignatura Introducción a la Ingeniería
de Software con estudiantes de primer semestre de la UNEMI. El análisis se focaliza
en cómo las metodologías activas y las estrategias de motivación implementadas por el
docente contribuyeron al desarrollo del pensamiento crítico y las habilidades blandas, en
un contexto caracterizado por la diversidad y las limitaciones socioeconómicas.

La delimitación temporal corresponde al semestre académico 2025-A y comprende un
grupo de 40 estudiantes, en su mayoría hombres, provenientes de cantones cercanos a la
ciudad de Milagro. Se excluyen del análisis las asignaturas de otros niveles y las variables
institucionales de tipo macro, ya que el interés se centra en la dinámica micro de aula y
su impacto en la formación de los estudiantes.

Se consideran como evidencias principales las actividades de aula, los debates grupa-
les, las prácticas de aprendizaje colaborativo y las reflexiones individuales. Este recorte
permite profundizar en el vínculo entre la interacción docente–estudiante y el desarrollo
de competencias transversales. Tal como sostiene Flick (2014a), el valor de un estudio
cualitativo reside en la coherencia entre el recorte temático y la profundidad del análisis.

En síntesis, el objeto de estudio de esta sistematización es el proceso pedagógico
orientado al fortalecimiento del pensamiento crítico y las habilidades blandas co-
mo dimensiones indispensables en la formación del ingeniero de software. Este enfoque
permite comprender que la excelencia técnica solo se consolida cuando se acompaña de
madurez reflexiva, compromiso ético y capacidad colaborativa.

178

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

4.2. Fundamentación teórico-metodológica de la experien-
cia docente

4.2.1. Bisagra textual

Al concluir la introducción del primer capítulo, donde se describió el contexto de la
experiencia, se identificaron los problemas formativos, se explicitó el propósito de la sis-
tematización y se definieron los criterios de valor junto con el objeto de estudio, emerge
la necesidad de avanzar hacia un nivel de fundamentación teórica que sustente los apren-
dizajes alcanzados.

El recorrido anterior permitió comprender el escenario educativo de la Universidad
Estatal de Milagro, particularmente en la asignatura Introducción a la Ingeniería de Soft-
ware, donde los estudiantes de primer semestre enfrentan el desafío de desarrollar pensa-
miento crítico, autonomía y habilidades blandas en un entorno de diversidad académica y
sociocultural. Este proceso evidenció cómo la práctica docente, mediada por estrategias
activas y de acompañamiento, transformó las limitaciones en oportunidades de aprendi-
zaje significativo.

Sin embargo, los logros descritos no pueden entenderse únicamente desde la narrativa
experiencial. Requieren una base conceptual que permita interpretar, con mayor riguro-
sidad, los procesos pedagógicos que los hicieron posibles. En este sentido, la fundamen-
tación teórica se vuelve indispensable para dotar de validez académica a la experiencia,
explicando los fenómenos observados mediante categorías y conceptos provenientes del
campo educativo y de la ingeniería de software.

De este modo, la práctica narrada se convierte en objeto de análisis, trascendiendo la
descripción empírica para situarse en un marco de comprensión sustentado en la teoría.

La necesidad de fundamentar conceptualmente la experiencia responde, además, al
propósito de consolidar un puente entre la acción pedagógica y el conocimiento cientí-
fico. Comprender cómo las metodologías activas, el aprendizaje basado en la práctica y
la mentoría influyen en la formación inicial de ingenieros de software exige un abordaje
sistemático que permita identificar sus dimensiones, indicadores y métodos de verifica-
ción. Esta transición marca el paso de la vivencia docente hacia el análisis académico,
garantizando la coherencia del capítulo y proyectando el trabajo hacia la construcción del
marco conceptual que dará soporte a la sistematización.

179

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

En el siguiente apartado, por tanto, se abordarán los conceptos estructurantes que sos-
tienen la experiencia, organizados en torno a las categorías que explican el desarrollo
del pensamiento crítico, la autonomía y la práctica reflexiva en el contexto universitario.
Esta fundamentación permitirá comprender con mayor profundidad los procesos forma-
tivos que se vivieron en el aula y su relación con las transformaciones observadas en los
estudiantes.

4.2.2. Identificación de conceptos estructurantes

La experiencia desarrollada en la asignatura Introducción a la Ingeniería de Software
ha evidenciado la necesidad de fortalecer en los estudiantes de primer semestre no solo las
competencias técnicas, sino también aquellas habilidades cognitivas y socioemocionales
que sostienen el aprendizaje profundo. En este contexto, la práctica docente se articula
sobre un conjunto de conceptos estructurantes que orientan su fundamentación teórica y
operativa: aprendizaje activo, pensamiento crítico, autonomía en el aprendizaje, aprendi-
zaje colaborativo y mentoría pedagógica.

Estos cinco conceptos dialogan entre sí y conforman el andamiaje que permite com-
prender la dinámica formativa y los resultados observados en los estudiantes. A continua-
ción, se presenta el desarrollo conceptual de cada uno, sustentado en literatura académica
reciente.

4.2.3. Aprendizaje activo

El aprendizaje activo constituye uno de los pilares de la experiencia, pues rompe con
el paradigma tradicional centrado en la transmisión unidireccional de conocimientos y
promueve la participación del estudiante en su propio proceso formativo. Según Prince
(2021), el aprendizaje activo se basa en la implicación directa del estudiante en actividades
de análisis, discusión y resolución de problemas que lo desafían cognitivamente.

En el campo de la ingeniería de software, esta metodología favorece la construcción
significativa del conocimiento a partir de la práctica, la experimentación y el error. Co-
mo señala Freeman et al. (2019), los entornos de aprendizaje activo mejoran significa-
tivamente el rendimiento académico y reducen las tasas de deserción, al promover una
comprensión más profunda de los contenidos. En la práctica docente, este enfoque se
operacionaliza mediante estrategias de aprender-haciendo, talleres guiados y resolución
colaborativa de casos reales vinculados al desarrollo de software.

180

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

El valor de este concepto en la experiencia radica en su capacidad para conectar la
teoría con la práctica, impulsando en los estudiantes la iniciativa y la reflexión sobre sus
propias acciones. Además, el aprendizaje activo se integra con otros enfoques contempo-
ráneos como el learning by doing y la educación basada en competencias, fortaleciendo
la autonomía y la capacidad de autorregulación del aprendizaje.

4.2.4. Pensamiento crítico

El desarrollo del pensamiento crítico se erige como un eje transversal de la formación
en ingeniería de software, dado que la disciplina demanda la resolución constante de
problemas complejos. Facione (2020) define el pensamiento crítico como la habilidad
de interpretar, analizar, evaluar y concluir con base en evidencia, un proceso que implica
razonamiento lógico y juicio ético. En el contexto educativo, Paul y Elder (2019) sostienen
que promover esta competencia implica generar espacios donde el estudiante cuestione
sus propias ideas, identifique sesgos y construya argumentos sólidos.

Durante la experiencia, se observó que los estudiantes tendían a reproducir informa-
ción sin profundizar en su comprensión. A través de debates, simulaciones de proyectos y
análisis de errores comunes en el código, se buscó fomentar una cultura de cuestionamien-
to y argumentación. De acuerdo con González y Ramírez (2021), el pensamiento crítico
no solo potencia el desempeño académico, sino que fortalece la empleabilidad y la adap-
tabilidad profesional. Por tanto, este concepto se convierte en un elemento central para
la formación de ingenieros capaces de analizar contextos, tomar decisiones informadas y
enfrentar los retos tecnológicos con criterio ético y reflexivo.

4.2.5. Autonomía en el aprendizaje

La autonomía constituye un componente esencial en el desarrollo de competencias
profesionales sostenibles. En los primeros semestres universitarios, los estudiantes suelen
depender en exceso de la orientación docente, por lo que promover la autorregulación
es un desafío pedagógico significativo. Según Zimmerman (2020), la autonomía en el
aprendizaje implica la capacidad de planificar, monitorear y evaluar el propio proceso,
utilizando estrategias metacognitivas que favorecen la autogestión. Por su parte, Panade-
ro y Broadbent (2018) destacan que esta habilidad se fortalece mediante entornos que
estimulan la responsabilidad y el aprendizaje por proyectos.

181

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

En la asignatura, la autonomía se promovió a través de actividades donde los estu-
diantes debían definir objetivos semanales, priorizar tareas y documentar avances en el
desarrollo de sus proyectos. Estas prácticas no sólo fortalecieron la disciplina académi-
ca, sino también la autoconfianza y la resiliencia frente a los desafíos. Así, la autonomía
se articula con el pensamiento crítico y el aprendizaje activo, configurando una tríada
indispensable para la formación de ingenieros reflexivos y responsables.

4.2.6. Aprendizaje colaborativo

El aprendizaje colaborativo se reconoce como una metodología que potencia el in-
tercambio de saberes y la construcción colectiva del conocimiento. En el contexto de la
ingeniería de software, donde el trabajo en equipo es inherente al desarrollo de proyectos,
este enfoque resulta especialmente pertinente. D. W. Johnson et al. (2020) afirman que la
colaboración permite a los estudiantes aprender de las perspectivas de otros, fomentar la
empatía cognitiva y desarrollar habilidades de comunicación profesional. Además, estu-
dios recientes indican que el aprendizaje colaborativo incrementa la motivación intrínseca
y el sentido de pertenencia al grupo (Van Leeuwen & Janssen, 2019).

Durante la experiencia, se implementaron dinámicas de resolución conjunta de pro-
blemas y revisión por pares, donde los estudiantes asumieron roles específicos dentro del
equipo —analista, programador, evaluador— para simular entornos reales de trabajo. Esta
práctica fomenta la corresponsabilidad y la toma de decisiones compartidas, generando
un espacio de aprendizaje horizontal donde todos los integrantes podían aportar desde
sus fortalezas. En este sentido, el aprendizaje colaborativo no solo refuerza el contenido
técnico, sino que constituye una estrategia clave para el desarrollo de habilidades blandas
y la socialización del conocimiento.

4.2.7. Mentoría pedagógica

La mentoría pedagógica surge como un concepto articulador entre la guía docente y
la autonomía estudiantil. Su propósito es acompañar el proceso formativo sin sustituir la
iniciativa del estudiante, creando una relación de orientación reflexiva. Como plantea Am-
brosetti y Dekkers (2018), la mentoría implica generar un espacio de diálogo horizontal
donde el docente actúa como facilitador, retroalimentando y estimulando la reflexión so-
bre la práctica. En el ámbito universitario, esta figura ha cobrado relevancia en procesos

182

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

de transición académica, especialmente en programas de ingeniería (Ragusa & Chong,
2021).

En la práctica de aula, la mentoría se manifestó en sesiones personalizadas y grupos
de acompañamiento donde los estudiantes podían compartir dificultades, recibir orienta-
ción y reflexionar sobre su progreso. Este modelo no se limita a brindar soluciones, sino
que busca fortalecer la autoconciencia y la responsabilidad. En términos pedagógicos, la
mentoría se conecta con el aprendizaje colaborativo y la autonomía, ya que permite al
estudiante avanzar hacia un nivel más profundo de comprensión de su propio aprendizaje.

4.2.8. Relación entre los conceptos

Los cinco conceptos estructurantes se encuentran interrelacionados y forman una red
conceptual coherente. El aprendizaje activo y el colaborativo proporcionan el entorno me-
todológico; el pensamiento crítico y la autonomía configuran las competencias cognitivas
y metacognitivas que sustentan la acción; mientras que la mentoría pedagógica actúa co-
mo mediación que articula todos los elementos, garantizando un acompañamiento orien-
tado al crecimiento personal y profesional del estudiante. En conjunto, estos conceptos
ofrecen una base teórica sólida para analizar la experiencia y construir las dimensiones
que darán lugar a los indicadores de observación en el módulo siguiente.

En conclusión, identificar estos conceptos permite comprender que la innovación pe-
dagógica en ingeniería no depende únicamente de la tecnología o de los contenidos, sino
del modo en que se concibe y acompaña el aprendizaje. La combinación de aprendiza-
je activo, pensamiento crítico, autonomía, colaboración y mentoría configura un modelo
educativo centrado en el estudiante, coherente con las demandas de la educación supe-
rior contemporánea. En el siguiente apartado, estos conceptos se transformarán en di-
mensiones analíticas que permitirán observar, desde una perspectiva sistemática, cómo se
concretan en la práctica los procesos formativos que han emergido en esta experiencia
docente.

4.2.9. Formulación de dimensiones

Al avanzar en el proceso de sistematización de la experiencia docente desarrollada
en la asignatura Introducción a la Ingeniería de Software, resulta necesario organizar
los conceptos estructurantes previamente identificados en categorías analíticas más am-
plias que otorguen coherencia y profundidad al análisis. Estas categorías, denominadas

183

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

dimensiones, permiten comprender la experiencia desde distintos planos complementa-
rios, mostrando cómo se articulan los procesos pedagógicos, cognitivos, tecnológicos y
relacionales en la práctica educativa.

De acuerdo con Flick (2018), las dimensiones constituyen recortes teórico-analíticos
que facilitan la interpretación ordenada de la realidad investigada. En esta sistemati-
zación, se establecen tres dimensiones principales: pedagógica, cognitiva-formativa y
socioafectiva-colaborativa, que en conjunto configuran el marco conceptual y operativo
de la experiencia.

4.2.10. Dimensión pedagógica

La dimensión pedagógica agrupa los conceptos vinculados al aprendizaje activo y
la mentoría pedagógica, aludiendo al rol del docente como mediador del aprendizaje y
diseñador de experiencias significativas. Esta dimensión se enfoca en la metodología uti-
lizada para guiar a los estudiantes hacia la construcción del conocimiento, promoviendo
la participación, la reflexión y la acción práctica.

Como señala Prince (2021), el aprendizaje activo transforma la dinámica del aula al
situar al estudiante en el centro del proceso educativo, permitiendo que el conocimiento se
construya a través de la exploración y la resolución de problemas reales. En este sentido,
la mentoría pedagógica complementa el proceso, ofreciendo un acompañamiento perso-
nalizado que potencia la autonomía y la autoconfianza del estudiante (Ragusa & Chong,
2021).

En la experiencia desarrollada, la dimensión pedagógica se manifestó en la imple-
mentación de metodologías activas como el learning by doing y la tutoría por pares, que
permitieron abordar los contenidos de ingeniería de software desde situaciones auténticas.
Los estudiantes no solo recibieron orientaciones conceptuales, sino que aplicaron los prin-
cipios de la gestión de proyectos en actividades prácticas, diseñando pequeños sistemas y
reflexionando sobre los desafíos encontrados.

Esta dimensión, por tanto, revela cómo la práctica docente se transformó en un espa-
cio de aprendizaje dialógico, donde el docente orienta y acompaña, pero es el estudiante
quien construye su propio proceso de conocimiento. En palabras de Jara (2018), la prác-
tica reflexiva se vuelve significativa cuando convierte la experiencia en un aprendizaje
compartido.

184

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

4.2.11. Dimensión cognitiva-formativa

La segunda dimensión se refiere a los procesos mentales, metacognitivos y de de-
sarrollo de competencias que se activan durante el aprendizaje. Incluye los conceptos de
pensamiento crítico y autonomía en el aprendizaje, entendidos como capacidades esencia-
les para la formación de ingenieros competentes y reflexivos. Facione (2020) sostiene que
el pensamiento crítico implica interpretar, analizar y evaluar información de manera argu-
mentada para tomar decisiones fundamentadas. Asimismo, la autonomía del aprendizaje,
según Zimmerman (2020), representa la habilidad de autorregular las propias estrategias
cognitivas y emocionales para alcanzar metas académicas.

En el contexto de la asignatura, esta dimensión se concretó cuando los estudiantes
asumieron la responsabilidad de planificar sus avances semanales, analizar problemas de
codificación y proponer alternativas de solución fundamentadas. Por ejemplo, durante
las prácticas de laboratorio, los grupos debían identificar errores en el código y discutir
distintas formas de corregirlos, argumentando sus decisiones. Este ejercicio fortaleció la
capacidad de análisis, la autocrítica y la gestión del aprendizaje, aspectos clave en la
formación universitaria contemporánea.

Tal como señalan González y Ramírez (2021), las experiencias educativas que pro-
mueven la reflexión y la autorregulación contribuyen al desarrollo de un pensamiento
autónomo y crítico, indispensable en los campos tecnológicos actuales.

La pertinencia de esta dimensión radica en que ofrece un marco para analizar cómo
las metodologías activas no solo generan participación, sino que también impactan en el
modo en que los estudiantes piensan, aprenden y aplican el conocimiento. En esta línea, el
análisis cognitivo-formativo permite visibilizar la profundidad del aprendizaje alcanzado,
superando la visión instrumental del saber técnico para comprenderlo como un proceso
de transformación intelectual.

4.2.12. Dimensión socioafectiva-colaborativa

La tercera dimensión agrupa los aspectos relacionados con el aprendizaje colabora-
tivo, la interacción social y la construcción de un clima emocional positivo en el aula.
Se fundamenta en la idea de que el aprendizaje es una práctica social que se fortalece
a través del trabajo conjunto y del intercambio de saberes. D. W. Johnson et al. (2020)
destacan que la colaboración favorece la motivación intrínseca, la empatía y el sentido
de pertenencia, elementos esenciales para la cohesión grupal. Por su parte, Van Leeuwen

185

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

y Janssen (2019) enfatizan que la guía docente en contextos colaborativos potencia la
autorregulación colectiva y la comunicación efectiva.

En la práctica de aula, esta dimensión se manifestó en las actividades de trabajo en
equipo para el desarrollo de proyectos de software. Los estudiantes asumieron roles com-
plementarios —analista, programador, validador—, gestionando conflictos, negociando
decisiones y distribuyendo responsabilidades. Además, se promovieron instancias de eva-
luación entre pares, donde los grupos analizaron los productos de otros compañeros y
ofrecieron retroalimentación constructiva.

Estas dinámicas no sólo fortalecieron las competencias comunicativas, sino que tam-
bién permitieron a los estudiantes reconocer la importancia del respeto, la escucha activa y
la corresponsabilidad. De este modo, la dimensión socioafectiva-colaborativa se convierte
en un eje que conecta el aprendizaje técnico con el desarrollo humano y ético.

Las tres dimensiones formuladas —pedagógica, cognitiva-formativa y socioafectiva-
colaborativa— ofrecen una estructura analítica coherente que permite comprender la ex-
periencia docente de manera integral. La primera explica el cómo se enseña, la segunda
el cómo se aprende, y la tercera el cómo se convive y se colabora en el proceso educativo.
En conjunto, conforman un marco que traduce la práctica pedagógica en categorías de
análisis teórico, articulando la reflexión con la acción.

Tal como señala Flick (2018), la formulación de dimensiones es un paso clave para
sistematizar experiencias educativas, ya que permite pasar del relato empírico a la inter-
pretación académica. En el siguiente apartado, estas dimensiones se operacionalizarán
mediante la construcción de indicadores observables, que harán posible verificar de ma-
nera más precisa cómo se concretaron los aprendizajes y transformaciones en la práctica.

4.2.13. Construcción de indicadores

Avanzar en la construcción de indicadores representa un paso clave dentro del proceso
de sistematización, pues permite transformar las dimensiones formuladas en categorías
verificables y observables. Tal como señalan Flick (2018) y Yin (2018), los indicadores
constituyen señales empíricas que vinculan la teoría con la práctica, mostrando cómo
se manifiestan las dimensiones en la realidad educativa. En este sentido, cada indicador
se convierte en una evidencia concreta de que el proceso pedagógico ha generado un
cambio o resultado observable en los estudiantes. En la experiencia desarrollada en la
asignatura Introducción a la Ingeniería de Software, los indicadores permiten verificar

186

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

la presencia y efectividad de las tres dimensiones identificadas: pedagógica, cognitiva-
formativa y socioafectiva-colaborativa.

4.2.14. Indicadores de la dimensión pedagógica

La dimensión pedagógica se relaciona con las estrategias de enseñanza y acompaña-
miento implementadas por el docente, especialmente a través del aprendizaje activo y la
mentoría pedagógica. Esta dimensión busca evidenciar cómo la práctica docente promue-
ve la participación, la autonomía y la reflexión de los estudiantes.

Entre los indicadores formulados se encuentran:

1. El estudiante participa activamente en simulaciones de gestión de proyectos de soft-
ware, asumiendo roles definidos y aplicando metodologías ágiles para planificar
tareas, evaluar riesgos y proponer soluciones preventivas.

2. El docente acompaña el proceso de aprendizaje mediante sesiones de mentoría en
las que orienta el uso de herramientas de control de versiones (GitHub) para la
colaboración y seguimiento del proyecto.

3. Las actividades de aula evidencian la aplicación del enfoque learning by doing me-
diante la elaboración de planes de gestión de riesgos, tableros Kanban y reportes de
control de cambios en los repositorios de GitHub.

Estos indicadores reflejan cómo el aula se convierte en un entorno de simulación
profesional, donde los estudiantes aplican prácticas de gestión de proyectos reales. Por
ejemplo, en un caso de estudio, los equipos debían identificar y clasificar riesgos en su
proyecto de software, asignando probabilidades, impactos y estrategias de mitigación;
posteriormente, registraban los cambios o incidencias en GitHub con mensajes de com-
mit documentados.

De acuerdo con Prince (2021), este tipo de práctica permite vincular la teoría con la
acción, promoviendo la reflexión sobre los procesos y la toma de decisiones. Asimismo,
Ragusa y Chong (2021) sostienen que la mentoría guiada fortalece la capacidad de los
estudiantes para gestionar proyectos de manera autónoma, potenciando la calidad de los
productos desarrollados y la confianza profesional.

187

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

4.2.15. Indicadores de la dimensión cognitiva-formativa

Esta dimensión se centra en los procesos mentales y metacognitivos que favorecen el
desarrollo del pensamiento crítico, la autorregulación y la transferencia del conocimiento.
Los indicadores derivados buscan mostrar cómo los estudiantes no solo comprenden los
contenidos, sino que también los aplican y evalúan críticamente.

Los indicadores propuestos son:

1. El estudiante analiza críticamente los riesgos identificados en el proyecto y propone
estrategias de mitigación basadas en evidencia técnica y priorización de impacto.

2. El estudiante demuestra autonomía en la gestión del proyecto mediante el uso res-
ponsable del control de versiones en GitHub, documentando cambios, revisando
pull requests y gestionando conflictos de integración.

3. Se observan informes y presentaciones donde los estudiantes justifican decisiones
de arquitectura, control de versiones y gestión del riesgo, sustentadas en criterios
de calidad y eficiencia.

Estos indicadores reflejan la capacidad del estudiante para pensar como un ingeniero en
formación, utilizando la evidencia para fundamentar sus decisiones. Por ejemplo, durante
el desarrollo del proyecto, los equipos debían analizar la matriz de riesgos y registrar sus
decisiones en el repositorio del proyecto, explicando en los issues de GitHub por qué
priorizaban ciertas tareas o correcciones.

Tal como señala Facione (2020), el pensamiento crítico se expresa cuando el estu-
diante evalúa sus propias acciones y toma decisiones con base en información verificable.
Además, Zimmerman (2020) plantea que la autorregulación del aprendizaje se manifiesta
en la capacidad de planificar, monitorear y ajustar estrategias, algo que en la ingeniería
de software puede observarse en la gestión autónoma del código y de las versiones del
producto.

4.2.16. Indicadores de la dimensión socioafectiva-colaborativa

Esta dimensión aborda las relaciones interpersonales, la comunicación y el trabajo en
equipo como factores esenciales del aprendizaje en ingeniería de software. Los indicado-
res formulados permiten evidenciar cómo la colaboración y el clima emocional positivo
favorecen el desempeño académico y la motivación estudiantil.

188

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Los indicadores propuestos son:

1. Los equipos de trabajo muestran interacciones colaborativas, distribuyen responsa-
bilidades y construyen soluciones conjuntas.

2. El estudiante demuestra empatía, respeto y disposición para la retroalimentación
constructiva en las actividades grupales.

3. Se generan productos colaborativos que reflejan cohesión, coordinación y sentido
de pertenencia en el grupo.

Durante la implementación de proyectos colaborativos, los grupos aplicaron técnicas de
revisión por pares, compartiendo avances y proponiendo mejoras al trabajo de otros equi-
pos. Este tipo de práctica coincide con lo expuesto por D. W. Johnson et al. (2020), quie-
nes sostienen que la interacción positiva en grupos promueve tanto el aprendizaje aca-
démico como el desarrollo socioemocional. Asimismo, Van Leeuwen y Janssen (2019)
destacan que la guía docente en entornos colaborativos potencia la regulación conjunta
del aprendizaje y la responsabilidad compartida.

De este modo, estos indicadores permiten observar de manera verificable cómo la co-
laboración trasciende lo operativo, convirtiéndose en un espacio de construcción colectiva
y emocional del conocimiento.

La formulación de indicadores constituye el puente que conecta la teoría con la prác-
tica, al traducir las dimensiones en evidencias observables. En este caso, los indicado-
res pedagógicos reflejan la dinámica activa y acompañada del aprendizaje; los cognitivo-
formativos muestran el desarrollo del pensamiento crítico y la autorregulación mediante
la gestión del riesgo y el uso de control de versiones; y los socioafectivos-colaborativos
evidencian la interacción y la construcción colectiva del conocimiento.

En conjunto, estos indicadores ofrecen una herramienta sólida para evaluar el impacto
de la experiencia docente desde un enfoque integral, alineado con los principios de la
sistematización educativa. Según Yin (2018), contar con indicadores claros y coherentes
garantiza la credibilidad y consistencia del análisis, permitiendo posteriormente construir
una matriz de verificación que fortalezca el carácter académico del capítulo.

189

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

4.2.17. Fuentes

Fuentes y métodos de verificación

Verificar los indicadores definidos en la sistematización es un paso esencial para ase-
gurar la validez académica y la credibilidad del proceso. Tal como plantea Flick (2018), la
rigurosidad de un análisis educativo no depende únicamente de las interpretaciones teóri-
cas, sino de la manera en que estas se sustentan en evidencias concretas y verificables.

En esta etapa, la reflexión pedagógica se convierte en un ejercicio de documentación:
se trata de mostrar, con pruebas tangibles, cómo las dimensiones pedagógica, cognitiva-
formativa y socioafectiva-colaborativa se manifestaron realmente en la experiencia de
aula. Por ello, la selección adecuada de fuentes y métodos de verificación permite traducir
los aprendizajes vividos en información analizable, coherente y sustentada en la práctica.

Fuente seleccionadas

Las fuentes son los materiales y registros producidos durante la experiencia docente
que permiten constatar la existencia de los indicadores previamente formulados. En es-
te caso, se han identificado cuatro tipos principales de fuentes: documentales, digitales,
testimoniales y observacionales.

Fuentes documentales

Incluyen los planes de proyecto, cronogramas de gestión de riesgos, actas de avance
semanal y rúbricas de evaluación elaboradas por los estudiantes. Estos documentos re-
flejan la aplicación del enfoque de aprendizaje activo y la apropiación de metodologías
ágiles en la gestión de proyectos de software. La comparación de las versiones iniciales y
finales de los entregables permitirá verificar la evolución de las competencias cognitivas
y la capacidad de autorregulación del aprendizaje.

Fuentes digitales

Comprenden los repositorios de GitHub utilizados por los equipos de estudiantes.
Estos registros contienen evidencia directa de las prácticas de control de versiones, las
estrategias de trabajo colaborativo y el seguimiento del progreso técnico. Los historiales
de commits, la frecuencia de actualización y los comentarios en issues servirán para ob-

190

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

servar el cumplimiento de los indicadores relacionados con la autonomía, la organización
y la gestión de riesgos en el desarrollo de software.

Fuentes testimoniales

Se recogen a través de encuestas de percepción y entrevistas breves a los estudiantes.
Estas fuentes permiten acceder a la dimensión subjetiva de la experiencia: cómo valoraron
el acompañamiento docente, el trabajo en equipo y su propio aprendizaje. De acuerdo
con Jara (2018), el testimonio constituye una evidencia valiosa porque otorga voz a los
protagonistas y revela la transformación educativa desde su perspectiva personal.

Fuentes observacionales

Corresponden a notas de campo del docente, registros de participación en clase y
observaciones de sesiones prácticas en el laboratorio. Estos registros permiten identificar
comportamientos concretos asociados a los indicadores, como la distribución de roles, la
resolución colaborativa de problemas o el uso efectivo de herramientas de planificación.

Cada una de estas fuentes aporta un tipo distinto de evidencia, y su integración asegura
una mirada completa sobre la experiencia, respetando el principio de triangulación de
datos que, según Yin (2018), refuerza la validez de los estudios de caso educativos.

4.2.18. Métodos de verificación

Los métodos de verificación son las estrategias que permiten analizar y validar la
información contenida en las fuentes. En esta experiencia se aplicarán principalmente
tres métodos: análisis comparativo de productos, análisis de contenido y triangulación de
evidencias.

4.2.19. Análisis comparativo de productos

Este método se aplicará a los planes de proyecto, cronogramas y repositorios de
GitHub. Permitirá contrastar los avances entre las fases iniciales y finales de los pro-
yectos, observando la mejora en la organización, la gestión de riesgos y la documentación
técnica. Por ejemplo, se analizará cómo los equipos pasaron de registrar tareas básicas a
manejar incidencias complejas o pull requests con justificaciones detalladas. Este análisis

191

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

mostrará la evolución de los indicadores vinculados a la dimensión pedagógica, especial-
mente aquellos que evidencian aprendizaje activo y autonomía.

4.2.20. Análisis de contenido

Se utilizará con las encuestas y entrevistas aplicadas a los estudiantes. Este méto-
do busca identificar temas recurrentes, percepciones compartidas y cambios en la actitud
hacia el aprendizaje y la colaboración. Los testimonios se codificarán en categorías re-
lacionadas con los indicadores de pensamiento crítico, motivación y clima socioafectivo.
Tal como sugiere Flick (2018), este tipo de análisis cualitativo permite construir sentido a
partir de la experiencia narrada, reconociendo patrones significativos en los discursos.

4.2.21. Triangulación de evidencias

Finalmente, se integrarán los resultados de las fuentes documentales, digitales y testi-
moniales para obtener una visión más completa y confiable. Este proceso de triangulación
garantiza que la interpretación de los datos no dependa de una sola fuente, sino de la con-
vergencia de múltiples perspectivas. Yin (2018) argumenta que esta estrategia incrementa
la credibilidad del estudio y reduce los sesgos del observador, mientras que Jara (2018)
señala que la triangulación convierte la sistematización en un proceso de validación pe-
dagógica, donde la experiencia adquiere carácter científico.

El uso de fuentes variadas y métodos de verificación complementarios garantiza la
solidez del análisis de la experiencia docente. Los documentos producidos por los es-
tudiantes, los registros digitales en GitHub y los testimonios recabados constituyen un
corpus empírico que respalda cada indicador. A través del análisis comparativo, el análi-
sis de contenido y la triangulación, será posible demostrar con rigor cómo las dimensiones
pedagógica, cognitiva y socioafectiva se materializaron en la práctica.

Así, esta etapa no solo valida los resultados de la experiencia, sino que también prepa-
ra el camino para la construcción de la matriz final de dimensiones – indicadores – fuentes
– métodos, producto central del módulo. En términos de Flick (2019), la sistematización
alcanza su madurez cuando las evidencias empíricas dialogan con la teoría, mostrando
que la docencia universitaria puede y debe analizarse con el mismo rigor que cualquier
otro campo de investigación.

192

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

4.2.22. Justificación teórica del conjunto

La construcción del andamiaje conceptual y operativo desarrollado a lo largo de este
apartado responde a la necesidad de dotar de solidez teórica a una práctica educativa que
busca trascender el relato vivencial para convertirse en conocimiento compartible. En este
proceso, se integraron los conceptos estructurantes, las dimensiones, los indicadores, y los
métodos de verificación que sustentan la sistematización de la experiencia docente en la
asignatura Introducción a la Ingeniería de Software.

Cada una de estas decisiones conceptuales no fue arbitraria, sino el resultado de un
análisis que pone en diálogo la práctica pedagógica con marcos teóricos contemporáneos
de la educación superior, la ingeniería de software y la investigación cualitativa.

La elección de los conceptos estructurantes —aprendizaje activo, pensamiento crítico,
autonomía, aprendizaje colaborativo y mentoría pedagógica— se justifica en su relevancia
para los contextos formativos actuales. El aprendizaje activo, según Prince (2021), trans-
forma la relación docente-estudiante al situar al aprendiz como protagonista del proceso,
lo que resulta esencial en disciplinas tecnológicas donde la práctica y la resolución de
problemas reales constituyen el eje del aprendizaje.

Asimismo, la mentoría pedagógica refuerza el vínculo formativo mediante un acom-
pañamiento reflexivo, lo que Ragusa y Chong (2021) consideran un factor determinante
en la retención y éxito de los estudiantes de ingeniería. Estos conceptos, interrelacionados,
ofrecen una base teórica coherente con los desafíos que enfrenta la docencia universitaria
contemporánea.

Las dimensiones formuladas - pedagógica, cognitiva -formativa y socioafectiva - co-
laborativa - permiten estructurar la experiencia desde una perspectiva integral. La dimen-
sión pedagógica abarca el diseño y la implementación de estrategias didácticas activas;
la cognitiva-formativa profundiza en el desarrollo de competencias intelectuales, como el
pensamiento crítico y la autorregulación; y la socioafectiva-colaborativa aborda los pro-
cesos interpersonales y emocionales del aprendizaje en equipo.

Esta organización responde al planteamiento de Flick (2018), quien sostiene que las
categorías analíticas en una sistematización deben reflejar tanto la complejidad del fenó-
meno educativo como su coherencia interna. En este sentido, las dimensiones selecciona-
das no solo agrupan los conceptos, sino que también ofrecen un marco interpretativo para
comprender cómo la práctica docente impacta en el desarrollo integral del estudiante.

193

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

Los indicadores operativizan las dimensiones y las convierten en observables y veri-
ficables. La construcción de estos indicadores responde al principio de validez empírica
que Yin (2018) y R. E. Stake (2020) destacan en los estudios de caso, donde las categorías
deben traducirse en evidencias que permitan constatar su presencia en la práctica.

Por ejemplo, en la dimensión pedagógica, indicadores como la aplicación de meto-
dologías ágiles, la elaboración de planes de gestión de riesgos o el uso del control de
versiones en GitHub permiten comprobar cómo los estudiantes integran la teoría con la
acción.

En la dimensión cognitiva-formativa, indicadores asociados a la reflexión crítica y a
la toma de decisiones fundamentadas revelan la madurez del pensamiento técnico y analí-
tico. Esta lógica de verificación garantiza que la sistematización trascienda la descripción
narrativa para constituirse en un proceso de análisis fundamentado y replicable.

En coherencia con lo anterior, las fuentes y métodos de verificación seleccionados
aseguran la credibilidad de la información recopilada. Las fuentes documentales (plani-
ficaciones, informes de avance y rúbricas), digitales (repositorios GitHub), testimoniales
(encuestas y entrevistas) y observacionales (notas de campo y registros de participación)
se complementan a través de la triangulación de evidencias, garantizando la confiabilidad
del análisis.

Este enfoque responde a lo que Yin (2018) denomina una estrategia de convergencia
metodológica, donde la diversidad de fuentes permite observar un mismo fenómeno desde
múltiples perspectivas. Jara (2018) añade que, en la sistematización de experiencias, las
evidencias son el puente entre la vivencia pedagógica y el conocimiento académico, pues
permiten legitimar las transformaciones que se narran.

La coherencia entre los niveles del andamiaje -conceptos, dimensiones, indicadores,
fuentes y métodos- es lo que otorga validez y sentido al conjunto. Siguiendo a Flick
(2018), una sistematización adquiere rigor científico cuando existe correspondencia entre
los constructos teóricos y los procedimientos de verificación empírica.

De igual modo, Carlino (2019) plantea que la escritura académica no solo comunica
resultados, sino que también construye identidad docente e investigativa, convirtiendo la
reflexión en un proceso de profesionalización. Así, la presente sistematización no se limita
a narrar una práctica, sino que configura un modelo replicable de innovación pedagógica
sustentado en principios teóricos y metodológicos consistentes.

Finalmente, el andamiaje teórico construido refuerza el carácter formativo de la do-
cencia universitaria en ingeniería. La integración de metodologías activas, herramientas

194

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

tecnológicas y estrategias de acompañamiento docente responde a la necesidad de formar
ingenieros capaces de aprender de manera autónoma, reflexiva y colaborativa. Como seña-
lan Zawacki-Richter y Kerres (2020), el éxito de los entornos de aprendizaje en ingeniería
depende de la coherencia entre el diseño pedagógico, los instrumentos de evaluación y las
estrategias de aprendizaje autorregulado. Por tanto, esta justificación teórica demuestra
que cada componente del módulo —conceptos, dimensiones, indicadores y métodos— se
articula en una estructura sólida que permite analizar, comprender y mejorar la práctica
educativa en el campo de la ingeniería de software.

4.3. Integración curricular y desarrollo de competencias
en la formación del ingeniero de software

4.3.1. Transición al vínculo curricular

Al culminar el proceso de fundamentación teórica y operativa de la experiencia de-
sarrollada en la asignatura Introducción a la Ingeniería de Software, se evidencia que
los aprendizajes alcanzados no se limitan al plano metodológico, sino que se integran
de manera coherente con el proyecto formativo de la carrera. Las dimensiones construi-
das -pedagógica, cognitiva-formativa y socioafectiva-colaborativa- permiten comprender
cómo la práctica docente contribuye al desarrollo de competencias profesionales clave,
fortaleciendo la relación entre teoría y práctica en los primeros niveles de formación uni-
versitaria.

Desde una perspectiva curricular, la experiencia se articula con el perfil de egreso del
Ingeniero de Software de la UNEMI, quien se caracteriza por su capacidad para desarro-
llar soluciones tecnológicas de calidad, trabajar colaborativamente, liderar equipos mul-
tidisciplinarios y actuar con responsabilidad ética y compromiso social. En este sentido,
los aprendizajes logrados en el aula -aprendizaje activo, pensamiento crítico, autonomía
y trabajo colaborativo- responden directamente a los resultados de aprendizaje del pro-
grama, al promover la aplicación de estándares profesionales, la comunicación efectiva y
la innovación mediante el uso de tecnologías emergentes. La incorporación de estrategias
como la mentoría pedagógica y el aprendizaje basado en proyectos favorece la formación
de estudiantes autónomos y reflexivos, capaces de enfrentar problemas reales del campo
de la ingeniería con una visión integral y ética.

195

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

Esta experiencia, además, se convierte en un punto de inflexión en el proceso for-
mativo, al evidenciar que la enseñanza de la ingeniería de software debe trascender la
instrucción técnica para situarse en el desarrollo de competencias blandas, cognitivas y
socioemocionales que sustentan la empleabilidad y la actualización profesional continua.

Así, la práctica sistematizada no solo refuerza el perfil de egreso institucional, sino que
también aporta una mirada pedagógica innovadora para la formación inicial en ingeniería,
constituyéndose en una referencia para el rediseño de estrategias curriculares orientadas al
aprendizaje significativo y al fortalecimiento del vínculo entre la docencia y el desarrollo
profesional.

4.3.2. Identificación de competencias del perfil

La experiencia desarrollada en la asignatura Introducción a la Ingeniería de Software
permitió evidenciar cómo la práctica docente puede articularse con las competencias del
perfil de egreso de la carrera, convirtiéndose en un espacio de formación integral para los
estudiantes de primer semestre.

En este nivel inicial, el desafío no radica únicamente en la adquisición de conoci-
mientos técnicos, sino en la construcción de una base competencial que combine la com-
prensión conceptual, la colaboración efectiva y la autonomía en el aprendizaje. Por ello,
identificar las competencias que se fortalecen a través de esta experiencia resulta clave
para evidenciar su alineación con el currículo y el proyecto formativo institucional.

De acuerdo con el perfil de egreso de la carrera de Ingeniería de Software de la UNE-
MI, el profesional debe ser capaz de desarrollar, mantener e innovar sistemas de software
de calidad, aplicando estándares internacionales y buenas prácticas; trabajar en equipos
multidisciplinarios; liderar proyectos; y actuar con ética y responsabilidad social.

En esta línea, las competencias que se consolidaron en la práctica docente fueron
principalmente: trabajo colaborativo, pensamiento crítico, autonomía en el aprendizaje,
responsabilidad ética y comunicación efectiva. Estas competencias, tanto genéricas como
específicas, se integran de forma transversal al proceso formativo, constituyendo el núcleo
de la formación del ingeniero de software contemporáneo.

La competencia de trabajo colaborativo se manifestó en la experiencia a través del
desarrollo de proyectos en equipo, donde los estudiantes asumieron roles complemen-
tarios -analista, programador y validador-, simulando entornos reales de producción de
software. Esta metodología permitió fortalecer habilidades de coordinación, negociación

196

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

y corresponsabilidad, aspectos que según D. W. Johnson et al. (2020) resultan esenciales
para el aprendizaje cooperativo en contextos de ingeniería.

Asimismo, el trabajo en equipo fomenta la empatía profesional y la capacidad de re-
solver conflictos de manera constructiva, competencias destacadas en el perfil de egreso
institucional. En un campo altamente interdependiente como el desarrollo de software,
estas habilidades sociales y de colaboración constituyen un pilar fundamental para la em-
pleabilidad y el éxito profesional.

Por su parte, la competencia de pensamiento crítico se relacionó con la capacidad de
los estudiantes para analizar y evaluar los problemas planteados durante la construcción
de proyectos, argumentando sus decisiones técnicas con base en evidencia y criterios de
calidad.

Tal como sostiene Facione (2020), el pensamiento crítico permite a los futuros pro-
fesionales emitir juicios fundamentados y asumir decisiones responsables en contextos
complejos. En la asignatura, esta competencia se promovió mediante la revisión de có-
digo, la detección de errores lógicos y la reflexión sobre las estrategias de resolución
implementadas. Estas prácticas fomentaron en los estudiantes la capacidad de razonar
con rigor, una competencia que, según Lai (2022), constituye un indicador de madurez
cognitiva y profesional en entornos STEM.

La autonomía en el aprendizaje fue otra competencia central, consolidada a través
de la planificación semanal de avances, la gestión de tareas y la autoevaluación continua
de los logros alcanzados. ZZimmerman (2020) define la autorregulación del aprendizaje
como la capacidad de planificar, monitorear y evaluar el propio proceso formativo.

En el contexto de la ingeniería de software, esta habilidad permite que los estudiantes
desarrollen la disciplina y la resiliencia necesarias para enfrentar proyectos de largo plazo
y adaptarse a las demandas cambiantes del mercado tecnológico. La autonomía, además,
se conecta directamente con la competencia de aprendizaje permanente, presente en el
perfil de egreso, que enfatiza la importancia de mantenerse actualizado en tecnologías
emergentes y buenas prácticas de desarrollo.

La responsabilidad ética y social se evidenció en la forma en que los estudiantes asu-
mieron el impacto de las decisiones tecnológicas en la sociedad, discutiendo dilemas éti-
cos relacionados con la privacidad de datos, la equidad digital y la sostenibilidad del
software. Según Morales et al. (2021), integrar la dimensión ética en la formación tec-
nológica favorece la construcción de profesionales conscientes del alcance social de sus
acciones. Esta competencia, presente en el perfil de egreso, trasciende el plano técnico

197

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

para consolidar una formación humanista y responsable, coherente con el compromiso de
la UNEMI hacia el desarrollo sostenible y el bienestar colectivo.

Finalmente, la comunicación efectiva emergió como una competencia transversal, in-
dispensable tanto para la gestión de proyectos como para la documentación técnica y la
presentación de resultados. Hargie (2021) subraya que la comunicación profesional en in-
geniería requiere precisión, claridad y empatía, habilidades que se fortalecen mediante la
exposición oral, la escritura técnica y la retroalimentación entre pares. En las actividades
realizadas, los estudiantes presentaron sus avances, defendieron decisiones de diseño y
compartieron aprendizajes, fortaleciendo así la capacidad de expresarse con propiedad en
entornos académicos y laborales.

Estas cinco competencias -colaboración, pensamiento crítico, autonomía, ética y comunicación-
conforman un entramado coherente que responde a las demandas del perfil de egreso y a
los retos contemporáneos de la educación en ingeniería. En la experiencia sistematizada,
dichas competencias se articularon de forma integral, mostrando que el proceso forma-
tivo no se limita a la enseñanza de contenidos técnicos, sino que abarca el desarrollo de
capacidades transversales que preparan a los estudiantes para desempeñarse con eficacia,
liderazgo y compromiso social en su vida profesional.

De este modo, la identificación de las competencias del perfil no solo evidencia la per-
tinencia curricular de la experiencia, sino que proyecta el proceso hacia los resultados de
aprendizaje que serán analizados en el siguiente apartado. Estas competencias se consti-
tuyen, por tanto, en los pilares sobre los cuales se construyen los aprendizajes observables
que reflejan la transformación del estudiante a lo largo del proceso educativo.

4.3.3. Resultados de aprendizaje vinculados

La sistematización de la experiencia desarrollada en la asignatura Introducción a la
Ingeniería de Software permitió constatar la correspondencia entre las competencias del
perfil de egreso y los resultados de aprendizaje propuestos en el plan curricular de la
carrera. En la práctica docente, los resultados de aprendizaje funcionan como un punto
de conexión entre las metas formativas del programa y los logros observables alcanzados
por los estudiantes.

En el contexto de la Universidad Estatal de Milagro (UNEMI), estos resultados se for-
mulan en coherencia con el Modelo Educativo Institucional (MEI) y el Marco Curricular
Institucional (MCI), que establecen como principio fundamental el desarrollo integral de

198

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

los estudiantes mediante el aprendizaje activo, reflexivo y colaborativo (Universidad Es-
tatal de Milagro (UNEMI), 2021).

En este sentido, los resultados de aprendizaje fortalecidos a partir de la experiencia se
agrupan en tres dimensiones que responden al enfoque por competencias definido por la
UNEMI: desarrollo del pensamiento crítico y la resolución de problemas, colaboración y
comunicación efectiva en entornos de ingeniería, y actuación ética y compromiso con el
aprendizaje continuo. Estas dimensiones, además de alinearse con el perfil de egreso de
la carrera, evidencian la coherencia entre la práctica pedagógica y el modelo curricular
institucional orientado a resultados.

El primer resultado de aprendizaje evidenciado fue la capacidad para analizar pro-
blemas de software y proponer soluciones fundamentadas en principios de ingeniería y
criterios de calidad. Durante la experiencia, los estudiantes aplicaron estrategias de análi-
sis, diseño y validación de sistemas, desarrollando la competencia de pensamiento crítico
mediante la revisión de código, la evaluación de alternativas y la justificación argumenta-
da de sus decisiones.

Este resultado se vincula directamente con el componente de razonamiento lógico
y pensamiento crítico establecido en el MCI, que enfatiza la formación de profesiona-
les capaces de identificar, analizar y resolver problemas complejos de manera autónoma
(Universidad Estatal de Milagro (UNEMI), 2023). En las actividades de aula, esta compe-
tencia se materializó cuando los equipos discutían errores en sus programas, analizaban
sus causas y elaboraban soluciones fundamentadas en estándares de desarrollo.

Un segundo resultado de aprendizaje alcanzado fue la capacidad para comunicarse y
trabajar de manera efectiva en equipos multidisciplinarios. Este aprendizaje se desarro-
lló a través de la planificación, ejecución y presentación de proyectos colaborativos en
los que cada estudiante asumió roles específicos, integrando la teoría con la práctica. De
acuerdo con el MCI, la comunicación efectiva y el trabajo en equipo son competencias
transversales que contribuyen a la construcción de conocimiento compartido, al fortaleci-
miento de la empatía y al liderazgo en contextos diversos (Universidad Estatal de Milagro
(UNEMI), 2021). En la práctica, los estudiantes demostraron avances significativos al uti-
lizar plataformas de control de versiones y entornos colaborativos, evidenciando mejoras
tanto en la organización de tareas como en la exposición oral y escrita de los resultados.

El tercer resultado de aprendizaje consolidado fue la demostración de responsabilidad
ética y compromiso con el aprendizaje autónomo y permanente. Este resultado se expresó

199

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

en la reflexión de los estudiantes sobre el impacto social de las tecnologías que desarro-
llan, la gestión responsable del tiempo y la autogestión de su propio progreso académico.

Según el Modelo Educativo Institucional de la UNEMI, la formación ética consti-
tuye un eje transversal del currículo, orientado al ejercicio profesional responsable y al
desarrollo sostenible (Universidad Estatal de Milagro (UNEMI), 2021). En este marco,
la autonomía y la ética se entienden como pilares que permiten a los futuros ingenie-
ros enfrentar los desafíos tecnológicos con conciencia social y capacidad de adaptación
continua.

La relación entre estos resultados de aprendizaje y las competencias del perfil de egre-
so es directa y verificable. El pensamiento crítico y la resolución de problemas se asocian
con la competencia de innovar y aplicar tecnologías emergentes, la colaboración y la
comunicación efectiva se relacionan con la capacidad de liderar proyectos y trabajar en
equipos multidisciplinarios, mientras que la ética y el aprendizaje autónomo se alinean
con el compromiso institucional de formar profesionales responsables y comprometidos
con el desarrollo sostenible. Esta trazabilidad, destacada por el MCI (Universidad Estatal
de Milagro (UNEMI), 2023), garantiza la coherencia entre las experiencias formativas del
aula y las metas de desempeño profesional esperadas al final de la carrera.

En síntesis, los resultados de aprendizaje alcanzados en la experiencia evidencian la
efectividad del enfoque por competencias adoptado por la UNEMI. Los estudiantes no
solo adquirieron conocimientos técnicos, sino que también fortalecieron habilidades cog-
nitivas, comunicativas y éticas que sustentan su perfil profesional.

Este proceso demuestra que la integración entre docencia, práctica y currículo no es
un ejercicio formal, sino una estrategia pedagógica que potencia la formación integral del
futuro ingeniero de software. En el siguiente apartado, estos aprendizajes se proyectarán
en las actividades y evidencias que permiten verificar empíricamente la transformación
educativa lograda en el aula.

4.3.4. Actividades y evidencias

El desarrollo de la experiencia en la asignatura Introducción a la Ingeniería de Soft-
ware se sustentó en una secuencia de actividades planificadas intencionalmente para for-
talecer las competencias y resultados de aprendizaje vinculados al perfil de egreso de la
carrera. Estas actividades respondieron al principio de coherencia pedagógica entre la teo-
ría y la práctica, promoviendo el aprendizaje activo, el trabajo colaborativo y la reflexión

200

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

crítica como ejes centrales del proceso formativo. De este modo, cada acción en el aula
fue concebida no solo como una tarea académica, sino como una oportunidad para generar
evidencias verificables de los aprendizajes alcanzados por los estudiantes.

Las actividades se estructuraron en tres momentos pedagógicos: exploración, aplica-
ción y reflexión. En la fase de exploración, los estudiantes participaron en sesiones de
diagnóstico y discusión guiada sobre los fundamentos de la ingeniería de software, iden-
tificando los problemas comunes en la gestión de proyectos tecnológicos.

Estas dinámicas permitieron activar los conocimientos previos y contextualizar los
desafíos que enfrentarían posteriormente. Las evidencias generadas en esta etapa fueron
fichas de análisis individual, foros de discusión en el aula virtual y registros reflexivos,
que mostraron la comprensión inicial de los conceptos básicos y la disposición para el
trabajo colaborativo.

Durante la fase de aplicación, se implementaron actividades basadas en el aprendizaje
activo y la simulación de entornos profesionales. Los estudiantes trabajaron en equipos
para desarrollar un proyecto de software de pequeña escala, aplicando principios de aná-
lisis de requerimientos, diseño modular y control de versiones mediante GitHub.

Cada grupo asumió roles diferenciados -analista, programador, validador y líder de
proyecto- con el fin de promover la corresponsabilidad y el liderazgo colaborativo. Entre
las principales evidencias producidas se encuentran los repositorios de código en GitHub,
los informes técnicos del proyecto, las actas de reuniones semanales y las rúbricas de
evaluación de desempeño, que documentaron tanto los procesos como los productos del
aprendizaje.

Estas evidencias resultaron especialmente relevantes porque permitieron observar la
consolidación de los resultados de aprendizaje vinculados a la resolución de problemas,
el trabajo en equipo y la comunicación efectiva. Tal como señalan Biggs y Tang (2011), la
coherencia entre objetivos, actividades y evaluación es esencial para garantizar la validez
del proceso formativo. En este caso, la experiencia demostró que los proyectos colabo-
rativos constituyen un medio eficaz para integrar los saberes técnicos y las competencias
transversales del ingeniero de software, permitiendo que el aprendizaje sea significativo,
observable y transferible.

Finalmente, en la fase de reflexión, se promovió la autoevaluación y la metacognición
mediante la elaboración de bitácoras individuales de aprendizaje y sesiones de retroali-
mentación grupal. Los estudiantes analizaron los aciertos y dificultades encontradas du-

201

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

rante el desarrollo del proyecto, reflexionando sobre la aplicación de los principios éticos,
la responsabilidad en la gestión del tiempo y la toma de decisiones.

Estas evidencias, junto con las encuestas de satisfacción y las observaciones del do-
cente, ofrecieron una visión integral del impacto de la experiencia en la formación de
los participantes. Según Kolb (2015), la reflexión sobre la práctica permite transformar la
experiencia vivida en conocimiento profundo, consolidando la autonomía y la capacidad
crítica del aprendiz.

La pertinencia de las evidencias recogidas radica en que reflejan de manera tangible
el cumplimiento de los resultados de aprendizaje propuestos en el plan curricular de la
carrera y en el Marco Curricular Institucional de la UNEMI. Cada evidencia -ya sea un
producto tecnológico, un registro reflexivo o un indicador de desempeño- constituye una
muestra verificable de que los estudiantes avanzaron hacia el perfil profesional esperado:
un ingeniero de software con pensamiento crítico, ética profesional, habilidades colabo-
rativas y compromiso con la calidad del desarrollo tecnológico.

En conclusión, las actividades y evidencias descritas demuestran que la práctica do-
cente fue diseñada con coherencia pedagógica y pertinencia curricular, asegurando la tra-
zabilidad entre actividad → resultado → evidencia. Este enfoque permitió evidenciar que
la experiencia no solo fortaleció los aprendizajes técnicos, sino también las competen-
cias cognitivas, socioafectivas y éticas necesarias para la formación integral del futuro
profesional. En el siguiente apartado, estas evidencias servirán de base para analizar la
alineación curricular y el grado de correspondencia entre la práctica sistematizada y el
modelo educativo institucional de la UNEMI.

4.3.5. Reflexión sobre la alineación curricular

Reflexionar sobre la alineación curricular implica reconocer la importancia de que ca-
da práctica docente se integre de manera coherente al perfil de egreso, a los resultados
de aprendizaje y a los principios formativos de la carrera. En el caso de la experiencia
desarrollada en la asignatura Introducción a la Ingeniería de Software, esta alineación fue
clave para garantizar que las estrategias implementadas no fueran acciones aisladas, sino
componentes articulados del proceso formativo que caracteriza al ingeniero de software
de la Universidad Estatal de Milagro. En coherencia con lo que plantea el Marco Curri-
cular Institucional (Universidad Estatal de Milagro (UNEMI), 2023), la práctica docente
debe promover aprendizajes significativos y transferibles, alineados con un currículo fle-

202

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

xible y orientado por competencias, donde la docencia se conciba como un espacio de
innovación y reflexión continua.

La experiencia permitió constatar una sólida correspondencia entre las actividades de
aula y los propósitos curriculares de la carrera. Las estrategias de aprendizaje activo, la
resolución colaborativa de problemas y la integración de herramientas tecnológicas (como
GitHub y entornos de simulación) evidenciaron la conexión directa con las competencias
del perfil de egreso relacionadas con la comunicación efectiva, la ética profesional y la
innovación tecnológica.

Esta coherencia refleja lo que BBiggs y Tang (2011) denominan alineación construc-
tiva: la necesidad de que los objetivos, las actividades y la evaluación respondan de forma
integrada a los resultados de aprendizaje esperados. En este sentido, la experiencia for-
taleció la formación integral del estudiante al fomentar tanto las competencias técnicas
propias de la ingeniería como las socioemocionales y metacognitivas que demanda la
práctica profesional contemporánea.

Entre las principales fortalezas observadas destaca la pertinencia metodológica de las
actividades diseñadas. La secuencia de exploración, aplicación y reflexión permitió avan-
zar de lo conceptual a lo práctico, haciendo visible la progresión del aprendizaje. Los
proyectos colaborativos y las bitácoras de autoevaluación demostraron que los estudiantes
no solo comprendieron los fundamentos de la disciplina, sino que también desarrollaron
autonomía, pensamiento crítico y capacidad de autorregulación.

Como señalan Barnett y Jackson (2019), la educación superior debe preparar a los
estudiantes para gestionar la complejidad y la incertidumbre del conocimiento profesio-
nal, promoviendo la reflexión crítica sobre su propio aprendizaje. Desde esta perspectiva,
la alineación curricular se convierte en un proceso dinámico que articula la formación
técnica con la capacidad de adaptación y el pensamiento ético.

No obstante, también se identificaron algunas brechas y tensiones en el proceso. Una
de ellas fue la necesidad de fortalecer la conexión entre los resultados de aprendizaje del
primer semestre y los desafíos de cursos posteriores, especialmente en la aplicación sis-
temática de metodologías ágiles y en la evaluación continua de proyectos. Esta situación
coincide con lo que expone Zabalza (2019), quien plantea que los currículos universita-
rios deben revisarse periódicamente para mantener su coherencia horizontal y vertical,
evitando fragmentaciones en la formación por competencias. Asimismo, se evidenció que
la carga académica y el tiempo destinado a la tutoría personalizada resultaron limitantes
para acompañar a todos los grupos con la profundidad requerida. Estas brechas sugieren la

203

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

necesidad de reforzar la integración entre docentes de distintas asignaturas, promoviendo
espacios de co-docencia y articulación interdisciplinaria.

A nivel institucional, el ejercicio de vincular la práctica con el currículo reafirma la
importancia de comprender la docencia como una práctica reflexiva. La Universidad Es-
tatal de Milagro (UNEMI) (2023) plantea que la alineación curricular no debe entenderse
como un cumplimiento formal, sino como una estrategia para garantizar la calidad acadé-
mica y la pertinencia social de la formación. En este sentido, el proceso de sistematización
se convierte en una herramienta para revisar críticamente las propias decisiones pedagó-
gicas, reconocer aciertos y proyectar mejoras.

Entre los aprendizajes más significativos derivados de esta reflexión se encuentra la
convicción de que la enseñanza en ingeniería debe integrar la innovación tecnológica con
una mirada humanista y ética, fortaleciendo la relación entre la práctica profesional y la
responsabilidad social.

En conclusión, la experiencia desarrollada estuvo sólidamente alineada con el currícu-
lo de la carrera, contribuyendo a la consolidación de un modelo pedagógico basado en
competencias y en la formación integral del estudiante. Sin embargo, esta reflexión invita
también a mantener una actitud crítica frente al propio diseño curricular, promoviendo
una actualización constante y un diálogo permanente entre las prácticas docentes y las
demandas del entorno profesional. De este modo, la alineación curricular se convierte en
un ejercicio de mejora continua que reafirma el compromiso docente con la calidad edu-
cativa y la innovación formativa, principios que sustentan la misión de la UNEMI y el
propósito de formar ingenieros capaces de transformar su realidad desde el conocimiento,
la ética y la creatividad.

4.4. Diseño e implementación del ecosistema estratégico
de aprendizaje en ingeniería de software

4.4.1. Transición hacia la operacionalización estratégica

Hasta este punto, la sistematización ha permitido mostrar la coherencia curricular de
la experiencia desarrollada en la carrera de Ingeniería de Software de la Universidad Esta-
tal de Milagro (UNEMI). A través del análisis de competencias, resultados de aprendizaje
y evidencias, se evidenció una correspondencia entre los objetivos formativos del cur-

204

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

so y las prácticas pedagógicas implementadas. No obstante, comprender la experiencia
únicamente desde el plano curricular sería insuficiente si no se examina cómo dichas in-
tenciones se concretaron en el aula. Por ello, esta sección marca la transición hacia la
operacionalización estratégica, en la que se describe cómo las estrategias planificadas se
tradujeron en acciones reales que sostuvieron el proceso de enseñanza-aprendizaje.

Adoptar una mirada estratégica implica reconocer que la formación en ingeniería re-
quiere de decisiones operativas que integren metodologías activas y herramientas tecnoló-
gicas propias del campo. En este sentido, la experiencia se sustentó en estrategias núcleo
orientadas al trabajo por proyectos, la aplicación de metodologías ágiles y el uso de plata-
formas colaborativas como GitHub para el control de versiones y la gestión del progreso.
Estas acciones permitieron que los estudiantes asumieran roles propios de un equipo de
desarrollo profesional, aplicando buenas prácticas en la planificación, seguimiento y do-
cumentación del software.

De forma complementaria, se implementaron estrategias de soporte basadas en el
acompañamiento docente continuo, el uso de rúbricas compartidas y la retroalimentación
técnica, asegurando coherencia y trazabilidad entre los aprendizajes y las competencias
profesionales. Finalmente, ante contingencias como los retrasos o dificultades técnicas,
se aplicaron estrategias de ajuste que promovieron la resolución autónoma y el trabajo
colaborativo.

Esta transición hacia la mirada estratégica constituye un paso esencial dentro del ca-
pítulo, pues enlaza el diseño curricular con la práctica operativa. A partir de aquí, se
expondrán las estrategias núcleo que guiaron la experiencia en gestión de proyectos de
software, mostrando cómo la planificación se transformó en acción mediante secuencias
metodológicas claras, decisiones adaptativas y recursos tecnológicos que garantizaron el
logro de los resultados de aprendizaje propuestos.

4.4.2. Estrategias núcleo en acción

La implementación de la experiencia en la asignatura Introducción a la ingeniería
de Software se sustentó en un conjunto de estrategias núcleo orientadas a promover el
aprendizaje activo, la gestión colaborativa y el desarrollo de competencias profesionales
vinculadas con el trabajo real en entornos tecnológicos. Estas estrategias constituyeron
el corazón de la práctica docente, ya que permitieron transformar los objetivos curricu-
lares en acciones operativas concretas, favoreciendo la participación, la responsabilidad

205

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

compartida y la apropiación de herramientas de gestión digital como GitHub, Trello y
metodologías ágiles.

La primera estrategia núcleo consistió en la implementación del aprendizaje basado
en proyectos (ABP), que permitió a los estudiantes asumir el rol de desarrolladores en un
entorno simulado de trabajo real. A través de esta metodología, los equipos planificaron,
diseñaron y ejecutaron un proyecto de software siguiendo el ciclo de vida del desarrollo
y aplicando buenas prácticas de ingeniería.

Cada grupo gestionó su repositorio en GitHub, donde registró avances, incidencias
y versiones del código, lo que fomentó la transparencia y la trazabilidad del proceso.
Este enfoque metodológico favoreció la adquisición de competencias técnicas y blandas,
como la resolución de problemas, la comunicación efectiva y la gestión del tiempo, en
consonancia con lo señalado por Thomas y Leifer (2020), quienes destacan que el ABP
impulsa el desarrollo de habilidades de colaboración y pensamiento crítico en contextos
de ingeniería.

Una segunda estrategia núcleo fue la integración de metodologías ágiles, particular-
mente el enfoque Scrum, como marco para la organización y seguimiento del trabajo. Los
estudiantes se distribuyeron en roles de Scrum Master, Product Owner y Development
Team, participando en reuniones breves de planificación y revisión semanal de avances.

Cada sprint concluyó con una entrega funcional del sistema, la cual fue documentada
y evaluada mediante rúbricas previamente definidas. Este modelo de trabajo permitió ex-
perimentar la autogestión y la iteración continua, alineándose con la realidad profesional
del desarrollo de software. Según Pisoni et al. (2021), el uso de metodologías ágiles en
la enseñanza de ingeniería favorece la adaptación al cambio y la capacidad de priorizar
tareas, habilidades esenciales en contextos tecnológicos dinámicos.

La tercera estrategia núcleo correspondió a la gestión colaborativa del código me-
diante control de versiones en GitHub, una herramienta central para la coordinación y el
trabajo sincrónico y asincrónico entre los miembros del equipo.

Cada estudiante fue responsable de realizar commits, crear branches para nuevas fun-
cionalidades y resolver pull requests, lo que permitió un seguimiento detallado de las
contribuciones individuales y colectivas. Esta práctica no solo fortaleció las competencias
técnicas, sino también la ética profesional y la responsabilidad compartida, al evidenciar
los aportes de cada integrante. De acuerdo con Zhang et al. (2023), el uso educativo de
GitHub potencia la transparencia, la cooperación y la evaluación formativa en proyectos
de programación universitaria.

206

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Estas estrategias se articularon de manera complementaria, generando un ecosiste-
ma didáctico coherente y alineado con el perfil de egreso del ingeniero de software. La
interacción entre el aprendizaje basado en proyectos, la metodología ágil y el control de
versiones consolidó una dinámica de trabajo realista, en la que los estudiantes aprendieron
haciendo y reflexionando sobre su propio proceso. Las evidencias obtenidas —bitácoras
de repositorios, informes de avances, rúbricas de desempeño y productos funcionales—
demostraron la efectividad de estas estrategias, evidenciando aprendizajes significativos
y sostenibles.

En conclusión, las estrategias núcleo implementadas permitieron que la experiencia
trascienda el plano teórico y se consolide como una práctica auténtica de formación pro-
fesional. Su coherencia operativa y su enfoque progresivo fortalecieron el aprendizaje
autónomo, la colaboración efectiva y la capacidad de los estudiantes para aplicar metodo-
logías de gestión de proyectos en escenarios reales. Este conjunto de acciones sentó las
bases para la siguiente fase del capítulo: las estrategias de soporte, que acompañaron y po-
tenciaron la ejecución de las estrategias núcleo, asegurando la sostenibilidad pedagógica
y tecnológica de la experiencia.

4.4.3. Estrategias de soporte aplicadas

La ejecución de la experiencia se apoyó en un conjunto de estrategias de soporte que
acompañaron la implementación de las estrategias núcleo, garantizando su continuidad,
sostenibilidad y efectividad pedagógica. Estas estrategias fueron diseñadas para propor-
cionar a los estudiantes un entorno de aprendizaje accesible, guiado y colaborativo, en el
que pudieran afianzar los conocimientos iniciales sobre la disciplina, familiarizarse con
las herramientas tecnológicas de uso profesional y fortalecer su autonomía en el desarrollo
de proyectos introductorios.

Una primera estrategia de soporte fue la elaboración y distribución de guías prácticas
experimentales, diseñadas para orientar a los estudiantes en el uso de herramientas esen-
ciales de la ingeniería de software, como GitHub para el control de versiones y Trello
para la gestión de tareas. Cada guía integró objetivos, pasos secuenciales y ejemplos con-
textualizados, de modo que los estudiantes pudieran avanzar de manera autónoma en la
comprensión del proceso de desarrollo de software.

Este recurso fue complementado con sesiones de acompañamiento sincrónico en aula
y tutorías personalizadas en horarios establecidos, donde se resolvieron dudas técnicas

207

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

y conceptuales. Según Fernández y Rodríguez (2020), la estructuración de materiales de
apoyo bien diseñados potencia el aprendizaje autónomo y reduce las brechas entre la
teoría y la práctica en entornos universitarios.

Una segunda estrategia de soporte consistió en el uso integrado de plataformas institu-
cionales y recursos digitales, que facilitaron la comunicación y el seguimiento del progre-
so. A través de Moodle, se centralizó la entrega de actividades, la publicación de recursos
y la retroalimentación continua, mientras que GitHub y Trello permitieron evidenciar el
trabajo colaborativo y la planificación de tareas en equipo.

El uso de estas plataformas no solo fortaleció la organización y la trazabilidad de
los proyectos, sino que también fomentó la apropiación de herramientas de gestión pro-
fesional desde las etapas iniciales de la formación. De acuerdo con García-Holgado y
García-Peñalvo (2022), la integración de ecosistemas digitales en la enseñanza de inge-
niería favorece la alfabetización tecnológica y mejora la interacción entre estudiantes y
docentes, al tiempo que optimiza los procesos de evaluación formativa.

Una tercera estrategia de soporte clave fue la retroalimentación formativa y conti-
nua, aplicada en distintos momentos del desarrollo de la experiencia. A través de rúbricas
compartidas en Moodle y revisiones periódicas de los repositorios en GitHub, se pro-
porcionaron observaciones específicas sobre la estructura del código, la documentación
técnica y la colaboración en equipo. Este proceso permitió a los estudiantes reconocer sus
avances y áreas de mejora, desarrollando habilidades de autoevaluación y pensamiento
crítico. La retroalimentación fue concebida como un espacio de diálogo pedagógico y no
solo como una evaluación sumativa, en coherencia con lo planteado por Boud y Molloy
(2019), quienes destacan que la retroalimentación efectiva debe considerarse un proceso
interactivo y orientado al desarrollo de la competencia profesional.

Finalmente, se aplicó una estrategia de acompañamiento docente diferenciado, en-
focada en atender la diversidad de ritmos de aprendizaje presentes en el aula. Algunos
estudiantes requerían apoyo adicional en el manejo de Git y en la lógica de los procesos
de desarrollo; por ello, se organizaron tutorías complementarias y pequeños grupos de
refuerzo.

Estas acciones fueron esenciales para garantizar la equidad en el aprendizaje y conso-
lidar las bases conceptuales necesarias para cursos posteriores más especializados. Este
tipo de acompañamiento responde a la perspectiva de aprendizaje inclusivo y progresivo
que promueve la UNEMI, donde el rol docente se redefine como mediador del aprendizaje
más que como transmisor de contenidos.

208

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

En conjunto, las estrategias de soporte aplicadas consolidaron la experiencia formativa
al garantizar la operatividad de las estrategias núcleo y al generar un entorno de apren-
dizaje integral, flexible y orientado al logro de resultados verificables. La articulación
entre guías estructuradas, acompañamiento constante, plataformas tecnológicas y retro-
alimentación formativa permitió sostener un proceso de enseñanza activo, participativo
y centrado en el estudiante. Estas estrategias, además, fomentaron una cultura de trabajo
colaborativo y profesional desde los primeros niveles de la carrera, preparando a los es-
tudiantes para enfrentar con mayor solvencia las demandas de las etapas avanzadas del
desarrollo de software.

En el siguiente apartado se abordarán las estrategias de contingencia desplegadas,
mostrando cómo se gestionaron los imprevistos y desafíos surgidos durante la experiencia,
garantizando la continuidad y la coherencia del proceso formativo.

4.4.4. Estrategias de contingencia desplegadas

Durante el desarrollo de la experiencia en la asignatura Introducción a la Ingeniería
de Software de la carrera de Ingeniería de Software de la Universidad Estatal de Milagro
(UNEMI), surgieron diversos imprevistos que pusieron a prueba la flexibilidad y la capa-
cidad de adaptación tanto del docente como de los estudiantes. Las contingencias fueron
entendidas no como obstáculos, sino como oportunidades para fortalecer la autonomía, la
resiliencia y la gestión colaborativa en los procesos formativos. En este sentido, la imple-
mentación de estrategias de contingencia permitió mantener la coherencia del proyecto,
asegurar la continuidad de las actividades y garantizar el logro de los resultados de apren-
dizaje previstos, incluso frente a condiciones adversas.

Una de las principales contingencias enfrentadas fue la inestabilidad en la conectivi-
dad y el acceso a las plataformas digitales, particularmente durante las sesiones de práctica
en GitHub y Trello. Algunos estudiantes presentaron dificultades para sincronizar sus re-
positorios o subir evidencias de avance a tiempo, lo que afectaba la dinámica colaborativa
de los equipos.

Ante esta situación, se adoptó una estrategia de flexibilización en los plazos de entre-
ga y la habilitación de canales alternativos de comunicación, como grupos de WhatsApp
académicos y foros en Moodle, que permitieron mantener la interacción y la supervisión
constante. Esta medida coincidió con las recomendaciones de Hodges et al. (2020), quie-

209

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

nes sostienen que la adaptabilidad docente y la diversificación de medios son factores
decisivos para sostener la continuidad educativa en entornos mediados por tecnología.

Otra contingencia significativa fue la brecha de conocimientos técnicos iniciales en-
tre los estudiantes, propia de un curso introductorio donde coexistían diferentes niveles
de familiaridad con las herramientas de desarrollo. Para contrarrestar esta disparidad, se
implementó una estrategia de acompañamiento escalonado, en la que los estudiantes con
mayor dominio de GitHub o de metodologías ágiles asumieron roles de tutores pares.

Estas microcomunidades de aprendizaje promovieron la colaboración horizontal, re-
dujeron la ansiedad técnica y fortalecieron la cohesión grupal. Como afirman Zhu y Park
(2021), la tutoría entre pares favorece el aprendizaje situado, la cooperación y la autocon-
fianza en entornos digitales, especialmente en contextos de formación en ingeniería.

Un tercer imprevisto fue la falta de sincronización en la ejecución de las tareas de
los equipos de trabajo, derivada de la gestión simultánea de múltiples asignaturas y res-
ponsabilidades personales de los estudiantes. Para resolverlo, se adoptó la estrategia de
replanificación de los cronogramas de entrega mediante Trello y la implementación de
sprints cortos de una semana, que facilitaron un seguimiento más ágil y realista.

Esta medida permitió reducir la acumulación de tareas y mejorar la productividad de
los grupos, promoviendo un ritmo de trabajo constante y alcanzable. En coherencia con
lo señalado por (Moe et al., 2022), los procesos iterativos y la gestión visual de tareas
fortalecen la coordinación y la comunicación en equipos de aprendizaje distribuidos, ase-
gurando la adaptabilidad ante cambios o retrasos.

Asimismo, se presentaron contingencias de tipo motivacional. Algunos estudiantes
mostraron una participación intermitente o desmotivación ante los desafíos técnicos del
curso. Frente a ello, se implementaron estrategias de refuerzo positivo y gamificación, in-
corporando insignias digitales y reconocimientos públicos en Moodle a los equipos más
constantes y colaborativos. Estas acciones generaron un ambiente de competencia sana
y compromiso colectivo. De acuerdo con de Sousa et al. (2021), el uso de la gamifica-
ción en entornos educativos incrementa la motivación intrínseca y la persistencia de los
estudiantes al integrar elementos lúdicos con metas de aprendizaje claras y alcanzables.

Estas estrategias de contingencia se articularon con las estrategias núcleo y de soporte,
formando un entramado flexible que garantizó la continuidad de la experiencia pese a
las dificultades. Más allá de resolver situaciones puntuales, estas acciones fortalecieron
competencias transversales esenciales en la formación del ingeniero de software, como la
resolución de problemas, la toma de decisiones en contextos de incertidumbre y la gestión

210

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

efectiva del trabajo en equipo. Además, contribuyeron a consolidar una cultura académica
basada en la responsabilidad compartida y en la capacidad de respuesta ante el cambio,
aspectos clave de la profesión tecnológica contemporánea.

En síntesis, las estrategias de contingencia desplegadas permitieron transformar los
desafíos del aula en oportunidades de aprendizaje significativo. La flexibilidad metodoló-
gica, el acompañamiento colaborativo y el uso inteligente de los recursos digitales posibi-
litaron mantener la calidad educativa sin perder el foco en los resultados curriculares. Este
conjunto de medidas reforzó la pertinencia pedagógica de la experiencia, asegurando que
la práctica docente se mantuviera sólida y coherente con los principios de la educación
en ingeniería. A continuación, se presentará la arquitectura del ecosistema estratégico,
que integrará las estrategias núcleo, de soporte y de contingencia en una visión global del
proceso, mostrando su articulación y coherencia operativa dentro del capítulo.

4.4.5. Arquitectura del ecosistema estratégico

La experiencia desarrollada en la asignatura se consolidó a través de un ecosistema
estratégico conformado por la articulación de estrategias núcleo, de soporte y de contin-
gencia. Este ecosistema permitió comprender el proceso formativo no como un conjunto
de acciones aisladas, sino como un sistema dinámico, coherente y autorregulado que ga-
rantizó el logro de los resultados de aprendizaje previstos. La integración de estos tres
tipos de estrategias evidenció una organización pedagógica intencionada, flexible y adap-
tativa, propia de los entornos de enseñanza-aprendizaje en ingeniería contemporánea.

Las estrategias núcleo constituyeron el eje central del ecosistema. Estas se enfocaron
en el aprendizaje basado en proyectos (ABP), la aplicación de metodologías ágiles y el
uso de GitHub como herramienta de control de versiones y trabajo colaborativo. A partir
de estas acciones, los estudiantes simularon contextos reales de desarrollo de software,
aplicando principios de planificación, ejecución y validación de productos.

Estas estrategias promovieron un aprendizaje significativo, centrado en la práctica,
que alineó las competencias curriculares con la experiencia profesional. Tal como señalan
Berglund y Lister (2020), la formación en ingeniería de software debe trascender la teoría
y situar a los estudiantes en escenarios donde la experimentación y la iteración guíen la
construcción del conocimiento.

En torno a este núcleo, se articularon las estrategias de soporte, que proporcionaron
el andamiaje necesario para sostener el proceso pedagógico. Las guías prácticas, la re-

211

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

troalimentación formativa y el acompañamiento docente personalizado fueron esenciales
para orientar la ejecución de las actividades, garantizando la comprensión progresiva de
los contenidos y el desarrollo de la autonomía.

Estas estrategias generaron un entorno de apoyo estable, donde los estudiantes con-
taron con materiales estructurados, tutorías técnicas y espacios de comunicación digital.
De acuerdo con Laurillard (2021), los ecosistemas de aprendizaje exitosos se caracterizan
por integrar recursos tecnológicos y estrategias pedagógicas que permitan la participación
activa y el soporte continuo a lo largo del proceso educativo.

Por su parte, las estrategias de contingencia actuaron como mecanismos de ajuste
ante imprevistos surgidos durante la experiencia. Frente a dificultades de conectividad,
desajustes en los tiempos de entrega o diferencias en los niveles de dominio técnico, se
adoptaron medidas de flexibilización y acompañamiento entre pares. Estas acciones per-
mitieron mantener la continuidad del aprendizaje y reforzar la colaboración como princi-
pio formativo. En coherencia con lo expuesto por Díaz-Noguera et al. (2023), la gestión de
la contingencia en entornos educativos digitales debe concebirse como una oportunidad
para desarrollar resiliencia y capacidad de respuesta, fortaleciendo la dimensión humana
del aprendizaje tecnológico.

La interacción entre los tres tipos de estrategias configuró un entramado funcional, en
el cual cada componente cumplió un rol complementario. Mientras las estrategias núcleo
definieron el propósito y la estructura operativa del curso, las estrategias de soporte asegu-
raron las condiciones necesarias para su implementación, y las estrategias de contingencia
garantizaron su adaptabilidad ante los cambios.

Este sistema de interdependencias generó un equilibrio entre la planificación y la fle-
xibilidad, entre la estructura y la innovación, asegurando que el aprendizaje se mantuviera
activo, contextualizado y significativo. En términos prácticos, el ecosistema estratégico se
comportó como una red de procesos interconectados: las acciones pedagógicas (núcleo)
fueron alimentadas por recursos y acompañamiento (soporte), y protegidas por respuestas
adaptativas (contingencia).

Visualmente, esta arquitectura puede concebirse como un circuito de retroalimenta-
ción continua, donde la información fluye entre los distintos niveles del proceso educa-
tivo. El aprendizaje basado en proyectos constituye el motor central, sostenido por los
recursos didácticos, el acompañamiento docente y la interacción digital, mientras que las
contingencias operan como sensores que detectan desajustes y activan mecanismos de
corrección.

212

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Este enfoque sistémico refleja la naturaleza propia de la ingeniería de software, en la
que el diseño, la implementación y la evaluación se integran en ciclos iterativos de mejora
continua. Según (Kapur & Bielaczyc, 2021), este tipo de arquitectura pedagógica favorece
la autoorganización del aprendizaje y promueve comunidades de práctica sostenibles en
la formación universitaria.

En síntesis, la arquitectura del ecosistema estratégico consolidó una experiencia edu-
cativa coherente, sostenible y adaptable, donde cada estrategia se articuló en función de
las otras. La complementariedad entre el núcleo, el soporte y la contingencia garantizó
que los estudiantes no solo comprendieran los fundamentos de la ingeniería de software,
sino que también desarrollaran competencias prácticas y actitudinales esenciales para su
futuro profesional.

Este ecosistema permitió que la práctica docente trascendiera la simple transmisión
de conocimientos, convirtiéndose en un proceso de diseño, experimentación y aprendiza-
je colectivo. En el siguiente apartado, se presentará la integración final del módulo, donde
se analizará cómo este entramado estratégico contribuyó al logro de las competencias cu-
rriculares y a la consolidación de la experiencia como modelo replicable en la enseñanza
de la ingeniería de software.

4.5. Evaluación integral de la experiencia: instrumentos,
evidencias y validez del proceso formativo

4.5.1. Transición hacia la evaluación

Después de haber descrito el ecosistema estratégico de la experiencia -con sus es-
trategias núcleo, de soporte y de contingencia-, resulta necesario dar un paso hacia la
dimensión evaluativa. En la docencia universitaria, especialmente en el ámbito de la Inge-
niería de Software, evaluar no es solo medir resultados, sino validar la coherencia entre las
estrategias aplicadas y las competencias que se pretendían alcanzar. Por ello, esta etapa
busca garantizar que los logros formativos observados durante el proceso respondan efec-
tivamente a los resultados de aprendizaje y al perfil de egreso planteado en el currículo.

Evaluar la experiencia permitió confirmar la pertinencia de las decisiones metodoló-
gicas adoptadas en la planificación y ejecución de las guías prácticas. Asimismo, posibi-
litó verificar que las estrategias implementadas -como el trabajo colaborativo, el uso de

213

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

repositorios en GitHub y la gestión de proyectos con metodologías ágiles- impactaron po-
sitivamente en el desarrollo de competencias técnicas y profesionales en los estudiantes.
La evaluación, en este sentido, se convirtió en una herramienta reflexiva que fortaleció la
mejora continua del proceso formativo, permitiendo reconocer aciertos, identificar áreas
de ajuste y consolidar evidencias que respaldan el aprendizaje alcanzado.

Mostrar los instrumentos y criterios utilizados en la valoración de la experiencia aporta
transparencia y credibilidad a la sistematización. Cada instrumento fue diseñado para
medir la aplicación práctica de los conocimientos y la capacidad de los estudiantes para
resolver problemas reales de ingeniería, asegurando que los resultados obtenidos sean
válidos y consistentes con los objetivos propuestos. Evaluar, entonces, no solo implica
calificar, sino comprender cómo las estrategias pedagógicas contribuyeron a transformar
la práctica docente en evidencia verificable de aprendizaje.

En los apartados siguientes se presentarán los instrumentos de evaluación aplicados,
los indicadores que guiaron el análisis y la forma en que las evidencias fueron interpre-
tadas para otorgar sentido académico y confiabilidad al proceso. Esta sección constituye,
por tanto, el puente entre la acción estratégica y la validación de sus resultados.

4.5.2. Instrumentos de evaluación aplicados

En el desarrollo de la experiencia docente vinculada con la asignatura, la evaluación
ocupó un papel central para garantizar la coherencia entre las estrategias implementadas,
los resultados de aprendizaje y las competencias profesionales del perfil de egreso. Para
ello, se diseñó y aplicó un conjunto de instrumentos que permitieron valorar de forma
integral los avances de los estudiantes, considerando tanto el desempeño técnico como las
habilidades transversales desarrolladas a lo largo de las guías prácticas experimentales.

El primer instrumento empleado fue la rúbrica de evaluación del desempeño prácti-
co, elaborada específicamente para valorar la ejecución de las guías de laboratorio. Esta
rúbrica contempló criterios como: dominio de los contenidos teóricos, aplicación de meto-
dologías ágiles en el desarrollo de proyectos, calidad del código en GitHub, cumplimiento
de los requisitos funcionales, documentación técnica, y presentación de evidencias. Cada
criterio fue ponderado sobre una escala de 1 a 10, con descriptores que permitían iden-
tificar niveles de logro desde “insuficiente” hasta “sobresaliente”. La rúbrica se aplicó al
final de cada sesión práctica, lo que permitió ofrecer retroalimentación inmediata a los
estudiantes y promover la mejora continua. Este instrumento fue clave para garantizar ob-

214

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

jetividad en la calificación y coherencia con las competencias específicas del curso, tales
como la capacidad de diseñar, construir y verificar soluciones de software.

El segundo instrumento fue el cuestionario de autoevaluación, orientado a que los es-
tudiantes reflexionaran sobre su propio proceso de aprendizaje. Este cuestionario se aplicó
al finalizar cada unidad temática y contenía ítems de tipo Likert, centrados en el nivel de
comprensión de los contenidos, el manejo de herramientas colaborativas (como GitHub
y Trello), y el grado de participación en el trabajo en equipo. La autoevaluación permitió
identificar percepciones individuales sobre el desempeño y promover la autorregulación
del aprendizaje. Además, facilitó reconocer aspectos emocionales y motivacionales re-
lacionados con la experiencia práctica, proporcionando información cualitativa comple-
mentaria a la evaluación objetiva de la rúbrica.

Como complemento, se utilizó un registro de observación sistemática, mediante el
cual el docente registró comportamientos y evidencias durante el desarrollo de las acti-
vidades prácticas. Este instrumento permitió documentar aspectos como la puntualidad
en la entrega de proyectos, la interacción entre pares, el uso correcto de entornos de de-
sarrollo y la aplicación de buenas prácticas de programación. La observación directa fue
especialmente útil para identificar el nivel de autonomía alcanzado por los estudiantes en
la resolución de problemas técnicos y en la aplicación de metodologías ágiles dentro del
entorno de trabajo.

Asimismo, se implementó una rúbrica de evaluación grupal destinada a valorar los
productos colectivos de aprendizaje, tales como los proyectos integradores desarrollados
en equipos. Esta rúbrica consideró la colaboración, la comunicación efectiva, la organiza-
ción del repositorio en GitHub y la integración funcional del sistema web. De esta manera,
se valoró no solo el resultado final del proyecto, sino también la dinámica del equipo y la
capacidad de gestionar tareas bajo principios de responsabilidad compartida.

La pertinencia de estos instrumentos radicó en su coherencia con el enfoque de apren-
dizaje basado en proyectos y en la práctica experimental propia de la Ingeniería de Soft-
ware. Mientras las rúbricas ofrecieron un marco estructurado y transparente de evalua-
ción, los cuestionarios y registros de observación aportaron una mirada más reflexiva y
contextual sobre los procesos de aprendizaje. En conjunto, permitieron evaluar tanto el
saber hacer (desarrollo técnico) como el saber ser (trabajo colaborativo, pensamiento crí-
tico y responsabilidad profesional), consolidando así una visión holística del desempeño
estudiantil.

215

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

En conclusión, los instrumentos aplicados no solo facilitaron la valoración de los re-
sultados obtenidos, sino que también constituyeron una fuente valiosa de evidencias para
el análisis posterior. Su implementación sistemática permitió verificar la efectividad de
las estrategias didácticas y garantizar la validez de los aprendizajes alcanzados. En el si-
guiente apartado se presentarán los indicadores de evaluación y criterios de validez, que
permitirán interpretar con mayor precisión la información recolectada a través de estos
instrumentos y asegurar la consistencia del proceso evaluativo dentro de la sistematiza-
ción.

4.5.3. Indicadores de evaluación y criterios de validez

Una vez definidos y aplicados los instrumentos de evaluación, el siguiente paso consis-
tió en establecer los indicadores de evaluación que permitieran interpretar los resultados
y determinar el grado de logro de las competencias curriculares previstas en la asignatura
Introducción a la Ingeniería de Software. Estos indicadores fueron diseñados de manera
coherente con los objetivos del curso y con las competencias específicas del perfil de egre-
so, de modo que su aplicación proporcionara evidencia objetiva, confiable y verificable
sobre los aprendizajes alcanzados.

El primer indicador establecido fue el de cumplimiento de entregables técnicos, el
cual permitió valorar la responsabilidad, la organización y la capacidad de gestión del
tiempo de los estudiantes frente a las actividades propuestas. Este indicador se reflejó en
la entrega oportuna de proyectos en GitHub, el cumplimiento de los requisitos funcionales
de las aplicaciones web y la documentación técnica generada durante las guías prácticas.
Su pertinencia radica en que la puntualidad y la calidad de las entregas son evidencias
tangibles del desarrollo de competencias profesionales como la disciplina, la planificación
y la responsabilidad técnica, fundamentales en el ámbito de la ingeniería de software.

El segundo indicador fue la calidad del producto de software, entendido como la co-
rrespondencia entre la solución desarrollada y los criterios de diseño, usabilidad y fun-
cionalidad definidos en la guía práctica. Este indicador permitió verificar el nivel de do-
minio de los conocimientos técnicos, la aplicación de buenas prácticas de programación,
la eficiencia del código y la correcta implementación de patrones arquitectónicos. Para su
medición se utilizaron las rúbricas de desempeño y las revisiones técnicas realizadas por
el docente, asegurando así un proceso de evaluación estandarizado y transparente.

216

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Un tercer indicador fue la participación activa y colaborativa en el desarrollo de las
actividades de laboratorio y proyectos grupales. Este indicador buscó evidenciar la con-
tribución individual dentro del equipo de trabajo, la comunicación efectiva, la toma de
decisiones en conjunto y la resolución de conflictos. Los registros de observación docente
y los reportes del repositorio GitHub (historial de commits y contribuciones) sirvieron
como evidencia de este proceso. Este criterio es esencial en el campo de la ingeniería de
software, donde el trabajo colaborativo constituye una competencia transversal impres-
cindible para el ejercicio profesional.

El cuarto indicador se centró en la capacidad de reflexión y mejora continua, evaluan-
do la disposición del estudiante para analizar sus propios errores, recibir retroalimenta-
ción y realizar ajustes en las siguientes iteraciones del proyecto. Este indicador se midió
mediante los cuestionarios de autoevaluación y las bitácoras personales, donde los estu-
diantes registraron los aprendizajes obtenidos, las dificultades enfrentadas y las estrategias
aplicadas para superarlas. Su relevancia se sustenta en la noción de aprendizaje autorregu-
lado, que según Zimmerman (2020) y Panadero (2021), constituye una competencia clave
para el desarrollo de profesionales autónomos y críticos.

En cuanto a los criterios de validez aplicados para garantizar la confiabilidad de los
resultados, se consideraron tres principios fundamentales: la triangulación de fuentes, la
consistencia interna y la transparencia del proceso evaluativo.

La triangulación se logró al contrastar los resultados obtenidos a través de distintos
instrumentos (rúbricas, autoevaluaciones, observaciones y entregables digitales), lo que
permitió obtener una visión más completa y evitar sesgos derivados de una única fuente
de información. Flick (2014b) destaca que este procedimiento fortalece la credibilidad de
los estudios educativos, al combinar evidencia cualitativa y cuantitativa para sustentar los
hallazgos.

La consistencia interna se aseguró mediante la aplicación uniforme de los instrumen-
tos y la revisión cruzada de los resultados entre sesiones prácticas, evitando variaciones
arbitrarias en la interpretación de los criterios. Para ello, se diseñaron matrices de segui-
miento y se realizaron sesiones de revisión con los docentes colaboradores del laboratorio,
con el fin de mantener la coherencia en la aplicación de los estándares de evaluación. Este
enfoque responde a lo planteado por Yin (2014), quien señala que la confiabilidad en la
investigación educativa depende de la estabilidad de los procedimientos aplicados.

Finalmente, la transparencia se garantizó a través de la documentación detallada del
proceso de evaluación, incluyendo la publicación de las rúbricas en la plataforma ins-

217

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

titucional y la entrega de retroalimentaciones personalizadas. Esta práctica fortaleció la
confianza de los estudiantes en el proceso, asegurando que cada calificación estuviera
sustentada en evidencias observables y criterios previamente definidos.

En síntesis, los indicadores diseñados y los criterios de validez implementados per-
mitieron construir un proceso evaluativo riguroso, alineado con los estándares de calidad
académica de la universidad y con las exigencias del perfil profesional del ingeniero de
software. En el siguiente apartado se presentará el análisis preliminar de las evidencias,
donde se interpretarán los resultados obtenidos a partir de estos indicadores, identificando
patrones de aprendizaje y áreas de mejora para la siguiente fase del proceso de sistemati-
zación.

4.5.4. Análisis preliminar de evidencias

Luego de definir los indicadores y criterios de validez, el siguiente paso consistió
en analizar las evidencias recolectadas a través de los distintos instrumentos aplicados
durante la experiencia docente. Este análisis permitió transformar los datos obtenidos -
tanto cuantitativos como cualitativos- en información significativa que reflejó el nivel de
logro de las competencias y los resultados de aprendizaje previstos en la asignatura de
Introducción a la Ingeniería de Software.

Las principales evidencias surgieron de las rúbricas de desempeño, los repositorios
GitHub de los proyectos estudiantiles, los cuestionarios de autoevaluación y los registros
de observación realizados durante las sesiones de laboratorio. Estas fuentes permitieron
observar, de manera integral, cómo los estudiantes aplicaron los conocimientos teóricos
en contextos prácticos, evidenciando progresos en su capacidad para diseñar, desarrollar
y validar aplicaciones web.

El análisis de las rúbricas mostró que un 85% de los estudiantes alcanzó niveles de
desempeño altos o muy altos en los criterios relacionados con la funcionalidad del siste-
ma, la organización del código y la documentación técnica. Este resultado evidenció que
las estrategias metodológicas implementadas -como el aprendizaje basado en proyectos y
el uso de GitHub para la gestión del código- contribuyeron de manera directa al desarrollo
de competencias técnicas. Sin embargo, un 15% de los estudiantes presentó dificultades
en la integración de componentes del sistema, lo que sugiere la necesidad de reforzar el
acompañamiento docente en la fase de pruebas e implementación.

218

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Por otro lado, los cuestionarios de autoevaluación aportaron una perspectiva cualitati-
va sobre la experiencia formativa. La mayoría de los estudiantes manifestó sentirse más
seguros al utilizar herramientas de control de versiones, trabajar en equipo y documentar
sus proyectos de manera profesional. Algunos reconocieron, no obstante, desafíos rela-
cionados con la coordinación grupal y la gestión del tiempo, aspectos que influyeron en la
calidad final de los entregables. Estas percepciones evidencian la relevancia de mantener
espacios de reflexión individual como parte del proceso de evaluación, tal como plantean
Panadero y Alonso-Tapia (2020) al destacar el valor metacognitivo de la autoevaluación
en el aprendizaje autónomo.

Los registros de observación docente también proporcionaron información clave sobre
el comportamiento y la interacción de los estudiantes durante las actividades prácticas. Se
identificó un incremento progresivo en la participación y colaboración entre pares, así
como en el uso responsable de los recursos digitales institucionales. Las observaciones
indicaron que, en las primeras sesiones, los equipos mostraban una distribución desigual
de tareas; sin embargo, hacia el final del módulo se evidenció una mayor organización
interna, favorecida por el uso de tableros Kanban y la comunicación asertiva entre los
miembros del grupo.

Adicionalmente, el análisis de los repositorios GitHub permitió obtener evidencia ob-
jetiva de la participación individual de cada estudiante. Los datos de commits y actualiza-
ciones demostraron un incremento sostenido en la frecuencia de contribuciones, especial-
mente en las semanas finales, lo que sugiere una consolidación del aprendizaje técnico y
una mejora en la gestión colaborativa del código fuente. Este tipo de evidencia digital re-
sultó especialmente útil para verificar el indicador de participación activa y para asegurar
la transparencia del proceso evaluativo.

Desde un enfoque cuantitativo, los resultados generales evidenciaron que los estudian-
tes alcanzaron, en promedio, un 82% de cumplimiento de los indicadores establecidos,
destacando en las dimensiones de desempeño técnico, colaboración y documentación.
Este valor respalda la coherencia entre las estrategias didácticas aplicadas y los logros
obtenidos, al mismo tiempo que permite identificar oportunidades de mejora en la plani-
ficación de futuras guías prácticas, particularmente en la etapa de validación de software
y pruebas unitarias.

En términos de análisis cualitativo, las evidencias recogidas a través de las reflexio-
nes estudiantiles y las observaciones docentes reflejan un proceso de aprendizaje gradual
y significativo. Se observaron mejoras notables en la comprensión de los principios de

219

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

ingeniería de software, el uso responsable de herramientas digitales y la integración de
metodologías ágiles en contextos académicos. Estos hallazgos concuerdan con lo pro-
puesto por R. Stake (1995), quien sostiene que el análisis interpretativo de la evidencia
educativa permite comprender no solo los resultados, sino también los procesos que los
generan.

En síntesis, el análisis preliminar de evidencias confirmó la efectividad de las estra-
tegias implementadas y la validez de los instrumentos aplicados. Las rúbricas proporcio-
naron datos objetivos, mientras que las autoevaluaciones y observaciones enriquecieron
la interpretación de los resultados desde una mirada reflexiva y formativa. En conjunto,
estas evidencias permitieron identificar patrones de mejora, fortalecer la retroalimenta-
ción docente y consolidar un proceso evaluativo integral, transparente y coherente con las
competencias profesionales del futuro ingeniero de software.

En el siguiente apartado se presentará una reflexión crítica sobre la validez, los sesgos
y la factibilidad del proceso evaluativo, con el propósito de reconocer sus fortalezas y
limitaciones, y de proyectar estrategias para optimizar las futuras experiencias de evalua-
ción en contextos prácticos de formación universitaria.

4.5.5. Reflexión sobre validez, sesgos y factibilidad

La evaluación realizada durante la sistematización de la experiencia docente permi-
tió obtener resultados significativos sobre el logro de las competencias curriculares. Sin
embargo, como todo proceso evaluativo, no estuvo exenta de limitaciones y desafíos que
ameritan una reflexión crítica. Analizar la validez, los posibles sesgos y la factibilidad del
procedimiento es esencial para garantizar la credibilidad de los hallazgos y fortalecer la
mejora continua del proceso en futuras experiencias.

En cuanto a la validez del proceso evaluativo, esta se sustentó en la coherencia entre
los instrumentos aplicados, los indicadores establecidos y los resultados de aprendizaje
definidos en el programa de la asignatura Introducción a la Ingeniería de Software. La
consistencia metodológica permitió verificar que los datos obtenidos representaran con
fidelidad el desempeño de los estudiantes. La triangulación de información -a través de
rúbricas, autoevaluaciones, observaciones y evidencias digitales- reforzó la confiabilidad
de los resultados. De acuerdo con Creswell y Creswell (2020), la validez en la inves-
tigación educativa se consolida cuando los datos convergen desde diferentes fuentes y
métodos, permitiendo una interpretación más robusta de los hallazgos.

220

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Además, se procuró mantener una validez de contenido, asegurando que los instru-
mentos de evaluación midieran efectivamente las competencias planteadas, tales como el
dominio de herramientas de control de versiones, la colaboración en entornos ágiles y
la capacidad para desarrollar soluciones tecnológicas funcionales. La claridad de los cri-
terios de las rúbricas y la retroalimentación continua fueron factores determinantes para
garantizar que los resultados fueran representativos de los aprendizajes reales. McMillan
y Schumacher (2022) destacan que la validez de contenido depende de la correspondencia
directa entre lo que se enseña, lo que se evalúa y lo que se espera demostrar en términos
de desempeño.

En relación con los sesgos identificados, uno de los más evidentes fue el derivado de
la autoevaluación. Algunos estudiantes tendieron a sobrevalorar su desempeño, lo cual
afectó parcialmente la objetividad de los resultados individuales. Para mitigar este sesgo,
se compararon las respuestas con los registros de participación en GitHub y las obser-
vaciones directas del docente, aplicando un enfoque de contraste de datos. También se
detectaron ligeras variaciones en la interpretación de los criterios de la rúbrica por parte
de los docentes auxiliares del laboratorio, lo que pudo influir en la calificación de cier-
tas evidencias. Este tipo de sesgo, conocido como sesgo de interpretación, fue atendido
mediante reuniones de calibración y revisión cruzada de las evaluaciones, una práctica
que Kvale y Brinkmann (2021) recomiendan para fortalecer la fiabilidad y la coherencia
interevaluador.

Otro aspecto considerado fue el sesgo de selección de evidencias, especialmente en el
análisis de proyectos grupales. En algunos casos, los equipos presentaron sus repositorios
con información incompleta o sin actualizar, lo que limitó la capacidad de análisis integral
de la participación de todos los miembros. Para reducir este riesgo, se establecieron con-
troles de registro semanales y se reforzó la importancia de documentar las actividades en
tiempo real dentro de la plataforma GitHub, garantizando la trazabilidad de los avances y
el seguimiento del progreso individual.

Respecto a la factibilidad del proceso evaluativo, los resultados demuestran que la
planificación y ejecución fueron viables, aunque requirieron un esfuerzo sostenido de se-
guimiento. La implementación de múltiples instrumentos de evaluación supuso una carga
significativa de tiempo para el docente, especialmente durante las fases de revisión y re-
troalimentación personalizada. Sin embargo, este esfuerzo se justificó por la calidad y
profundidad de la información obtenida, que permitió un análisis integral y transparente.
En consonancia con R. B. Johnson y Christensen (2023), la factibilidad de un proceso

221

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

evaluativo depende del equilibrio entre la rigurosidad metodológica y la disponibilidad
real de recursos humanos y tecnológicos.

En cuanto a las condiciones institucionales, la infraestructura tecnológica disponible
—laboratorios equipados, conexión estable y acceso a plataformas digitales— favoreció
la factibilidad técnica de la evaluación. No obstante, se identificaron limitaciones aso-
ciadas a la dependencia de la conectividad y al tiempo extracurricular necesario para la
colaboración remota de los estudiantes. Estas dificultades, aunque puntuales, sirvieron
para ajustar la planificación de futuras guías prácticas, promoviendo espacios asincróni-
cos y estrategias de gestión del tiempo más flexibles, tal como sugieren Boud y Falchikov
(2020) al referirse a la importancia de diseñar procesos evaluativos sostenibles y adapta-
bles al contexto educativo.

En términos generales, la reflexión sobre la validez, los sesgos y la factibilidad del
proceso permitió reconocer la solidez del enfoque evaluativo adoptado. Los instrumentos
y criterios aplicados demostraron ser pertinentes y confiables, mientras que los desafíos
identificados constituyen oportunidades de mejora para futuras iteraciones. La experiencia
evidenció que un proceso de evaluación no solo debe enfocarse en medir resultados, sino
también en garantizar su legitimidad metodológica y ética, reconociendo las condiciones
reales del contexto educativo.

4.6. Reflexión final y proyección institucional de la expe-
riencia docente

4.6.1. Transición hacia la reflexión final

Al culminar el proceso de evaluación de la experiencia educativa, se hace necesario
detenerse un momento para mirar con distancia crítica todo lo vivido. Las evidencias ana-
lizadas, los indicadores aplicados y los resultados obtenidos no son únicamente datos que
confirman logros, sino también huellas que invitan a pensar sobre el sentido profundo de
la práctica docente y su impacto en la formación de los estudiantes. Este es, precisamente,
el propósito de esta transición: abrir el espacio para la reflexión final, donde la evaluación
deja de ser un cierre técnico y se convierte en una oportunidad de aprendizaje profesional.

Reflexionar críticamente sobre la experiencia permite reconocer que detrás de cada
estrategia, instrumento o evidencia, existe un proceso humano de búsqueda, error y me-

222

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

jora continua. En el caso de la enseñanza universitaria, particularmente en el campo de
la Ingeniería de Software, esta mirada reflexiva posibilita comprender cómo las metodo-
logías aplicadas, las dinámicas de trabajo colaborativo y la integración de la tecnología
contribuyeron no solo al desarrollo de competencias técnicas, sino también al fortaleci-
miento de capacidades analíticas, comunicativas y éticas. La reflexión, por tanto, amplía
la mirada del docente y lo conecta con un horizonte de transformación más allá de su
propio contexto institucional.

Esta etapa final abre la posibilidad de transferir lo aprendido a nuevos escenarios,
adaptando las estrategias exitosas y revisando críticamente aquellas que requirieron ajus-
tes. Es el momento de reconocer que toda experiencia formativa se consolida cuando se
comparte, se analiza y se resignifica desde la práctica. De esta manera, la transición hacia
la reflexión final no solo marca el cierre de un ciclo de sistematización, sino que inaugura
un proceso continuo de mejora, innovación y compromiso con una docencia universitaria
más consciente, crítica y transformadora.

4.6.2. Reflexión crítica sobre la experiencia

La experiencia desarrollada permitió evidenciar el valor transformador de los procesos
pedagógicos cuando se construyen desde la reflexión, la planificación y la evaluación
constante. En el contexto universitario, particularmente en el ámbito de la Ingeniería de
Software, los resultados obtenidos muestran que la integración de metodologías activas
-como el aprendizaje basado en proyectos y la práctica experimental guiada- propició un
cambio sustancial en la dinámica del aula.

Los estudiantes pasaron de ser receptores de información a protagonistas de su propio
proceso formativo, asumiendo responsabilidades concretas en la resolución de problemas
y en la construcción de conocimiento aplicable a escenarios reales de desarrollo tecnoló-
gico. Esta autonomía favoreció la adquisición de competencias profesionales tales como
la gestión de proyectos, la colaboración interdisciplinaria y el pensamiento analítico.

Desde la perspectiva docente, la experiencia representó una oportunidad para fortale-
cer la capacidad de innovación y la mirada crítica frente a las propias prácticas pedagó-
gicas. El diseño de estrategias de evaluación coherentes con los resultados de aprendizaje
permitió observar avances más cualitativos que cuantitativos, vinculados a la comprensión
profunda de los conceptos y a la transferencia del conocimiento hacia la práctica.

223

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

Asimismo, el trabajo colaborativo entre docentes tutores facilitó la creación de entor-
nos de aprendizaje más inclusivos, donde se valoró la participación activa, la creatividad
y el compromiso con la calidad de los productos desarrollados. En este sentido, el proceso
no solo mejoró los resultados académicos, sino también las actitudes hacia el aprendizaje
autónomo y la responsabilidad profesional.

A nivel institucional, el proyecto aportó evidencias relevantes para fortalecer la cultura
de innovación educativa y la coherencia curricular dentro de la carrera. Los resultados ob-
tenidos demostraron que es posible alinear las actividades prácticas con las competencias
del perfil de egreso sin perder rigurosidad técnica ni profundidad conceptual.

Además, la sistematización permitió generar materiales, guías y buenas prácticas que
hoy pueden ser replicadas por otros docentes, promoviendo una visión compartida so-
bre la enseñanza universitaria basada en la experimentación, la evaluación formativa y la
transferencia del conocimiento.

4.6.3. Tensiones y resistencias encontradas

El desarrollo de la experiencia también implicó enfrentar diversos desafíos que pu-
sieron a prueba la capacidad de adaptación del equipo docente y de los estudiantes. Una
de las principales tensiones estuvo relacionada con el cambio de paradigma pedagógico:
pasar de una enseñanza tradicional centrada en la exposición teórica hacia una metodo-
logía práctica y colaborativa generó incertidumbre, tanto en el profesorado como en los
alumnos.

Algunos estudiantes manifestaron resistencia inicial a trabajar en equipos multidis-
ciplinarios, a planificar proyectos de largo alcance o a asumir evaluaciones basadas en
evidencias más que en exámenes convencionales. Este proceso de transición demandó
tiempo, acompañamiento constante y estrategias de motivación que permitieran superar
la inercia del modelo tradicional.

A nivel institucional, se evidenciaron limitaciones vinculadas con la disponibilidad de
recursos tecnológicos y la infraestructura necesaria para sostener las prácticas experimen-
tales. En ocasiones, el acceso restringido a laboratorios, equipos y conectividad afectó el
desarrollo oportuno de las actividades planificadas.

No obstante, estas dificultades se transformaron en oportunidades para fortalecer la
gestión académica, optimizar los recursos disponibles y promover el trabajo colaborativo
entre diferentes áreas. Asimismo, la carga administrativa y la necesidad de cumplir con

224

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

cronogramas ajustados generaron momentos de tensión que exigieron una organización
más eficiente y el fortalecimiento de la comunicación entre docentes y autoridades.

También surgieron resistencias sutiles vinculadas a la cultura institucional y a la con-
cepción tradicional del rol docente. Algunos colegas percibieron inicialmente la sistema-
tización de experiencias como una tarea adicional y no como una oportunidad de apren-
dizaje profesional.

Sin embargo, el proceso demostró que reflexionar y documentar la práctica permite
reconocer los avances, visibilizar los resultados y generar conocimiento compartido. Su-
perar estas resistencias fue posible gracias a la apertura al diálogo, la evidencia de los
logros alcanzados y el compromiso ético con la mejora continua. Estas tensiones, lejos de
constituir obstáculos, se convirtieron en aprendizajes sobre la importancia de la colabora-
ción, la flexibilidad y la empatía institucional.

4.6.4. Aprendizajes personales, colectivos e institucionales

En el plano personal, esta experiencia me permitió comprender que la docencia uni-
versitaria es un proceso en permanente construcción y que la verdadera innovación surge
del diálogo entre la teoría, la práctica y la evaluación.

Aprendí a mirar el aula como un espacio de investigación aplicada, donde cada acti-
vidad y cada interacción constituyen una oportunidad para generar conocimiento nuevo.
Esta perspectiva fortaleció mi sentido de responsabilidad como docente investigador y me
impulsó a sistematizar las experiencias con un enfoque crítico, consciente de que el valor
de la enseñanza radica tanto en los resultados como en la reflexión que los sustenta.

En el ámbito colectivo, el trabajo articulado entre docentes, coordinadores y estu-
diantes consolidó una comunidad de aprendizaje comprometida con la mejora continua.
Las reuniones de planificación, los intercambios de experiencias y las retroalimentaciones
cruzadas generaron un clima de confianza y colaboración que trascendió las fronteras del
aula.

Este aprendizaje compartido permitió uniformar criterios, optimizar las estrategias
metodológicas y fortalecer la coherencia entre las asignaturas del plan de estudios, ase-
gurando que los resultados de aprendizaje respondan efectivamente al perfil de egreso.
Además, el diálogo entre pares docentes favoreció la construcción de una cultura institu-
cional orientada hacia la calidad educativa y la innovación permanente.

225

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

En el nivel institucional, la sistematización dejó aprendizajes valiosos relacionados
con la gestión académica y el desarrollo de políticas de apoyo a la docencia. Se eviden-
ció la necesidad de seguir fortaleciendo la infraestructura tecnológica, los procesos de
acompañamiento pedagógico y la evaluación basada en evidencias.

La experiencia sirvió también como modelo de referencia para futuras prácticas de
sistematización y como insumo para la autoevaluación institucional, en el marco de los
procesos de acreditación y mejora continua. Estos aprendizajes confirman que cuando la
docencia universitaria se documenta, analiza y comparte, se convierte en conocimiento
institucional transferible que impulsa la transformación educativa.

4.6.5. Síntesis reflexiva

Mirar en retrospectiva este proceso permite afirmar que la experiencia fue más que un
ejercicio de aplicación metodológica; constituyó un camino de transformación profesio-
nal y humana. La evaluación, los resultados y las tensiones se integran en una narrativa
coherente que evidencia crecimiento, aprendizaje y compromiso.

La docencia, entendida como práctica reflexiva, demanda observar críticamente los
propios actos y comprender que cada dificultad puede convertirse en un punto de inflexión
hacia la mejora. Así, las resistencias encontradas fueron, en realidad, señales del cambio
y recordatorios de que innovar implica salir de la zona de confort.

En síntesis, la experiencia fortaleció la visión de una docencia universitaria orientada
al aprendizaje significativo, a la interdisciplinariedad y a la construcción colaborativa del
conocimiento. La reflexión crítica permitió reconocer que los logros alcanzados no son
un punto de llegada, sino un punto de partida para seguir avanzando hacia prácticas más
inclusivas, sostenibles y alineadas con los desafíos actuales de la educación superior.

Proyectar estos aprendizajes hacia nuevos escenarios implica asumir la responsabi-
lidad de transferir el conocimiento generado, inspirar a otros docentes y consolidar co-
munidades académicas que aprendan unas de otras. En última instancia, esta reflexión
confirma que la verdadera evaluación de una experiencia educativa no está solo en sus
resultados, sino en la capacidad de transformar a quienes la viven y en su potencial para
seguir generando cambios positivos en la institución y en la sociedad.

226

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Bibliografía

Barnett, R., & Jackson, N. (2019). Learning for an Unknown Future: Higher Education

and the Human Condition. Routledge.
Berglund, A., & Lister, R. (2020). Project-based and practice-oriented learning in soft-

ware engineering education: Lessons from global contexts. ACM Transactions on

Computing Education, 20(4), 1-21. https://doi.org/10.1145/3415197
Biggs, J., & Tang, C. (2011). Teaching for Quality Learning at University (4.a ed.).

McGraw-Hill Education.
Boud, D., & Falchikov, N. (2020). Rethinking Assessment in Higher Education: Learning

for the Longer Term (2.a ed.). Routledge.
Boud, D., & Molloy, E. (2019). Feedback in Higher and Professional Education: Unders-

tanding It and Doing It Well. Routledge. https://doi.org/10.4324/9780429483180
Carlino, P. (2019). Escribir, leer y aprender en la universidad: Una introducción a la

alfabetización académica (2.a ed.). Fondo de Cultura Económica.
Creswell, J. W., & Creswell, J. D. (2020). Research Design: Qualitative, Quantitative,

and Mixed Methods Approaches (5.a ed.). SAGE Publications.
de Sousa, B., Costa, R., & Gomes, A. (2021). Gamification in engineering education: In-

creasing student motivation and engagement through digital strategies. Education

and Information Technologies, 26(5), 5373-5390. https://doi.org/10.1007/s10639-
021-10522-4

Díaz-Noguera, M. D., Rodríguez-García, A. M., & Sánchez-Prieto, J. C. (2023). Digital
resilience in higher education: Lessons learned from flexible teaching strategies in
engineering programs. Computers & Education, 197, 104749. https://doi.org/10.
1016/j.compedu.2023.104749

Facione, P. A. (2020). Critical Thinking: What It Is and Why It Counts. Insight Assess-
ment.

Fernández, J., & Rodríguez, M. (2020). Diseño de guías didácticas interactivas para el
desarrollo de competencias en ingeniería. Revista Iberoamericana de Educación

Superior, 11(31), 129-146. https://doi.org/10.22201/iisue.20072872e.2020.31.
581

Flick, U. (2014a). Introducción a la investigación cualitativa (5.a ed.). Morata.
Flick, U. (2014b). La gestión de la calidad en investigación cualitativa. Ediciones Morata.
Flick, U. (2019). An Introduction to Qualitative Research (6.a ed.). SAGE Publications.

227

https://doi.org/10.1145/3415197
https://doi.org/10.4324/9780429483180
https://doi.org/10.1007/s10639-021-10522-4
https://doi.org/10.1007/s10639-021-10522-4
https://doi.org/10.1016/j.compedu.2023.104749
https://doi.org/10.1016/j.compedu.2023.104749
https://doi.org/10.22201/iisue.20072872e.2020.31.581
https://doi.org/10.22201/iisue.20072872e.2020.31.581

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

Freeman, S., Eddy, S. L., & Hogan, K. A. (2019). Active learning increases student per-
formance in science, engineering, and mathematics. Proceedings of the National

Academy of Sciences, 116(39), 19251-19257. https : / / doi . org / 10 . 1073 / pnas .
1910153116

García-Holgado, A., & García-Peñalvo, F. J. (2022). Digital ecosystems in engineering
education: Towards an integrated learning environment for the 21st century. Edu-

cation and Information Technologies, 27(6), 8675-8693. https://doi.org/10.1007/
s10639-022-11048-2

González, M., & Ramírez, J. (2021). Pensamiento crítico y habilidades blandas en la
educación superior: Retos para la formación profesional. Revista Educación y So-

ciedad, 19(2), 45-60.
Hargie, O. (2021). Skilled Interpersonal Communication: Research, Theory and Practice

(7.a ed.). Routledge.
Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020). The difference between

emergency remote teaching and online learning. Educause Review, 55(1), 1-12.
Jara, O. (2018). La sistematización de experiencias: Aprendizajes y desafíos para la edu-

cación popular. Alforja.
Jaramillo Gómez, D. L., Álvarez Maestre, A. J., Parada Trujillo, A. E., Pérez Fuentes,

C. A., Bedoya Ortiz, D. H., & Sanabria Alarcón, R. K. (2025). Determining fac-
tors for the development of critical thinking in higher education. Journal of Inte-

lligence, 13(6), 59. https://doi.org/10.3390/jintelligence13060059
Johnson, D. W., Johnson, R. T., & Smith, K. A. (2020). Cooperative learning: Improving

university instruction by basing practice on validated theory. Journal on Excellen-

ce in College Teaching, 31(2), 34-68.
Johnson, R. B., & Christensen, L. (2023). Educational Research: Quantitative, Qualitati-

ve, and Mixed Approaches (7.a ed.). SAGE Publications.
Kapur, M., & Bielaczyc, K. (2021). Designing for productive failure: Principles for in-

tegrating adaptive and collaborative learning. Educational Psychologist, 56(4),
243-256. https://doi.org/10.1080/00461520.2021.1963667

Kolb, D. A. (2015). Experiential Learning: Experience as the Source of Learning and

Development (2.a ed.). Pearson Education.
Kvale, S., & Brinkmann, S. (2021). InterViews: Learning the Craft of Qualitative Re-

search Interviewing (4.a ed.). SAGE Publications.

228

https://doi.org/10.1073/pnas.1910153116
https://doi.org/10.1073/pnas.1910153116
https://doi.org/10.1007/s10639-022-11048-2
https://doi.org/10.1007/s10639-022-11048-2
https://doi.org/10.3390/jintelligence13060059
https://doi.org/10.1080/00461520.2021.1963667

Ingeniería de software en la educación universitaria: experiencias didácticas para una
formación integral

Lai, E. R. (2022). Critical Thinking in the 21st Century: A Framework for Learning and

Innovation. Pearson Education.
Laurillard, D. (2021). Teaching as a Design Science: Building Pedagogical Patterns for

Learning Technologies (2.a ed.). Routledge. https://doi.org/10.4324/9781003142012
McMillan, J. H., & Schumacher, S. (2022). Research in Education: Evidence-Based In-

quiry (9.a ed.). Pearson.
Moe, N. B., Dingsøyr, T., & Kasauli, R. (2022). Agile project management in software

engineering education: Lessons learned from student teams. Journal of Systems

and Software, 188, 111279. https://doi.org/10.1016/j.jss.2022.111279
Morales, J., Paredes, R., & Cifuentes, A. (2021). Formación ética en ingeniería: desafíos

para la educación superior latinoamericana. Revista Iberoamericana de Educación

Superior, 12(33), 45-62.
Panadero, E. (2021). A review of self-regulated learning: Six models and four directions

for research. Frontiers in Psychology, 12, 795-808. https://doi.org/10.3389/fpsyg.
2021.795408

Panadero, E., & Alonso-Tapia, J. (2020). Revisión de las bases teóricas y la evidencia em-
pírica sobre la autoevaluación del aprendizaje. Revista de Psicología Educativa,
26(2), 79-88. https://doi.org/10.5093/psed2020a9

Panadero, E., & Broadbent, J. (2018). Developing self-regulated learners: A review of
current evidence and future directions. Frontiers in Psychology, 9, 1664. https :
//doi.org/10.3389/fpsyg.2018.01664

Pisoni, G., Godoy, D., & Ponce, J. (2021). Implementing agile methodologies in software
engineering education: An empirical study of student collaboration and learning
outcomes. IEEE Transactions on Education, 64(3), 250-259. https://doi.org/10.
1109/TE.2021.3056789

Prince, M. (2021). Active learning for engineering education: Current practices and future
directions. European Journal of Engineering Education, 46(1), 5-22. https://doi.
org/10.1080/03043797.2020.1818698

Ragusa, G., & Chong, E. (2021). Engineering mentorship programs and their impact on
student retention and success. Journal of Engineering Education, 110(3), 512-530.
https://doi.org/10.1002/jee.20397

Stake, R. (1995). The Art of Case Study Research. SAGE Publications.
Stake, R. E. (2020). The Art of Case Study Research (Revised). SAGE Publications.

229

https://doi.org/10.4324/9781003142012
https://doi.org/10.1016/j.jss.2022.111279
https://doi.org/10.3389/fpsyg.2021.795408
https://doi.org/10.3389/fpsyg.2021.795408
https://doi.org/10.5093/psed2020a9
https://doi.org/10.3389/fpsyg.2018.01664
https://doi.org/10.3389/fpsyg.2018.01664
https://doi.org/10.1109/TE.2021.3056789
https://doi.org/10.1109/TE.2021.3056789
https://doi.org/10.1080/03043797.2020.1818698
https://doi.org/10.1080/03043797.2020.1818698
https://doi.org/10.1002/jee.20397

Capítulo 4. Aprender gestionando: experiencias innovadoras en proyectos de software
universitarios

Thomas, J., & Leifer, L. (2020). Project-based learning in engineering education: Rede-
fining student engagement and applied knowledge. European Journal of Enginee-

ring Education, 45(5), 711-728. https://doi.org/10.1080/03043797.2020.1718612
Universidad Estatal de Milagro (UNEMI). (2021). Modelo Educativo de la Universidad

Estatal de Milagro.
Universidad Estatal de Milagro (UNEMI). (2023). Marco curricular institucional de la

Universidad Estatal de Milagro.
Van Leeuwen, A., & Janssen, J. (2019). A systematic review of teacher guidance during

collaborative learning in primary and secondary education. Educational Research

Review, 27, 71-89. https://doi.org/10.1016/j.edurev.2019.02.001
Yin, R. K. (2014). Case Study Research: Design and Methods (5.a ed.). SAGE Publica-

tions.
Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6.a ed.).

SAGE Publications.
Zabalza, M. A. (2019). Competencias docentes del profesorado universitario: Calidad y

desarrollo profesional (3.a ed.). Narcea.
Zawacki-Richter, O., & Kerres, M. (2020). Educational technologies and the changing

paradigms in higher education. British Journal of Educational Technology, 51(6),
1905-1919. https://doi.org/10.1111/bjet.12983

Zhang, Q., Wang, Y., & Liu, Z. (2023). Collaborative coding and learning analytics in
higher education: A GitHub-based instructional model. Computers & Education,
197, 104700. https://doi.org/10.1016/j.compedu.2023.104700

Zhu, M., & Park, J. (2021). Peer tutoring and collaborative learning in online engineering
courses: Impacts on engagement and achievement. Computers & Education, 174,
104302. https://doi.org/10.1016/j.compedu.2021.104302

Zimmerman, B. J. (2020). Motivating self-regulated learners: The future of educational
psychology. Journal of Educational Psychology, 112(2), 331-343.

230

https://doi.org/10.1080/03043797.2020.1718612
https://doi.org/10.1016/j.edurev.2019.02.001
https://doi.org/10.1111/bjet.12983
https://doi.org/10.1016/j.compedu.2023.104700
https://doi.org/10.1016/j.compedu.2021.104302

Ingeniería de software en la educación universitaria: ex-
periencias didácticas para una formación integral

Resumen

El libro RISEI I presenta los resultados del Programa Institucional de Sistematización e Innovación Educativa
de la Universidad Católica de Cuyo, orientado a fortalecer la investigación pedagógica, la mejora continua de
la docencia universitaria y la profesionalización del rol docente. A lo largo de cuatro capítulos, se reconstruyen
experiencias que integran la innovación metodológica, la reflexión crítica y la producción de conocimiento situa-
do, enmarcadas en el compromiso institucional con la calidad educativa y la formación integral del estudiante.
Cada capítulo documenta procesos de enseñanza transformadores en distintas áreas disciplinares, destacando
el empleo de metodologías activas, tecnologías educativas, estrategias de evaluación formativa y criterios de
coherencia curricular. La obra articula teoría y práctica mediante la sistematización de experiencias como vía
para convertir la práctica docente en evidencia, aprendizaje institucional y motor de cambio. Presenta problemas
pedagógicos reales, decisiones didácticas, instrumentos de evaluación y resultados de aprendizaje, además de
reflexiones sobre el trabajo colaborativo y la transferencia de buenas prácticas. El volumen consolida un modelo
de investigación educativa que vincula formación docente, producción académica, gestión institucional y cultura
de innovación, promoviendo comunidades de práctica y redes intersede. En síntesis, RISEI I documenta, analiza
y proyecta un camino institucional hacia la transformación de la enseñanza universitaria desde la investigación
aplicada, la sistematización y la innovación pedagógica sostenida, contribuyendo al desarrollo de una universidad
crítica, reflexiva y comprometida con su tiempo.

Palabras claves: Innovación educativa; Docencia universitaria; Investigación educativa; Sistematiza-
ción; Educación superior

Abstract

The book RISEI I presents the results of the Institutional Programme for Systematisation and Educational Innova-
tion at the Catholic University of Cuyo, aimed at strengthening pedagogical research, the continuous improvement
of university teaching and the professionalisation of the teaching role. Throughout four chapters, experiences are
reconstructed that integrate methodological innovation, critical reflection, and the production of situated knowled-
ge, framed within the institutional commitment to educational quality and comprehensive student training. Each
chapter documents transformative teaching processes in different disciplinary areas, highlighting the use of acti-
ve methodologies, educational technologies, formative assessment strategies, and curriculum coherence criteria.
The work articulates theory and practice by systematising experiences as a way of turning teaching practice
into evidence, institutional learning and a driver of change. It presents real pedagogical problems, teaching de-
cisions, assessment tools and learning outcomes, as well as reflections on collaborative work and the transfer
of good practices. The volume consolidates an educational research model that links teacher training, academic
production, institutional management and a culture of innovation, promoting communities of practice and inter-site
networks. In short, RISEI I documents, analyses and projects an institutional path towards the transformation of
university teaching through applied research, systematisation and sustained pedagogical innovation, contributing
to the development of a critical, reflective university committed to its time.

Keywords : Educational innovation; University teaching; Educational research; Systematisation; Higher
education

	Prólogo
	Fundamentos de ingeniería de software: de la práctica docente reflexiva a la formación por competencias
	Fundamentos de Ingeniería de Software: del aula a la práctica profesional reflexiva
	Apertura contextual
	Problematización
	Propósito de la sistematización
	Criterios de valor
	Delimitación del objeto de estudio

	Fundamentación conceptual y operativa de la experiencia
	Transición hacia la fundamentación
	Identificación de conceptos estructurantes
	Formulación de dimensiones
	Construcción de indicadores
	Fuentes y métodos de verificación
	Justificación teórica del conjunto
	Recapitulación y proyección

	Vínculo con el currículo y el perfil de la Carrera
	Transición hacia la fundamentación
	Identificación de competencias del perfil
	Resultados de aprendizaje vinculados
	Actividades y evidencias de aprendizaje
	Reflexión sobre la alineación curricular
	Síntesis final del módulo

	Ecosistema estratégico (estrategias y relaciones)
	Puente de Transición hacia el Análisis Estratégico
	Estrategias de Soporte
	Estrategias de Contingencia
	Integración Estratégica y Proyección hacia la Evaluación

	Evaluación, indicadores, instrumentos, análisis
	Puente de Evaluación: Instrumentos, Indicadores y Criterios de Validez
	Rúbrica analítica de desempeño
	Cuestionario de percepción estudiantil
	Entrevista semiestructurada
	Registro de observación sistemática
	Indicadores de evaluación y criterios de validez
	Justificación y cierre

	Reflexión crítica y transferencia de la experiencia

	Del problema a la solución: estrategias para enseñar análisis y diseño de software en primer nivel
	Apertura contextual y problematización de la experiencia docente
	El problema formativo
	Propósito de la sistematización
	Criterios de valor
	Delimitación del objeto de estudio

	Fundamentación conceptual y operativa: del pensamiento computacional al aprendizaje activo
	Transición hacia la fundamentación conceptual y operativa
	Aprendizaje activo: del estudiante receptor al estudiante protagonista
	Práctica colaborativa-reflexiva: aprender con otros para construir significado
	Formulación de dimensiones
	Dimensión colaborativa-reflexiva: aprender con otros para construir conocimiento
	Construcción de indicadores
	Dimensión pedagógica-didáctica: enseñar a analizar antes de programar
	Dimensión colaborativa-reflexiva: aprender con otros para construir conocimiento
	Cierre proyectivo
	Fuentes y métodos de verificación
	Fuentes de verificación
	Métodos de verificación
	Ejemplo de aplicación
	 Cierre proyectivo
	Justificación teórica del conjunto
	Integración

	Vínculo curricular y resultados de aprendizaje en la enseñanza del análisis y diseño de software
	Transición al vínculo curricular
	Identificación de competencias del perfil
	Resultados de aprendizaje vinculados
	Actividades y evidencias
	Reflexión sobre la alineación curricular
	Integración curricular del Módulo 3

	Del problema a la solución: estrategias para enseñar análisis y diseño de software en primer nivel
	Transición hacia la operacionalización estratégica
	Estrategias núcleo en acción
	Estrategias de soporte aplicadas
	Estrategias de contingencia desplegadas
	Arquitectura del ecosistema estratégico
	Integración: Justificación de la validez curricular del ecosistema estratégico

	Evaluación e indicadores de logro: instrumentos, validez y análisis de evidencias
	Transición hacia la evaluación
	Instrumentos de evaluación aplicados
	Indicadores de evaluación y criterios de validez
	Indicadores aplicados
	Criterios de validez y confiabilidad
	Análisis preliminar de evidencias
	Tipos de evidencias y organización del análisis
	Hallazgos preliminares
	Interpretación de patrones emergentes
	Síntesis y proyección
	Reflexión sobre validez, sesgos y factibilidad
	Validez del proceso evaluativo
	Sesgos identificados y estrategias de mitigación
	Factibilidad y aprendizajes derivados
	Síntesis y proyección
	Integración: Síntesis de la evaluación

	Del problema a la solución: estrategias para enseñar análisis y diseño de software en primer nivel
	Transición hacia la reflexión final
	Reflexión crítica sobre la experiencia
	Aportes de la experiencia
	Tensiones y resistencias encontradas
	Aprendizajes personales, colectivos e institucionales
	 Síntesis reflexiva y proyección
	Integración final: Reflexión y transferencia
	Aportes y aprendizajes globales
	 Tensiones, desafíos y aprendizajes emergentes
	Proyección y transferencia
	Cierre del capítulo

	La enseñanza del código limpio: estrategias para formar desarrolladores con estándares profesionales
	Buenas prácticas de programación y refactorización
	Contextualización de la experiencia pedagógica
	Identificación del problema pedagógico: hacia las buenas prácticas de programación y refactorización
	El rol del docente como revisor de código pedagógico
	Cierre integrador

	Del código al pensamiento: enseñanza del código limpio en la formación inicial de ingenieros en software
	Bisagra Textual
	Identificación de conceptos estructurantes
	Formulación de dimensiones
	Construcción de indicadores
	Dimensión Cognitivo–Conceptual: Comprensión de la lógica y la abstracción algorítmica
	Dimensión Técnico–Procedimental: Aplicación de buenas prácticas y calidad del código
	Fuentes y métodos de verificación
	Modelar y abstraer procesos lógicos
	Comprensión de la secuencia algorítmica
	Aprendizaje significativo y contextualizado
	Fuentes complementarias y métodos asociados
	Síntesis integradora
	Justificación teórica del conjunto
	Justificación de los indicadores
	Justificación de las fuentes y métodos de verificación
	Síntesis final del conjunto
	Recomendaciones para profundizar

	Aprender gestionando: experiencias innovadoras en proyectos de software universitarios
	Transición al vínculo curricular
	Identificación de competencias del perfil
	Resultados de aprendizaje vinculados
	Actividades y evidencias
	Reflexión sobre la alineación curricular

	Transición hacia la operacionalización estratégica
	Recomendaciones para profundizar
	Clase 1: Estrategias núcleo en acción
	Clase 2: Estrategias de soporte aplicadas
	Clase 3: Estrategias de contingencia desplegadas
	Clase 4: Arquitectura del ecosistema estratégico
	Síntesis final: El ecosistema como sistema vivo

	Transición hacia la evaluación
	Recomendaciones para profundizar
	Clase 1: Instrumentos de evaluación aplicados
	Recomendaciones para profundizar
	Clase 2: Indicadores de evaluación y criterios de validez
	Clase 3: Análisis preliminar de evidencias
	Clase 4: Reflexión sobre validez, sesgos y factibilidad

	Transición hacia la reflexión final
	Clase 1: Reflexión crítica sobre la experiencia
	Recomendaciones para profundizar

	Aprender gestionando: experiencias innovadoras en proyectos de software universitarios
	Aprender gestionando: experiencias innovadoras en proyectos de software universitarios
	Apertura contextual
	Problematización
	Las consecuencias de este déficit se manifiestan en tres niveles
	Propósito de la sistematización
	Criterios de valor
	Delimitación del objeto de estudio

	Fundamentación teórico-metodológica de la experiencia docente
	Bisagra textual
	Identificación de conceptos estructurantes
	Aprendizaje activo
	Pensamiento crítico
	Autonomía en el aprendizaje
	Aprendizaje colaborativo
	Mentoría pedagógica
	Relación entre los conceptos
	Formulación de dimensiones
	Dimensión pedagógica
	Dimensión cognitiva-formativa
	Dimensión socioafectiva-colaborativa
	Construcción de indicadores
	Indicadores de la dimensión pedagógica
	Indicadores de la dimensión cognitiva-formativa
	Indicadores de la dimensión socioafectiva-colaborativa
	Fuentes
	Métodos de verificación
	Análisis comparativo de productos
	Análisis de contenido
	Triangulación de evidencias
	Justificación teórica del conjunto

	Integración curricular y desarrollo de competencias en la formación del ingeniero de software
	Transición al vínculo curricular
	Identificación de competencias del perfil
	Resultados de aprendizaje vinculados
	Actividades y evidencias
	Reflexión sobre la alineación curricular

	Diseño e implementación del ecosistema estratégico de aprendizaje en ingeniería de software
	Transición hacia la operacionalización estratégica
	Estrategias núcleo en acción
	Estrategias de soporte aplicadas
	Estrategias de contingencia desplegadas
	Arquitectura del ecosistema estratégico

	Evaluación integral de la experiencia: instrumentos, evidencias y validez del proceso formativo
	Transición hacia la evaluación
	Instrumentos de evaluación aplicados
	Indicadores de evaluación y criterios de validez
	Análisis preliminar de evidencias
	Reflexión sobre validez, sesgos y factibilidad

	Reflexión final y proyección institucional de la experiencia docente
	Transición hacia la reflexión final
	Reflexión crítica sobre la experiencia
	Tensiones y resistencias encontradas
	Aprendizajes personales, colectivos e institucionales
	Síntesis reflexiva

