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Prologo

La estadistica y la probabilidad suelen presentarse como ma-
terias dificiles, llenas de férmulas y procedimientos que mu-
chos aprenden sin llegar a comprender del todo. Sin embargo,
la realidad actual nos recuerda cada dia que pensar con datos
es una habilidad indispensable para interpretar informacion,
tomar decisiones informadas y participar de manera critica en
la vida social. Este libro surge de la necesidad de acercar estos
conceptos de un modo claro y significativo, mostrando que la
estadistica no es un lenguaje reservado para expertos, sino una
herramienta para comprender mejor el mundo.

Alo largo de sus capitulos, el texto propone un recorrido que
conecta los contenidos con situaciones reales, ejemplos cotidia-
nos y preguntas auténticas que dan sentido a cada técnica. Mas
que explicar procedimientos, busca revelar la lbgica que hay
detrds de ellosy cOmo pueden ayudarnos a describir, comparar,
predecir y argumentar a partir de datos. De este modo, cada
nocion estadistica se convierte en un punto de partida para
pensar, no en un requisito que se aprende de memoria.

Elenfoque didactico que atraviesa la obra coloca en el centro
la variabilidad, la incertidumbre y la necesidad de formar un
pensamiento critico. Las simulaciones, los ejemplos contextua-
lizados y las interpretaciones guiadas estdn presentes no para
reemplazar el razonamiento, sino para enriquecerlo. Aprender
estadistica implica aprender a preguntar, dudar, interpretar y
justificar; es un ejercicio intelectual que invita a mirar con aten-
cion las historias que se esconden detrds de los datos.

Este libro esta dirigido a docentes, estudiantes e incluso lec-
tores que, sin formaciéon especializada, desean comprender
mejor la informacion que los rodea. La intencidon es acompafiar
al lector en la construccion de una mirada mas reflexiva frente
a los datos y al azar, fortaleciendo su capacidad para interpre-
tar la complejidad del mundo actual. Si estas pdaginas logran
despertar curiosidad, claridad conceptualy una actitud critica
frente alainformacion, habran cumplido su misién fundamental.






Contenido

Capitulo | 15

Comprender la estadistica desde la experiencia: fundamen-
tos y representaciones

Introduccion

La estadistica como herramienta para describir la realidad
Tipos de datos y variables en contextos educativos y sociales
Tabulaciéon y representaciones grdficas: leer y comunicar
informacién

Medidas de tendencia central y dispersién: interpretar la infor-
macidn numerica

Conclusiones

Referencias

Capitulo Il 56

Pensar el azar: fundamentos diddcticos y conceptuales de
la probabilidad

Introduccion

De la intuicion del azar al concepto formal de probabilidad
Experimentos aleatorios, sucesos y espacio muestral

Reglas basicas de la probabilidad y su interpretacion
Estrategias didacticas y mediaciones tecnoldgicas para el desa-
rrollo del razonamiento probabilistico

Conclusiones

Referencias



Evaluacion para el aprendizaje

Capitulo Il 80

Variables aleatorias, distribuciones y modelacion estadistica

Introduccion

Variable aleatoria: concepto, sentido y ejemplos contextualizados
Funcion de probabilidad y funcion de densidad: interpretacion
didactica

Distribuciones discretas: Bernoulli, binomial y Poisson
Distribuciones continuas: uniforme, normal, exponencial
Sintesis conceptualy didactica: hacia una comprensioén profunda
de las distribuciones y la modelacion estadistica

Conclusiones

Referencias

Capitulo IV 149

Pensamiento inferencial: del dato a la argumentacion

Introduccion

Poblacion, muestra y sesgo: decisiones de muestreo en la prdactica
Estimacion puntual y por intervalos: comprension del error y la
precision

Pruebas de hipotesis: sentido, pasos y lectura critica
Contrastes mds comunes en contextos educativos (proporciones,
medias, diferencias)

Conclusiones

Referencias

10



indice de tabla y figuras

Capitulo |

indice de figuras
Figura 1. Estadisticos descriptivos de la calificacién final sin
recuperacion.
Figura 2. Estadisticos descriptivos del puntaje del proyecto
Figura 3. Histograma de la calificacion final sin recuperacion.
Figura 4. Distribucion de las calificaciones finales sin recuperacion
Figura 5. Distribucion de las estaturas registradas en el grupo
de estudio
Figura 6. Distribucion registrada de la estatura y caracteristicas
del grupo de estudio
Figura 7. Distribucion de estudiantes segUn la lectura de al menos
un libro al mes
Figura 8. Registro de las caracteristicas del grupo de estudio
utilizadas para el andlisis
Figura 9. Distribucidn de estudiantes que aprueban Matemdtica
segun el curso
Figura 10. Datos cualitativos y cuantitativos registrados
Figura 11. Registro de variables observables y latentes en el grupo
de estudiantes
Figura 12. Operacionalizacién de la competencia digital docente
Figura 13. Puntuaciones registradas en las dimensiones de la
competencia digital docente
Figura 14. Distribucién de ejercicios resueltos sin ayuda por los
estudiantes
Figura 15. Reqgistros de ejercicios resueltos sin ayuda por los es-
tudiantes en los cursos Ay B
Figura 16. Diagrama de caja de las notas obtenidas por los estu-
diantes de los cursos Ay B
Figura 17. Registros de presion arterial sistélica (PAS) de los
pacientes

11



Evaluacion para el aprendizaje

Figura 18. Estadisticos descriptivos de la presion arterial sistélica
en los grupos Taller y Control

Figura 19. Medidas descriptivas de la presion arterial sistolica
(PAS) en los grupos Taller y Control.

Figura 20. Medidas descriptivas de las horas de estudio sin va-
lores atipicos.

Figura 21. Medidas descriptivas de las horas de estudio sin va-
lores atipicos.

Capitulo Il

indice de figuras
Figura 1. Resultados de la simulacion de 1000 lanzamientos de
un dado en el entorno Python de GeoGebra
Figura 2. Resultados de la simulacion de 50 extracciones aplicada
a la variable “Color”
Figura 3. Representacion de sucesos mutuamente excluyentes
en un experimento aleatorio
Figura 4. Representacion del espacio muestral continuo

Capitulo Il

indice de tablas
Tabla 1. Registro diario del grado de puntualidad de los estudiantes
Tabla 2. Registro de pedidos y caracteristicas del trayecto en
distintos horarios del dia
Tabla 3. Tiempo de uso del celular y nUmero de notificaciones
registradas por los estudiantes
Tabla 4. Velocidad de conexién a Internet medida en Mbps en
20 casos observados
Tabla 5. Resultados de puntaje y tiempo de resolucion del nivel
1en un videojuego educativo de fracciones

indice de figuras
Figura 1. Estadisticos descriptivos del grado de puntualidad res-
pecto de las 08h00
Figura 2. Distribucion del grado de puntualidad de los estudiantes
respecto de las 08h00
Figura 3. Estadisticos descriptivos del tiempo total de entrega
(en minutos)
Figura 4. Histograma del tiempo total de entrega de pedidos por
aplicaciéon
Figura 5. Correlaciéon entre las horas de uso del celular y la can-
tidad de notificaciones recibidas

12



Figura 6. Dispersién entre las horas de uso del dispositivo movil
y la cantidad de notificaciones recibidas

Figura 7.Modelo de regresion lineal entre el uso del celular (horas)
y el nUmero de notificaciones recibidas

Figura 8. Estadisticos descriptivos de la velocidad de conexidn
medida en intervalos de pocos segundos

Figura 9. Distribucién de la velocidad de conexion (Mbps)
Figura 10. Estadisticos descriptivos del tiempo empleado para
completar el nivel del videojuego educativo

Figura 11. Distribucion de los tiempos empleados por los estudian-
tes para completar el nivel del videojuego educativo

Figura 12. Distribucion de estudiantes que reconocen correcta-
mente la fraccidon en el nivel inicial del videojuego educativo
Figura 13. Frecuencia de respuestas correctas e incorrectas en
el reconocimiento de fracciones

Figura 14. Distribucion binomial de botellas correctas en un lote
de 20 unidades con probabilidad de éxito p = 0.95.

Figura 15. Distribucion de Poisson del niUmero de llamadas por
hora en un centro de soporte (A = 10)

Figura 16. Distribucion simulada de los tiempos de inicio de las
pruebas de carga en un servidor educativo

Figura 17. Distribucién simulada de puntajes en una prueba es-
tandarizada de razonamiento matematico (n = 120).

Figura 18. Simulacién de tiempos entre llamadas en un centro de
soporte universitario (n = 300).

Figura 19. Distribucion de puntajes simulados en la prueba diag-
nostica de Matematica

Figura 20. Patréon diario del consumo energético promedio en el
campus universitario

Figura 21. Consumo energético en dias laborales y fines de
semana

Figura 22.Relacién entre la temperaturay el consumo energético
en el campus

Figura 23. Consumo medio de energia por dia de la semana en
el campus universitario

Figura 24. Serie temporal del consumo horario de energia en el
campus universitario

13



Evaluacion para el aprendizaje

Capitulo IV

indice de tablas
Tabla 1. Horas de estudio registradas antes y después de la inter-
vencion en el programa de tutorias
Tabla 2. Resultados de la prueba t para muestras pareadas en
horas de estudio antes y después de la intervencion
Tabla 3. Estadisticos descriptivos de las horas de estudio antes
y después de la intervencion
Tabla 4. Resultados de la prueba Z para evaluar el efecto del
programa en los puntajes
Tabla 5. Asistencia a tutorias segun el nivel lector del estudiantado
Tabla 6. Relacion entre asistencia a tutorias y cumplimiento de
tareas
Tabla 7. Estadisticos descriptivos de los puntajes segun partici-
pacion en la plataforma virtual
Tabla 8. Estadisticos descriptivos de los puntajes segun moda-
lidad de estudio

indice de figuras
Figura 1. Estadisticos descriptivos del tiempo de estudio en dos
tipos de muestra.
Figura 2. Distribucion del tiempo de estudio segUn el tipo de
muestra
Figura 3. Histogramas del tiempo de estudio en las dos muestras
Figura 4. Relacion entre uso de tecnologia y tiempo de estudio
Figura 5. Relaciéon entre uso de tecnologia y tiempo de estudio
Figura 6. Representacion geométrica de la media muestral y su
intervalo de confianza del 95 %
Figura 7. Distribucién simulada de medias muestrales y ubicaciéon
del intervalo de confianza del 95 %
Figura 8. Comparacién del error estdndar, desviacién estandar e
intervalos de confianza en muestras pequefias y grandes.
Figura 9. Comparacion de las medias de horas de estudio entre
los grupos con y sin plataforma, con intervalos de confianza del
95 %
Figura 10. Resultados de la prueba t de una muestra para el tiem-
po de estudio semanal

14



CarituLo I

Comprender la estadistica desde
la experiencia: fundamentos y
representaciones

Introduccidon

Hablar de estadistica en educacién suele remitirnos, casi de
inmediato, a tablas, nUmeros y graficos. Sin embargo, detrds
de cada dato hay una historia: un estudiante que asistio
o faltd, un grupo que aprendid con mayor o menor ritmo,
una realidad social que se mueve con matices que ningun
promedio puede capturar por completo. Este capitulo nace
justamente de esa idea: los datos no son solo cifras; son re-
presentaciones de experiencias humanas que merecen ser
leidas con atencidn y sensibilidad.

A medida que analizamos informacion educativa o social, des-
cubrimos que lo importante no es Unicamente “cudnto” ocurre un
fendmeno, sino cdmo se comporta, qué tan uniforme es, dénde
aparecen tensiones y en qué lugares se esconden diferencias que
pueden pasar inadvertidas. Por eso, la estadistica descriptiva no
es un ejercicio frio, sino una forma de mirar. A veces los valores
se agrupan y nos hablan de estabilidad; en otras ocasiones se

ISBN 978-9942-596-47-5 | 2025
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Comprender la estadistica desde la experiencia: fundamentos y representaciones

dispersan y revelan desigualdades, excepciones o procesos que
estdn tomando rumbos inesperados. En este recorrido, media
y mediana nos dan una primera impresion, pero la dispersion,
los valores atipicos y la variabilidad aportan la profundidad que
permite interpretar el panorama completo.

En tiempos donde la informacién circula con rapidez y se sim-
plifica sin miramientos, aprender a leer datos con criterio se
vuelve una habilidad esencial. No basta aceptar un promedio
como verdad absoluta; hay que preguntarse qué esconde, qué
muestra y qué transforma. Estas preguntas no son técnicas, son
intelectuales y éticas: nos obligan a mirar mdas alld del nUmero y
reconocer las realidades diversas que conviven dentro de cual-
quier conjunto de datos.

El capitulo que sigue se propone acompafiar al lector en esa
tarea. No pretende convertir la estadistica en un conjunto de for-
mulas, sino en una herramienta para pensar con mayor claridad.
A'lo largo de las secciones, encontraremos ejemplos, compara-
ciones, casos reales y situaciones que permiten entender como
los datos adquieren sentido cuando se interpretan con cuidado.
La intencion es que cada lector, sea docente, investigador o
estudiante, pueda acercarse a la estadistica como un modo de
comprender lo que ocurre a su alrededor y no solo como un
contenido que debe memorizarse.

Con esta mirada abierta y reflexiva iniciamos el capitulo, invi-
tando a detenerse, observar, comparar y, sobre todo, interpretar.
Porque en educacién y en la vida misma entender los datos es,
al final, una forma de entender a las personas y las historias que
dan origen a esos datos.

La estadistica como herramienta para describir la realidad
La estadistica se ha convertido en un recurso indispensable para
interpretar fendmenos sociales, educativos, cientificos y coti-
dianos. Su presencia en la toma de decisiones, en los medios de
comunicacion, en las instituciones y en la vida diaria ha transfor-
mado la manera en que las personas comprenden su entorno. Sin
embargo, detrds de cada dato y de cada representacion existe
un proceso que merece ser examinado con detenimiento. Los
numeros no son meras copias de la realidad; son construccio-
nes que dependen de decisiones conceptuales, metodoldgicas
y contextuales. Comprender este trasfondo permite desarrollar
un pensamiento mas reflexivo sobre lo que significan los datos
y sobre codmo influyen en la manera en que narramos el mundo.

El propdsito de este epigrafe es profundizar en esta dimen-
siobn menos visible de la estadistica, articulando tres aspectos
esenciales. En primer lugar, se examina como se construyen los
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datosy qué factores intervienen en su configuracién. En segundo
lugar, se aborda el papel de las representaciones estadisticas,
entendidas como narraciones visuales que no solo muestran
informacién, sino que orientan la interpretacién del fenémeno.
Finalmente, se explora la relacion entre lo individual y lo colecti-
vo, subrayando las tensiones que emergen cuando se sintetizan
experiencias diversas en cifras agregadas. La intencién no es
cuestionar el valor de la estadistica, sino mostrar su complejidad
y destacar la necesidad de un pensamiento cuidadoso al utilizarla
para describir la realidad.

La construccion de los datos’ decisiones que configuran la
realidad
Los datos son frecuentemente presentados como entidades ob-
jetivas, como si fueran una reproduccion fiel de la realidad ob-
servable. Sin embargo, toda produccién de datos implica una
serie de decisiones técnicas y conceptuales que influyen en lo
que finalmente se recoge y registra. Garfield y Ben-Zvi (2008)
sefialan que un dato no es solo un nUmero; es el resultado de una
operacion de medicion que presupone categorias, instrumentos
y criterios que no son ajenos al contexto culturaly educativo en
el que se generan. Por ello, comprender cdmo se construyen los
datos es un paso fundamental para interpretar adecuadamente
lo que representan.

La primera decision aparece en la definicién del fendmeno
a estudiar. Para analizar los hdbitos de estudio de un grupo de
estudiantes, por ejemplo, es necesario decidir qué se entiende
por “estudiar”: ileer?, jresolver ejercicios?, s preparar trabajos?,
¢participar en tutorias? Cada eleccion delimita un tipo de infor-
macién y excluye otras formas de actividad. Batanero y Borovcnik
(2016) advierten que la delimitacion conceptual del objeto de
estudio determina la naturaleza de los datos y, por tanto, la pers-
pectiva desde la cual se describird el fendmeno. Un “dato” sobre
horas de estudio solo representa una parte de la experiencia
educativa, no su totalidad.

La segunda decisién recae en la forma de medicion. En mu-
chos contextos escolares se emplean cuestionarios donde los
estudiantes estiman cudntas horas dedican a una actividad. Sin
embargo, la percepcion del tiempo es subjetiva y puede variar-
considerablemente. Los registros automdaticos, como plataformas
virtuales que contabilizan minutos de conexién, proporcionan
informacién mds precisa, pero también introducen nuevos pro-
blemas: stodo el tiempo de conexidon implica estudio activo?,
;qué ocurre con las actividades no reqgistradas digitalmente?
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Estos interrogantes muestran que la medicién nunca es com-
pletamente transparente. Cada instrumento captura un aspecto,
pero deja fuera otros.

La tercera decision se relaciona con la seleccion de la muestra.
Los resultados obtenidos dependen en gran medida de quiénes
participan en la recoleccion de datos. Wild y Pfannkuch (1999)
explican que la representatividad es un aspecto crucial del pen-
samiento estadistico. En el aula, esto se evidencia cuando se
analizan encuestas a partir de la participacién voluntaria: quienes
responden suelen ser estudiantes mas comprometidos o con mas
disponibilidad, lo que tiende a sesgar los resultados.

Estas decisiones no son fallas; son parte del proceso natural
de produccion de datos. No obstante, comprenderlas permite
reconocer que los datos no “hablan” solos: son interpretaciones
codificadas de la realidad. Este reconocimiento es esencial para
evitar conclusiones simplificadas, especialmente en fendmenos
sociales complejos como el aprendizaje, la convivencia escolar
o la participacion estudiantil.

Cuando la institucion analiza las calificaciones finales de un
grupo de 8 estudiantes (Figura 1), observa que el promedio al-
canza 6,81, mientras que la mediana se situa en 6,65.

Figura 1.
Estadisticos descriptivos de la calificacion final sin recuperacion.

. & Licea & Froeomcin & bramen_fing & Emrupers & Penmo Mogta fral sin e

Nota. La figura presenta los estadisticos descriptivos calculados en Jamovi a
partir del rendimiento final de & estudiantes.

Como se muestra en la Figura 2, estas cifras muestran que la
mayoria de los estudiantes se mueve en un rango de desempefio
intermedio, sin grandes distancias entre la media y el valor cen-
tral. Aun asi, el comportamiento de las notas evidencia diferencias
importantes: el estudiante con menor puntuacion obtiene 4,80,
mientras que el de mayor rendimiento llega a 9,00.

Esa amplitud refleja que algunos avanzan con mayor segu-
ridad, mientras otros requieren un acompafamiento mas cer-
cano. Si bien estas cifras no capturan la complejidad completa
del aprendizaje, si ofrecen una primera lectura Util para que el
equipo docente identifique tendencias, reconozca necesidades
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y ajuste sus estrategias de enseflianza con miras a fortalecer el
proceso formativo.

Figura 2.
Estadisticos descriptivos del puntaje del proyecto

Descriptivas

Nota. La figura resume los valores descriptivos obtenidos en la variable
“Proyecto”, incluyendo la media, mediana, desviacion tipica y los puntajes
minimo y mdéximo registrados en el grupo.

Esa amplitud refleja que algunos avanzan con mayor sequ-
ridad, mientras otros requieren un acompafamiento mas cer-
cano. Si bien estas cifras no capturan la complejidad completa
del aprendizaje, si ofrecen una primera lectura Util para que el
equipo docente identifique tendencias, reconozca necesidades
y ajuste sus estrategias de ensefianza con miras a fortalecer el
proceso formativo.

Representar para comprender’ narrativas estadisticas y sus
limites
Las representaciones estadisticas (graficos, tablas, diagramas y
resUmenes numéricos) ocupan un papel central en la compren-
sion de los fendmenos. Una tabla bien organizada o un grafico
claro puede revelar patrones, tendencias y relaciones que no son
visibles en los datos en bruto. Sin embargo, representan mads que
una simple traduccién; construyen narraciones que orientan la
interpretacion del fendmeno. Curcio (1989) enfatiza que la com-
prension de los graficos depende tanto del disefic como de las
capacidades lectoras del observador, y ambos aspectos pueden
modificar sustancialmente el sentido atribuido a los datos.
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La seleccidon del tipo de representacion ya es, en si misma,

una eleccién cargada de significado. Un grafico de lineas su-
giere continuidad temporal; un diagrama de barras destaca com-
paraciones entre categorias; un histograma permite visualizar la
forma de distribucidon; un boxplot revela variabilidad y valores
atipicos. En el aula, muchos estudiantes interpretan cada grdafico
como si mostrara la “verdad” de los datos, sin notar que cada
representacién enfoca un aspecto y deja otros en segundo plano.

Un ejemplo ilustrativo aparece cuando se comparan histogra-
mas de diferentes tamafos de intervalo: la misma distribuciéon
puede verse dispersa o concentrada segin coémo se definan
los rangos, generando conclusiones distintas. Por ejemplo, en la
Figura 3 se observa que las calificaciones del examen final tien-
den a concentrarse en un rango intermedio, principalmente entre
5y 7 puntos, donde se ubica la mayoria del grupo. Solo aparecen
dos casos que se apartan de esa franja: un estudiante con un
puntaje alto de 9 y otro con una nota baja de 4. Esta distribucién
sugiere un nivel de rendimiento relativamente uniforme, aunque
con diferencias puntuales que permiten identificar tanto un des-
empefio destacado como una dificultad aislada dentro del grupo.

Figura 3.
Histograma de la calificacion final sin recuperacion.

Ewgiman 1

Nota. El gréfico muestra la distribucion de las calificaciones finales sin re-
cuperaciéon obtenidas por ocho estudiantes, generada mediante el software
Jamovi.

Las elecciones estéticas también influyen en la interpretacion.
El uso de colores intensos, ejes truncados o escalas desigua-
les puede exagerar diferencias minimas o minimizar patrones
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importantes. Esto se observa con frecuencia en medios de co-
municacién y redes sociales. Un grafico que muestra el aumento
de un indicador de salud puede parecer alarmante si el eje inicia
cerca del valor méximo, aun cuando el cambio real sea pequefio.
Ensefar a identificar estos efectos ayuda a los estudiantes a
desarrollar una lectura mas cuidadosa de las representaciones
visuales.

La narrativa que construye un grafico también depende del
orden de los elementos. Una tabla puede mostrar los datos or-
denados alfabéticamente o segun valor numérico, dando énfasis
a diferentes aspectos. En un grafico de barras, el orden puede
sugerir tendencias inexistentes.

Por ejemplo, cuando las calificaciones se representan respetan-
do el orden original de los estudiantes en la tabla, la grafica ofrece
una imagen mucho menos lineal y, en apariencia, mas cadtica.
Las barras suben y bajan sin seguir una secuencia reconocible,
lo que refleja con mayor fidelidad la variabilidad real del grupo.
En este caso, el grafico no sugiere ninguna tendencia general de
mejora o deterioro, sino que muestra simplemente las diferencias
individuales de cada estudiante (Figura 4).

Esta representacion resulta mds transparente porque evita
imponer una estructura visual que no estd presente en los datos.
Ver el grafico sin ordenar permite comprender el rendimiento
desde una perspectiva mas abierta, donde lo relevante no es la
forma global del dibujo, sino las particularidades de cada caso.
Al contrastarlo con la version ordenada, se hace evidente cdmo
pequefas decisiones de presentacion pueden modificar la na-
rrativa visual sin modificar los valores, recordadndonos que toda
representacion grdfica implica una interpretacién y no Unica-
mente una descripcion literal de los datos.

Apoyo diddctico: En contextos educativos, la lectura de grdafi-
cos se convierte en una actividad fundamental para desarrollar
el pensamiento estadistico. Garfield y Ben-Zvi (2008) sefialan
que los estudiantes deben aprender no solo a “leer” datos, sino a
“leer entre los datos”: preguntarse qué se destaca, qué se omite y
qué decisiones graficas influyen en lo que se percibe. Actividades
como comparar diferentes representaciones del mismo conjunto
de datos permiten observar cobmo cambia la interpretacion segun
el modelo elegido. Esta experiencia resulta reveladora, pues los
estudiantes descubren que la representacion no es neutra.

Otro elemento clave es el uso de medidas de resumen. La
media, la mediana, el rango o la desviacién estandar son herra-
mientas poderosas para sintetizar informacion, pero también
pueden simplificar en exceso el fendmeno. Una media puede
ocultar desigualdades internas, mientras que un rango no informa
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sobre la distribucion real de los valores. Cuando se presentan
Unicamente los resUmenes numéricos, se corre el riesgo de trans-
mitir una imagen parcial. Wild y Pfannkuch (1999) destacan que
el pensamiento estadistico requiere ir y venir entre lo global y lo
particular, evitando quedarse solo con uno de esos niveles.

Figura 4.
Distribucion de las calificaciones finales sin recuperacion
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Nota. La figura presenta la distribuciéon de las calificaciones finales sin
recuperacidén obtenidas por ocho estudiantes. El gréfico fue generado en el
software Jamovi y permite observar, de manera comparativa, el desempefio
individual de cada estudiante en el examen final.

Otro elemento clave es el uso de medidas de resumen. La
media, la mediana, el rango o la desviacién estandar son herra-
mientas poderosas para sintetizar informacion, pero también
pueden simplificar en exceso el fendmeno. Una media puede
ocultar desigualdades internas, mientras que un rango no infor-
ma sobre la distribucion real de los valores. Cuando se presen-
tan Unicamente los resiUmenes numeéricos, se corre el riesgo de
transmitir una imagen parcial. Wild y Pfannkuch (1999) destacan
que el pensamiento estadistico requiere ir y venir entre lo global
y lo particular, evitando quedarse solo con uno de esos niveles.

Ejemplo:en una clase de primer afio de bachillerato, el docente
decidié registrar la estatura de sus 12 estudiantes con el fin de
analizar la variabilidad del grupo y trabajar conceptos bdsicos
de estadistica. Las estaturas, medidas en centimetros, fueron las
siguientes: 150, 152, 155, 158, 160, 162, 163, 165, 167, 168, 170 y 185
(Figura 5). Con esta informacién desea describir la distribucion
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del grupo, identificar medidas de tendencia central y reconocer
posibles diferencias entre estudiantes. A partir de estos datos, el
objetivo es que los alumnos comprendan como se comporta una
variable cuantitativa continua en un conjunto real de personas y
qué conclusiones pueden extraerse de su andlisis.

Figura 5.
Distribucion de las estaturas registradas en el grupo de estudio
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Nota. La figura muestra la tabla descriptiva generada en Jamovi a partir de
las estaturas registradas para los doce participantes del grupo. Se incluyen
medidas de tendencia central y dispersion que permiten observar la varia-
bilidad del conjunto, asi como el valor del percentil 25, Util para interpretar la
distribucién de los datos.

La tabla de descriptivos muestra que se trabajo con las es-
taturas de 12 estudiantes, cuya media y mediana coinciden en
163 cm. Este dato sugiere que el centro de la distribuciéon esta
claramente ubicado alrededor de ese valor y que no hay una
asimetria marcada en la parte central del conjunto. El minimo
registrado es de 150 cm y el maximo de 185 cm, lo que indica
un rango amplio de estaturas dentro del grupo. Ademds, el per-
centil 25 se situa en 157 c¢cm, de modo que una cuarta parte de
los estudiantes mide menos de esa cifra, mientras que el resto
se concentra por encima. En conjunto, la tabla permite apreciar
que, aunque la mayoria de las estaturas se agrupa en torno a
valores medios, existe al menos un estudiante significativamente
mds alto, lo que aporta variabilidad al grupo y ayuda a discutir
cdmo los valores extremos influyen en el andlisis estadistico.
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En definitiva, representar datos significa construir una narra-
tiva visual o numérica que guia la interpretacién. Reconocer esta
caracteristica es fundamental para evitar lecturas superficiales
y para apreciar que cada representaciéon ilumina aspectos dis-
tintos de la realidad.

Ensefiar esta dimensién narrativa permite que los estudiantes
comprendan que los graficos no solo muestran; también cuentan
historias que deben ser interpretadas con cuidado.

De lo individual a lo colectivo. tensiones y efectos de las agre-
gaciones estadisticas
Uno de los desafios mas significativos de la estadistica consiste
en traducir experiencias individuales en descripciones colecti-
vas. Esta transicién entre lo particular y lo general constituye un
proceso complejo en el que se sintetizan multiples realidades
para obtener indicadores globales. Sin embargo, esta sintesis
puede generar tensiones importantes, especialmente cuando los
resUmenes estadisticos ocultan variaciones internas que resultan
relevantes para comprender el fendmeno.

Gal (2002) advierte que lainterpretacion de estadisticas agre-
gadas requiere habilidades que permitan distinguir entre patro-
nes colectivos y comportamientos individuales. En el aula, este
desafio se evidencia cuando los estudiantes analizan encuestas
gue mencionan promedios, porcentajes o medianas sin mostrar
la distribucién completa.

Por ejemplo: Supdn que se aplica una encuesta répida a 20
estudiantes de un colegio para saber si leen al menos un libro
al mes. Ademdas, se reqistra: Curso: (8.2 / 9.2), Género (Mujer /
Hombre) y si Lee libro al mes (Si/ No) (Figura 6). Como se podrd
comprobar “el 70 por ciento de los estudiantes lee al menos un
libro al mes” ofrece una visién general del grupo, pero no revela
si existen diferencias significativas entre subgrupos, como curso,
género, acceso d recursos o motivacion lectora.

Los resultados muestran que, de los 20 estudiantes encuesta-
dos, 14 afirman leer al menos un libro al mes, lo que representa
el 70 % del grupo, mientras que 6 (30 %) sefalan que no tienen
este hdbito de lectura mensual (Figura 7).

A primera vista, la cifra de quienes si leen sugiere una prdactica
relativamente extendida de lectura en el estudiante, pero al mismo
tiempo evidencia que casi un tercio permanece al margen de esa
rutina. Esta informacién permite sostener el enunciado de que
“el 70 por ciento de los estudiantes lee al menos un libro al mes”,
aunque sigue siendo un dato global: no indica si este comporta-
miento se distribuye de la misma manera entre cursos, géneros
U otras caracteristicas, por lo que todavia no es posible saber si
existen subgrupos con mayor o menor participacion en la lectura.
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Figura 6.
Distribucion registrada de la estatura y caracteristicas del grupo de
estudio
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Nota. La figura muestra la base de datos utilizada para el andlisis descriptivo
del grupo de estudiantes generada en Jamovi.

Figura 7.

Distribucion de estudiantes sequn la lectura de al menos un libro al
mes
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Nota. La tabla resume las respuestas de los 20 estudiantes encuestados so-
bre si leen al menos un libro al mes.

Estas tensiones también se observan en el andlisis del rendi-
miento académico. Cuando se presentan los resultados de una
evaluacion mediante una media y una desviacion estdndar, se
obtiene una descripcion global del grupo.
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Sin embargo, esta representacién puede ocultar la existencia
de estudiantes que requieren apoyo especifico. Dos grupos con
la misma media pueden tener distribuciones muy diferentes: en
uno, todos los estudiantes pueden situarse cerca del promedio;
en el otro, puede haber brechas considerables entre quienes
obtienen puntajes altos y bajos. En contextos educativos, estas
diferencias son esenciales para planificar estrategias pedago6-
gicas personalizadas.

La cuestion de las agregaciones cobra especial relevancia
cuando se analizan fendmenos sociales complejos, como la dis-
tribucion de recursos, las condiciones de vida o la participacién
ciudadana. Ben-Zvi y Makar (2016) sostienen que los estudian-
tes deben aprender a examinar estos indicadores desde una
perspectiva que considere tanto los patrones globales como
las dindmicas internas. Por ejemplo, un estudio sobre el acceso
a internet puede mostrar que el “80 por ciento de los hogares
posee conexién”, pero ese numero no informa sobre la calidad
del servicio, la disponibilidad de dispositivos o el uso efectivo de
plataformas digitales. La agregacion oculta diferencias que pue-
den ser cruciales para comprender desigualdades educativas.

Las tensiones entre lo individual y lo colectivo se vuelven alun
mas visibles cuando se consideran fendmenos donde existen va-
lores extremos. Un ejemplo habitual en clase consiste en analizar
ingresos familiares. La media puede verse fuertemente influida
por pocos valores muy altos, mientras que la mediana puede
ofrecer una descripcion mas fiel del comportamiento tipico. En
este caso, la media no representa adecuadamente al grupo.
Estas situaciones muestran que la eleccidon del indicador no solo
depende de criterios técnicos, sino también del propodsito de la
descripcion.

Apoyo diddctico: En la practica docente, trabajar con distri-
buciones completas permite que los estudiantes comprendan
la riqueza y complejidad de los datos. Actividades donde se
comparan diferentes grupos, donde se identifican segmentos
con comportamientos divergentes o donde se analizan valores
atipicos ayudan a reconocer que la realidad social es diversa y
que las estadisticas deben interpretarse con matices. La com-
prension profunda de estas tensiones favorece una mirada mdas
sensible hacia las diferencias dentro de los grupos.

Por otra parte, la agregacion también tiene efectos en la toma
de decisiones. Cuando las instituciones educativas utilizan indi-
cadores globales para establecer politicas, existe el riesgo de
ignorar las particularidades de ciertos estudiantes o contextos. La
estadistica puede contribuir a decisiones informadas, pero solo
si se reconoce la complejidad de los datos y se evita la tentacién
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de reducir los fendmenos a cifras Unicas. En el aula, esto se pue-
de trabajar mediante estudios de caso donde los estudiantes
analicen cémo varian las conclusiones segun se consideren o no
los detalles internos de la distribucion.

Tipos de datos y variables en contextos educativos y sociales
Comprender los tipos de datos y las variables que los generan
es esencial para analizar cualquier fendmeno educativo o social
con seriedad intelectual. Aunque la clasificacion de datos suele
presentarse como un procedimiento técnico, su alcance es mucho
mas profundo: permite reconocer el modo en que los fenémenos
se conceptualizan, se traducen en informaciéon y finalmente se
interpretan. En palabras de Garfield y Ben-Zvi (2008), la estadis-
tica no opera sobre una copia exacta de la realidad, sino sobre
una version conceptualizada de ella. Esta idea resulta decisiva
en educacién, donde los fendmenos incluyen emociones, percep-
ciones, comportamientos, aprendizajes y contextos que rara vez
son simples de reducir a nUmeros.

La literatura en educacion estadistica ha mostrado que los da-
tos no son entidades neutrales. Wild y Pfannkuch (1999) explican
gue todo andlisis estadistico comienza con decisiones invisibles:
qué observar, cobmo medir, como registrar y qué considerar re-
levante. Por ello, reflexionar sobre los tipos de datos y variables
no solo fortalece la comprension técnica de la estadistica, sino
que también promueve un pensamiento critico indispensable
para interpretar fendmenos educativos y sociales en toda su
complejidad.

A continuacién, se desarrollan tres dimensiones fundamenta-
les: la naturaleza del dato, la clasificacion cualitativa y cuantita-
tiva, y la construcciéon de variables que permiten comprender y
representar la realidad desde multiples dngulos.

Comprender la naturaleza del dato. significados, decisiones y
contextos
Cada dato que aparece en un grdafico, una tabla o un informe
escolar representa una serie de decisiones previas: qué se consi-
dera relevante, qué se omite, qué se clasificay qué se cuantifica.
Esta dimension, a menudo invisible, configura la forma en que
comprendemos los fendmenos. Segun Gal (2002), interpretar
datos sin preguntarse por su origen conduce a conclusiones
apresuradas, pues la informacion nunca estd desligada del con-
texto que la produce.

En educacién, este asunto se hace evidente en la evaluacion
del aprendizaje. Cuando un docente asigna una calificacion nu-
mérica, esa cifra parece clara, objetiva y comparable.
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Sin embargo, detrds de ella existe un entramado metodolégico:
criterios de evaluacién, ponderaciones, tipos de tareas, cardacter
de las actividades y nivel de complejidad de los items. Batanero
y Diaz (201) sefialan que incluso en contextos aparentemente
cuantitativos, como la evaluacion escolar, intervienen compo-
nentes cualitativos que moldean el dato final.

Un ejemplo puede estar referido a que un informe puede indi-
car que “el 90 por ciento de los estudiantes aprueba Matematica”,
lo cual parece dar una imagen positiva (Figura 8),es decir los
datos del grupo pueden dar la impresiéon de que el rendimiento
en Matemdtica es homogéneo, pues la mayoria de estudiantes
aprueba la asignatura.

Figura 8.
Registro de las caracteristicas del grupo de estudio utilizadas para el
andlisis
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Nota. La figura muestra la base de datos ingresada en Jamovi con infor-
macion del curso, género y desempefio académico de los 20 estudiantes
encuestados.

Sin embargo, cuando se revisa con detenimiento la distribucién
por cursos (Figura 9), tal como se muestra en la tabla, aparecen
matices que el valor global por si solo no revela. Aunque en cada
curso se observa un predominio de estudiantes que aprueban,
la proporcién de aprobados y no aprobados no es idéntica entre
niveles.
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Figura 9.
Distribucion de estudiantes que aprueban Matematica segun el curso
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Apnueba Matermatica

Nota. La tabla resume cudantos estudiantes aprobaron y reprobaron
Matemdatica en cada curso.

En 8.2y 1.8 por ejemplo, la aprobacidén es claramente mayo-
ritaria, mientras que en 9.2y 10.2 el nUmero de estudiantes que
no superan la materia es mds visible. Esto demuestra que la cifra
total funciona como un indicador sintético, pero también puede
ocultar diferencias internas importantes. Para comprender el fe-
némeno educativo con mayor precisién, no basta con quedarse
en el porcentaje general: es necesario observar los subgrupos,
contrastar patrones y situar el dato dentro de un contexto mas
amplio.

Otros ejemplos pueden describir situaciones similares como,
por ejemplo: supongamos que un investigador desea medir la
“participacién en clase”. Podria registrarla como nUmero de in-
tervenciones orales (cuantitativo), como categoria (alta, mediaq,
baja), como nivel de iniciativa (ordinal) o mediante notas de
observacion (cualitativo descriptivo). Cada modalidad produce
datos distintos, y por lo tanto, interpretaciones distintas. Wild y
Pfannkuch (1999) afirman que estas decisiones forman parte del
pensamiento estadistico y deben ensefiarse explicitamente para
gue los estudiantes comprendan el cardacter construido del dato.

Por ello, comprender la naturaleza del dato implica reconocer
que todo registro es fruto de una decision. Formar estudiantes
capaces de analizar criticamente informacién requiere ense-
flarles que los datos no son simples productos de medicién, sino
interpretaciones codificadas de la realidad.
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Datos cualitativos y cuantitativos. matices, tensiones y posibi-
lidades analiticas
La distincién entre datos cualitativos y cuantitativos es funda-
mental, pero también es frecuente caer en simplificaciones. En
educacién y sociedad, estas categorias conviven y se comple-
mentan, y su interaccion permite captar la complejidad de los
fendmenos. Garfield y Ben-Zvi (2008) indican que cada tipo de
dato abre y cierra determinadas posibilidades analiticas, por lo
que la elecciéon del tipo de dato nunca es trivial.

Datos cualitativos: comprender significados y categorias

Los datos cualitativos permiten registrar aspectos que no se
pueden expresar numeéricamente: percepciones, categorias, ex-
periencias, narraciones o clasificaciones no ordinales. Estos datos
son indispensables para comprender dimensiones humanas como
la motivacion, el clima escolar, la convivencia o la percepcion
docente. Por eso, en educacién y ciencias sociales, los datos cua-
litativos no constituyen un complemento, sino una parte esencial
de la representaciéon estadistica.

Entre los datos cualitativos, los nominales identifican catego-
rias sin orden natural. Ejemplos frecuentes son:

* tipo de recurso digital utilizado,

* asignatura favorita,

* rolasumido en el trabajo grupal,

* area de interés profesional.

Esta informacion ayuda a comprender la diversidad del grupo,
aunque no permite establecer jerarquias.

En cambio, los ordinales si establecen un orden, aungque sin
distancias cuantificables entre categorias:

* niveles de motivacion,

* percepcion del clima escolar,

* calidad del aprendizaje segUn el propio estudiante,

* niveles de logro.

Gal (2002) advierte que una dificultad habitual aparece cuan-
do los datos ordinales se convierten artificialmente en nUme-
ros para realizar promedios. Esa prdactica puede dar una falsa
sensacion de precision. Por ejemplo, asignar valores del1al 5 a
percepciones sobre satisfaccién puede ser Util para andlisis ex-
ploratorios, pero promediar esas respuestas no implica que las
distancias entre categorias sean iguales.

Datos cuantitativos: magnitudes, decisiones y limites

Los datos cuantitativos permiten medir cantidades y realizar
operaciones matemdticas. No obstante, que sean numéricos no
significa que sean precisos o neutros. Como sefialan Garfield
y Ben-Zvi (2008), todo dato cuantitativo estd mediado por un
instrumento y por un criterio de medicién.
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Los datos discretos representan conteos enteros: nUmero de
tareas realizadas, de errores cometidos o de libros leidos.

Los datos continuos pueden tomar muchos valores dentro de
un intervalo: tiempo de estudio, temperatura, calificaciones con
decimales.

Sin embargo, en educacion, muchos datos que parecen con-
tinuos provienen de escalas discretas. Una calificacion de 8,7
da la sensacién de exactitud, pero su significado depende de la
estructura de la evaluacion. Wild y Pfannkuch (1999) explican que
la precisibn numérica no es sinénimo de precision conceptual.

Tensiones entre ambos tipos de datos

En fendmenos educativos y sociales, lo cualitativo y lo cuan-
titativo se entrelazan. Investigar la motivacion, por ejemplo, re-
quiere articular:

* datos cuantitativos (tiempo dedicado, tareas completadas),

* datos cualitativos (razones, percepciones, emociones),

* y datos ordinales (nivel de interés, disposicion para

aprender).

Ben-Zviy Makar (2016) sostienen que los andlisis mds sdlidos
provienen de integrar diferentes tipos de datos, pues permiten
captar matices que un Unico enfoque no logra mostrar. Esta vi-
sion integrada resulta especialmente relevante en educacién,
donde las variables contienen dimensiones afectivas, cognitivas,
sociales y contextuales.

Un ejemplo de la utilizacion de estas variables (Figura 10)
puede estar referido a la necesidad que tenga un docente de
comprender por qué algunos estudiantes muestran mejores re-
sultados en Ciencias Naturales que otros, a pesar de recibir las
mismas explicaciones en clase.

Para tener una mirada mds clara, el docente puede decidir
recopilar informacién sencilla pero significativa: qué tipo de ac-
tividades disfrutan mds, cuanto tiempo dedican a estudiar en
casa y como les fue en la Ultima evaluacion. Con esa pequefia
muestra, se puede descubrir si las preferencias de aprendizaje
y el esfuerzo individual se reflejan en el rendimiento académico,
y, sobre todo, qué tipo de actividades podria potenciar en sus
clases. A partir de los datos registrados, se espera analizar los
patrones que surgen y plantear recomendaciones que permitan
reforzar el proceso de ensefianza y aprendizaje con estrategias
mds acordes a las necesidades reales del grupo.
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Figura 10.
Datos cualitativos y cuantitativos registrados
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Nota. La figura presenta la informacion recopilada por el docente para com-
prender mejor las caracteristicas y el desempefio de los estudiantes.

Apoyo diddctico: Para comprender mejor por qué algunos
estudiantes avanzan con mayor facilidad en Ciencias Naturales,
el docente puede trabajar con un conjunto de variables que le
permitan observar tanto aspectos descriptivos del grupo como
indicadores de rendimiento. Por un lado, incorporar variables
cualitativas, como el género y la actividad de aprendizaje que
cada estudiante prefiere, porque estos datos ofrecen pistas sobre
los estilos de participacion, la motivacion y las formas en que
cada nifio se involucra con los contenidos. Por otro lado, incluir
variables cuantitativas, como la calificacion obtenida y las horas
semanales de estudio, ya que aportan medidas objetivas que
permiten contrastar el desempefio real y el nivel de dedicacién
fuera del aula.

Con esta combinacion, el docente puede identificar si existe
alguna relacién entre la manera en que los estudiantes apren-
den y los resultados que alcanzan, y asi determinar qué tipo de
estrategias podria fortalecer en sus clases. El andlisis de esta
informacion pretende, en Ultima instancia, orientar decisiones
pedagdgicas mds ajustadas a las necesidades y caracteristicas
del grupo.

Variables educativas y sociales: construccion, interpretacion
y efectos
Las variables constituyen el eje estructural de cualquier andlisis
estadistico. Sin ellas, los datos carecen de forma y las preguntas
de investigacién quedan en un plano abstracto. En contextos edu-
cativos y sociales, definir adecuadamente una variable implica
un ejercicio de interpretacion que va mucho mas alld de escoger
un nombre o un formato de reqgistro. Como sefialan Garfield y
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Ben-Zvi (2008), toda variable refleja una eleccion conceptual que
delimita qué aspectos del fendmeno serdn observados, cudles
permanecerdn invisibles y qué sentido adquieren los valores que
posteriormente se analizaran. Por ello, comprender la construc-
cién de las variables es comprender también la manera en que
representamos la realidad.

Esta dimension es particularmente relevante en educacion,
donde se estudian fendmenos complejos que integran dimensio-
nes cognitivas, afectivas, sociales y culturales. Variables como
“aprendizaje”, “participacion”, “motivacion”, “clima escolar”,
“bienestar emocional” o “competencia digital” no son objetos
simples ni directamente observables. Cada una puede abordar-
se desde multiples perspectivas, y la manera en que se elige
operacionalizarlas condiciona profundamente la interpretacion
posterior. Wild y Pfannkuch (1999) destacan que la calidad de
un andlisis estadistico depende en gran parte de la solidez con-
ceptual con la que se definan las variables iniciales, pues estas
actuan como filtros que dan forma a la realidad analizada.

Definir una variable implica tomar posicién respecto de lo
gue se considera importante en un fendmeno. En el estudio del
rendimiento académico, por ejemplo, existen multiples formas
de conceptualizarlo:

1. Como puntaje en pruebas estandarizadas.

Ofrece datos comparables, pero captura solo una parte del
aprendizaje.

2. Como promedio de calificaciones.

Integra actividades diversas, aunque puede verse influido por
criterios poco homogéneos.

3. Como logro en estdndares curriculares.

Se centra en desempefos especificos, pero exige sistemas de
evaluaciéon consistentes.

4. Como desarrollo de competencias.

Refleja procesos, pero requiere instrumentos mas complejos
y subjetivos.

5. Como autopercepcién del propio aprendizaje.

Incorpora la voz del estudiante, aunque no mide directamente
habilidades objetivas.

Cada definicion origina una variable distintay conduce a “ver-
siones” diferentes del mismo fenémeno. Batanero y Diaz (2011)
explican que la eleccién de una variable no es neutra: implica
escoger un angulo de andlisis y renunciar a otros posibles. Esta
renuncia es inevitable, pero debe ser consciente y argumentada.

Supongamos que una institucién evalta la efectividad de su
nuevo programa de Matematica. Si la variable seleccionada es
“puntaje en pruebas estandarizadas”, se obtendrd una lectura
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centrada en habilidades especificas. Si la variable elegida es
“confianza matematica”, la lectura serd emocional y motivacio-
nal. Si la variable utilizada es “uso de estrategias de resolucién
de problemas”, la evaluaciéon se centrard en prdacticas cognitivas.
Una misma intervencion puede parecer exitosa o limitada segin
la variable escogida.

Este ejemplo evidencia por qué el acto de definir variables
constituye una parte esencial del andlisis y no un simple paso
preliminar.

Variables observables y variables latentes

En educacion y ciencias sociales es frecuente distinguir entre
variables observables y variables latentes.

Variables observables

Son aquellas que pueden registrarse directamente mediante
instrumentos concretos, como:

* nUmero de horas de estudio;

* asistencia diaria;

* cantidad de intervenciones orales;

* puntaje obtenido en una prueba;

* frecuencia de uso de una plataforma digital.

Estas variables permiten un registro mas objetivo, pero no ne-
cesariamente capturan la totalidad del fendmeno. Por ejemplo,
medir la “participacién” solo como nUmero de intervenciones
puede invisibilizar a estudiantes que participan mediante la es-
cucha activa, el trabajo colaborativo o la escritura.

Variables latentes

Las variables latentes representan constructos no directamen-
te observables, tales como:

* motivacién;

* sentido de pertenencia;

* ansiedad matematica;

* clima escolar;

* liderazgo estudiantil;

* percepcion de competencia.

Gal (2002) recuerda que estas variables requieren procedi-
mientos indirectos de medicion implica asumir modelos tedricos
y criterios interpretativos. Su complejidad no las vuelve menos
valiosas; al contrario, permiten estudiar dimensiones profundas
de la experiencia educativa. No obstante, requieren interpre-
taciones cuidadosas, pues pueden variar segun el instrumento
utilizado y el contexto de aplicacion.

Por ejemplo, con el propésito de comprender mejor como se
relacionan ciertos hdbitos académicos con factores mas profun-
dos del aprendizaje, una docente decidid recopilar informacion
de ocho estudiantes de quinto afio.
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Para ello reqgistré varias variables observables, como las ho-
ras de estudio semanal, el porcentaje de asistencia, el nUmero
de intervenciones orales y el puntaje obtenido en una prueba
reciente (Figura 11). Junto con ello, aplicé una escala tipo Likert
para evaluar variables latentes vinculadas al funcionamiento
emocional y social del grupo, especificamente la motivacion, la
ansiedad matematica, el sentido de pertenencia y la percepcién
del clima escolar.

Figura 11.
Registro de variables observables y latentes en el grupo de
estudiantes

Nota. La figura muestra la matriz de datos ingresada en Jamovi, donde se
combinan variables observables, como horas de estudio, asistencia, inter-
venciones y puntaje en la prueba, junto con variables latentes evaluadas
mediante escala Likert, entre ellas motivacion, ansiedad matematica, sentido
de pertenencia y clima escolar.

Elinterés del docente serdidentificar si existen patrones entre
estos dos tipos de variables, por ejemplo, si los estudiantes con
mayor motivacion tienden a estudiar mds, si la ansiedad mate-
matica se refleja en menores puntajes o si un clima escolar mas
favorable se asocia con mejores intervenciones en clase. Con la
informacién registrada, se busca analizar estas relaciones para
fundamentar decisiones pedagdgicas que ayuden a fortalecer
el aprendizaje y el bienestar del grupo.

Operacionalizar: transformar un concepto en una medida

Operacionalizar significa traducir un concepto abstracto en
indicadores concretos y medibles. Este proceso exige una com-
prension clara del constructo tedrico.

Para comprender de manera mdas precisa la competencia
digital docente (Figura 12), un investigador puede comenzar
identificando aquellos aspectos que son visibles en la practica
educativa.
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Entre ellos se encuentran el nivel de alfabetizacién tecnoldgica,
la variedad de herramientas digitales que el docente emplea y
la frecuencia con la que las utiliza en sus clases.

Figura 12.

Operacionalizacion de la competencia digital docente
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Nota. La figura detalla las dimensiones, indicadores y tipos de variables
empleados para operacionalizar la competencia digital docente. Se incluyen

ademds ejemplos de items formulados en escala Likert de 1a 5.
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Sin embargo, también intervienen dimensiones menos evi-
dentes que requieren una mirada mas profunda. La capacidad
de adaptacion a entornos virtuales, la confianza que el docente
percibe al manejar plataformas digitales y su habilidad para
integrar esos recursos con intencién pedagdgica constituyen
componentes esenciales de la competencia digital.

Apoyo diddctico: Estos elementos permiten observar cémo el
profesorado incorpora la tecnologia en su rutina pedagdgica y
hasta qué punto domina funciones bdasicas y aplicaciones que
facilitan el desarrollo de actividades de ensefianza y aprendizaje,
asi como entender no solo el uso instrumental de las herramien-
tas, sino también coémo el docente las incorpora de manera es-
tratégica para enriquecer los procesos educativos y responder
a las demandas de los entornos digitales actuales.

Cada uno de estos aspectos representa dimensiones diferen-
tes de una misma variable. Garfield y Ben-Zvi (2008) sostienen
que la operacionalizacién debe ser coherente con los objetivos
del estudio y con la naturaleza del fendmeno. Una definicion ex-
cesivamente estrecha puede producir andlisis incompletos; una
excesivamente amplia puede dificultar la interpretacion.

La Figura 13 reUne los puntajes asignados a cada docente en
las distintas dimensiones que conforman la competencia digital,
y permite observar de manera conjunta como se distribuyen los
niveles de alfabetizacién tecnoldgica, la variedad y frecuencia
de uso de herramientas digitales, asi como la adaptacion, la
confianza y la integracion pedagdgica

Figura 13.
Puntuaciones registradas en las dimensiones de la competencia digi-
tal docente

Nota. La figura muestra la matriz de datos ingresada en Jamovi correspon-
diente a las seis dimensiones evaluadas de la competencia digital docente.

Las puntuaciones recogidas en las diferentes dimensiones de la
competencia digital docente muestran que no se trata solo de “saber
usar” tecnologia, sino de integrar ese saber en la practica cotidianag,
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se observan perfiles mas consolidados, con valores altos y rela-
tivamente equilibrados en alfabetizacion tecnoldgica, frecuencia
de uso e integracidén pedagdgica, junto a otros mas irregulares,
donde la confianza o la adaptacién a entornos virtuales quedan
rezagadas.

El contexto como parte integral de la variable

Entender una variable sin considerar el contexto en el que sur-
ge es una de las formas mdas comunes de distorsionar la realidad
gue se intenta analizar. Una medida tan simple como el “tiempo
dedicado al estudio” puede adquirir significados radicalmente
distintos segUn el entorno socialy educativo en el que se obser-
ve. En contextos urbanos, suele interpretarse como una sefial de
esfuerzo o discipling; en zonas rurales, en cambio, puede revelar
carencias materiales que obligan al estudiante a invertir mds
tiempo para lograr los mismos resultados. También puede ser ex-
presion de dindmicas familiares complejas o de niveles elevados
de presion académica. Del mismo modo, el “logro académico” no
representa un estandar universal, pues depende de los criterios
de evaluacion de cada institucién, la disponibilidad de recursos,
las practicas docentes y las expectativas socioculturales que in-
fluyen en lo que cada comunidad considera un buen desempefio.

Esta variabilidad en el significado de las variables ha sido
ampliamente discutida en la literatura contempordnea sobre
educaciéon y andlisis de datos. Ben-Zvi y Makar (2016) advierten
que interpretar variables sin atender al contexto produce con-
clusiones incompletas y, en muchos casos, desconectadas de la
experiencia real de los estudiantes. Considerar el contexto no
solo enriquece la interpretacién estadistica, sino que también
permite tomar decisiones pedagodgicas mas justas y pertinentes,
evitando generalizaciones que invisibilizan las multiples realida-
des que conviven dentro del sistema educativo.

Efectos de una definicion inadecuada de la variable

La manera en que se define una variable determinag, en gran
medida, la calidad y la profundidad del andlisis que se puede rea-
lizar con ella. Cuando una variable estd mal construida o parte de
una definicion limitada, los resultados se vuelven incompletos y,
en ocasiones, abiertamente contradictorios. Por ejemplo, reducir
el “abandono escolar” Unicamente a la inasistencia prolongada
deja fuera factores estructurales como la inseguridad, el trabajo
infantil o la migracion, todos ellos ampliamente documentados
en estudios internacionales (UNESCO, 2021).

Algo similar ocurre cuando se pretende medir el “bienestar
estudiantil” solo con escalas cuantitativas, lo que puede ocultar
experiencias subjetivas, relaciones familiares fragiles o tensiones
emocionales que requieren una lectura cualitativa mas profunda.

38



Saquinaula Brito José Luis

Incluso en el dmbito disciplinar, definir la “competencia ma-
temdtica” Unicamente mediante pruebas de cdlculo conduce a
ignorar dimensiones clave como el razonamiento, la argumen-
tacion o la modelizacién.

Diversos investigadores han insistido en que la definicién
de una variable no es un trdmite conceptual, sino una decision
metodoldgica con efectos directos sobre la interpretaciéon de
los datos. Herndndez-Sampieri y Mendoza (2018) destacan que
una variable mal delimitada genera mediciones inconsistentes
que comprometen la validez de los resultados. Del mismo modo,
Messick (1995) advierte que la validez de un constructo depen-
de no solo de los instrumentos que lo miden, sino también de
la claridad con que se define su estructura conceptual. En este
sentido, reflexionar sobre la construccion de las variables no es
un lujo académico, sino una condicién esencial para producir
andlisis estadisticos responsables y decisiones pedagdgicas bien
fundamentadas.

De manera general, la eleccién de las variables en educacion
no es un detalle técnico, sino una decision que orienta qué se
considera valioso y, por tanto, qué tipo de practicas y politicas se
impulsan. Cuando una institucién decide medir solo rendimiento
numeérico, termina reforzando légicas centradas en pruebas y
resultados estandarizados; si incorpora variables de desarro-
llo socioemocional, abre espacio a tutorias, acompafiamiento y
cuidado; y si valora la participacion, fomenta actividades cola-
borativas y voces estudiantiles mas visibles.

Tabulacion y representaciones grdficas: leer y comunicar
informacidn
La tabulaciéon y las representaciones graficas constituyen un com-
ponente fundamental del razonamiento estadistico. No se trata
Unicamente de ordenar datos o de embellecer informacién, sino
de transformar registros dispersos en narrativas comprensibles.
Tanto en educacién como en los estudios sociales, los graficos y
las tablas no solo muestran cifras: construyen significados, revelan
patrones y permiten que las personas entiendan fendmenos que,
sin estas herramientas, serian invisibles o incomprensibles. Como
afirman Garfield y Ben-Zvi (2008), la representacién grdafica no
es un afladido decorativo de la estadistica, sino la via por la cual
los estudiantes aprenden a pensar con datos.

Al analizar como los datos se organizan y representan, apare-
cen dos dimensiones esenciales: la posicién tedrica y la posicion
diddactica, que examina coémo estas herramientas pueden favo-
recer aprendizajes significativos en las aulas
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La articulacion entre ambas perspectivas permite compren-
der que tabular y graficar no son actividades mecdnicas, sino
procesos que exigen interpretacion, reflexion y comunicacion.

Tabular para organizar y revelar patrones
La tabulacion constituye la primera estructura formal que permite
convertir un conjunto disperso de registros en una organizacion
significativa. Wild y Pfannkuch (1999) explican que el pensamien-
to estadistico inicia con la capacidad de “imponer estructura”
sobre datos desorganizados; en otras palabras, construir una for-
ma que permita ver lo que antes era invisible. Las tablas revelan
frecuencias, distribuciones, agrupamientos y comportamientos
inusuales, y actuan como un puente entre los datos brutos y las
interpretaciones posteriores.

Por ejemplo, un docente quiso comprender por qué algunos
estudiantes estaban teniendo dificultades en el Ultimo bloque de
Matematica, para ello, les pidid que anotaran de manera andnima
cudntos ejercicios de la guia habian logrado resolver sin ayuda.
Al finalizar la clase, tenia una lista desordenada de nUmeros:

3,5,4,2,10,4,3,4,2,3,12,4,5. A primera vista, esa serie de
valores no decia mucho. Podria parecer simplemente una mezcla
irreqular de cantidades sin patrén evidente. Sin embargo, cuando
decidi6é organizar los datos en una tabla de frecuencias (Figura
14), la situacion cambid por completo.

Figura 14.
Distribucion de ejercicios resueltos sin ayuda por los estudiantes
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Nota. La figura muestra la frecuencia con la que los estudiantes resolvieron
ejercicios de manera auténoma.

En este sentido llama la atencidn es que la mayoria de los
estudiantes se mueve entre 2 y 4 ejercicios resueltos; de hecho,
casi siete de cada diez estdn en ese rango. Esto da la sensacidon
de que la guia les resultd manejable, pero todavia exigente:ha-
cen algunos ejercicios por su cuenta, pero no tantos como para
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pensar que todos dominan el tema con soltura. También se
ve un pequefio grupo que llega a 5 ejercicios, lo cual refuerza la
idea de un rendimiento bastante parejo, sin demasiadas diferen-
cias dentro del conjunto principal.Por otra parte, destaca los dos
valores mas altos, 10 y 12 ejercicios. Son casos aislados, pero no
por eso menos importantes. Mdas bien, funcionan como sefales
claras de que hay estudiantes que estdn muy por encima del
resto, ya sea porque entienden el contenido con mayor facilidad
o0 porque han tenido mas prdactica previa. Estos contrastes no se
notaban en la lista de nUmeros desordenados, pero la tabla los
pone en evidencia de inmediato

En contextos educativos, tabular implica tomar decisiones
conceptuales: seleccionar variables, definir categorias, es-
tablecer niveles de detalle y ordenar la informacién segun
criterios analiticos. Un docente que analiza la evoluciéon del
rendimiento en Matematica puede tabular por unidades de
aprendizaje, por niveles de logro o por frecuencia de activida-
des. Cada tabulacién construye una lectura distinta del mismo
fendmeno. Lo mismo ocurre en estudios sociales: tabular el
acceso a internet por territorio, edad o nivel socioecondmico
genera interpretaciones especificas, y todas estadn mediadas
por las elecciones iniciales del investigador.

Desde una perspectiva tedrica, este proceso muestra que la
tabla no es neutral: es una construccién que destaca unos aspectos
y atenuva otros. Batanero y Diaz (2011) sefialan que toda tabulacion
conlleva un posicionamiento conceptual, pues las decisiones sobre
la organizacion del dato determinan las posibilidades de interpre-
tacion. En consecuencia, tabular implica comprender el fendmeno
y, simultaneamente, delimitar su lectura.

La investigacion en educacién estadistica coincide en que mu-
chos estudiantes reproducen tablas sin comprender las implica-
ciones de cada decision. Garfield y Ben-Zvi (2008) indican que la
ensefianza deberia enfatizar que tabular no es llenar casillas, sino
estructurar informacidn para pensar con ella. Por eso, trabajar con
datos reales permite que los estudiantes descubran patrones y
comprendan el sentido de la organizacion.

Representaciones grdaficas! visualizar, interpretar y construir
narrativas

Las representaciones graficas constituyen una ampliacién vi-
sual del razonamiento estadistico. Curcio (1989) establecid que
comprender un grdafico implica leer datos, leer entre los datos y
leer mas alld de los datos, es decir, interpretar relaciones, detectar
tendencias y formular conclusiones.
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En este sentido, los graficos son formas de narracion visual que
permiten transformar lo cuantitativo en relaciones descriptivas
mas accesibles.

* Los distintos tipos de graficos ofrecen perspectivas

diferenciadas:

* Grdficos de barras: permiten comparar categorias y visua-

lizar contrastes inmediatos.

* Grdficos de lineas: describen trayectorias temporales y fa-

cilitan analizar cambios y ritmos.

* Histogramas: muestran la forma de la distribucion y revelan

simetrias, sesgos o concentraciones.

* Diagramas de caja: permiten observar variabilidad, disper-

sién y valores atipicos.

* Grdficos de dispersion: exponen relaciones entre variables,

especialmente al analizar asociaciones.

* Grdficos de sectores: muestran proporciones, aunque re-

quieren interpretaciones cautelosas.

Desde una posicion tedrica, Garfield y Ben-Zvi (2008) desta-
can que las representaciones visuales realizan una transforma-
cion conceptual del fendmeno. Un histograma no solo reproduce
frecuencias; sintetiza la estructura completa de la variable. Un
diagrama de caja no solo ordena datos; visibiliza desigualdades
internas que no se perciben en promedios o valores individua-
les.Por ejemplo, para conocer mejor la realidad de cada grupo
(Figura 15)., un docente comparé las notas de los cursos Ay B
utilizando un diagrama de caja.

Aunque ambos cursos tenian promedios similares el grafico
mostré diferencias importantes (Figura 16) en el curso A las califi-
caciones estaban mdas agrupadas, mientras que en el curso B habia
una dispersién mucho mayor, con estudiantes muy avanzados y
otros con claras dificultades. Esta visualizacién le permitié recono-
cer que, aunque los dos cursos parecian similares en los nUmeros
generales, sus necesidades internas eran distintas y necesitaban
estrategias de apoyo diferenciadas.

La literatura critica observa que los graficos pueden inducir
interpretaciones erréneas cuando las escalas, colores o catego-
rias no se eligen con criterio. Gal (2002) sostiene que la lectura
critica de graficos se ha vuelto un componente indispensable
de la alfabetizacion estadistica contempordneaq, especialmente
en un entorno saturado de informacion visual. Comprender un
grdafico implica analizar no solo lo que se muestra, sino también
las decisiones detrds de su disefio.
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Figura 15
Registros de ejercicios resueltos sin ayuda por los estudiantes en los
cursos Ay B
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Nota. La figura muestra la matriz de datos ingresada en Jamovi con las cali-
ficaciones obtenidas por los estudiantes de ambos cursos.

Figura 16
Diagrama de caja de las notas obtenidas por los estudiantes de los

cursos Ay B
Mofa

Mecika

Nota. El diagrama muestra la distribucidn de las calificaciones registradas en
ambos cursos.

La literatura critica observa que los graficos pueden inducir
interpretaciones erréneas cuando las escalas, colores o catego-
rias no se eligen con criterio. Gal (2002) sostiene que la lectura
critica de grdaficos se ha vuelto un componente indispensable
de la alfabetizacion estadistica contempordneaq, especialmente
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en un entorno saturado de informacién visual. Comprender un
grafico implica analizar no solo lo que se muestra, sino también
las decisiones detrds de su disefio.

En educacion, ensefiar a representar datos implica no solo
aprender a construir grdficos, sino comprender qué tipo de gra-
fico responde mejor a cada pregunta de investigacion. Wild y
Pfannkuch (1999) explican que representar visualmente permite
que los estudiantes avancen desde la observacion hacia la expli-
cacion. Al producir graficos propios, deben justificar decisiones,
argumentar sus interpretaciones y construir una comunicacion
basada en datos.

La mirada investigativa. evidencias, dificultades y aportes al
razonamiento estadistico
La investigacion en educacion estadistica ha dedicado especial
atencidon a comprender como los estudiantes leen, interpretan
y producen tablas y representaciones grdficas, y cudles son los
procesos cognitivos implicados en estas tareas. Desde sus pri-
meros desarrollos, este campo ha mostrado que la capacidad
de trabajar con representaciones no se adquiere de manera
espontdneaq; por el contrario, demanda instruccidon explicita, ex-
periencias progresivas y oportunidades para interactuar criti-
camente con datos reales. Garfield y Ben-Zvi (2008) enfatizan
que el razonamiento estadistico se construye mediante ciclos
de interpretacién, discusién y comunicacidon, donde las tablas y
los graficos cumplen un papel central. La investigacion confirma
que estas representaciones son algo mdas que herramientas vi-
suales: son mediadores cognitivos que orientan la comprensién,
estructuran el pensamiento y permiten construir argumentos
basados en datos.

Investigaciones sobre como se comprende una representacion:
niveles, procesos y vacios persistentes

Uno de los aportes mas influyentes en este campo proviene
del trabajo de Curcio (1989), quien establecié tres niveles de
comprension grafica: leer los datos, leer entre los datos y leer
mas alld de los datos. Este modelo ha sido validado por multiples
estudios posteriores y sigue siendo un referente para analizar
la evolucion del pensamiento estadistico. “Leer los datos” im-
plica identificar valores explicitos; “leer entre los datos” exige
comparar, inferir y detectar tendencias; y “leer mas alld” supo-
ne interpretar patrones, anticipar comportamientos o justificar
conclusiones. La investigacidon muestra que muchos estudiantes
permanecen anclados en el primer nivel, incluso en grados su-
periores, lo que evidencia una brecha entre la exposicion a los
grdficos y el desarrollo efectivo del razonamiento.
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Wild y Pfannkuch (1999) ampliaron esta mirada al mostrar
que los estudiantes suelen centrarse en detalles superficiales,
como puntos aislados o segmentos llamativos, mientras ignoran
la estructura global de la distribucidon. Esta atencion fragmenta-
da dificulta que adviertan variabilidad, tendencias o relaciones
estadisticas mas complejas.

Estudios recientes confirman que la comprensién de un graé-
fico depende de procesos cognitivos simultadneos: decodifica-
cion visual, reconocimiento de patrones, articulaciéon entre la
representacion y la variable conceptual, y contextualizaciéon del
fendmeno. No basta con identificar puntos o barras; es impres-
cindible comprender qué significan en relacién con la pregunta
que motivo el andlisis.

Dificultades documentadas: errores recurrentes y obstdculos
conceptuales

La literatura investigativa identifica una serie de dificultades
recurrentes que enfrentan los estudiantes al trabajar con tablas
y graficos. Estas dificultades no se limitan a errores técnicos,
sino que revelan obstdaculos madas profundos del razonamiento
estadistico.

Entre los desafios mds frecuentes se encuentran:

1. Interpretacion literal y no relacional del grafico

Los estudiantes tienden a describir lo que “ven” sin relacionarlo
con el fendmeno. Garfield y Ben-Zvi (2008) documentan casos
donde los alumnos interpretan una linea ascendente como “sube
porque si”, sin conectar el cambio con la variable estudiada.

2. Confusiéon entre forma visual y magnitud

Especialmente con grdficos de barras o dreas, algunos estu-
diantes creen que una barra mas ancha representa “mas” aunque
no sea mds alta. Esto muestra una lectura centrada en rasgos
perceptuales y no en las variables (Curcio, 1989).

3. Dificultad para interpretar variabilidad

La variabilidad suele ser uno de los conceptos mdas dificiles. En
diagramas de caja, por ejemplo, muchos estudiantes no identifi-
can valores atipicos o interpretan la mediana como un “promedio
mas exacto” (Garfield & Ben-Zvi, 2008).

4. Problemas para leer escalas no uniformes

Cuando los ejes cambian la escala, el grafico puede parecer
engafioso. La investigacién muestra que los estudiantes rara vez
detectan estas decisiones de disefio, lo que afecta la interpreta-
cion critica (Gal, 2002).

5. Sobrerreliance en valores individuales

Los estudiantes suelen fijarse en el valor maximo o minimo sin
considerar patrones globales. La mirada queda fragmentada y
no se construyen conclusiones integradas.
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6. Falta de conexién entre tabla y grdéfico

Muchos estudiantes no vinculan la tabla con la representaciéon
visual correspondiente. La investigacion sefala que estas dos
herramientas se trabajan de forma aislada, cuando en realidad
estdan profundamente conectadas (Batanero & Diaz, 2011).

Estas dificultades muestran que la comprension de grdaficos
no depende Unicamente de verlos o reproducirlos, sino de desa-
rrollar una mirada analitica que permita reconocer estructuras,
relaciones y significados.

Los estudios en diddactica de la estadistica han identificado
practicas que favorecen el desarrollo de la comprension grdéfica:

1. Trabajar con datos reales y significativos:

Ben-Zviy Makar (2016) muestran que los estudiantes desarro-
llan mayor sensibilidad hacia los patrones y tendencias cuando
los datos provienen de fenédmenos familiares: asistencia, habitos
digitales, rendimiento, percepciones. La cercania favorece la
formulacion de preguntas y la interpretacién critica.

2. Combinar varias representaciones del mismo fenédmeno

La investigacion indica que presentar un mismo conjunto de
datos en tabla, histograma, grdafico de lineas y diagrama de caja
permite a los estudiantes comprender diferentes facetas de la
distribucion. Esta triangulacién desarrolla una comprension mas
robusta (Garfield & Ben-Zvi, 2008).

3. Promover la explicacion oral y escrita

Explicar un grafico obliga a estructurar el pensamiento. Los
estudios sefialan que cuando los estudiantes justifican por qué
eligieron un tipo de grafico o como interpretan la tendencia, la
comprension se profundiza.

4. Ensefiar explicitamente la lectura critica

Gal (2002) sostiene que la educacién moderna debe abor-
dar la manipulacién visual de datos. Ensefiar a detectar escalas
truncadas, graficos engafosos o narrativas sesgadas fortalece
la alfabetizacion estadistica.

5. Guiar la construccion de grdficos, no solo su lectura

Construir graficos requiere tomar decisiones: elegir la escala,
seleccionar el tipo de grdafico, organizar los datos. La investi-
gacién confirma que este proceso es mas formativo que leer
grdaficos ya hechos (Wild & Pfannkuch, 1999).

Trabajar con tablas y representaciones graficas no solo ayuda
a “embellecer” los datos, sino que se convierte en una via privile-
giada para desarrollar componentes centrales del razonamiento
estadistico. La tabulacidon permite estructurar el fendmeno, orde-
nar informacién dispersa y hacer visibles patrones que de otro
modo pasarian desapercibidos, mientras que los grdaficos facilitan
la comprensién de la variabilidad, la forma de la distribuciéon
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y la presencia de valores extremos. Esta organizacién visual
de la informacion vuelve mas accesible la comparacién entre
grupos, distribuciones y tendencias, y crea un soporte concreto
para la construccion de argumentos basados en datos. En esa
linea, autores como Garfield y Ben-Zvi (2008) destacan que el
trabajo sistematico con representaciones tabulares y graficas
favorece que el estudiante pase de “ver nUmeros” a interpretar
evidencias, lo que fortalece la capacidad de justificar conclusio-
nes de manera fundamentada.

Al mismo tiempo, la lectura critica de graficos reales abre la
puerta a una ciudadania mas informada y reflexiva. Gal (2002)
subraya que la alfabetizacion estadistica implica no solo com-
prender procedimientos, sino también interpretar mensajes que
circulan en medios, informes y debates pUblicos. Desde esta
perspectiva, las representaciones acttUan como un puente entre
datos, contexto y narrativa: permiten conectar valores numeéricos
con significados sociales, educativos y culturales, y cuestionar
qué se muestra, qué se oculta y qué se da por supuesto. En sin-
tesis, la investigacion en educacion estadistica coincide en que
eluso intencional de tablas y graficos es uno de los caminos mas
sélidos para desarrollar un pensamiento estadistico auténtico,
basado en comprensidn, andlisis criticoy comunicacién clara de
la informacion (Garfield & Ben-Zvi, 2008; Gal, 2002).

Medidas de tendencia central y dispersidon: interpretar la in-
formacion numérica
La interpretacion de datos numéricos requiere comprender coOmo
se organizan, cdémo se concentran y qué tan alejados se en-
cuentran los valores respecto a un punto de referencia. En este
proceso, las medidas de tendencia central y dispersién consti-
tuyen herramientas esenciales para sintetizar la informacion y
revelar patrones que no son visibles a simple vista. Garfield y
Ben-Zvi (2008) destacan que estas medidas permiten enten-
der la estructura de un fendmeno, identificar comportamientos
tipicos y evaluar la variabilidad que caracteriza a los datos. En
educacion y en las ciencias sociales, esta comprension resulta
especialmente relevante, pues muchos fendmenos presentan
distribuciones heterogéneas que requieren andlisis cuidadoso
para evitar interpretaciones simplistas.

Comprender estas medidas no es Unicamente un ejercicio téc-
nico:implica desarrollar la capacidad de argumentar con datos,
contextualizar valores numéricos y reconocer que los resUmenes
estadisticos deben interpretarse ala luz del fendmeno estudiado.
En esta seccion se amplia la reflexiéon sobre estas medidas, inte-
grando ejemplos concretos y aportes de la investigacion reciente.
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Comprender el “centro”. media, mediana y moda como repre-
sentaciones del valor tipico
Las medidas de tendencia central permiten sintetizar un conjunto
de datos en un solo valor, pero cada una expresa una forma distin-
ta de interpretar qué significa “lo caracteristico” de un grupo. La
media suele entenderse como un punto de equilibrio: suma todos
los valores y los distribuye de manera uniforme. Sin embargo,
cuando existen diferencias marcadas dentro del conjunto, este
promedio puede ofrecer una vision distorsionada. La mediana, en
cambio, sefiala el valor que divide a la poblacion en dos partes
iguales y se mantiene estable incluso frente a valores extremos.
La moda aporta otra mirada complementaria, pues identifica el
valor que aparece con mayor frecuencia y resulta especialmente
Util cuando se analizan categorias o preferencias. Estas distincio-
nes no son simplemente técnicas; responden a preguntas sobre
coémo se comportan realmente los datos y qué tan homogéneo
o diverso es un fenédmeno.

En el campo educativo y social, elegir la medida adecuada
es fundamental para comprender la realidad sin perder matices.
Prodromou (2019) sefiala que los estudiantes desarrollan un pen-
samiento estadistico mas profundo cuando trabajan con datos
auténticos, porque pueden observar directamente como la media
se desplaza cuando aparecen valores atipicos, coOmo la mediana
captura la estabilidad del grupo y cdmo la moda revela patrones
de comportamiento que de otro modo pasarian desapercibidos.

Del mismo modo, Konold et al. (2017) sefialan destacan que
ensefar estas diferencias ayuda a superar la idea de que la es-
tadistica se reduce a algoritmos, promoviendo en cambio una
lectura critica y contextualizada de la informacion. En conjunto,
estos aportes muestran que comprender las medidas centrales
implica mucho mas que calcular nUmeros: implica aprender a
interpretar el sentido de los datos y a reconocer qué dicen sobre
el fendmeno que se estudia.

Por ejemplo, en un centro de salud comunitario se implemento
recientemente un taller educativo para pacientes con hiperten-
sion, con el proposito de mejorar sus hdbitos diarios y ayudarles
a controlar la presion arterial. Después de un mes, el equipo mé-
dico quiso comprobar si existian diferencias reales entre quienes
participaron en el taller y quienes continuaron con la atencién
habitual.

Para ello, registraron la presiéon arterial sistélica de un grupo de
pacientes en ambos escenarios y organizaron los datos (Figura
17) con el fin de comparar la distribucién de valores, identificar
posibles patrones y evaluar si el taller estaba teniendo un impacto
clinicamente significativo.
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El andlisis de estos resultados permitird orientar decisiones so-
bre la continuidad del programa y sobre la necesidad de ajustes
en las intervenciones educativas que se ofrecen a la comunidad.

Figura 17.
Registros de presion arterial sistolica (PAS) de los pacientes
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Nota. La figura muestra la matriz de datos utilizada en el andlisis.

Figura 18.
Estadisticos descriptivos de la presion arterial sistolica en los grupos
Taller y Control

Descriptivas
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Nota. La tabla presenta los valores de N, media, mediana y moda de la pre-
sion arterial sistélica (PAS) en ambos grupos.
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Los resultados descriptivos (Figura 17) muestran un patrén
claro:aunque ambos grupos tienen el mismo nUmero de partici-
pantes, las medidas de tendencia central son consistentemente
mds bajas en el grupo que asistié al taller. Tanto la media como
la mediana se sittan en 129 mmHg en este grupo, mientras que
en el grupo control alcanzan alrededor de 145 mmHg. Incluso
los valores mas frecuentes (moda) siguen esta misma direccion.

Prodromou (2019) mostrd que trabajar con datos reales y
dindmicos permite que los estudiantes entiendan como valores
extremos afectan la media, como la mediana refleja estabilidad
y codmo la moda evidencia patrones de preferencia o comporta-
miento. Estos elementos convierten la ensefanza de las medidas
centrales en una oportunidad para promover pensamiento critico
sobre los datos.

La dispersion como clave interpretativa: variacion, estabilidad
y desigualdad en los datos
En el andlisis estadistico, comprender Unicamente los valores
centrales de un conjunto de datos suele resultar insuficiente para
interpretar el comportamiento real de un fendmeno. La dispersion
se convierte, por ello, en una clave interpretativa fundamental,
ya que permite evaluar el grado en que los valores se alejan del
centro y, con ello, reconocer patrones de variaciéon, niveles de
estabilidad y formas de desigualdad presentes en los datos. Por
ejemplo, si conectamos la idea de variaciéon con los datos de pre-
sién arterial sistélica (PAS) de los dos grupos (Taller y Control),
podemos imaginar la siguiente situacion: en el grupo Taller, la
mayoria de los valores se concentran cerca de los 129 mmHg (que
coinciden en la media y la mediana), con registros que oscilan en
un rango relativamente estrecho alrededor de ese valor.

Esto indicaria una variacion baja y, por tanto, un comporta-
miento mas estable del indicador en las personas que participa-
ron en laintervencién educativa. En cambio, en el grupo Control,
donde la media y la mediana se situan en 145 mmHg, los valores
podrian estar mucho mas dispersos, con algunos participantes
ligeramente por encima de 140 mmHg y otros con cifras cercanas
o superiores a 160 mmHg. Aunque ambos grupos tienen el mismo
tamano muestral (n = 8), la mayor variacién en el grupo Control
sugeriria heterogeneidad estructural y posibles influencias ex-
ternas no controladas, como diferencias en el acceso a controles
medicos o en la adherencia a tratamientos.

La dispersion también ofrece una ventana interpretativa so-
bre la estabilidad. Un conjunto con baja desviacién estdndar o
bajo rango intercuartilico suele interpretarse como estable, en
el sentido de que sus valores no difieren abruptamente entre si.

50



Saquinaula Brito José Luis

Esto es especialmente relevante cuando se evalUan procesos
educativos, donde la estabilidad puede sugerir que los apren-
dizajes son relativamente homogéneos, o en estudios clinicos,
donde una baja dispersiéon podria indicar respuestas similares al
tratamiento. En contraste, valores con amplia dispersion alertan
sobre contextos inestables, brechas internas o procesos que re-
quieren mayor atencién o diferenciacién metodolégica.

Figura 19.
Medidas descriptivas de la presion arterial sistolica (PAS) en los gru-
pos Taller y Control.

Cescriptivas

Nota. La figura muestra el nUmero de participantes y las principales medidas
de tendencia central y dispersién de la presién arterial sistélica (PAS) por
grupo.

Finalmente, la dispersidon constituye un indicador clave para
analizar la desigualdad. Mientras medidas como la media o la
mediana describen tendencias generales, la dispersion revela
la distancia entre grupos o individuos. En investigaciones sobre
rendimiento académico, ingreso econdmico 0 acceso a servicios,
una alta dispersion puede reflejar inequidades estructurales que
se ocultan tras un valor central aparentemente adecuado.

De manera general, la dispersion no es un elemento técnico
aislado, sino un recurso interpretativo que aporta profundidad ana-
litica. Permite reconocer cudnto cambian los datos, cuan estable es
un proceso y qué desigualdades emergen dentro de un conjunto.
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Integrar esta mirada favorece andlisis mas rigurosos y deci-
siones mejor fundamentadas, especialmente en contextos edu-
cativos, sociales o de investigacion aplicada.

Comprender los valores atipicos: impacto interpretativo, de-
cisiones analiticas y sentido del dato

El andlisis estadistico contempordneo exige observar no solo
lo que ocurre “en el centro”, sino también codmo ciertos valores
inusuales (valores atipicos u outliers) influyen en la comprension
de un fendmeno. Lejos de ser simples anomalias, estos valores
pueden constituir seflales importantes sobre desigualdades, com-
portamientos excepcionales o transformaciones emergentes del
contexto. Bakker y Wagner (2019) subrayan que su interpretacion
adecuada depende del propdsito analitico: un valor extremo
puede enriquecer el andlisis o distorsionarlo, segun como se
contextualice.

Las medidas de tendencia central y dispersién reaccionan de
forma distinta frente a los valores atipicos y la media por su parte
es muy sensible a los valores extremos, Un solo valor inusual-
mente alto puede arrastrar el promedio y alterar por completo
la interpretacion. La mediana, en cambio, permanece estable y
puede convertirse en una alternativa mdas adecuada cuando el
conjunto presenta desigualdades estructurales, como ocurre con
ingresos o acceso a dispositivos tecnoldgicos.

Las medidas de dispersion también se ven afectadas: la des-
viacion estandar aumenta de manera notable ante un valor ex-
tremo, y el rango puede volverse engafioso si un solo dato inflado
define la amplitud del conjunto. En este sentido, el recorrido
intercuartilico (RIC) se vuelve especialmente Util porque se con-
centra en el 50% de datos centrales, ignorando los extremos y
ofreciendo una visiobn mas robusta del comportamiento general.

Consideremos el siguiente ejemplo sin valores extremos (Figura
18), las horas de estudio se distribuyen de manera homogénea,
con una media y mediana de 5.50, una desviacion tipica baja
(1.05) y un rango acotado entre 4 y 7 horas.

Sin embargo, al incorporar el valor atipico de 20 horas ( Figura
19), la media aumenta abruptamente a 7.57 y la desviacién tipica
sube a 5.56, indicando una dispersién mucho mayor.

En contraste, la mediana cambia minimamente (de 550 a 6) y
el RIC solo aumenta ligeramente, lo que confirma su estabilidad
frente a valores extremos. Este comportamiento evidencia que la
media, el rango y la desviacién estandar son altamente sensibles
a los outliers, mientras que la mediana y el RIC ofrecen una re-
presentacion mas robusta del comportamiento central del grupo.
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Figura 20.
Medidas descriptivas de las horas de estudio sin valores atipicos.

Descriptivas

Nota. La figura muestra la base de datos y las medidas descriptivas corres-
pondientes a las horas de estudio registradas por seis estudiantes

Figura 21.
Medidas descriptivas de las horas de estudio sin valores atipicos.

Descriptivas

Nota. La figura muestra la base de datos y las medidas descriptivas corres-
pondientes a las horas de estudio registradas por siete estudiantes

En educaciéon y ciencias sociales, los valores atipicos suelen
ser “puntos de tensidon interpretativa”, segun Konold et al. (2017)
sefalan, pues pueden evidenciar situaciones de riesgo, inequi-
dades o dindmicas que requieren atencién. Un estudiante que
obtiene una calificacién considerablemente inferior al resto no es
un error estadistico: puede sefalar dificultades de aprendizaje,
problemas emocionales o falta de recursos. En estudios sociales,
un ingreso extremadamente bajo o alto puede reflejar desigual-
dades profundas o transformaciones socioecondmicas en curso.
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Las investigaciones recientes destacan ademas el papel de la
tecnologia en la comprensién de los valores atipicos. Prodromou
(2019) demuestra que la manipulacion dindmica de datos permite
visualizar instantdneamente coémo se altera la media o la des-
viacion estdndar cuando aparece un outlier. Bakker y Akkerman
(2019), por su parte, recuerdan que en entornos de big data los
valores extremos pueden indicar errores, pero también fenéme-
nos emergentes que requieren andlisis critico.

Conclusiones

Al recorrer este capitulo se hizo evidente que la estadistica des-
criptiva no es solo un conjunto de técnicas, sino una forma de
aproximarse a la realidad con una mirada mas atenta y cons-
ciente. Las medidas de centro, la dispersion y la identificacion
de valores atipicos permiten interpretar fendmenos educativos
y sociales con mayor precision, evitando quedarse en afirma-
ciones simplificadas que pierden de vista la complejidad de los
datos. Comprender como se comportan los valores dentro de un
conjunto ayuda a reconocer patrones, detectar desigualdades y
tomar decisiones mejor fundamentadas.

También se vuelve claro que las representaciones estadisticas
son herramientas que acompafian el pensamiento critico. Un
promedio, por si solo, nunca cuenta toda la historia; solo cuan-
do se contrasta con la variabilidad, la forma de la distribucién y
la presencia de casos inusuales es posible obtener una lectura
completa. Esta perspectiva invita a analizar con cuidado cual-
quier afirmacidn sustentada en datos, especialmente en dmbitos
como la educacion o la salud, donde cada nUmero representa
situaciones humanas que requieren sensibilidad e interpretacion
contextualizada.

Finalmente, el capitulo subraya la importancia de formar a
estudiantes y profesionales capaces de dialogar con los datos,
no solo de reproducir cdlculos. En un entorno saturado de infor-
macion, la capacidad de interpretar tablas, graficos y estadisticas
se transforma en una competencia esencial para participar de
manera critica en la vida académica y social. Aprender a mirar
mds alld del valor central, a preguntarse por lo que los nUmeros
muestran y por lo que ocultan, es un paso fundamental para
construir una comprension mas honesta y profunda de los feno-
menos que estudiamos.
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CarituLo II

Pensar el azar: fundamentos
didacticos y conceptuales de la
probabilidad

Introduccidon

El estudio de la probabilidad invita a mirar el mundo desde una pers-
pectiva distinta, una en la que la incertidumbre no es un obstaculo, sino
una puerta para comprender como se comportan los fenémenos que
no siguen un patrén fijo. En la vida cotidiana convivimos con el azar sin
pensarlo demasiado: cuando anticipamos el clima, participamos en un
juego, tomamos una decision con informacion incompleta o interpreta-
mos una noticia basada en datos. Sin embargo, esas experiencias suelen
construir intuiciones que, aunque Utiles, no siempre coinciden con la ma-
nera en que la probabilidad describe matemdticamente lo posible. Este
capitulo propone adentrarse en ese territorio fronterizo entre intuicién y
formalizacion, explorando como las personas interpretan la incertidumbre,
cdbmo se estructura un experimento aleatorio y como pueden ensefiarse
las ideas fundamentales del azar de forma significativa.

Desde una perspectiva diddctica, pensar el azar implica reconocer
que las ideas probabilisticas no se desarrollan de manera espontdnea.
Requieren experiencias que permitan observar la variabilidad, discutir

ISBN 978-9942-596-47-5 | 2025
https://editorial.risei.org



Saquinaula Brito José Luis

expectativas, contrastar lo que creemos que deberia ocurrir con lo que
realmente sucede y elaborar modelos que ayuden a organizar esa com-
plejidad. A través de ejemplos, simulaciones, representaciones y andlisis
de situaciones reales, este capitulo busca mostrar cémo la probabilidad
puede ensefiarse no como una coleccion de reglas aisladas, sino como
un modo de razonamiento que nos permite interpretar, predecir y tomar
decisiones en contextos donde no existe certeza absoluta.

En conjunto, el contenido de este capitulo invita a construir una com-
prension mas profunda y humana del azar. No se trata Unicamente de
aprender a calcular probabilidades, sino de desarrollar una sensibilidad
para reconocer patrones en la incertidumbre, cuestionar intuiciones
inicialesy valorar el papel que juega el razonamiento probabilistico en
la vida diaria. Pensar el azar, en este sentido, es también aprender a
pensar con apertura, cautela y sentido critico frente a un mundo que
rara vez se comporta de manera totalmente predecible.

De la intuicion del azar al concepto formal de probabilidad
Comprender la probabilidad comienza mucho antes de encontrarse
con definiciones formales: nace en la manera en que las personas
interpretan lo inesperado, anticipan resultados o explican por qué
ciertos eventos suceden y otros no. Desde edades tempranas, todos
desarrollamos ideas intuitivas sobre el azar basadas en experiencias
cotidianas, conversaciones, juegos y observaciones informales; sin
embargo, estas intuiciones no siempre coinciden con la légica ma-
temdtica que sustenta el concepto de probabilidad. Este epigrafe
propone un transito reflexivo desde esas primeras percepciones, d
veces imprecisas o cargadas de sesgos, hacia una comprension mas
rigurosa y estructurada del azar. Se busca mostrar que la probabili-
dad no surge de memorizar reglas, sino de reconstruir el pensamiento
inicial, confrontarlo con fenémenos reales y reconocer que detrds de
la incertidumbre existen patrones y modelos capaces de describir,
con sorprendente precision, el comportamiento de lo aleatorio.

La intuicion del azar: creencias, expectativas y razonamientos
espontdaneos
La manera en que nifios, jovenes e incluso adultos conciben el azar
estd profundamente anclada en la experiencia cotidiana. Antes de
llegar al aula, las personas ya han desarrollado una serie de creen-
cias implicitas sobre coémo “deberian” comportarse los fendmenos
inciertos. Estas ideas conforman lo que la literatura denomina in-
tuiciones del azar, una categoria que recoge percepciones previas,
razonamientos espontdneos y explicaciones culturalmente trans-
mitidas. Aunque estas intuiciones no forman parte del lenguaje
matematico formal, si constituyen el punto de partida desde el cual
se construye el pensamiento probabilistico escolar.
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Los estudios recientes han confirmado que estas intuiciones
no desaparecen con el tiempo; por el contrario, evolucionan,
se complejizan y contintan influyendo en la interpretacién de
los fendmenos aleatorios incluso en la adultez. Retamal y Alsina
(2022), en un estudio con estudiantes chilenos de & a 14 afos,
muestran que la mayoria espera que los resultados aleatorios
se “compensen” rdpidamente, especialmente en secuencias de
lanzamientos de monedas o dados.

A esta expectativa de equilibrio inmediato se suman otras
creencias igual de arraigadas, que suelen aparecer con fuerza
cuando las personas intentan explicar situaciones marcadas por
la incertidumbre. En el dmbito educativo latinoamericano, Alsina
y Salcedo (2020) han mostrado que muchos estudiantes inter-
pretan el azar desde supuestos cargados de causalidad o de
intencion, como si los resultados no fueran producto de un pro-
ceso aleatorio sino de algun tipo de fuerza oculta. Asi, cuando un
dado arroja varios valores altos seguidos, no es raro que algunos
lo atribuyan a que el dado estd “cargado” o a que un jugador
trae mala suerte, aun cuando el objeto sea perfectamente justo.

Estas explicaciones, por mas equivocadas que sean desde la
perspectiva matemdatica, no deben verse Unicamente como fallos
conceptuales. Mds bien reflejan un esfuerzo por dotar de sentido
a la variabilidad natural del azar, un intento por encontrar esta-
bilidad donde no siempre la hay. Esta necesidad de organizar
lo incierto es una reaccion profundamente humana y se hace
visible tanto en situaciones cotidianas como en el aprendizaje
formal de la probabilidad. Por eso, md&s que corregir de manera
directa estas ideas, la tarea educativa consiste en acompafar a
los estudiantes para que puedan reconocer por qué surgen, qué
funcién cumplen y coémo es posible reemplazarlas por una com-
prension mdas rigurosa del cardcter aleatorio de los fendmenos.

Apoyo diddctico: En este escenario, el papel del docente no
consiste en “corregir” de inmediato estas ideas, sino en compren-
derlas como parte de un sistema de pensamiento mdas amplio.
La literatura contemporénea insiste en que las intuiciones son
recursos cognitivos Utiles cuando se integran adecuadamente a
actividades de exploracion, discusion y reflexion.

Un ejemplo concreto puede ilustrar esta transicién. Si en
un grupo de estudiantes se lanza una moneda diez veces y
aparece una secuencia de cinco caras consecutivas, es fre-
cuente escuchar afirmaciones como: “Ahora tiene que salir
sello” o “Va a equilibrarse”. Cuando el docente repite el expe-
rimento cien o doscientas veces o utiliza una simulacién digital
que permite miles de repeticiones los estudiantes observan
que la proporcion se acerca a 50 %, pero que no existe una
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compensacion inmediata tras una racha. Esta observacion
empirica genera una tensidon cognitiva que impulsa la reorga-
nizacion conceptual.

Este tipo de experiencias pone en evidencia la importancia
de laintuicion como punto de partida del pensamiento probabi-
listico. Lejos de ser un obstdaculo, constituye una base fértil para
desarrollar discusiones, experimentos y andlisis que conduzcan
progresivamente hacia la comprension formal del azar. En pala-
bras de Fischbein y Malkiel (2019), “el pensamiento intuitivo no
desaparece con el aprendizaje; se transforma y continta cohabi-
tando con las ideas formales, influyendo en la toma de decisiones
incluso cuando la teoria es conocida”.

En sintesis, comprender las intuiciones del azar implica re-
conocer la complejidad cognitiva, emocional y cultural desde
la que los estudiantes interpretan los fendmenos inciertos. La
ensefianza de la probabilidad no puede limitarse a transmitir
reglas; debe partir de estas creencias iniciales, generando un
didlogo entre la intuicién y el conocimiento matematico que
permita construir, de manera gradual y sélida, una nueva forma
de pensar lo indeterminado.

La construccion del concepto formal de probabilidad. del ex-
perimento al modelo matemdatico
Transitar desde la intuicién hacia el concepto formal de proba-
bilidad implica un cambio epistemoldgico profundo. No se trata
Unicamente de aprender definiciones, sino de comprender que
el azar posee regularidades que solo emergen cuando los fenod-
menos se analizan de manera sistematica. Para que este transito
ocurra de forma significativa, la literatura reciente propone tres
pilares: experimentacion, simulacién y formalizacién progresiva.

a) La experimentacion como puente entre intuicion y pensa-
miento frecuencial

El trabajo con experimentos repetidos permite que los es-
tudiantes observen la estabilizacion de las frecuencias relati-
vas. Chance et al. (2016) sefalan que esta aproximacion simula-
tion-based favorece la comprensiéon de que la probabilidad no
es una prediccién individual, sino una descripcion colectiva del
comportamiento del azar. Cuando los estudiantes realizan solo
unas pocas repeticiones, sus expectativas intuitivas dominan la
interpretacién; pero cuando aumentan el nUmero de ensayos,
comienzan a advertir que la variabilidad empieza a “ordenarse”.

La integracion de herramientas digitales ha sido clave en
esta transformacién pedagdgica. Prodromou (2019) demuestra
que las simulaciones permiten visualizar la convergencia de
frecuencias, comparar modelos y experimentar con escenarios
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que serian imposibles de reproducir manualmente. Este enfo-
que, ademds, reduce el sesgo perceptualy permite trabajar con
volimenes de datos suficientes para que los patrones probabi-
listicos sean evidentes.

Por ejemplo, un docente de matematicas desea que sus es-
tudiantes comprendan cémo se comporta el azar cuando se
repite muchas veces un mismo experimento. Para ello, propone
simular 1000 lanzamientos de un dado equilibrado utilizando
Python dentro de GeoGebra (Figura 1). La idea es que los estu-
diantes observen cudntas veces aparece cada cara, comparen
esas frecuencias con el valor tedrico esperado y reflexionen so-
bre por qué, aun tratdndose de un proceso aleatorio, empiezan
a aparecer patrones cuando se trabaja con una cantidad grande
de datos.

Figura 1.
Resultados de la simulacion de 1000 lanzamientos de un dado en el
entorno Python de GeoGebra
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Nota. La figura muestra el cédigo utilizado para realizar la simulacién, asi
como la tabla generada con las frecuencias absolutas y relativas de cada
cara del dado.

Al revisar los resultados de la simulacién, lo primero que llama
la atencién es que ninguna cara del dado aparece con una fre-
cuencia muy distinta de las demdas. Cada una se mueve alrededor
del 16 o 17 por ciento, que es justamente lo que uno esperaria
si el dado fuera equilibrado y todas las caras tuvieran la misma
probabilidad de salir. Hay pequefias variaciones entre ellas, pero
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son normales y esperables en cualquier proceso aleatorio: algu-
nas caras aparecen unds pocdas veces mds 0 Menos, sin que eso
signifique que el dado “prefiera” una en particular.

Lo interesante de este ejercicio es que permite ver cémo el
azar empieza a mostrar regularidades cuando se trabaja con un
numero grande de lanzamientos. Aunque cada tiro es imprede-
cible, el conjunto de los 1000 ensayos deja entrever un patrén
estable que se acerca bastante al valor tedrico. Esa estabilidad
no se aprecia en lanzamientos aislados, pero se hace evidente
cuando se dispone de suficientes datos. Justamente ahi estd el
valor educativo de la simulaciéon: ayuda a que los estudiantes
comprendan que la probabilidad no es una idea abstracta, sino
algo que se puede observar y analizar cuando se mira el com-
portamiento de muchos casos juntos.

b) Las interpretaciones contempordneas de la probabilidad
como recursos complementarios

Aunque histéricamente la probabilidad se ensefid casi exclusi-
vamente desde la interpretacion cldsica, la investigacion reciente
sefiala la importancia de introducir multiples enfoques. Biehler
(2018) argumenta que la comprensidn profunda del azar requiere
gue los estudiantes conozcan las tres grandes perspectivas:

* cldsica, basada en casos equiprobables;

* frecuencial,donde la probabilidad es un limite de frecuencias;

* bayesiana, donde se interpreta como grado de creencia

actualizado con informacién disponible.

En los Ultimos afos, el enfoque bayesiano ha adquirido reno-
vada relevancia en la educacién matematica debido a su cer-
cania con situaciones reales donde la informacién evoluciona.
Investigaciones como las de Benavoli y Zaffalon (2022) explican
que este enfoque ayuda a comprender fendbmenos como diag-
nésticos médicos, evaluaciones de riesgo y procesos de toma de
decisiones donde las probabilidades dependen del conocimiento
previo.

c) La formalizacion como construccion progresiva de
significado

Uno de los avances didacticos mas significativos de la Ul-
tima década es la incorporaciéon de la argumentacién como
un componente central del aprendizaje probabilistico. Zieffler
et al. (2018) sefialan que la ensefianza de la probabilidad no
puede limitarse a repetir procedimientos ni a resolver ejer-
cicios de manera automdtica. Lo realmente formativo ocurre
cuando los estudiantes deben explicar por qué un resultado
es mas plausible que otro y qué evidencias sostienen esa idea.
En ese proceso, se ven obligados a pensar en la relacién entre
sus intuiciones, los datos que observan y la coherencia de sus
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propias explicaciones. El aula se convierte asi en un espacio
donde las ideas se ponen a prueba, donde las afirmaciones
deben justificarse y donde los argumentos se vuelven tan im-
portantes como los nUmeros.

Esta forma de trabajar desplaza el enfoque tradicional centra-
do en algoritmos y abre la puerta a una comprensiéon mas profun-
da de la probabilidad. Cuando los estudiantes discuten, revisan y
confrontan sus razonamientos, comienzan a ver la probabilidad
como una herramienta parainterpretar el mundo y no solo como
un tema mas del curriculo. La disciplina se articula entonces con
la toma de decisiones, el andlisis critico de la informacién y la
valoracion de la evidencia, habilidades indispensables en la vida
cotidiana y en cualquier campo profesional. En este sentido, ar-
gumentar no es un afladido complementario, sino una via para
gue la probabilidad cobre sentido y se conecte con la manera
en que las personas enfrentan la incertidumbre.

d) La probabilidad como forma de interpretar la realidad

El aprendizaje formal de la probabilidad tiene efectos mas
amplios que el dominio de técnicas matematicas. Permite com-
prender fendmenos complejos del entorno: desde la epidemio-
logia hasta la economia, desde las tendencias sociales hasta el
andlisis de datos cientificos. McGrayne (2014) recuerda que los
modelos probabilisticos han transformado la manera en que
las sociedades toman decisiones, evalUan riesgos y predicen
comportamientos.

En el aula, la probabilidad se convierte asi en una herramienta
para pensar criticamente la incertidumbre. Cuando los estu-
diantes comprenden que no todos los eventos pueden predecir-
se, pero si pueden analizarse, y que los datos pueden orientar
decisiones basadas en evidencia, el azar deja de ser un mis-
terio y se convierte en una ventana para interpretar el mundo
contempordaneo.

Por ejemplo, en una actividad de aula, el docente plantea que
una caja contiene fichas de dos colores: rojas y azules, en una
proporcion desconocida para los estudiantes. Con el propodsito
de explorar cbémo se comportan los fendmenos aleatorios, cada
estudiante debe simular 50 extracciones con reemplazo y regis-
trar el resultado de cada una (Figura 2).

Los resultados muestran que, de las 50 extracciones realizadas,
el color rojo aparecié 33 veces y el azul 17 veces. Esto significa
que, en la muestra obtenida, aproximadamente el 66 % de las
fichas fueron rojas y el 34 % azules. Sila probabilidad de obtener
rojoy azul fuera la misma (0,5 cada una), esperariamos frecuen-
cias mads equilibradas, cercanas a 25 y 25.
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Sin embargo, la prueba binomial arroja un valor p = 0,033,
lo que indica que es poco probable obtener una diferencia tan
marcada Unicamente por azar si la probabilidad real fuera 0,5.

En términos sencillos, los datos sugieren que el color rojo tie-
ne una probabilidad mayor que el azul en este experimento, es
decir, en la caja hay, efectivamente, mas fichas rojas que azules
y eso se refleja en la simulacién. Desde la perspectiva del aula,
este resultado permite a los estudiantes ver que, aunque cada
extraccion individual es impredecible, al reunir muchos datos
aparecen patrones que ayudan a entender mejor el comporta-
miento del azar y a tomar decisiones basadas en evidencias y
no solo en intuiciones.

Figura 2.

Resultados de la simulacion de 50 extracciones aplicada a la variable
“Color”
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Nota. La figura muestra la distribucidon observada de 50 extracciones con
reemplazo entre los colores rojo y azul en jamovi.

Experimentos aleatorios, sucesos y espacio muestral
Introducir la probabilidad en el aula implica conducir a los es-
tudiantes hacia la comprensién de que el azar no es una fuerza
misteriosa ni un capricho de la naturaleza, sino un fenéme-
no que puede describirse, analizarse y modelarse. En la vida
cotidiana todos hemos experimentado situaciones donde los
resultados no pueden predecirse con certeza: un balén que
rebota de forma irreqular, una rifa escolar, la aparicién o no de
un medicamento en una farmacia, el éxito de una semilla plan-
tada por estudiantes en una actividad de Ciencias Naturales.
Estas experiencias espontdneas son, en esencia, experimentos
aleatorios, y constituyen un entorno pedagdgico privilegiado
para iniciar la reflexién probabilistica.
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El experimento aleatorio como experiencia fundante de la
incertidumbre
Cuando introducimos la probabilidad en el aula, no partimos de
formulas ni de definiciones formales, sino de una experiencia muy
humana: la sensacion de no saber qué va a pasar. Lanzar una
moneda, mezclar fichas en una bolsa, esperar el resultado de un
sorteo, sembrar semillas en un experimento escolar o registrar
la lectura de un sensor en condiciones ligeramente cambiantes
son ejemplos cercanos de situaciones donde el resultado es in-
cierto, aunque el procedimiento sea claro. A estas situaciones las
llamamos experimentos aleatorios.

Entérminos sencillos, un experimento aleatorio es una accion
que se realiza bajo ciertas reglas y que puede repetirse muchas
veces, pero cuyo resultado individual no puede predecirse con
certeza. La didactica de la probabilidad se apoya precisamente
en ese contraste: los estudiantes se sorprenden ante secuencias
que les parecen “raras” y, a partir de esa sorpresa, se dbre es-
pacio para discutir qué significa realmente hablar de azar y de
probabilidad.

Un aspecto clave es que los experimentos aleatorios permiten
trabajar no solo con contenidos matematicos, sino también con
habilidades transversales. Aizikovitsh-Udiy Amit (2011) mostraron
gue una unidad didactica centrada en la probabilidad en la vida
cotidiana, con discusién colectiva y actividades de investigacion,
favorece el desarrollo del pensamiento critico y creativo en el
alumnado. Esto refuerza la idea de que no se trata Unicamente de
“calcular probabilidades”, sino de aprender a formular conjeturas,
justificar decisiones y revisar creencias a partir de evidencias.

En una actividad de ciencias, puede interesarnos el suceso
“la planta germina antes del dia siete”; en un contexto digital,
“la plataforma registra mas de diez accesos en una hora”. Los
sucesos no estan “dados” de antemano en la realidad, sino que
son selecciones analiticas que dependen de las preguntas que
formulamos. Esta idea aparece con fuerza en los trabajos recopi-
lados por Batanero, Chernoff, Engel, Lee y Sanchez (2016), donde
se muestra como las decisiones sobre qué eventos se estudian
condicionan el tipo de razonamiento probabilistico que surge
en el aula.

Desde una perspectiva diddactica, es fundamental que los es-
tudiantes aprendan a describir y representar los sucesos de dis-
tintas maneras. El uso de diagramas de Venn (Figura 3), tablas,
esquemas verbales, materiales manipulativos o simulaciones
en computadora permite visualizar relaciones como la unién, la
interseccién y la complementariedad.
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Figura 3.
Representacion de sucesos mutuamente excluyentes en un experimen-
fo aleatorio
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Nota. La grdéfica muestra dos conjuntos que representan los sucesos “sacar
un caramelo de fresa” y “sacar un caramelo de limdn”.

La grdafica ayuda a que el razonamiento probabilistico que
ocurre en el aula tome forma concreta. Cuando el estudiante
ve los dos circulos separados y los puntos dentro de cada uno,
entiende sin necesidad de formulas que ciertos sucesos no
pueden darse al mismo tiempo y que todo se decide por los
resultados posibles que alli aparecen. Esa representacion sen-
cilla les permite reconocer ideas como la unién, la interseccion
o la ausencia de ella, y mirar la probabilidad como una rela-
cion entre sucesos y no solo como un nUmero que aparece por
calculo. En otras palabras, el diagrama actua como un apoyo
visual que organiza el pensamiento del alumnado y les permite
discutir, comparar y justificar con mayor claridad por qué un
suceso es compatible con otro o por qué no lo es.

En la obra colectiva Teaching and Learning Stochastics:
Advances in Probability Education Research, se muestran mul-
tiples experiencias en las que estas representaciones ayudan
a superar malentendidos frecuentes, por ejemplo, cuando el
alumnado confunde sucesos mutuamente excluyentes con
sucesos independientes, o interpreta la probabilidad solo
como “frecuencia aproximada” sin considerar la estructura
del experimento.

Todo ello nos lleva a una conclusién importante: los expe-
rimentos aleatorios y los sucesos son, al mismo tiempo, he-
rramientas matematicas y dispositivos diddacticos. Al disefiar
actividades, el profesorado tiene la oportunidad de elegir qué
experiencias de azar ofrecer, qué sucesos proponer al and-
lisis y qué preguntas formular para que los estudiantes no
se queden solo con la anécdota (“salié cara muchas veces™),
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sino que avancen hacia una reflexion mas estructurada (“ses
razonable este resultado?, ;qué esperdbamos?, ;como pode-
mos comprobarlo?”).

El espacio muestral. mapear lo posible para comprender lo
probable
Si el experimento aleatorio es el escenario y los sucesos son los
focos que elegimos encender, el espacio muestral es el mapa
completo de lo posible. Lo definimos como el conjunto de todos
los resultados que pueden darse en un experimento, sin omitir
ninguno y sin repetirlos. Aunque la definicién parece sencilla, su
construccion suele ser un punto critico para el aprendizaje.

Las investigaciones recogidas en Research on Teaching and
Learning Probability muestran que muchos estudiantes tienen
dificultades para enumerar correctamente el espacio muestral,
sobre todo en experimentos compuestos. No es raro que, al tra-
bajar con el lanzamiento de dos dados, consideren que (2,5) y (5,
2) son el mismo resultado, o que en un problema de seleccién de
equipos no distingan entre “orden”y “combinacion”. Estas dificul-
tades no son simples errores de cdlculo: revelan problemas mads
profundos en la comprensién de la estructura del experimento.

Por esa razon, Batanero y Borovenik (2016) recomiendan traba-
jar el espacio muestral mediante representaciones sistematicas:
listas ordenadas, diagramas en arbol, tablas de doble entrada,
cuadros combinatorios, entre otros. Estas herramientas ayudan
a que el alumnado vea la organizaciéon interna del conjunto de
resultados y descubra, por ejemplo,

por qué la suma 7 en dos dados tiene mds formas de obtener-
se que la suma 2 o la suma 12. A partir de ahi, se abre el camino
para discutir si todos esos resultados son igualmente probables
0 Nno, Yy qué consecuencias tiene esto para el cdlculo posterior.

Ahora bien, el espacio muestral no siempre es uniforme ni
discreto. En muchos fendmenos reales el conjunto de resulta-
dos posibles es muy amplio o incluso infinito. En estos casos,
no se trata de enumerar uno por uno todos los elementos, sino
de describir el espacio muestral con modelos mdas globales
(intervalos, distribuciones, funciones).

La grdafica (Figura 4) ilustra como, en muchos fendmenos
reales, el espacio muestral no puede describirse como una lis-
ta finita de resultados, sino solo mediante modelos continuos.
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Figura 4.
Representacién del espacio muestral continuo

Nota. La figura ilustra cémo, en un fendémeno continuo, el espacio muestral
no se describe enumerando resultados individuales, sino a través de modelos
globales.

Elintervalo horizontal representa todos los valores posibles del
tiempo de espera entre O y 10 minutos: no es una coleccién de
puntos aislados, sino una infinitud de posibilidades en un rango
continuo. Sobre ese mismo eje, la barra uniforme muestra un
modelo simplificado donde todos los tiempos serian igualmente
probables, mientras que la curva exponencial evidencia un com-
portamiento mas cercano a situaciones reales, donde los valores
pequefos son mds frecuentes y la probabilidad decae a medida
qgue aumenta el tiempo. Esta superposicion permite visualizar
que, en contextos de mediciones continuas o datos generados
por sensores, no tiene sentido enumerar caso por caso, sino que
se requiere una funcion o distribucién que describa coémo se
reparte la probabilidad

Los trabajos recientes de Chernoffy Sriraman (2020) insisten
en la necesidad de que, incluso en nivelesiniciales, el profesorado
ayude a los estudiantes a distinguir entre la idea de “lista finita
de resultados” y la de “rango de valores posibles”, preparando
el terreno para una comprension futura de las distribuciones de
probabilidad.

La literatura también muestra que la construccion del espacio
muestral estd estrechamente vinculada con el desarrollo de la
alfabetizacion probabilistica del profesorado y del estudiante.
En el volumen editado por Batanero y Chernoff (2016), diversos
capitulos analizan cémo las creencias docentes, su formacion
previa y su familiaridad con las representaciones del azar influ-
yen directamente en las tareas que proponen y en la manera de
orientar la discusién en clase. Cuando el profesorado concibe el
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espacio muestral solo como un requisito técnico para “apli-
car la formula”, tiende a reducir las actividades a ejercicios
mecdanicos de listado. En cambio, cuando lo entiende como un
modelo que organiza lo posible y que da sentido a la nocién
de probabilidad, disefia experiencias donde los estudiantes
participan activamente en su construcciéon, contrastan sus
propias enumeraciones y discuten distintas maneras de re-
presentar lo mismo.

En términos diddacticos, esto implica trabajar de manera
articulada las tres nociones: experimento aleatorio, sucesos y
espacio muestral. El estudiante debe acostumbrarse a sequir
una especie de “ruta de modelizacion”:

* Describir claramente el experimento: qué se hace, coémo

se repite, qué condiciones se mantienen.

* |dentificar todos los resultados posibles y construir el
espacio muestral de forma organizada.

* Seleccionar los sucesos que interesan y representarlos
como subconjuntos del espacio muestral.

* Analizar, a partir de este marco, si tiene sentido hablar
de probabilidades iguales, diferentes, aproximadas o
empiricas.

Cuando esta ruta se vuelve habitual, el cdlculo de probabili-
dades deja de ser un procedimiento aislado y se convierte en la
consecuencia natural de una forma de pensar. Como sintetiza
Batanero et al. (2016) al hablar del “sentido estadistico”, el
objetivo no es solo que el alumnado responda correctamente
a un ejercicio, sino que pueda explicar por qué una probabili-
dad es razonable en funcién del contexto, del experimento y
de los posibles resultados.

Reglas bdsicas de la probabilidad y su interpretacion

Las reglas basicas de la probabilidad constituyen el nucleo
conceptual desde el cual se articulan modelos, simulaciones
y razonamientos sobre fendmenos inciertos. En la practica
educativa, su ensefianza requiere superar la vision algoritmica
centrada en férmulas, y avanzar hacia un enfoque interpre-
tativo que ayude a comprender por qué estas reglas tienen
sentido y cOmo se vinculan con procesos reales. Esto impli-
ca transitar de intuiciones primarias a representaciones mas
formales, reconociendo que la probabilidad, lejos de ser un
mero cdlculo, es un lenguaje para describir la incertidumbre
(Kahneman, 2011).

68



Saquinaula Brito José Luis

Reglas esenciales del razonamiento probabilistico. union, inter-
seccion y complemento de sucesos

La regla de la adicion permite calcular la probabilidad de
que ocurra al menos uno de dos sucesos. El principio central
es evitar la doble contabilidad de resultados compartidos:
P(AUB)=P(A)+P(B) — P(ANB) Esta expresidon no solo es una
relacion algebraica, sino una representacion del modo en que se
distribuyen los resultados dentro de un espacio muestral. Cuando
los sucesos son mutuamente excluyentes, la formula se simplifica,
ya que no existe interseccion:P(AUB) =P(A) + P(B)

Por ejemplo, si en una biblioteca hay 40 libros de probabili-
dad, 30 de estadistica y 10 que pertenecen a ambas dreas, la
probabilidad de que un libro seleccionado al azar pertenezca a
al menos una de esas categorias es:

4 1
p(PUE) = 0 n 30 10 _ 60
100 100 100 100

Este tipo de situaciones favorece el razonamiento visual me-
diante diagramas de Venn, los cuales, segun Duval (2017), per-
miten coordinar el registro grdfico con el registro simbdlico, pro-
moviendo una comprension mas profunda.

La regla de la multiplicacion establece coémo calcular la pro-
babilidad de que dos sucesos ocurran simultGneamente. Su for-
mulacion depende de la relacion entre los sucesos:

« P(ANB)=P(A)-P(B), si Ay B son independientes.

* P(ANB)=P(A)-P(BJA), en el caso general.

Este es uno de los puntos donde mas errores conceptuales se
observan, especialmente entre estudiantes que asumen que la
independencia es una condicién natural o “intuitiva” (Garfield &
Ben-Zvi, 2008). Para ilustrarlo, imaginemos dos extracciones su-
cesivas sin reemplazo desde una urna con 5 fichas rojasy 5 azu-
les. La probabilidad de extraer dos fichas rojas consecutivas es:

p(Rinms) - 5. 4o 20
10 9 90

Aqui el segundo suceso depende del primero, porque el es-
pacio muestral cambia tras la primera extraccion. Este razona-
miento es clave para comprender fendmenos dependientes como
pruebas diagndsticas, procesos de calidad o cadenas de eventos.

La regla del complemento establece que la probabilidad de
que No OCUrra un suceso es:

P(A°) =1 — P(A)

Aunque simple, esta regla posee un alto valor heuristico. En
andlisis de riesgo, fiabilidad o epidemiologia, suele ser mas facil
determinar la probabilidad del suceso contrario y restarlo de 1.
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Por ejemplo, si la probabilidad de que un examen clinico produzca
un falso positivo es 0,08, entonces la probabilidad de que no lo
produzca es: P(no falso positivo)=1—-0.08 = 0.92

Esta regla también permite repensar situaciones acumulativas.
Por ejemplo: “;Cudl es la probabilidad de que ninguna de las tres
maqguinas falle durante una jornada?”. Sila probabilidad de que
cada mdaquina falle es baja e independiente, es mas eficiente
calcular el complemento del suceso “al menos una falla”.

Dimensiones interpretativas de las reglas. clasico, frecuencial
y bayesiano
Las reglas bdasicas de la probabilidad no deberian ensefarse
como herramientas aisladas ni como un conjunto de recetas que
el estudiantado memoriza sin comprender. Su sentido profundo
emerge cuando se interpretan desde diferentes perspectivas
epistemoldgicas que, historicamente, han dado forma al con-
cepto de probabilidad. Reconocer estas interpretaciones ayuda
a evitar una visién reducida del azar y favorece un aprendizaje
mas reflexivo.

En términos generales, la literatura especializada identifica

tres grandes marcos interpretativos:

1. Interpretacion cldsica: adecuada para espacios equiproba-
bles y finitos, donde los resultados se consideran igualmente
posibles. Es la vision heredada de Laplace, para quien la
probabilidad consistia en el cociente entre casos favora-
bles y casos posibles (Hacking, 2006). Ejemplo: al lanzar
un dado perfecto, la probabilidad de obtener un nUmero
par se determina dividiendo los tres resultados favorables
(2, 4, 6) entre los seis posibles.

2. Interpretacion frecuencial: enfatiza la probabilidad como
limite de las frecuencias relativas de un suceso cuando
un experimento se repite un gran nUmero de veces. Esta
interpretaciéon, asociada a von Mises (1981), fundamenta
la probabilidad en la estabilidad estadistica que emerge
a largo plazo. Ejemplo: si se repite el lanzamiento de una
moneda diez mil veces y se observa que “cara” aparece
aproximadamente la mitad de las veces, se considera que
la probabilidad converge hacia 0.5.

3. Interpretacion subjetiva o bayesiana: concibe la probabi-
lidad como un grado razonable de creencia basado en la
informacién disponible. Esta vision, impulsada desarrolla-
da actualmente en estadistica bayesiana, sostiene que la
probabilidad refleja el nivel de confianza que un individuo
asigna a la ocurrencia de un evento dado cierto conocimien-
to previo (Gelman et al.,, 2021). Ejemplo: un médico puede
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asignar una probabilidad preliminar del 20 por ciento ¢
que un paciente tenga una enfermedad, basdndose en su
experiencia previa y en la prevalencia poblacional, antes
incluso de solicitar pruebas diagnosticas.

Las simulaciones, especialmente con herramientas digitales
como GeoGebra, R o Jamovi, se han convertido en un recurso
esencial para articular estas tres interpretaciones. Al repetir un
proceso miles de veces, el estudiantado observa de primera
mano coémo la frecuencia relativa se aproxima a la probabilidad
tedrica, fendmeno que ya von Mises (1981) identificaba como
fundamento de la estabilidad del azar. Esta aproximacion visual,
dindmica y experimental permite que la probabilidad deje de ser
un concepto meramente abstracto y se convierta en un patron
observable.

Por ejemplo, al simular diez mil lanzamientos de una mo-
neda en Jamovi, se obtiene una grafica donde la proporcién
de caras oscila fuertemente al inicio, pero se estabiliza alre-
dedor de 0.5 conforme aumentan las repeticiones. Esto per-
mite una conversacion didactica rica: gpor qué se observan
fluctuaciones al principio?, ;qué significa la “estabilidad”
del azar?, ;jqué relacion tiene este comportamiento con la
interpretacion frecuencial?

Del mismo modo, en GeoGebra se puede construir un applet
gue represente el lanzamiento de un dado con un botdn que gje-
cuta simulaciones incrementales:10,50,100,500,1000 intentos.
A medida que el nUmero de repeticiones aumenta, la frecuencia
relativa de cada cara se va alineando con la distribucion equi-
probable esperada de la interpretacidon clasica. Esta actividad
brinda al estudiantado la oportunidad de confrontar sus propias
intuiciones y reconocer que el azar no es caos absoluto, sino
variabilidad organizada.

Para Batanero, Contreras y Diaz (2016), estas experiencias
constituyen un medio poderoso para desarrollar el razonamien-
to probabilistico: permiten comparar la intuicién inicial con la
evidencia empirica, discutir fendmenos como la ley de los gran-
des nUmeros o los sesgos cognitivos y construir gradualmente
una comprension estructurada del azar. Las simulaciones actuan
como “escenarios de exploraciéon controlada”, donde el docente
guia y provoca preguntas significativas.

Técnicas de conteo. permutaciones, variaciones y combinaciones
Comprender la probabilidad en el marco de la interpretacion
clasica exige disponer de un conjunto de herramientas que per-
mitan determinar el nUmero de resultados posibles asociados a
un experimento aleatorio. Estas herramientas, conocidas como
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técnicas de conteo o métodos combinatorios, constituyen un
puente entre la estructura del espacio muestral y las reglas ba-
sicas de la probabilidad.

La combinatoria no surge como una coleccidon aislada de pro-
cedimientos, sino como una forma rigurosa de responder pre-
guntas del tipo “¢cudntos arreglos posibles existen?”, “scudntas
formas hay de seleccionar elementos?”, o “;de cudntas maneras
puede organizarse una situacidon?”. Estas preguntas aparecen en
innumerables contextos: distribucion de turnos, asignacion de
puestos, cédigos de seguridad, rutas posibles, juegos de azar,
muestreos, entre otros. Desde una mirada didactica, este cardcter
transversal permite emplear problemas contextualizados que
ayuden a los estudiantes a visualizar la estructura del conteo
antes de recurrir a expresiones formales (Lockwood, 2013).

En este subepigrafe se profundiza en los fundamentos de las téc-
nicas de conteo mediante cuatro bloques: (a) el principio aditivo y el
principio multiplicativo; (b) el concepto de factorial como mecanismo
de ordenacion; (c) permutacionesy variaciones; y (d) combinaciones.
Se incorporan ejemplos, interpretaciones y dificultades diddcticas, asi
como una articulacion explicita con el cdlculo probabilistico.

Principios bdsicos: aditivo y multiplicativo

Los dos principios fundamentales de la combinatoria son sor-
prendentemente simples, pero se encuentran en el origen de
todos los métodos posteriores.

pero se encuentran en el origen de todos los métodos
posteriores.

a) Principio aditivo

Si un suceso puede ocurrir de mmm maneras y otro suceso
diferente puede ocurrir de nnn maneras, y ambos sucesos no
pueden darse simultdneamente, entonces el nUmero total de
maneras en que puede ocurrir uno u otro es: m+n. Este principio
refleja situaciones de alternativa excluyente. Por ejemplo, si un
estudiante puede elegir entre 5 proyectos de matematicasy 3 de
ciencias, y no puede combinar dreas, tiene 8 opciones posibles.
Desde la didactica, este principio suele confundirse con situa-
ciones multiplicativas, de modo que trabajar listas exhaustivas
o diagramas de drbol iniciales ayuda a fortalecer la distincion
(Brousseau, 1997).

b) Principio multiplicativo

Siun procedimiento se compone de dos etapas independientes,
donde la primera puede realizarse de m maneras y la segunda de n
maneras, entonces el numero total de procedimientos posibles es:
mxn.m. Este principio modela situaciones de eleccidn sucesiva. Por
ejemplo, si un candado tiene 4 posiciones posibles en la primera
rueday 6 en la seqgunda, entonces hay 4x6=244 cddigos posibles.
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Ambos principios constituyen la base para construir espacios
muestrales complejos sin necesidad de enumeracion. Al ensefiar-
les, es Util alternar diagramas de arbol, tablas y representaciones
grdficas, pues facilitan la transicion desde lo intuitivo hacia la
formalizaciéon (Duval, 2017).

La factorial: fundamento del ordenamiento

El simbolo factorial, idenotado como nl, expresa el nuU-
mero de maneras de ordenar n!, elementos distintos:
nl=nx(n-1)xn-2)x...x2x1.Su importancia es crucial: apa-
rece en permutaciones, variaciones, combinaciones, coeficientes
binomiales e incluso en modelos probabilisticos como la distri-
bucién binomial y la distribucién hipergeométrica.

Desde una perspectiva didactica, se observa que los estu-
diantes suelen entender intuitivamente que “ordenar elementos”
genera muchas opciones, pero no siempre conectan esta idea
con la factorial. Proponer tareas que incluyan organizar personas
en una fila, ordenar libros o generar claves ayuda a establecer
un puente entre la intuicion y la expresion formal.

Ejemplo: ¢ Cudntas maneras hay de ordenar 5 libros distintos
en un estante?

5! = 120.

Permutaciones y variaciones: ordenaciones con y sin restriccion

a) Permutaciones sin repeticion

Una permutacion consiste en ordenar todos los elementos
disponibles. Si hay n elementos distintos, el nUmero de permu-
taciones es: P(n) =n!

Ejemplo: Ordenar 7 banderas diferentes en una ceremonia:

7! = 5040

b) Permutaciones con repeticion

Si algunos elementos se repiten, la formula incorpora divisio-

nes factoriales:
n!

P<n1,n2,. .o ,nk> - ﬁ
n1:MN9l---Nk:

Ejemplo: La palabra “MATEMATICA” tiene 10 letras, con repeti-
cionesde A(3),M(2)y T (2): 10
31212!
Este tipo de tareas suele ser cognitivamente mdas complejas,
pues exige reconocer la causa de la sobrecontabilidad. Se reco-
mienda trabajarlas desde manipulaciones de cartas o bloques
antes de introducir la férmula.
Variaciones (con y sin repeticion)
Las variaciones modelan situaciones donde se seleccionan
algunos elementos y el orden importa.
Variaciones sin repeticion: V(n k) _
’ (n —k)!

= 151200
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Ejemplo: Seleccionar y ordenar 3 estudiantes de un grupo de

V(10,3) = 720

Variaciones con repeticién: VR(n,k) = n*

Ejemplo: Generar cédigos de 4 digitos usando los nUmeros

0-9: 10* = 10000

Las variaciones son particularmente valiosas para modelar claves,
rutas, asignaciones y sistemas de muestreo. En la practica docente,
su mayor dificultad radica en distinguir cudndo el orden importa y
cudando no; tareas comparativas ayudan a clarificar esta idea.

Combinaciones: seleccion sin orden

Las combinaciones se utilizan cuando se seleccionan elemen-
tos sin importar el orden. La féormula general es:

o(mk) = (2) = ey

Ejemplo: ¢De cudntas maneras puede formarse un comité de
4 personas entre 12 candidatos? C(12,4)=495.

Desde la ensefianza, es frecuente que los estudiantes confun-
dan variaciones y combinaciones, lo que exige disefiar secuen-
cias de actividades que exploren explicitamente el rol del orden
mediante representaciones alternativas (diagramas, darboles,
listados parciales, simulaciones digitales).

Dificultades diddcticas y orientaciones pedagdgicas

La investigacion en didactica de la probabilidad y la combinatoria
(Joneset al, 2007) haidentificado las siguientes dificultades habituales:

1. Confusion entre orden y no orden:

Los estudiantes tienden a asumir que ordenar y seleccionar
son equivalentes. Estrategia: actividades comparativas con
objetos manipulables.

2. Uso mecadnico de formulas:

Aplican expresiones sin comprender la estructura combi-
natoria subyacente.

Estrategia: construir primero el conteo mediante diagramas,
tablas y listados parciales.

3. Sobrecarga cognitiva:

La combinatoria implica coordinar varios niveles de
abstracciéon.

Estrategia:integrar tecnologia (GeoGebra, Python, Jamovi)
para visualizar procesos.

4. Dificultad para identificar el tamafio del espacio muestral:
Estrateqgia: trabajar casos pequefios y aumentar progresi-
vamente la complejidad.

De manera general las técnicas de conteo constituyen un
componente esencial para comprender y aplicar la proba-
bilidad desde la interpretacién cldsica. Su ensefianza debe
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equilibrar la formalizacion matemdatica con estrategias di-
ddacticas que permitan a los estudiantes construir signifi-
cado, visualizar estructuras de seleccidon y ordenamiento, y
conectar estos procedimientos con el célculo probabilistico.
Con apoyo de herramientas digitales, representaciones mul-
tiples y problemas contextualizados, es posible transformar
la combinatoria en un campo accesible, potente y formativo
dentro del estudio del azar.

Estrategias diddcticas y mediaciones tecnoldgicas para el
desarrollo del razonamiento probabilistico
El desarrollo del razonamiento probabilistico constituye uno de
los desafios mas relevantes en la educacién matematica contem-
pordnea. No se trata Unicamente de ensefar a calcular proba-
bilidades, sino de favorecer que el estudiantado comprenda el
cardacter incierto de numerosos fendmenos y pueda interpretar,
modelar y argumentar sobre situaciones donde la variabilidad y
el azar juegan un papel esencial. Investigaciones recientes han
mostrado que las intuiciones iniciales sobre el azar suelen ser
fragiles, guiadas por ideas espontdneas, heuristicos o sesgos
cognitivos que dificultan una comprensién formal (Kahneman,
2011). Por esta razoén, es indispensable construir ambientes di-
dacticos que permitan vincular la experiencia intuitiva del azar
con su conceptualizacion matematica, articulando estrategias de
ensefianza con herramientas tecnoldgicas que apoyen la visua-
lizacion, la experimentacion y la simulacion digital.

La diddactica de la probabilidad reconoce al menos tres ejes
fundamentales para formar un pensamiento probabilistico ro-
busto: (a) la exploracion de fendmenos aleatorios mediante ex-
perimentos reales o virtuales; (b) la explicitacion y el cuestiona-
miento de intuiciones errdneas; y (c) la construccién progresiva
de modelos simbdlicos y graficos que permitan interpretar la
incertidumbre (Jones et al,, 2007). Integrar estos ejes exige di-
sefiar secuencias didacticas donde la manipulacion, el andlisis
exploratorioy la representacion visual sean tan importantes como
el cdlculo formal. Es aqui donde la tecnologia adquiere un rol
protagdnico: las simulaciones digitales permiten repetir procesos
aleatorios miles de veces en pocos segundos, observar patrones
emergentes, contrastar hipodtesis intuitivas con evidencia empi-
rica y comprender la estabilidad estadistica.

Estrategias diddcticas centradas en la exploracidn, la indaga-
cion y el didlogo

Una estrategia central para el desarrollo del razonamiento
probabilistico es promover situaciones de exploraciéon guiada,
donde el estudiantado pueda manipular objetos, experimentar
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con fendmenos aleatorios sencillos y formular conjeturas.
Actividades como lanzar monedas, seleccionar fichas de una
urna, explorar juegos de azar o analizar situaciones de incer-
tidumbre cotidiana permiten generar preguntas, comparar
resultados y construir gradualmente ideas clave, como la no-
cion de espacio muestral, frecuencia relativa, independencia
y variabilidad.

El valor pedagdgico de estas experiencias no reside solo
en la manipulaciéon fisica, sino en la forma en que se articulan
con la discusidon socio matemdtica: spor qué los resultados
no siguen un patron fijo?, spor qué a veces parecen acer-
carse a un valor estable?, jcomo distinguir lo aleatorio de lo
determinista?

Otra estrategia clave es el uso de representaciones multi-
ples, tal como sugiere Duval (2017). Tablas, diagramas de arbol,
graficos de barras, simulaciones y listas permiten reorganizar
la informacién de distintas maneras, facilitando la comprension
de relaciones que no siempre son visibles en una sola repre-
sentacién. Aqui es importante no “imponer” la férmula desde
el inicio; mds bien, se busca que los estudiantes construyan
primero la estructura combinatoria o probabilistica del pro-
blema y solo después formalicen el procedimiento.

La modelacion didactica también constituye un recurso
poderoso: crear situaciones donde el estudiantado deba cons-
truir un modelo probabilistico, validarlo con datos simulados
o reales, y argumentar su pertinencia, refuerza la conexion
entre teoria y practica. En este tipo de tareas, los estudiantes
deben justificar por qué su espacio muestral es adecuado, qué
suposiciones realizan (por ejemplo, equiprobabilidad), y como
sus predicciones se contrastan con los resultados observados.

Tecnologia y visualizacién: simulaciones del azar, experi-
mentacion digital y andlisis dindmico

Las tecnologias digitales ofrecen un entorno privilegiado
para explorar el azar. Herramientas como GeoGebra, Python,
Desmos, Jamovi o plataformas de simulacién permiten ejecu-
tar cientos o miles de repeticiones de un experimento aleato-
rio, mostrar la evolucién de la frecuencia relativa, comparar
resultados, identificar convergencias y visualizar oscilaciones.
Este enfoque no solo acelera procesos que serian muy lentos
de ejecutar manualmente, sino que también promueve una
comprension profunda de la interpretacion frecuencial de la
probabilidad y del caracter estable de las leyes estadisticas
(von Mises, 1981; Batanero, Contreras & Diaz, 2016).
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Estas herramientas también facilitan el trabajo con repre-
sentaciones dindmicas. Por ejemplo, un grdfico interactivo que
actualiza la frecuencia relativa en tiempo real mientras se eje-
cuta una simulacién permite observar las oscilaciones iniciales,
la progresiva reduccion de la variabilidad y la emergencia de
un valor estable.

Integracion diddctica: de la intuicion a la formalizacion me-
diante experiencias tecnoldgicas

Integrar estrategias didacticas con herramientas tecnolégicas
implica disefiar secuencias donde la exploracién inicial del azar
dé paso a la modelacion simbdlica y al andlisis formal. Una po-
sible estructura diddactica podria incluir:

1. Experiencia intuitiva

El estudiantado observa o manipula un fenémeno aleatorio
(por ejemplo, extraer fichas de una urna).

2. Discusion de predicciones e hipobtesis

Se expresan expectativas informales: “creo que deberia salir
mds o menos la mitad”, “creo que a veces se equilibrard™.

3. Simulacién digital

Se ejecutan muchas repeticiones para contrastar intuiciones
con resultados empiricos.

4. Construccién de representaciones

Se analizan grdaficos de frecuencias, histogramas o diagramas
dindmicos.

5. Formalizacion matemdtica

Seintroducen expresiones como probabilidad tedrica, espacio
muestral, independencia o combinaciones, ya conectadas con la
experiencia.

6. Reflexion metacognitiva

Se discute como la simulacion ayuda a comprender la proba-
bilidad y qué sesgos se han superado.

Conclusiones

Este capitulo ha mostrado que entender la probabilidad va mucho
mas alld de aprender formulas. Supone reconocer que, cuando
hablamos de azar, nuestras primeras intuiciones suelen estar
llenas de ideas parciales, patrones que creemos ver donde no
los hay y expectativas que no siempre se sostienen al mirar los
datos con calma. Trabajar con experimentos aleatorios sencillos,
discutir qué esperamos que ocurra y comparar esas expectativas
con lo que realmente sucede permite que el estudiantado tome
conciencia de esa distancia entre intuicion y realidad, y empiece
a construir una mirada mds critica sobre la incertidumbre.
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A'lo largo del capitulo también se vio que conceptos como ex-
perimento aleatorio, espacio muestral, sucesos, independencia o
reglas bdsicas de la probabilidad solo adquieren sentido cuando
se vinculan con situaciones concretas. No basta con enunciarlos:
hay que explorarlos mediante ejemplos, representaciones mul-
tiples y conversaciones en el aula que ayuden a responder pre-
guntas del tipo “qué puede pasar”, “qué consideramos posible”
y “cdmo contamos los casos”. De este modo, la probabilidad deja
de ser un recetario de técnicas y se convierte en un lenguaje para
describir y analizar fenémenos donde intervenir directamente
no es posible, pero si es posible modelar y anticipar.

Finalmente, el capitulo ha subrayado el papel de la tecnologia
como aliada para pensar el azar. Las simulaciones digitales, los
grdaficos dindmicos y la posibilidad de repetir un experimento
miles de veces en segundos permiten ver como las frecuencias
relativas se estabilizan, cémo emergen regularidades y cémo se
ponen a prueba los modelos tedricos. Integrar estas herramientas
en la ensefianza no solo facilita los cdlculos, sino que ayuda a
que las y los estudiantes construyan un razonamiento probabilis-
tico mas profundo, capaz de sostener decisiones informadas en
contextos reales donde la incertidumbre estd siempre presente.
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Carituro III

Variables aleatorias, distribuciones
y modelacion estadistica

Introduccion

Comprender los fendmenos que observamos en la realidad implica
reconocer que no todos se comportan de manera fija o predecible.
Las calificaciones de un curso, el tiempo que tarda en llegar un bus,
el nUmero de mensajes que recibimos en un dia o la cantidad de
personas que acuden a un servicio son ejemplos cotidianos en los que
la variaciéon esta siempre presente. Este capitulo parte de esa idea:
para describir y explicar la variabilidad necesitamos herramientas
que permitan capturarla, representarla y analizarla con sentido. Las
variables aleatorias y las distribuciones estadisticas cumplen justa-
mente ese papel, convirtiéndose en un puente entre los datos que
observamos y los modelos que elaboramos para comprenderlos.

A lo largo del capitulo, el lector encontrard un recorrido que
inicia en el concepto de variable aleatoria como una manera de
formalizar la incertidumbre y organizar los posibles valores que
puede tomar un fendmeno. Desde alli se avanza hacia las funciones
de probabilidad y densidad, que permiten describir patrones, iden-
tificar regularidades y anticipar comportamientos. Este enfoque no
se limita ala tecnica: busca mostrar como los modelos estadisticos
ofrecen una forma de narrar la variabilidad y de interpretar tanto
lo esperado como lo excepcional dentro de un conjunto de datos.
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Finalmente, el capitulo invita a pensar las distribuciones no como
figuras abstractas, sino como representaciones de historias reales.
Cada distribucién dice algo sobre el fendmeno que la origind: si los
resultados son simétricos o estdn sesgados, si los valores extremos
son comunes o raros, si los eventos ocurren de manera uniforme o
concentrada. Comprender estas caracteristicas es fundamental para
modelar fendmenos reales, analizar patrones y tomar decisiones
informadas. Con este proposito, el capitulo combina teoria, ejemplos
contextualizados y reflexiones didacticas que ayudan a dar sentido a
una de las dimensiones mas potentes y formativas de la estadistica.

Variable aleatoria:concepto,sentidoy ejemplos contextualizados
La variabilidad forma parte de nuestra vida diaria de maneras tan
sutiles que, con frecuencia, pasa desapercibida. La hora exacta en
que llega el bus, el nUmero de mensajes que recibimos durante la
mafana, el tiempo que tarda en calentarse el agua o la cantidad
de estudiantes que faltan un lunes cualquiera son situaciones
donde los resultados nunca son totalmente predecibles. Aunque
solemos convivir con estas fluctuaciones sin pensarlo demasiado,
representan el punto de partida para comprender uno de los con-
ceptos mas poderosos de la probabilidad: la variable aleatoria.
Lejos de ser una idea puramente técnica, la variable aleatoria
es una forma de dar estructura matemdatica a la incertidumbre,
permitiendo analizar fenédmenos que no se comportan de manera
fijo. Desde esta perspectiva, comprenderla es comprender que
el mundo no es estdtico ni exacto, pero si presenta patrones y
regularidades. Esta ideq, central en el pensamiento probabilistico,
fundamenta los modelos que articulan este capitulo.
Con este propdsito, el epigrafe se desarrolla en tres momentos:
1. Fundamentos conceptuales y cognitivos, donde se recons-
truye el significado profundo del concepto;
2. Clasificacion y modelacion, donde se vincula la variable
aleatoria con sus representaciones y usos;
3. Dificultades comunes, donde se identifican obstdculos que
interfieren en su comprension.
A'lo largo del desarrollo, se incorporan multiples ejemplos co-
tidianos que demuestran que este concepto vive en el corazén
de nuestra experiencia diaria.

La variable aleatoria como estructura de la variabilidad: fun-
damentos conceptuales y cognitivos
Comprender una variable aleatoria implica, ante todo, reco-
nocer la naturaleza constante de la variacién en el entorno.
Pensemos, por ejemplo, en la hora exacta en que un estudiante
se conecta a una clase virtual. Aunque todos saben que la sesion
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empieza alas 08h00, cada dia se observa una ligera variacion:
07h58,08h01,08n03... Esa diferencia, pequefa pero persistente,
muestra que incluso las actividades rutinarias estan atravesadas
por fluctuaciones que no responden al azar cadtico, sino a la
combinacion de multiples factores: trafico, conexiéon a internet,
temperatura del dispositivo, horarios familiares.

Batanero (2001) afirma que el principal desafio es desmontar
la expectativa determinista que la escuela ha cultivado durante
afios: la idea de que repetir un procedimiento deberia producir
siempre el mismo resultado. Sin embargo, la vida diaria de-
muestra lo contrario. Cuando un estudiante realiza cinco veces
un mismo experimento de caida libre con sensores digitales,
los tiempos nunca coinciden exactamente. Cuando grabamos
un audio, la duracién de cada fragmento presenta pequefias
variaciones.

La variable aleatoria surge para conceder significado mate-
matico a esa variabilidad natural.

Stewart (2013) ilustra que, aunque cada resultado individual
sea incierto, la coleccién de muchos resultados revela un com-
portamiento reqgular. Esto explica por qué fenédmenos como el
tiempo de carga de una pdgina web, la cantidad de pasos que
da una persona en la mafana o el nUmero de usuarios en una
cafeteria durante una hora tienden a seguir patrones que pueden
observarse, representarse e incluso modelarse.

Moore (2010) sugiere que, en lugar de comenzar con defini-
ciones formales, es mas apropiado partir de actividades donde
el estudiante experimente la variacion. Por ejemplo:

* Temperatura del aula a lo largo del dia.

Aunqgue se mida con el mismo termdmetro, los valores fluctuan:
22.1°C, 22.3°C, 21.8°C...

*+ Tiempo que tarda en hervir agua en distintas cocinas.

Incluso usando la misma olla y la misma cantidad de agua, el
tiempo cambia ligeramente.

* NUmero de interrupciones durante una clase virtual.

Algunas sesiones tienen una sola interrupcion, otras cuatro o
cinco.

Estos fendmenos no necesitan grandes laboratorios para ser
observados; se encuentran en cualquiera de nuestras rutinas.
Identificarlos y analizarlos permite que el estudiante capte de
forma natural el papel de la variable aleatoria.Bakker (2004) y
Ben-Zvi (2000) sostienen que este tipo de experiencias facilita
que el concepto emerja como un modelo interno que organiza la
variabilidad. Es decir, el estudiante aprende que la variable alea-
toria no representa un nUmero, sino el abanico de posibilidades
de un fendmeno que nunca se repite idénticamente.
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Borovcnik (2016) agrega que este proceso no es inmediato,
pues exige reconocer tres niveles de estructuracion:

* El fendmeno variable (lo que observamos).

* Los valores posibles (el espacio de resultados).

* El significado numérico asignado a cada resultado (la

formalizacion).

La combinacion de estos tres niveles da origen a un marco
conceptual potente que permite comprender la variacién como
un fendmeno ordenado.

Apoyo diddctico: Desde el punto de vista diddctico el docen-
te propone la siguiente situacion: si se registra durante varios
dias la hora real de llegada de los estudiantes, teniendo como
referencia la hora de entrada oficial (08h00). Observa llegadas
como 07h55,07h58, 08h02, 08n07, etc. El objetivo es mostrar
que la puntualidad no es fija, sino una variable aleatoria con-
tinua ligada a muchos factores.

El fendbmeno que nos interesa analizar es el “grado de pun-
tualidad”, que puede definirse a partir de dos formas de me-
dicion: la hora exacta de llegada o, de manera mds operativa
para el trabajo estadistico, los minutos de adelanto o retraso
con respecto a las 08h00. Esta segunda opcidén resulta espe-
cialmente Util en herramientas como Jamovi, ya que permite
expresar la puntualidad como una variable aleatoria continua,
capaz de asumir multiples valores dentro de un intervalo ra-
zonable, por ejemplo, desde 10 hasta +15 minutos. Desde Ia
perspectiva diddactica, trabajar con este tipo de variable ofrece
oportunidades claras para el aprendizaje: por un lado, ayuda
al estudiante a reconocer la variabilidad como una caracte-
ristica natural de los fendmenos reales, y por otro, permite
hacer visible la importancia del comportamiento global de
los datos, mostrando que lo fundamental no es un dia aislado
sino el modo en que el conjunto se comporta en su totalidad.

Para efectos diddacticos, puedes trabajar con un conjunto
pequefio (Tabla 1), por ejemplo, 20 observaciones de “minu-
tos respecto de las 08h00” (valores negativos = llegan antes;
positivos = llegan después).

Como se observa en la Figura 1, la puntualidad del grupo se
organiza en torno a una ligera tardanza promedio. La media
es de 0,78 minutos y la mediana de 1 minuto, lo que indica que,
en general, los estudiantes llegan apenas después de la hora
oficial. La desviaciéon tipica de 3,07 minutos muestra una va-
riabilidad moderada, con llegadas que oscilan entre 4 minutos
antes y 5 minutos después de las 08h00.
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Tabla 1.
Registro diario del grado de puntualidad de los estudiantes
Dia Estudiante Minutos_08h0O0
1 A -3
1 B 2
1 C 5
2 A -1
2 B 1
2 C 4
3 A -4
3 B 0
3 C

Nota. La tabla presenta los valores observados de minutos de adelanto o re-
traso respecto de las 08h00 para cada estudiante en tres dias consecutivos.

Figura 1.
Estadisticos descriptivos del grado de puntualidad respecto de las
08h00

Nota. La figura presenta los estadisticos descriptivos correspondientes a los
minutos de adelanto o retraso respecto de las 08h0O0, registrados en una
muestra de nueve observaciones sin valores perdidos.

El grafico de cajas (Figura 2) muestra con claridad las diferen-
cias en el grado de puntualidad de los tres estudiantes, expresado
en minutos de adelanto o retraso respecto de las 08h00.
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Figura 2.
Distribucion del grado de puntualidad de los estudiantes respecto de
las 08h00

Grafico de Caja

Nota. La figura representa el grado de puntualidad de tres estudiantes, ex-
presado en minutos de adelanto o retraso con relacién a las 08h00.

El estudiante A presenta valores negativos agrupados alrede-
dor de 3 minutos, lo que indica que llega sistemdaticamente antes
de la hora acordada. El estudiante B muestra un patron mas cer-
cano a la puntualidad, con una mediana ligeramente superior a1
minuto y una variabilidad moderada. Por su parte, el estudiante
C se caracteriza por retrasos consistentes entre 3 y 5 minutos,
evidenciando un comportamiento mas tardio de forma estable.
La dispersion dentro de cada caja es baja, lo que sugiere que las
conductas individuales se mantienen relativamente constantes.

Representar, clasificar y modelar la variabilidad. tipos de varia-

bles, ejemplos y proyecciones didacticas (version ampliada con
ejemplos)
Una vez que el estudiante reconoce que la variabilidad es natural
y que los resultados no son fijos, surge la necesidad de represen-
tarla y clasificarla. Aqui es donde la variable aleatoria adopta
sus formas mds conocidas: discreta y continua.

Variables aleatorias discretas

Son aquellas que toman valores contables. Este tipo de varia-
ble aparece continuamente en la vida cotidiana, aunque pocas
veces lo notemos. Por ejemplo:

* NUmero de llamadas telefénicas recibidas en una mafiana.

*+ Cantidad de veces que un ascensor se detiene entre pisos.

* NUmero de estudiantes que entregan una tarea el mismo dia.

+ Cudntas frutas defectuosas aparecen en una caja.
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DeVeaux, Velleman y Bock (2019) explican que estas variables
son ideales para introducir la relacion entre frecuencia y proba-
bilidad, porque permiten observar variacién sin perder precision
en el conteo.

Variables aleatorias continuas

Modelan fendmenos donde los valores no se cuentan, sino que
se miden. Por ejemplo:

*+ Tiempo que tarda en descargarse un archivo.

+ Cantidad de lluvia acumulada en un dia.

* Nivel de ruido en decibelios en una avenida céntrica.

* Frecuencia cardiaca en reposo alo largo de varios minutos.

Hastie et al. (2009) sefalan que estos fendmenos requieren
funciones de densidad y graficas que distribuyen probabilidades
de manera fluida. Por ello, las variables continuas constituyen la
base de muchos modelos en ingenieria, medicina, meteorologia
y ciencias sociales.

Para reforzar el sentido del concepto de variable aleatoriq,
es Util recurrir a situaciones cotidianas que permitan a los estu-
diantes reconocer codmo la incertidumbre se manifiesta en fend-
menos reales. Por ejemplo, la temperatura del café de la mafana
nunca es exactamente igual, lo que la convierte en un caso tipico
de variable continua: puede ser 78.4 °C, 791 °C o0 78.9 °C, entre
muchos otros valores posibles.

Algo distinto ocurre con el nUmero de reproducciones de un
video en redes sociales, que cambia conforme a la actividad
de los usuarios y solo puede tomar valores enteros, por lo que
constituye una variable discreta. También el tiempo que tarda en
llegar un taxi solicitado por aplicacién fluctUa de manera natural,
aunque la plataforma anuncie “4 minutos”™ en la practica puede
ser 3.7,4.2 0 4.9 minutos, evidenciando nuevamente un compor-
tamiento continuo. Por Ultimo, contar cudntas personas pasan
por la entrada de una tienda cada media hora implica trabajar
con cantidades enteras y, por tanto, con una variable discreta.

Ademads, comprender cémo una variable aleatoria se vincula
con su funcion de probabilidad permite reconocer que los feno-
menos no solo producen resultados diversos, sino que también
lo hacen con diferentes grados de frecuencia. Algunos valores
aparecen de manera mdas habitual porque responden a regu-
laridades propias del proceso, mientras que otros son menos
probables, aunque posibles.

Este reconocimiento, que muchas veces no surge de mane-
ra intuitiva, es fundamental para interpretar adecuadamente
cualquier distribucidn y para desarrollar habilidades criticas al
analizar informes, simulaciones o representaciones graficas. Tal
como enfatiza James (2021), la funcién de probabilidad no es
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solo una herramienta matematica, sino una forma de narrar por
qué ciertos resultados tienen mayor peso en el comportamiento
del sistema.

Desde esta perspectiva, la variabilidad deja de ser un obstda-
culo y pasa a convertirse en una fuente de informacién valiosa
para explicar el fendmeno observado. En correspondencia con o
planteado por Wild y Pfannkuch (1999), reconocer la estructura
probabilistica de los datos permite que las decisiones dentro del
ciclo se sostengan en criterios s¢lidos, potenciando un razona-
miento estadistico mas profundo y fundamentado.

Integrar esta comprension también fortalece las fases de pla-
nificacion y andlisis, pues la funcién de probabilidad ayuda ajus-
tificar por qué se selecciona una determinada variable aleatoria
y como deben interpretarse sus patrones de variacion.En este
sentido Wild y Pfannkuch (1999), plantean que el grupo toma
decisiones clave:

* Problema: ;qué tan predecible es el tiempo de entrega?

* Plan: ;qué variables registramos?

* Datos: nUmero de paradas y tiempo total.

* Andlisis: comparacién, visualizaciéon, identificacion de

patrones.

+ Conclusion: existe variabilidad, pero no caos; hay un inter-
valo probable y factores que explican las desviaciones.

Esta toma de decisiones es reconocida como ciclo PPDAC. Un
ejemplo que el docente puede concebir puede tener como obje-
tivo en comprender cOmo un mismo fenémeno puede involucrar
variables aleatorias discretas y continuas, analizar su variabilidad
y vincularlo con las etapas del ciclo PPDAC.

Situacion: “Imagina que pides comida o un servicio de mensa-
jeria por una aplicacion movil. A veces llega rapido, otras veces
tarda un poco mds, aunque parezca que siempre recorre la misma
ruta. ¢Por qué ocurre esto? ;Qué caracteristicas del recorrido
podrian explicar la variacién?”

El grupo de docentes registré informacién de 15 pedidos reales
en diferentes dias y horarios (Tabla 2). Se observé:

* NUmero de paradas del repartidor (semdforos, interseccio-
nes, congestion). Variable aleatoria discreta (valores: 3, 5,
4,6,7..).

* Tiempo total de entrega (minutos y segundos desde la con-
firmacién hasta la recepcion). Variable aleatoria continua
(valores entre 14.3 y 23.8 minutos).
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Tabla 2.
Registro de pedidos y caracteristicas del trayecto en distintos horarios
deldia

Pedido | Paradas| Tiempo_min
1 3 14.3
2 5 17.8
3 4 191
4 6 21.4
5 7 23.8
6 4 18.2
7 5 175
8 6 19.9
9 3 15.0
10 7 223
1 5 18.7
12 4 16.9
13 6 20.5
14 5 19.0
15 7 21.8

Nota. Los datos corresponden a 15 pedidos reales registrados en distintos
dias y horarios. La variable Paradas representa un conteo discreto del nUme-
ro de detenciones del repartidor durante el trayecto, mientras que Tiempo_
min indica el tiempo total de entrega en minutos, medido como una variable
continua.

Los estadisticos descriptivos (Figura 3) revelan que el tiem-
po tipico de entrega se sitUa alrededor de los 19 minutos, dado
que la media y la mediana prdcticamente coinciden. Esta cer-
cania sugiere que no existen valores extremos que distorsionen
la distribucion.

El histograma del tiempo de entrega (Figura 4) evidencia que
el proceso no es completamente regular, pero tampoco cadtico.
La mayoria de los pedidos se concentra en un intervalo central
cercano alos 18-20 minutos, lo que sugiere un “tiempo tipico” de
entrega alrededor de ese rango. Los valores mas cortos (cercanos
a 14-15 minutos) y los mas largos (por encima de 22 minutos)
aparecen con menor frecuencia, lo que indica que representan
situaciones menos habituales, posiblemente asociadas a condi-
ciones de trafico poco usuales, cambios en la demanda o parti-
cularidades de la ruta.
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Figura 3.
Estadisticos descriptivos del tiempo total de entrega (en minutos)

Descriptivas

Nota. La tabla presenta los principales estadisticos descriptivos del tiempo
total de entrega registrado en 15 pedidos realizados mediante aplicacion
movil.

La diferencia entre el tiempo minimo (14.3 minutos) y el maxi-
mo (23.8 minutos) evidencia que, aunque el fendmeno es varia-
ble, las entregas se mantienen dentro de un intervalo relativa-
mente acotado. Estos resultados permiten anticipar patrones que
luego pueden relacionarse con la funcién de densidad y con la
interpretacion probabilistica del fenémeno.

El histograma del tiempo de entrega (Figura 4) evidencia que
el proceso no es completamente regular, pero tampoco cadtico.
La mayoria de los pedidos se concentra en un intervalo central
cercano alos 18-20 minutos, lo que sugiere un “tiempo tipico” de
entrega alrededor de ese rango. Los valores mas cortos (cercanos
a 14-15 minutos) y los mas largos (por encima de 22 minutos)
aparecen con menor frecuencia, lo que indica que representan
situaciones menos habituales, posiblemente asociadas a condi-
ciones de trafico poco usuales, cambios en la demanda o parti-
cularidades de la ruta.

En conjunto, la grafica muestra una distribuciéon unimodal con
ligera asimetria hacia la derecha, consistente con la idea de que,
en algunos casos, el pedido puede demorarse mds de lo esperado,
pero es poco comun que llegue extremadamente répido.

Este histograma es muy Util para que los estudiantes descu-
bran que la variabilidad del tiempo de entrega no es un “defecto
del sistema”, sino una caracteristica natural del fendmeno. A
partir de la grafica pueden discutir preguntas como: jqué inter-
valo de tiempos considerariamos razonable para un pedido?,
iqué tan raro es obtener un tiempo muy corto o muy largo?,
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¢;qué factores del contexto podrian mover la distribucion hacia
la derecha o hacia la izquierda (hora pico, lluvia, saturacion de
pedidos)? De este modo, el grafico se convierte en un punto de
partida para hablar de variable aleatoria continua, de frecuencia
y de probabilidad de manera cercana a su experiencia cotidiana.

Figura 4.
Histograma del tiempo total de entrega de pedidos por aplicacion

Histograma

Nota. El gréfico muestra la distribucion del tiempo total de entrega (en minu-
tos) de 15 pedidos realizados mediante una aplicacion movil.

Errores comunes y dificultades conceptuales (version ampliada
con ejemplos cotidianos)
A pesar de que la variabilidad forma parte de la vida cotidiana,
muchos estudiantes tienen dificultades para reconocer su pa-
pel dentro del andlisis estadistico. Estas dificultades surgen de
ideas intuitivas pero equivocadas que es necesario problema-
tizar desde la didactica. Entre las mds comunes se encuentran
las siguientes:

a) Interpretar la variabilidad como un error

Es frecuente que el estudiante piense que, si los datos cambian,
es porque “algo salid mal”. Sin embargo, la variacion aparece
incluso en situaciones totalmente habituales: el tiempo que tarda
en hervir elagua cambia, aunque se utilice la misma ollg, la dura-
cién efectiva de una cancidn varia por milésimas al reproducirla
varias veces y un dispositivo movil nunca consume exactamente
la misma bateria en dos dias similares. Superar esta creencia
permite comprender que la variabilidad no es una falla, sino un
rasgo natural del fenédmeno que merece ser estudiado.
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b) Suponer que todos los resultados son equiprobables

Esta idea suele provenir de ejemplos escolares idealizados,
como lanzar una moneda o extraer fichas al azar. En la vida real,
la equiprobabilidad es excepcional:algunas rutas de entrega son
sistemdticamente mas rdpidas que otras, ciertas horas concentran
mayor trafico vehicular y los usuarios de redes sociales tienden
a ser mas activos en momentos especificos del dia. Reconocer
estas diferencias ayuda a entender que, en la mayoria de los fe-
némenos, no todos los resultados tienen la misma probabilidad
de ocurrir.

c) Confundir la variable aleatoria con sus valores

Muchos estudiantes se quedan Unicamente con el dato 3 lla-
madas, 7 mensajes, 5 minutos, y pierden de vista que la variable
aleatoria representa el fendmeno completo. Los valores son solo
manifestaciones puntuales de ese fendmeno, no la variable en
si misma. Esta distincion es clave para avanzar hacia una com-
prension mas conceptual.

d) Pensar que toda variable aleatoria debe ser discreta

La predominancia de ejercicios escolares centrados en con-
teos refuerza esta idea. No obstante, en la vida diaria abundan
mediciones continuas: el nivel de glucosa en sangre, la velocidad
de conexidon ainternet, la temperatura ambiental o la intensidad
del sonido. Mostrar estos ejemplos ayuda a ampliar el repertorio
mental del estudiante y a reconocer la diversidad de variables
presentes en su entorno.

e) Asociar variabilidad con caos absoluto

Como sefala Watson (2006), muchos estudiantes interpretan
la variabilidad como desorden o falta de estructura. En reali-
dad, una variable aleatoria permite identificar patrones globa-
les incluso cuando los valores fluctUan. La variacién no implica
caos, sino una organizacion que puede describirse, modelarse
y comprenderse

f) Desconectar la variable del fenédmeno real

Otro obstdaculo frecuente es mencionar una variable sin
justificar su pertinencia o sin relacionarla con el fendmeno
que se desea estudiar. Esto ocurre cuando no se reflexiona
sobre preguntas esenciales: jtiene sentido medir el nUmero de
carros por minuto o la velocidad promedio?, ;jqué representa
realmente el “tiempo de espera”?, ¢los valores posibles son
razonables para el fendmeno?
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Como advierten Biehler (2018) y Pfannkuch (2019), esta des-
conexion empobrece el proceso de modelacidn y limita la capa-
cidad del estudiante para interpretar adecuadamente los datos.

De manera general la variable aleatoria no es una formula ni
un tecnicismo: es una manera de comprender el mundo tal como
es, con toda su variacion natural. Permite dar sentido a fendme-
nos cotidianos, formar modelos, comparar comportamientos y
construir las distribuciones que se estudian en los epigrafes si-
guientes. Su comprensién profunda depende de unir experiencia,
representacion y modelacion; de ahi que los ejemplos cotidianos
sean una herramienta esencial para hacer visible la estructura
del azar en la vida real.

Funcion de probabilidad y funcion de densidad:interpretacion
diddctica
La comprensidon de una variable aleatoria alcanza una nueva
profundidad cuando los estudiantes descubren que los valores
observados no solo cambian, sino que lo hacen siguiendo patro-
nes que pueden describirse, representarse y modelarse. En este
punto, la funcion de probabilidad y la funcidon de densidad se
convierten en herramientas esenciales para entender coémo se
distribuye la variacion, pues permiten reconocer que algunos re-
sultados aparecen con mayor frecuencia que otros. Como afirma
Batanero (2001), una ensefianza significativa de estos concep-
tos debe partir de las experiencias de variacion vividas por el
propio estudiante y no Unicamente de definiciones formales. En
este sentido, la funcion de probabilidad y la funcién de densidad
no son objetos matemdaticos descontextualizados, sino formas
organizadas de expresar la estructura del fendmeno aleatorio.
Ambas funcionan como una especie de mapa conceptual que
ofrece informacion sobre dénde se concentra la mayor parte de
los resultados, cudles son poco frecuentes y como se distribuye
el comportamiento global del sistema.

La funcion de probabilidad como narrativa de la variacion
discreta.
Cuando se trabaja con variables discretas, la funcién de proba-
bilidad asigna a cada valor posible un nUmero que representa
su probabilidad de ocurrencia. Sin embargo, tal como sefiala
Moore (2010), este concepto se comprende mejor si se construye
a partir de la inspeccion de frecuencias reales antes que des-
de simbolos matemdaticos. Observar, por ejemplo, el niUmero de
paradas que realiza un repartidor en distintos pedidos permite
descubrir que ciertos valores, como 5 o 6, tienden a ser mas
frecuentes que otros.
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Esta observacion inicial abre la puerta a una interpretacion
mas estructurada del fenémeno: la distribucién de probabilidades
no nace de una formula, sino del andlisis de la variacion obser-
vada. Borovcnik (2016) insiste en que este paso es fundamental,
pues ayuda al estudiante a entender que la probabilidad no se
reparte de manera uniforme, sino que refleja diferencias reales
en el comportamiento del fenémeno.

En un ambiente de aula, un docente puede pedir a los estudian-
tes que organicen los datos en una tabla de frecuencias y luego
construyan un grdafico de barras. A partir de ello, las discusiones
emergen de manera natural:

+ ¢Jpor qué algunas situaciones son mas probables que otras?,

*+ ¢qué condiciones del contexto podrian explicar las
diferencias?,

+ Jpor qué esrazonable que la probabilidad de observar una
sola parada sea menor que la de observar cinco?

La funcidon de probabilidad se convierte, entonces, en una
manera de narrar la historia del fendmeno discreto, de distinguir
entre resultados comunes y raros, y de reflexionar sobre qué
factores podrian modificar la distribucion. Desde la perspectiva
de Ben-Zvi (2000), estas discusiones no solo fortalecen la com-
prension matemdtica, sino también la capacidad del estudiante
para vincular los modelos con su propia experiencia cotidiana.

Por ejemplo, un docente propone trabajar con una situacion
muy cercana a la realidad cotidiana de los estudiantes: el uso del
teléfono celular a lo largo del dia. Para ello, se plantea analizar
cdbmo dos aspectos del mismo fendmeno: el tiempo que cada
persona pasa usando su dispositivo y la cantidad de notificacio-
nes que recibe, pueden comportarse de manera distinta desde
el punto de vista estadistico.

Durante una semana, un grupo de 10 estudiantes registrd de
forma voluntaria y sistemdtica dos tipos de datos por dia:

1. El tiempo total de uso del celular, medido en horas con
decimales. Este registro varia de manera continua a lo
largo del dia, ya que el uso no ocurre en unidades exac-
tas, sino en intervalos que pueden tomar cualquier valor
dentro de un rango.

2. El nUmero de notificaciones recibidas, considerando
mensajes, alertas de aplicaciones, redes sociales y re-
cordatorios.Este conteo solo puede tomar valores ente-
ros, lo que lo convierte en un ejemplo tipico de variable
aleatoria discreta.

El objetivo del docente es que los estudiantes descubran

coOmo un mismo contexto puede contener variables de natu-
raleza distinta, y coémo esta diferencia influye en la manera
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en que se organizan, se representan y se interpretan los da-
tos.Los datos propuestos por el docente son los siguientes
(Tabla 3):

Tabla 3.
Tiempo de uso del celular y numero de notificaciones registradas por
los estudiantes

Estudiante | Uso_celular_horas Notificaciones
1 32 45
2 4.8 62
3 2] 30
4 5.4 75
5 3.9 58
6 6.2 81
7 4.1 50
8 5.8 77
9 2.7 36
10 6.5 90

Nota. Los datos corresponden a un registro semanal realizado por 10 es-
tudiantes, quienes anotaron su tiempo total de uso del teléfono celular (en
horas) y el nUmero de notificaciones recibidas durante un dia tipico.

La matriz de correlacion (Figura 5) muestra que existe una
relacion lineal muy fuerte y positiva entre el uso del celular en
horas y la cantidad de notificaciones recibidas. El coeficiente de
Pearson esr = 0.988, lo cual indica que, a medida que aumenta
el tiempo que un estudiante utiliza su celular, también tiende a
aumentar el nUmero de notificaciones que recibe.

Figura 5.

Correlacion entre las horas de uso del celular y la cantidad de notifica-
ciones recibidas

Makrer de carrelacksn

Nota. La matriz presenta el coeficiente de correlacidn de Pearson entre el
tiempo de uso del celular (en horas) y el nUmero de notificaciones recibidas
por cada estudiante.
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Ademas, el valor de significaciéon (p € .001) confirma que esta
relacién no es producto del azar, sino que es estadisticamente
significativa incluso con un tamafo de muestra reducido (gl = 8).
En términos prdacticos, este patrén sugiere que los estudiantes
con mayor exposicién al celular estdn mas expuestos a recibir
notificaciones, lo cual coincide con comportamientos habituales
de uso de redes sociales, mensajeria y aplicaciones interactivas.

El grafico de dispersion (Figura 6) muestra la relacién entre
el tiempo de uso del celular (en horas) y el nUmero de notifica-
ciones recibidas por cada estudiante. Visualmente, los puntos
siguen un patrén ascendente: a medida que aumenta el tiempo
de uso, también aumenta la cantidad de notificaciones.

Este comportamiento indica una relacion lineal positiva fuerte
entre ambas variables. Es decir, los estudiantes que utilizan el
celular durante mas horas tienden a recibir un mayor nUmero
de notificaciones. No se observan valores atipicos ni casos que
se alejen del patrén general, lo que sugiere que la relacion es
consistente en todo el conjunto de datos.

En términos practicos, esta relacién tiene sentido: un mayor
tiempo activo en el dispositivo implica mayor interaccién con
redes sociales, mensajeria y aplicaciones que generan notifi-
caciones, por lo que la tendencia ascendente es coherente con
el comportamiento real del uso del celular.

Figura 6.
Dispersion entre las horas de uso del dispositivo movily la cantidad de
notificaciones recibidas

Gradis de Dhgpercices [(Funioa

Nota. El gréfico muestra la relacidn entre las horas de uso del celular y el
numero de notificaciones recibidas por los estudiantes.
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La regresion lineal simple (Figura 7) predice el nUmero de
notificaciones recibidas por los estudiantes. El modelo resultd
significativoR? = 0.976 , lo que indica que el 97.6 % de la variabi-
lidad en las notificaciones se explica mediante el tiempo de uso
del dispositivo.

El coeficiente de regresion para el predictor fue estadistica-
mente significativo,b = 13.15, t(8) = 18.12, p < 0.001 . Esto implica que,
por cada hora adicional de uso del celular, se esperan aproxima-
damente 13 notificaciones mas, en promedio. El intercepto no fue
significativo, b =1.63, p = .646, lo que sugiere que su valor carece
de interpretacién sustantiva para este contexto.

En conjunto, los resultados muestran una relaciéon lineal fuer-
te y positiva entre el tiempo de uso del celular y la cantidad de
notificaciones recibidas.

Figura 7.
Modelo de regresion lineal entre el uso del celular (horas) y el nuUmero
de notificaciones recibidas

Regresion Lineal

=
L
T

L1}

Nota. El modelo de regresion lineal predice la cantidad de notificaciones
recibidas a partir de las horas de uso del celular.

Apoyo diddctico: Al finalizar este andlisis, es importante que
el docente reconozca que trabajar con datos reales no solo for-
talece la comprension estadistica, sino que también abre opor-
tunidades para que los estudiantes desarrollen un pensamiento
critico sobre los fendmenos que los rodean.
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Desde la mirada de Wild y Pfannkuch (1999), cada situacion
que se modela en el aula debe invitar a que el estudiante tome
decisiones, compare alternativas y se pregunte por las condicio-
nes que generan la variabilidad observada.

De igual manera, la perspectiva de Ben-Zvi (2000) recuerda
gue la construccion de significado en estadistica ocurre cuando
los estudiantes logran vincular los modelos con sus propias ex-
periencias, y no cuando memorizar féormulas es el centro de la
actividad. Por ello, se sugiere disefiar tareas donde la exploracion
de datos, la construccion de graficos y la interpretacion conjunta
permitan transformar la incertidumbre en explicaciones razona-
das y conscientes. Finalmente, siguiendo a Biehler (2018), orientar
la discusién hacia la relacién entre contexto y datos favorece que
los estudiantes entiendan la estadistica como una herramienta
para comprender el mundo, y no como una coleccién de proce-
dimientos aislados. Asi, la ensefianza se vuelve mds significativa,
situada y coherente con los desafios de la alfabetizacion esta-
distica contempordanea.

La funcién de densidad. dar forma grdfica a la variacion continua
Cuando el fendmeno que se estudia produce valores que pue-
den cambiar de manera suave y sin saltos, la variable aleatoria
continua se convierte en la herramienta conceptual adecuada
para describirlo. En estos casos, la probabilidad ya no se atribu-
ye a valores puntuales, sino a intervalos, y es precisamente aqui
donde la funcion de densidad adquiere sentido. Tal como sefialan
Hastie et al. (2009), la densidad funciona como una curva que
capta laintensidad con la que ciertos valores tienden a aparecer,
mostrando la estructura subyacente del fendmeno sin perder la
riqueza propia de la variabilidad continua.

Desde un punto de vista diddctico, esta nocidn suele resultar
abstracta al inicio. Por ello, es Util partir de representaciones
empiricas, como los histogramas construidos a partir de datos
reales. A medida que se acumulan observaciones (los tiempos
de descarga de un archivo, los cambios en la temperatura del
aula a lo largo de la mafana o la velocidad de conexién durante
una videollamada) las barras del histograma permiten ver zonas
donde los valores se agrupan con mayor frecuencia. Sin embar-
go, esta representacién, aunque informativa, suele ser rugosa.
La funcién de densidad suavizada, en cambio, transforma esa
irregularidad en una curva continua que revela patrones mdas
nitidos. James (2021) enfatiza que esta representacion no pre-
tende identificar un valor exacto, sino ayudar a comprender la
tendencia general del fendmeno y, sobre todo, a reconocer qué
intervalos concentran mayor probabilidad.
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Para ilustrarlo, consideremos la fluctuacién de la velocidad
de conexion a internet durante una videollamada, un fenémeno
cotidiano para muchos estudiantes.

Si se registra la velocidad cada poco segundo, aparecen va-
lores como 9.8 Mbps, 11.2 Mbps, 10.7 Mbps, 12.5 Mbps o0 8.9 Mbps,
gue varian sin saltos abruptos. Al graficar estos datos en un
histograma, es posible observar que la mayor parte se concen-
tra entre 10 y 12 Mbps, mientras que las velocidades muy bajas
o0 excepcionalmente altas aparecen con menor regularidad. La
densidad suavizada construida a partir de estos datos da forma
a esa variacién: muestra un “pico” alrededor del intervalo donde
la conexion suele estabilizarse y una caida progresiva hacia los
extremos menos frecuentes, capturando de manera visual lo que
los nUmeros por si solos no revelan.

Tabla 4.
Velocidad de conexion a Internet medida en Mbps en 20 casos
observados

Caso Velocidad_Mbps
1 9.8
2 n.2
3 10.7
4 125
5 8.9
6 10.3
7 1.0
8 10.9
9 15
10 9.7
1 10.8
12 12.0
13 n.7
14 9.9
15 10.5
16 n.3
17 10.1
18 12.2
19 9.5

20 N

Nota. Cada registro representa la velocidad promedio de descarga (en Mbps)
obtenida en un caso individual mediante una prueba bdésica de conectividad.
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En este ejemplo el docente debe hacer presentar la situacion
con determinadas reflexiones tales como:

“Para esta actividad vamos a trabajar con un conjunto
de datos que simula la medicién real de la velocidad de
conexién a internet. Imaginemos que estamos en un la-
boratorio de informdtica y queremos analizar qué tan
estable es la velocidad de nuestra red durante un minu-
to. Para ello, realizamos una medicion automdatica cada
poco segundo

Como suele ocurrir en cualquier red doméstica o institu-
cional, la velocidad no se mantiene fija. A veces aumenta
ligeramente, otras veces disminuye, y de vez en cuando
presenta picos o caidas poco frecuentes. Eso es justa-
mente lo que queremos estudiar: la variacion natural en
un fendmeno continuo.

Los 20 valores que vamos a analizar (Tabla 4) represen-
tan velocidades registradas en intervalos muy cortos de
tiempo. Algunos valores aparecen alrededor de los 10 u
11 Mbps, que es donde la conexidn tiende a estabilizarse.
Otros valores se alejan un poco mds, como 8.9 Mbps o
12.5 Mbps, que corresponden a momentos donde la red
estd mds cargada o mds libre. Ninguno de estos cambios
es abrupto; simplemente forman parte de la variabilidad
propia del sistema.

Quiero que observen estos datos como lo haria un analis-
ta:no se trata solo de mirar niumeros, sino de preguntarse
cbmo se comporta la velocidad en general. §En qué rango
se concentra la mayor parte de las mediciones? ;Qué
tan frecuentes son las velocidades extremas? ;Coémo se
veria esta informacidon en un histograma y en una cur-
va de densidad? Este andlisis nos permitird comprender
mejor como funciona una variable aleatoria continua y
coémo la funcién de densidad nos ayuda a interpretar su
comportamiento global.”

Una vez ingresados los datos en Jamovi y generados los
estadisticos descriptivos (Figura 8) podemos observar que
la velocidad de conexién presenta una variacién natural pero
claramente estructurada. La media de 10.8 Mbps y la mediana
de 10.9 Mbps indican que la mayor parte de las mediciones se
concentran alrededor de este valor central, lo que sugiere un
comportamiento relativamente estable del sistema. La desvia-
cion tipica, cercana a 0.95 Mbps, confirma que la variabilidad
es moderada: las oscilaciones existen, pero no son abruptas.
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Figura 8.
Estadisticos descriptivos de la velocidad de conexion medida en inter-
valos de pocos segundos

Descriptivas

Descriptivas

Velocidad_Mbps

N 20
Media 10.8
Mediana 109
Desviacion tipica 0,854
Minimo 8.90
Maximo 125

Nota. La figura muestra los estadisticos descriptivos correspondientes a 20
mediciones reales de velocidad de conexidon (en Mbps) tomadas en interva-
los cortos de tiempo.

El histograma (Figura 9) muestra de manera clara cémo varia
la velocidad de conexion a internet cuando se realizan medi-
ciones sucesivas en intervalos muy cortos. Lo primero que se
observa es que los valores no son fijos ni completamente regu-
lares: se mueven entre aproximadamente 9 y 12.5 Mbps, refle-
jondo la variabilidad natural propia de un fendmeno continuo.
Sin embargo, esta variacién no es cadtica.

La curva de densidad suavizada, superpuesta sobre las ba-
rras, ayuda a visualizar el patrdn subyacente: existe una concen-
tracion evidente alrededor de los 10 y 11 Mbps, donde se registra
la mayor frecuencia de observaciones. Esto sugiere que, aunque
la velocidad fluctla, tiende a estabilizarse sobre un rango tipico.
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Figura 9.
Distribucion de la velocidad de conexion (Mbps)

Hiztagrama
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Nota. El histograma muestra 20 mediciones de velocidad de conexién ain-
ternet tomadas en intervalos cortos.

El valor pedagodgico de esta representacion estaden que ofrece
a los estudiantes un puente entre la experiencia y la abstraccion.
La curva de densidad permite plantear preguntas que movilizan
el razonamiento probabilistico: ¢ qué condiciones explican que la
mayor densidad esté concentrada en ciertos rangos?, ipor qué
ocurren las caidas de velocidad?, ;cdmo podria modificarse la
curva en momentos de alta congestion digital? De acuerdo con
Hastie et al. (2009), interpretar la densidad implica reconocer que
la variabilidad no es cadtica, sino estructurada; y como sugiere
James (2021), esa estructura solo se vuelve evidente cuando
se observa como la probabilidad se distribuye a lo largo de un
continuo.

Interpretacion conjunta. del dato al modelo y del modelo al
fendmeno
Aunque la funcién de probabilidad y la funcién de densidad co-
rresponden a naturalezas distintas, ambas comparten un propo-
sito esencial: organizar y explicar la variabilidad del fenémeno
aleatorio. Desde una perspectiva conceptual, estas dos funcio-
nes no deberian ensefiarse como compartimentos aislados, sino
como herramientas que permiten observar un mismo proceso
desde dos dngulos complementarios. Wild y Pfannkuch (1999),
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al presentar el ciclo PPDAC, recuerdan que la fase de Andlisis
exige interpretar patrones, identificar tendencias y vincular los
resultados con el contexto; es decir, pasar del dato al modelo y
del modelo de vuelta al fendmeno. Desde esta mirada, tanto la
funcion de probabilidad como la funcion de densidad ayudan
a responder preguntas centrales del razonamiento estadistico:
;qué valores son habituales?, jcudles resultan inusuales?, ;qué
forma tiene la distribucion?, ;qué revela esa forma sobre la es-
tructura interna del fenédmeno?

Para ilustrar esta integracion puede utilizarse un ejemplo cer-
cano al entorno escolar: el proceso de puntuacion de un video-
juego educativo. En muchos juegos, el puntaje por completar
determinados retos se expresa mediante nUmeros enteros, lo que
permite modelar su comportamiento mediante una funcion de
probabilidad. Sin embargo, el tiempo que tarda cada estudiante
en completar el nivel, medido en segundos o décimas de segun-
do, varia de forma continua y requiere una funcidon de densidad
para representar su distribucion.

Enunciado: En un curso de Matemdticas, el docente incorpora
un videojuego educativo sobre fracciones como recurso para
fortalecer la comprensién conceptual y el razonamiento de los
estudiantes (Tabla 5).

Cada vez que un estudiante completa el nivel 1, el sistema
registra dos tipos de informacidon: un puntaje entero asociado
a la cantidad de retos superados, que constituye una variable
aleatoria discreta, y el tiempo total empleado para completar
el nivel, medido en segundos con una cifra decimal, que corres-
ponde a una variable aleatoria continua

El propdsito del andlisis es examinar como se distribuyen los
puntajes obtenidos por los estudiantes, cobmo se comportan los
tiempos registrados y, finalmente, como ambos modelos pueden
interpretarse en conjunto para describir patrones de desempefio
tipicos, identificar variabilidad entre estudiantes y comprender
mejor el proceso de aprendizaje mediado por el videojuego.

Los resultados descriptivos (FiguralO) muestran que el tiempo
empleado por los estudiantes para completar el nivel del video-
juego es bastante consistente dentro del grupo. La media (48.5
s) y la mediana (47.7 s) son muy similares, lo que indica una dis-
tribucion equilibrada sin grandes desviaciones. La variabilidad
es moderada, con una desviacion tipica de 4.96 segundos, lo que
sugiere que la mayoria de los estudiantes se concentra en un
rango de desempefio relativamente estrecho. Los valores mini-
mos (41.8 s) y maximo (56.4 s) confirman la ausencia de tiempos
atipicos, evidenciando que el nivel tiene una dificultad adecuada
y que los estudiantes mantienen un ritmo de ejecucién similar.
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Tabla 5.
Resultados de puntaje y tiempo de resolucion del nivel1 en un video-
juego educativo de fracciones

Estudiante | Puntaje | Tiempo_seg
1 30 472
2 35 52.8
3 40 445
4 30 557
5 45 42.7
6 35 493
7 40 46.9
8 50 41.8
9 35 53.6
10 45 439
1 40 482
12 30 56.4

Nota. La tabla presenta los puntajes obtenidos (variable aleatoria discreta)

y los tiempos de resolucién en segundos con una cifra decimal (variable
aleatoria continua) registrados por 12 estudiantes tras completar el nivel 1 del
videojuego educativo sobre fracciones.

Figura 10.
Estadisticos descriptivos del tiempo empleado para completar el nivel
del videojuego educativo

Nota. La figura muestra los valores descriptivos del tiempo total (en segun-
dos) que tardaron los 12 estudiantes en completar el nivel.
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Por otra parte, la grdfica (Figura 11) permite observar que,
aunqgue los estudiantes muestran cierta variabilidad en el tiempo
gue tardan en completar el nivel, la mayoria se concentra en un
intervalo relativamente estrecho. La mediana ubicada cerca de
los 48 segundos, indica un tiempo tipico de ejecucidén, mientras
que la amplitud entre los cuartiles sugiere diferencias modera-
das en el ritmo de trabajo de cada estudiante. Los valores mas
alejados del centro reflejan desempefios mas rapidos o mas len-
tos, que pueden deberse a factores como la familiaridad con el
videojuego, el nivel de atencion o el grado de comprensién de
los retos planteados. En conjunto, el diagrama ofrece una visién
clara de como se distribuyen los tiempos y permite al docente
identificar tanto patrones generales como posibles casos que
merecen una observacion mads detallada.

Figura 11.
Distribucion de los tiempos empleados por los estudiantes para com-
pletar el nivel del videojuego educativo

Grafice dé Caga
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Nota. El diagrama de caja representa la variabilidad del tiempo (en segun-
dos) que los estudiantes emplearon para completar el nivel.

Cuando ambos modelos se analizan juntos, los estudiantes
pueden comprender que el desempefio en el videojuego no es
totalmente predecible, pero tampoco arbitrario. Se observan
regularidades: ciertos puntajes se repiten porque reflejan niveles
de dominio frecuentes, y los tiempos se concentran en un rango
porque dependen de la dificultad del nivel, la familiaridad con la
mecdanica o la concentracion del estudiante.
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DeVeaux, Velleman y Bock (2019) destacan que esta capaci-
dad para anticipar tendencias sin perder de vista la complejidad
del fendmeno es una de las fortalezas del razonamiento proba-
bilistico. Watson (2006) complementa esta idea al sefialar que
uno de los desafios centrales en la educacion estadistica consiste
en mostrar que la variabilidad tiene estructura, que el azar no
implica caos, sino un patrén que puede interpretarse y explicarse.

En general, la articulacion entre las funciones de probabili-
dad y densidad permite que el estudiante transite de los datos
concretos a los modelos abstractos, y de estos, nuevamente
al fendmeno que les dio origen. De esta forma, la estadistica
se convierte en una herramienta para comprender situaciones
reales, no solo en una técnica para producir graficos. Este mo-
vimiento entre niveles (dato, modelo y fendmeno) constituye
una de las competencias clave en la alfabetizacién estadistica
contempordnea y un elemento indispensable para formar ciu-
dadanos capaces de interpretar la incertidumbre de manera
criticay fundamentada.

Distribuciones discretas: Bernoulli, binomial y Poisson
Las distribuciones discretas constituyen un eje fundamental
para comprender codmo se organiza la variabilidad cuando los
fendmenos se expresan mediante conteos o resultados pun-
tuales. Este tipo de modelos permite que el estudiante avance
desde una intuicién primaria del azar hacia una interpretacion
mds estructurada del comportamiento probabilistico. Tal como
sefialan Wild y Pfannkuch (1999), una ensefianza eficaz de la
probabilidad requiere que el estudiante aprenda a identificar
patrones, explicar tendencias y situar cada resultado dentro
del contexto que lo origina. En esta linea, DeVeaux, Velleman y
Bock (2019) destacan que las distribuciones discretas son espe-
cialmente valiosas porque ofrecen un marco claro y accesible
para analizar fendmenos que, aunque variables, conservan una
estructura interna reconocible.

A continuacién, se desarrollan tres modelos ampliamente uti-
lizados: Bernoulli, binomial y Poisson, cada uno acompafado de
un ejemplo contextual y orientaciones didacticas que favorecen
el razonamiento probabilistico en el aula.

Distribucion de Bernoulli: decisiones binarias y eventos con dos
resultados
La distribucién de Bernoulli modela fendmenos que solo pueden
tener dos resultados mutuamente excluyentes: éxito o fracaso,
si 0 no, ocurre o no ocurre. Es el modelo discreto mas simple:
cada ensayo se representa mediante un valor binario (10 0). Su
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profundidad conceptual reside en que permite introducir la idea
de probabilidad como una medida de tendencia de largo plazo
mds que como una prediccion absoluta del préoximo resultado.

Cuando un fendmeno se describe mediante una Bernoulli, se
asume que:

1. Cada ensayo es independiente: el resultado anterior no

influye en el siguiente.

2. La probabilidad de éxito p se mantiene constante.

3. No hay mas de dos posibilidades: cualquier matiz o varia-

cién se simplifica a “éxito” o “fracaso”.

Aunque su estructura es simple, su interpretacién diddactica
es profunda. Como sefiala Watson (2006), la comprension de
Bernoulliayuda a desmontar ideas erréneas comunes, como creer
que después de una racha de fracasos “ya es hora” de que llegue
un éxito (falacia del apostador). La Bernoulli permite conversar
con estudiantes sobre cudndo un fendmeno puede razonable-
mente considerarse binario y qué implicaciones tiene hacerlo.

Trabajar con Bernoulli posibilita preguntas como:

+ ¢Qué factores determinan la probabilidad de éxito?

+ ;Quéssignificarealmente “éxito” en un fendmeno concreto?

+ ¢Qué pasasila probabilidad cambia a lo largo del tiempo?

Wild y Pfannkuch (1999) sugieren aprovechar estas discusiones
para fortalecer la comprensién contextual del fendmeno, ya que
la Bernoulli es tanto un modelo matematico como una forma de
mirar la realidad. Para estos autores, ensefiar una distribucién
no deberia limitarse a presentar su formula o a resolver ejerci-
cios mecanicos; por el contrario, es fundamental ayudar a los
estudiantes a reconocer que detrds de cada variable dicotémica
existe una historia, una situacién y un proceso de toma de deci-
siones. La distribucién Bernoulli invita a distinguir entre eventos
que ocurren y eventos que no ocurren, pero esta simplicidad
aparente encierra una manera poderosa de comprender el mun-
do: muchas experiencias humanas pueden describirse mediante
esta logica binaria.

Caso de estudio: Reconocimiento de fracciones mediante un
videojuego educativo

En una clase de Matematicas de séptimo afio, el docente in-
troduce un videojuego educativo centrado en el reconocimien-
to de fracciones simples. Cada estudiante debe completar una
actividad inicial del juego en la que se presentan diez tarjetas
digitales y, en cada una, se evalta si el estudiante identifica co-
rrectamente la fraccion representada. El sistema registra para
cada estudiante una variable dicotomica llamada Reconoce_frac,
gue toma el valor de 1si el estudiante reconoce correctamente
la fraccién del ejercicio final del nivel, y O si no lo logra.
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El propdsito del docente es analizar el desempefio general
del grupo en esta tarea inicial para identificar patrones de
logro, determinar la proporcion de estudiantes que presentan
dificultades y tomar decisiones pedagdgicas informadas para
los siguientes niveles del videojuego.

Los resultados descriptivos (Figura 12) muestran que parti-
ciparon doce estudiantes y no hubo datos perdidos. La media
del desempefio es 0.667, lo cual indica que, en promedio,
aproximadamente dos tercios del grupo logra reconocer co-
rrectamente la fraccion presentada en el nivel inicial. La me-
diana y la moda, ambasiguales a1, refuerzan esta tendencia:
la mayoria de estudiantes tiene un resultado correcto. La des-
viacion tipica, de 0.492, sugiere una variabilidad moderada
dentro del grupo, coherente con el hecho de que solo existen
dos valores posibles (0O y 1) en esta variable.

El andlisis de frecuencias aporta una lectura mas clara: 8
de 12 estudiantes (66.7%) reconocen correctamente la frac-
cion, mientras que 4 estudiantes (33.3%) no lo logran. Este
comportamiento dicotdmico usual en variables discretas es
fundamental para la toma de decisiones pedagodgicas. Por
ejemplo, el docente puede deducir que, aunque la mayoria
de los estudiantes muestra un dominio adecuado del conte-
nido, existe un grupo significativo (un tercio del curso) que
requiere apoyo adicional antes de avanzar a actividades mds
complejas dentro del videojuego.

La Figura 13 permite visualizar de manera sencilla coémo
se distribuyen las respuestas de los estudiantes en la tarea
inicial de reconocimiento de fracciones. El grafico de barras
muestra una clara diferencia entre quienes logran identifi-
car correctamente la fraccidon presentada y quienes no lo
consiguen. De los 12 estudiantes evaluados, ocho responden
correctamente, mientras que cuatro presentan dificultades,
lo que equivale a un 66.7 % y un 33.3 %, respectivamente.

Esta asimetria evidencia que, aunque la mayoria del grupo
domina el concepto evaluado, existe un porcentaje impor-
tante que requiere apoyo pedagdgico adicional antes de
avanzar a niveles mds complejos del videojuego educativo.
La interpretacion conjunta del grafico y de las estadisticas
descriptivas sugiere que los estudiantes con errores podrian
beneficiarse de experiencias de refuerzo, explicaciones vi-
suales suplementarias o retroalimentacién inmediata dentro
del propio entorno digital.
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Figura 12.
Distribucion de estudiantes que reconocen correctamente la fraccion
en el nivel inicial del videojuego educativo
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Nota. La figura presenta los resultados de 12 estudiantes en la variable dico-
tomica Reconoce_ frac, donde 1indica reconocimiento correcto de la fracciéon
y O indica error.

Desde el punto de vista diddctico, este caso permite a los
estudiantes comprender coémo una variable aleatoria discreta
puede analizarse mediante herramientas estadisticas simples, y
coémo la interpretacion de frecuencias y medidas de tendencia
central se utiliza para caracterizar comportamientos de aprendi-
zaje. Ademdas, contextualiza la estadistica dentro de un entorno
cercano y motivador, como el uso de videojuegos educativos,
reforzando el sentido practico del andlisis de datos en situacio-
nes reales del aula.

Wild y Pfannkuch destacan que cuando el docente vincula el
modelo con el contexto, se genera una comprension mads rica
porque los estudiantes dejan de ver la probabilidad como un cal-
culo gislado y comienzan a interpretarla como una herramienta
para explicar fenébmenos reales.
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De este modo, la distribucion Bernoulli se convierte en un
puente entre el razonamiento matemdatico y la lectura critica
del entorno, permitiendo a los estudiantes identificar patrones,
formular hipdtesis y analizar situaciones cotidianas desde una
perspectiva estadistica mas profunda.

Figura 13.
Frecuencia de respuestas correctas e incorrectas en el reconocimien-
to de fracciones
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Nota. El grafico muestra la distribucién de respuestas de 12 estudiantes en la
tarea de reconocimiento de fracciones. La categoria 1 corresponde a estu-
diantes que identificaron correctamente la fraccion, mientras que la catego-
ria O indica respuestas incorrectas.

Distribucion binomial: la acumulacion de éxitos en multiples
intentos
La binomial extiende la l6gica de Bernoulli a un conjunto de n
ensayos independientes, todos con la misma probabilidad de
éxito. Su esencia radica en describir cuantos éxitos se obtienen
en un numero fijo de intentos. Este modelo introduce un nuevo
nivel de complejidad porque ya no se trata de analizar un solo
evento binario, sino la variacién acumulada de muchos.
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La distribucién binomial requiere cuatro elementos:

1. NUmero fijo de ensayos n: no se detiene hasta completar
los intentos.

2. Independencia entre intentos.

3. Probabilidad constante de éxito p.

4. Interés en el conteo de éxitos, no en el orden de aparicion.

De acuerdo con DeVeaux, Velleman y Bock (2019), la binomial
es una herramienta poderosa para investigar patrones: revela
gue ciertos resultados son mdas probables que otros (por ejem-
plo, obtener 5 aciertos en 10 intentos cuando p=0.5), y que los
extremos son menos frecuentes. Esto permite introducir grdficas
gue muestran cdmo se concentra la probabilidad alrededor de
valores centrales, favoreciendo la comprensién del comporta-
miento tipico del fendmeno.

La ensefianza de la binomial permite trabajar preguntas como:

¢ Cudles son los resultados “esperables”?

;. Coémo cambia la distribucion si aumenta el nUmero de
ensayos?

¢.Codmo influye un cambio en p sobre la forma de la
distribucion?

¢Por qué los resultados muy altos o muy bajos son menos
probables?

Caso de estudio: “La calidad en una planta de produccion de
botellas”

Una empresa dedicada a la produccion de botellas pldsticas
utiliza un sistema automdtico de inspeccion que detecta si cada
botella fabricada cumple con los estadndares de calidad. Cada
botella puede clasificarse como defectuosa (0) o no defectuosa
(M. A partir de registros historicos, los ingenieros determinaron
que la probabilidad de que una botella salga correctamente fa-
bricada es aproximadamente p = 0,92, ya que en promedio el 8
% presenta algun defecto. Ademas:

1. En cada lote se inspeccionan exactamente 20 botellas, por

lo que el nUmero de ensayos es fijo.

2. Lainspeccion es independiente para cada botella.

3. La probabilidad de que una botella salga en buen estado
se mantiene relativamente estable durante un mismo ciclo
de produccion.

4. El interés estd en contar cudntas botellas no defectuosas
hay en un lote, no en el orden de inspeccion.

Estas condiciones permiten modelar el nimero de botellas
correctas en un lote mediante una distribucién binomial con
pardmetros n=20 y p=0,92.

Sea la variable aleatoria: X=nUmero de botellas en buen estado
dentro del lote X ~Entonces: X=Binomial (n=20, p=0,92)
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Preguntas que la empresa desea responder
+ ¢Cudles la probabilidad de obtener exactamente 19 botellas
correctas en un lote de 207

+ ¢Cudl es la probabilidad de que el lote tenga al menos 18

botellas correctas?

+ ¢(Quétan probable es obtener 16 o menos, lo cual implicaria

activar una alarma de control de calidad?

+ ¢Cudntos defectos son “esperables” en un lote tipico?

+ :Qué valores serian considerados “atipicos” o sefial de un

problema en la linea de produccién?

La distribucién mostrada en la Figura 14 permite comprender
de manera directa como se comporta un proceso productivo
cuando la probabilidad de obtener un resultado “correcto” es
muy alta. En este caso, el modelo binomial describe el nUmero
de botellas correctamente envasadas dentro de un lote de 20
unidades, asumiendo que cada botella tiene una probabilidad
de éxito del 95 %.

Figura 14 .

Distribucion binomial de botellas correctas en un lote de 20 unidades
con probabilidad de éxito p = 0.95.

Distribucién Binomial (n= 20, p=0.95)
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Nota. La figura presenta la distribucion tedrica de probabilidades del nUmero
de botellas correctas bajo un modelo binomial con n =20y p = 0.95.

Al observar la grdafica, se vuelve evidente que los valores mas
probables se concentran en la parte derecha del eje horizontal: ob-
tener 18,19 o incluso las 20 botellas correctas no solo es posible, sino
que representa la situacién mas habitual. Estos resultados reflejan
un proceso estable, con una linea de produccidn que comete muy
poCos errores y que, por tanto, genera lotes de calidad consistente.
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Este tipo de comportamiento es especialmente Util para que
los estudiantes visualicen la idea de “resultado esperable”, un
concepto que suele ser abstracto cuando se explica Unicamen-
te desde ecuaciones o formulas. Al trabajar con la distribucion
binomial en un contexto concreto como el control de calidad, se
puede mostrar que las probabilidades no son simples nUmeros,
sino herramientas para anticipar patrones y reconocer cuando
un proceso funciona como deberia.

Desde un enfoque pedagdgico, la grafica ofrece una oportuni-
dad para promover discusiones valiosas en el aula. Los estudian-
tes pueden reflexionar sobre coémo cambia la forma de la distri-
bucién sila probabilidad de éxito disminuye, o qué implicaciones
tiene aumentar el tamafo del lote. También permite introducir la
distincién entre lo “posible” y lo “probable”, y comprender por qué
ciertos valores casi nunca se observan, aungque Nno sedn iMpPosi-
bles. En resumen, este tipo de representacién visual, sostenida
por un caso cercano al mundo laboral, ayuda a que la estadistica
deje de verse como un conjunto de procedimientos mecdnicos
y se convierta en una herramienta para interpretar fendmenos
reales con mayor claridad y sentido.

James (2021) resalta que este tipo de andlisis ayuda al es-
tudiante a visualizar la estructura del fenédmeno, no solo a me-
morizar formulas. Esta observacién es crucial porque, en la
ensefianza habitual, la distribucion binomial suele reducirse a
un conjunto de procedimientos que parecen abstractos y desli-
gados de la experiencia. Sin embargo, cuando se trabaja desde
situaciones concretas como acertar preguntas en un cuestio-
nario, registrar éxitos en un experimento o evaluar intentos en
un videojuego educativo; la binomial deja de ser una expresion
algebraica y se convierte en una herramienta para comprender
coémo se acumulan los resultados en escenarios donde el azar
interviene repetidamente.

Distribucion de Poisson. conteo de eventos en intervalos
La distribucion de Poisson se utiliza para modelar eventos que
ocurren de forma independiente dentro de un intervalo, ya sea
de tiempo, espacio o cualquier unidad continua. A diferencia
de Bernoulli y binomial, no existe un numero fijo de ensayos: la
Poisson describe la frecuencia de aparicion de sucesos relativa-
mente raros, regidos por una tasa promedio estable.
Un fendmeno sigue una Poisson cuando:
1. Los eventos son infrecuentes respecto al tamafo del
intervalo.
2. Los eventos ocurren uno a la vez, sin simultaneidad.
3. Latasa promedio es constante.
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4. La ocurrencia en un intervalo no afecta otro intervalo
(independencia).

Hastie et al. (2009) explican que Poisson es especialmente
Util para describir procesos donde no es posible identificar cla-
ramente el nUmero de ensayos, pero si observar un patron de
ocurrencias. Por ello, la Poisson permite captar reqularidades
invisibles a simple vista: aunque los valores fluctUen dia a diqg, la
tasa promedio mantiene una estabilidad sorprendente.

A nivel educativo, trabajar con la Poisson abre la puerta a
reflexiones como:

+ ;Quéssignifica que un fendmeno tenga una “tasa estable”?

+ ;Qué diferencia a la Poisson de la binomial?

+ ¢Por qué algunos dias ocurren muchos eventos y otros casi

ninguno?

+ ¢Qué factores del contexto pueden modificar la tasa

promedio?

James (2021) enfatiza que este tipo de modelos permite com-
prender fendmenos aparentemente cadticos desde una perspec-
tiva analitica que revela patrones, no azar puro. Para este autor,
la clave no reside solamente en calcular probabilidades, sino en
aprender a “leer” el comportamiento de los eventos a través del
lente adecuado.

Caso de estudio: La llegada de llamadas a un centro de so-
porte técnico

En una institucion educativa que ofrece soporte tecnoldgico
a docentes y estudiantes, existe un pequefo centro de atencion
encargado de resolver problemas relacionados con plataformas
virtuales, contrasefias, conexién a redes, videoconferencias y
accesos a la intranet institucional. Con el crecimiento de la ma-
tricula y la migracién hacia entornos digitales, la demanda de
soporte ha aumentado en los Ultimos ciclos académicos. Para
mejorar la gestion del servicio, la coordinacién decide analizar
cudntas llamadas recibe el centro por hora durante los momentos
de mayor actividad.

Después de revisar los registros de varias semanas, el equipo
observa que, durante las horas pico de la mafiana, el nUmero
de llamadas que ingresan cada hora fluctua entre 6 y 14, con
un promedio estable cercano a 10 llamadas por hora. Ademads,
las llamadas parecen llegar de manera independiente unas de
otras, sin patrones definidos mas alld de la intensidad propia de
ese horario.

Debido a estas caracteristicas se propone modelar el nUmero
de llamadas por hora mediante una Distribucidn de Poisson con
parametro & =10 [lamadas por hora.
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Preguntas que el area de soporte desea responder

1. ;Cudlesla probabilidad de recibir exactamente 8 llamadas
en una hora?

2.¢:Qué tan probable es recibir 15 o mas llamadas, lo que po-
dria saturar la capacidad del personal?

3. :Qué valor de llamadas por hora puede considerarse tipico
y cudl seria un valor atipico que deberia activar una alerta?

4. sCudl es el nUmero esperado de llamadas por hora y qué
tan grande puede ser su variabilidad?

5. ¢Como podria cambiar esta distribucidon si se incrementa
el nuUmero de usuarios o si una plataforma falla de manera
inesperada?

Voy a asumir el modelo que definimos antes: X ~ Poisson(: = 10)

donde X es el nUmero de llamadas por hora.

La distribucion presentada en la figura 15 permite observar
como se comporta el nUmero de llamadas que llegan por hora a
un centro de soporte cuando el proceso sigue un patrén de ocu-
rrencia aleatoria con una tasa promedio estable. El valor de =
10 indica que, en condiciones normales, se esperan alrededor de
diez llamadas por hora. Esto se evidencia en la forma del grafico:
la barra correspondiente a este valor es una de las mas altas y
constituye el centro de la distribucién.

Figura 15 .

Distribucion de Poisson del numero de llamadas por hora en un centro
de soporte (A = 10)

Distribucion de Poisson (A=10)
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Nota. La figura muestra la distribucion tedrica de probabilidades para el
numero de llamadas que llegan en una hora, modelada mediante una Poisson
con pardmetroA = 10
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De igual manera, se aprecia que los valores inmediatamen-
te cercanos a la media como 8, 9,11 0 12 llamadas, mantienen
probabilidades relativamente altas. Esto sugiere que, aunque
el promedio es diez, existe una fluctuacién natural que hace
completamente razonable observar ligeras variaciones de
una hora a otra. Hacia ambos extremos, en cambio, las barras
disminuyen de manera pronunciada. Los resultados muy bajos
(por ejemplo, menos de 4 llamadas) o muy altos (16 o mas)
aparecen con probabilidades considerablemente pequefas,
lo que indica que representan situaciones poco habituales.

La forma ligeramente sesgada hacia la derecha, propia de
la distribucion de Poisson, muestra que, aunque es mds pro-
bable registrar un volumen de llamadas similar al promedio,
siempre existe una pequefia posibilidad de que la demanda
del servicio aumente mas de lo esperado. Esta “cola” hacia la
derecha es especialmente importante desde una perspectiva
operativa, ya que permite anticipar episodios de saturaciéon
y planificar recursos de manera preventiva. En sintesis, la
distribucién ofrece una mirada detallada y realista sobre la
variabilidad del sistema, permitiendo identificar con claridad
qué situaciones deben considerarse normales y cudles po-
drian requerir atencion o intervenciéon del equipo de soporte.

Apoyo diddctico: El docente puede aprovechar y reflexio-
nar con los estudiantes en relaciéon a los procedimientos ma-
tematicos que fundamentan la interpretacion:

1. Probabilidad de recibir exactamente 8 llamadas

Si X ~ Poisson(})
~101 8
10
Entonces:. P<X = 8) = eT
Para k=8 yr=10
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2. Probabilidad de recibir 15 o mds llamadas

Se busca: P(X > 15).
Para calcularlo, se usa la probabilidad complementaria:

P(X >15)=1—P(X < 14)

14 e—1010k

Donde: P(X < 14) =) —a

k=0

14 1010k
e 710
Por eso: P(X > 15) =1- kE_O -

3. Valores tipicos y atipicos
Con el criterio usual (probabilidad < 5 %), usamos:
Para el limite inferior (valores muy bajos):

14 1010k
p(x<aa) -3 o0

k=0
Para el limite superior (valores muy altos):
P(X>16)=1-P(X <15)

Dénde:

15 1010k
P<X§15> :Z%

k=0
Valores con probabilidad menor a 0.05 se consideran atipicos.

4. Valor esperado y variabilidad de la Poisson
Media: E(X) =1

Varianza: Var(X) =1
Desviacion estandar: o = ﬁ

Para = 10: E(X)=10 y o=v10~3.16
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5.Como cambia la distribucion si aumenta la demanda

La forma de la distribucién depende solo de A:

Siaumenta la demanda (mds usuarios entonces mas llamadas):
xnuevo > 10

* La media aumenta.

* La desviacion estandar aumenta.

* La distribucion se desplaza hacia la derecha.

*+ Se vuelve mds probable observar valores altos.

No hay formula adicional: solo cambia el parametro 2 en las
formulas anteriores.

En general, modelar un fendmeno mediante distribuciones
discretas como Bernoulli, Binomial o Poisson ofrece una via privi-
legiada para dotar de sentido a comportamientos que, a primera
vista, pueden parecer erraticos o dificiles de anticipar. Estas
herramientas permiten revelar patrones estables, variaciones
significativas y sefiales tempranas de cambio que no se perciben
de forma intuitiva. Lo que inicialmente se presenta como una
coleccién dispersa de datos adquiere estructura y se convierte
en una representacién cuantificable de los procesos que operan
en el fondo.

El uso de distribuciones discretas como Bernoulli, Binomial o
Poisson se convierte en una herramienta clave para que docentes
y estudiantes comprendan el comportamiento del azar mas alla
de laintuicion. Estas distribuciones permiten reconocer patrones,
estimar variabilidad y anticipar situaciones que, sin un marco
probabilistico, parecerian simplemente caprichosas. Como afir-
ma James (2017), el valor pedagdgico de la probabilidad radica
en mostrar que la incertidumbre puede ser organizada y anali-
zada mediante modelos conceptuales que revelan la estructura
del fenédmeno. Bajo esta mirada, la ensefianza de la probabilidad
deja de centrarse Unicamente en cdlculos para transformarse en
una forma de leer la realidad, interpretarla con mayor nitidez y
tomar decisiones didacticas y profesionales mas informadas.

Distribuciones continuas: uniforme, normal, exponencial
Las distribuciones continuas constituyen uno de los pilares
centrales para el andlisis del azar en contextos donde la va-
riable aleatoria puede asumir infinitos valores dentro de un
intervalo real. Este tipo de distribuciones resulta fundamental
en el modelamiento moderno de datos, especialmente cuando
se estudian fendmenos que varian en el tiempo, procesos de
medicion, puntajes de desempefio, duraciones, rendimientos
o fluctuaciones de condiciones fisicas. A diferencia de las dis-
tribuciones discretas como la Bernoulli, binomial o Poisson; las
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distribuciones continuas no cuentan sucesos aislados, sino que
describen la densidad con la que la probabilidad se reparte
sobre un conjunto ininterrumpido de posibilidades.

De Veaux, Velleman y Bock (2019) destacan que la adopcién
de distribuciones continuas es esencial porque muchos feno6-
menos reales no pueden describirse adecuadamente mediante
conteos, sino mediante mediciones: un tiempo, una distancia, una
temperatura, una calificacion continua, un nivel de esfuerzo. En
estas situaciones, la naturaleza del fendmeno exige considerar
la variacion no como saltos discretos, sino como una progresion
suave en la que cada punto del intervalo es posible, aunque con
distinta probabilidad.

Comprender las distribuciones continuas implica reconocer
coémo se concentra la probabilidad en ciertas zonas del intervalo,
cdmo cambian las formas de una curva y como estos modelos
permiten identificar regularidades ocultas. Montgomery y Runger
(2018) subrayan que el andlisis de datos reales requiere, en pri-
mera instancia, distinguir si la variable responde a un modelo
continuo o discreto, pues de ello dependen los métodos de esti-
macion, inferencia y prediccion que pueden aplicarse.

Tres distribuciones continuas ocupan un lugar central en este
marco conceptual:la uniforme, la normaly la exponencial. Cada
una responde a una logica distinta de variacion y modela una
familia de fendmenos caracteristicos. Su estudio permite desa-
rrollar en los estudiantes una comprensiéon profunda del azar y
una mirada critica hacia los datos observados.

Distribucion Uniforme! igualdad de posibilidades en un intervalo
La distribucion uniforme continua en el intervalo [a,b] se caracte-
riza por asignar la misma probabilidad a cualquier subintervalo
deigual longitud dentro del rango. Esto significa que la densidad
de probabilidad es constante, una idea que Rice (2007) considera
fundamental para iniciar el recorrido conceptual hacia modelos
continuos mds elaborados.

1

Su funcidon de densidad es: f<:c> = 2 ,a<z<b
—a

y su probabilidad acumulada crece de manera lineal:

xr—a
F =
(o) =i

A nivel conceptual, la distribucién uniforme es clave porque
introduce la idea de “densidad constante”, un principio que apa-
rece mas adelante en modelos de simulacién, procesos aleatorios
y algoritmos de generacidn de nUmeros pseudoaleatorios.
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Caso de estudio: Seleccidon aleatoria de intervalos para prue-
bas de carga en un servidor educativo

En una universidad que trabaja con una plataforma virtual para
educacion a distancia, el equipo de ingenieria necesita realizar
pruebas de carga para evaluar la resistencia del servidor en di-
ferentes momentos del dia. Para evitar introducir sesgos como
realizar pruebas solo en horas de baja actividad; se decide que
el instante exacto en que se ejecutard cada prueba debe ser
completamente aleatorio dentro de un intervalo de diez horas
(8:00 a18:00).

El equipo define que cualquier minuto del intervalo es igual-
mente probable, sin preferir momentos de mayor uso o descan-
so del servidor. Bajo este supuesto, el tiempo de inicio de cada
prueba puede modelarse mediante una distribucion uniforme
continua en el intervalo [0,600] minutos.

De acuerdo con Rice (2007), la distribucidn uniforme es ade-
cuada cuando se parte de un principio de equidad o de igno-
rancia total sobre qué valor serd mas probable, y proporciona
una base conceptual sélida para introducir la idea de densidad
constante en variables continuas. Ademas, Richard De Veaux,
Velleman y Bock (2019) recuerdan que este tipo de modelos
ayuda a evitar patrones involuntarios que distorsionan un andlisis
experimental.

Preguntas que el equipo desea responder

¢.Cudl es la probabilidad de que una prueba ocurra entre
las 11:00 y las 11:307?

¢Con qué frecuencia las pruebas podrian coincidir con el
horario de clase virtual sin ser programadas asi?

. Qué tan dispersos se distribuyen los tiempos de inicio
cuando la asignacién es realmente uniforme?

La simulaciéon (Figura 16) confirma la idea de que los tiempos
de inicio de las pruebas se comportan como una distribucion
uniforme en [0, 600] minutos (de 8:00 a 18:00). El histograma
es prdcticamente plano: en todos los tramos del eje horizontal
hay frecuencias similares, lo que indica que ningun momento del
intervalo es claramente mds frecuente que otro. Las descriptivas
numéricas apuntan en la misma direccién: la media es = 298.5
minutos y la mediana =~ 296.7, ambas muy cercanas al centro
tedrico del intervalo (300 minutos). La desviacion tipica = 172
coincide con el valor esperado para una uniforme [0, 6007, y
los valores minimo y maximo se aproximan bastante a O y 600,
como cabria esperar en una simulacidn grande.

Los dos valores de probabilidad que aparecen (2 0.0485 y ~
0.1976) responden a las preguntas del equipo: la primera es la
probabilidad estimada de que una prueba caiga entre las 11:00
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y las 11:30 (unos 30 minutos dentro de las 10 horas totales), y la
segunda es la probabilidad de que coincida con la franja de clase
virtual considerada (aprox. 20 % del intervalo total). En resumen,
estos resultados muestran que el procedimiento de asignacion
aleatoria logra lo que se buscaba: las pruebas se distribuyen de
forma equitativa a lo largo del dia, sin concentrarse en horas de
mayor o menor actividad, y las probabilidades de coincidir con
intervalos especificos dependen Unicamente de la longitud de
esos intervalos, no de un sesgo del sistema.

Figura 16.
Distribucion simulada de los tiempos de inicio de las pruebas de car-
ga en un servidor educativo
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Nota. El histograma muestra la distribucién de 10 000 tiempos de inicio ge-
nerados bajo una distribucién uniforme continua en el intervalo de 0 a 600
minutos, equivalente al periodo comprendido entre las 8:00 y las 18:00.
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Este ejercicio ofrece una oportunidad valiosa para que los
estudiantes comprendan cémo una distribucién uniforme per-
mite modelar situaciones donde todas las posibilidades tienen
la misma probabilidad. Al simular miles de tiempos de inicio y
observar que el histograma se mantiene practicamente plano,
se hace evidente que no existe un “momento privilegiado” den-
tro del intervalo, lo que ayuda a romper ideas intuitivas pero
erréneas sobre la aleatoriedad. Ademas, al calcular probabili-
dades asociadas a tramos especificos del dia, los estudiantes
pueden apreciar que estas dependen Unicamente de la longitud
del intervalo considerado, y no de supuestos subjetivos sobre el
comportamiento del sistema. En resumen, la actividad muestra
codmo la simulacién en Ry jamovi se convierte en una herramien-
ta didactica poderosa: permite visualizar conceptos abstractos,
contrastar expectativas con resultados empiricos y fortalecer
la comprensién de la probabilidad como modelo para describir
fendmenos reales

La distribucion normal: variacion alrededor de un centro
La distribucion normal es quizd la distribucion continua mas
influyente en estadistica y en la ensefianza del andlisis de da-
tos. Su cardacter central proviene de su capacidad para modelar
fendmenos donde los valores tienden a agruparse alrededor
de una media, y donde las desviaciones extremas son cada vez
menos frecuentes.

Definida por su media by desviacién estdndaro, su densidad es:

1 (x=)2
flx] =——e 2?

\/ 200012

Esta férmula representa una curva simétrica con forma de
campana. La mayor parte de la probabilidad se concentra en
el intervalo h£0 /, y casi toda enk £ 30, Esto explica la conocida
“regla empirica” del 68-95-99.7 %.

Sequn De Veaux et al. (2019), la normal no solo describe nume-
rosos fendmenos naturales como estaturas, errores de medicién
o variaciones fisioldgicas; sino que también sirve como base para
procedimientos inferenciales clasicos.

Sin embargo, Montgomery y Runger (2018) destacan que su
poder explicativo no depende tanto de su forma, sino del Teorema
Central del Limite (TCL). Este teorema establece que el prome-
dio de muchas variables independientes tiende a distribuirse
normalmente, incluso cuando las variables originales no lo son.
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Por ello:

* el puntaje promedio de una clase,

* eltiempo promedio de ejecuciéon de un algoritmo,

* la produccion diaria promedio de una mdaquina,

tienden a ajustarse a una normal.

Caso de estudio: Variabilidad de los puntajes en una prueba
estandarizada de razonamiento matemadtico

En un colegio con programas de evaluacién continua, los
docentes aplican una prueba estandarizada que mide razo-
namiento matemdtico en estudiantes de décimo afio. Los re-
sultados, al ser analizados, muestran una clara concentraciéon
alrededor de 70 puntos sobre 100, con simetria ligera y pocas
notas extremadamente bajas o altas.

El equipo académico decide entonces modelar la distribu-
cion de los puntajes mediante una distribucion normal con
media aproximadak=70 y desviacion estandaroc=38.

Segun De Veaux, Velleman y Bock (2019), este tipo de pa-
tron es tipico en muchos fendmenos educativos, porque el
rendimiento surge de multiples factores que actUan de manera
acumulativa y cuyo promedio tiende naturalmente a formar la
conocida “curva de campana”. Montgomery y Runger (2018)
destacan que esta reqgularidad estd amparada por el Teorema
Central del Limite, que explica por qué la normal aparece in-
cluso cuando las variables individuales no siguen una distri-
bucion normal.

Preguntas que los docentes desean responder

+ ¢Qué porcentaje de estudiantes podria esperarse dentro
del rango “esperado” entre 62 y 78 puntos?

+ ¢Cudntos estudiantes podrian considerarse con desem-
pefio inusualmente alto (percentil 95 o superior)?

+ ¢Qué tan extremo es un puntaje de 507 ;Debe interpre-
tarse como un caso aislado o como sefial de dificultades
sistematicas?

La Figura 17 muestra la distribucion simulada de los pun-
tajes de 120 estudiantes en una prueba estandarizada de ra-
zonamiento matematico. La forma general del histograma,
acompafiada de la curva normal tedrica N(70, 8), permite
aproximarnos a las tres inquietudes que el equipo docente
desea resolver. La concentracion de barras alrededor de 70,
con disminucién progresiva hacia ambos extremos, sugiere que
la mayor parte del grupo se ubica en un rango de desempe-
fio tipico, mientras que solo unos pocos estudiantes alcanzan
resultados particularmente altos o muy bajos.
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Figura 17.
Distribucion simulada de puntajes en una prueba estandarizada de
razonamiento matemdtico (n =120 ).
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Nota. La figura muestra una simulacién basada en un modelo de distribucién
normal con media 70 y desviacién estdndar 8, que representa el comporta-
miento esperado de los puntajes en una prueba estandarizada.

1. :Qué porcentaje de estudiantes podria esperarse dentro

del rango entre 62 y 78 puntos?

Visualmente, la mayor densidad de barras se concentra jus-
tamente entre 62 y 78 puntos, lo que coincide con el tramo cen-
tral de la curva de distribucion. Este intervalo abarca el sector
donde la campana alcanza su forma mas ancha, lo que indica
una probabilidad elevada de que los puntajes se ubiquen en ese
rango. La simulacién confirma esta lectura: aproximadamente
dos tercios del grupo se sitUan en ese intervalo, dato que armo-
niza con la regla empirica de la normal, segun la cual alrededor
del 68 % de los valores se encuentran dentro de una desviacién
estandar de la media.

2. ;Cudntos estudiantes presentan un desempefo inusual-

mente alto (percentil 95 o superior)?

En el extremo derecho de la distribucién se observa una pre-
sencia escasa de barras, lo que sefiala que solo una proporcion
muy pequefia de estudiantes alcanza puntajes superiores a 83,
valor que corresponde al percentil 95 del modelo tedrico. La simu-
lacion sugiere que, en un grupo de 120 estudiantes, es esperable
encontrar entre 5y 6 casos con un rendimiento excepcionalmente
alto. La poca densidad en ese sector del histograma confirma
gue se trata de resultados estadisticamente raros y pedagdgica-
mente significativos, Utiles para identificar logros sobresalientes.
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3. ¢Qué tan extremo es un puntaje de 50? ;Corresponde a un

caso aislado o advierte problemas mds profundos?

Al observar el extremo izquierdo de la figura, se nota que los
puntajes muy bajos (cercanos a 50) prdcticamente no aparecen.
Esa escasez se corresponde con la probabilidad tedrica: menos
del 1 % de los estudiantes deberia obtener un puntaje igual o
inferior a 50. En consecuencia, un puntaje de esa magnitud se
interpreta como un valor atipico, es decir, una observaciéon aislada
que se aleja del patrén general del grupo. Por si solo, un resultado
tan extremo no implica necesariamente un problema sistémico,
pero siinvita a analizar de manera individual las condiciones del
estudiante, la pertinencia de las tareas evaluadas o la presencia
de factores que hayan afectado su desempefio.

En resumen, la simulacién permite a los docentes visualizar
el patrén esperado de rendimiento y, al mismo tiempo, situar
cada pregunta en un contexto estadistico claro. El rango 62-78
funciona como referencia de normalidad, los valores superiores
al percentil 95 identifican desempefios particularmente eleva-
dos, y un puntaje de 50 constituye un caso inusual que merece
atencion individualizada. Estas interpretaciones respaldan deci-
siones pedagodgicas informadas y ayudan a comprender mejor
la variabilidad natural del aprendizaje en contextos reales.

Los resultados obtenidos en la simulacion permiten abrir una
discusion pedagdgica sobre cdmo comprender la variabilidad
del rendimiento estudiantil y como traducir estas evidencias en
decisiones mds justas y pertinentes al interior del aula. La forma
de la distribucién, dominada por una concentracién amplia al-
rededor del promedio y una presencia muy reducida de casos
extremos, nos recuerda que el rendimiento académico rara vez
puede explicarse desde un Unico factor. Mdas bien, emerge de una
combinacion compleja de condiciones individuales, experiencias
previas, formas de ensefanza, intereses, y apoyos disponibles.
Este reconocimiento no solo es estadistico sino profundamente
pedagodgico, porque invita a mirar al grupo como un conjunto
diverso, en el que las diferencias no deben ser leidas como fallas,
sino como puntos de partida distintos.

El hecho de que la mayoria de los estudiantes se concentre
entre 62 y 78 puntos sugiere que, para ellos, los contenidos y
exigencias de la prueba se encuentran dentro de un rango de
desafio razonable. Esta franja central, que retne aproximada-
mente a dos tercios del grupo, sirve como una referencia valiosa
para ajustar la ensefianza: indica qué habilidades estdn siendo
alcanzadas de manera generalizada y cudles podrian requerir
ampliacion, profundizacién o un trabajo mas contextualizado. En
este sentido, los puntajes “esperados” no deben asumirse como
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una meta cerrada, sino como un punto de equilibrio desde
donde impulsar procesos de mejora sin desatender la heteroge-
neidad de trayectorias.

Por otro lado, los estudiantes ubicados en el percentil 95 o
superior representan un segmento cuya presencia es estadisti-
camente pequefa, pero pedagdgicamente relevante. Su rendi-
miento sobresaliente no debe verse solo como un indicador de
excelencia individual, sino como una sefial para la institucién:
la necesidad de ofrecer retos adicionales, fortalecer itinerarios
diferenciados, promover proyectos de profundizacién y, sobre
todo, evitar que estos estudiantes queden desatendidos bajo la
idea errénea de que “ya dominan” todo lo necesario. La educa-
cion inclusiva también se expresa en la capacidad de ampliar los
limites para quienes avanzan a ritmos mas acelerados, sin que
ello implique desatender al resto del grupo.

Finalmente, la rareza de un puntaje de 50 abre una reflexidon
importante sobre las dificultades extremas. La estadistica mues-
tra que estos casos son poco frecuentes, pero su existencia de-
manda atencién cuidadosa. Un puntaje muy bajo puede res-
ponder a multiples causas: una comprension insuficiente de los
contenidos, ansiedad frente a la evaluacion, experiencias previas
de frustracién, o incluso barreras externas vinculadas al contex-
to familiar o social. Por ello, mas que etiquetar o atribuir déficit,
resulta necesario adoptar una mirada diagndéstica que considere
dimensiones emocionales, cognitivas y pedagdgicas. Cada caso
de este tipo constituye una invitacion a revisar no solo la trayec-
toria del estudiante, sino también la claridad de las instrucciones,
la adecuacién del instrumento evaluativo y la disponibilidad de
apoyos adicionales.

La distribucion exponencial: tiempos de espera y falta de
memoria
La distribucién exponencial pertenece a la familia de las distribu-
ciones de tiempos de espera. Modela la duracion entre eventos
sucesivos que ocurren de forma aleatoria e independiente, ca-
racteristica propia de sistemas que no poseen “historial”.
Su pardmetro es la tasa A

Su densidad es: f(x) =le X, x>0

La funcién de supervivencia es: P(X > x) =e ¥
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Wasserman (2010) subraya que la principal caracteristica de

la exponencial es su propiedad de falta de memoria:
PX>t+s|X>t)=P(X>s)

Esto significa que la probabilidad de esperar un tiempo adi-
cional no depende del tiempo ya transcurrido.

Ejemplos aplicados

1. Centros de soporte y sistemas de colas

Los tiempos entre llamadas en una mesa de ayuda suelen mo-
delarse mediante distribuciones exponenciales, especialmente
cuando el flujo es irregular e impredecible.

2. Ingenieria electrénica

Eltiempo entre fallas de componentes electronicos o sensores
puede aproximarse por una exponencial, especialmente cuando
se supone una tasa de falla constante.

3. Educacion digital

En plataformas educativas masivas, los intervalos entre ac-
cesos de estudiantes pueden ajustarse a distribuciones de tipo
exponencial, lo que permite planificar capacidad del servidor o
predecir picos de demanda.

Caso de estudio: Tiempos de espera entre llamadas en un
centro de soporte universitario

Un centro de soporte tecnoldgico de una universidad recibe
diariamente decenas de solicitudes de ayuda sobre platafor-
mas académicas, contrasefas, fallos de conectividad y uso de
software. Al analizar los tiempos entre llamadas consecutivas, el
equipo observa que los intervalos son variables, pero tienden a
ser cortos cuando hay mayor demanda.

Tras un andlisis exploratorio, detectan que los tiempos entre
llamadas se ajustan razonablemente a una distribucion expo-
nencial con pardmetro =0.2, lo que indica un promedio de cinco
minutos entre solicitudes.

Wasserman (2010) destaca que la distribucion exponencial
es la herramienta natural para modelar tiempos entre eventos
independientes en sistemas sin memoria, donde el tiempo ya
transcurrido no afecta la probabilidad del siguiente evento.

Preguntas que el area de soporte desea responder

+ ;Cudleslaprobabilidad de esperar mas de 10 minutos entre

una llamada y otra?

+ ¢Qué tan probable es recibir dos solicitudes con diferencia

de menos de un minuto cuando hay alta demanda?

+ ¢Cudlesladistribucion esperada de tiempos en horas pico

y qué implicaciones tiene para el nUmero de operadores
necesarios?
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La Figura 18 representa la simulacion de 300 intervalos entre
llamadas en un centro de soporte universitario, modelados me-
diante una distribucion exponencial con pardmetro A =02 Lo
forma caracteristica del histograma con barras altas cerca del
cero y una disminucién progresiva hacia la derecha, evidencia
que los tiempos de espera cortos son mucho mds frecuentes que
los intervalos largos. La curva tedrica superpuesta refuerza esta
lectura: a medida que transcurren mdas minutos desde la Ultima
lamada, la probabilidad de que llegue una nueva disminuye
rdpidamente.

Figura 18.
Simulacion de tiempos entre llamadas en un centro de soporte univer-
sitario (n = 300).

Simulacién de tiempos entre llamadas (n = 300)
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Nota. El histograma muestra 300 intervalos simulados entre llamadas segUn
una distribucion exponencial con pardmetro A= 0.2, equivalente a un tiempo
medio de cinco minutos entre solicitudes.

Al responder las preguntas se puede concluir:
1. Probabilidad de esperar mds de 10 minutos entre una lla-
mada y otra

La caida pronunciada de la curva y la escasez de barras mas
allad de los 10 minutos indican que los intervalos largos son poco
comunes. El cdlculo tedrico arroja una probabilidad aproximada
del 13 %, lo que coincide visualmente con la figura: existe la po-
sibilidad de que se presenten tiempos de espera prolongados,
pero no constituyen el comportamiento usual. Para el equipo de
soporte, esto significa que depender de estos lapsos tranquilos
para organizar el trabajo podria resultar arriesgado, pues ocu-
rren de manera esporadica.
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2. Probabilidad de recibir dos solicitudes con diferencia de

menos de un minuto

En el extremo izquierdo de la figura se observa una concen-
tracién notable de barras, todas agrupadas muy cerca del cero.
Este patron refleja que los tiempos muy cortos (intervalos me-
nores de un minuto) son relativamente frecuentes. El cdlculo de
la simulacién confirma esta tendencia: alrededor del 18 % de los
intervalos entre llamadas ocurre en menos de un minuto. Desde
una perspectiva operativa, esto implica que el sistema puede ex-
perimentar “picos sUbitos” de solicitudes que exigen una reacciéon
inmediata. Para un centro de soporte, esta realidad hace evidente
la necesidad de contar con suficiente. personal en momentos
de alta demanda o, en su defecto, mecanismos alternativos que
ayuden a absorber las solicitudes acumuladas.

3. Distribucion esperada en horas pico y su relacion con el

numero de operadores

La simulacion permite proyectar cudntas llamadas podrian
recibirse en periodos de mayor actividad. Con una tasa A= 0.2
por minuto, el modelo predice un promedio de 12 llamadas por
hora, aunque con variaciones. La grdfica, al mostrar que la pro-
babilidad de intervalos cortos es alta, sugiere que en franjas
especificas podrian acumularse varios requerimientos en poco
tiempo. Ademadas, la probabilidad de superar las 15 llamadas por
hora es cercana al 13 %, lo cual no es despreciable.

En términos practicos, estos resultados implican que un solo
operador tendria dificultades para mantener un flujo eficiente du-
rante las horas pico. La combinacion de muchos intervalos cortos
y la posibilidad de recibir multiples llamadas en rdpida sucesion
justifica la presencia de al menos dos operadores para garantizar
tiempos de respuesta adecuados y evitar congestiones.

En su resumen, la figura y los resultados analiticos revelan un
sistema donde predominan los intervalos breves, ocasionalmente
interrumpidos por lapsos mas largos. Este comportamiento, tipico
de la distribucion exponencial, ayuda a comprender la natura-
leza irregular de la demanda: aunque los promedios son Utiles,
la gestion operativa requiere anticipar escenarios de presion
inmediata. La simulacién se convierte asi en una herramienta
valiosa para dimensionar el equipo, planificar turnos y disefar
estrategias de respuesta que mantengan la calidad del servicio
incluso en momentos de alta demanda.

Apoyo diddctico: El recorrido por las distribuciones continua
uniforme, normal y exponencial permite comprender que cada
una de ellas ofrece una forma distinta de interpretar fenédmenos
reales donde los valores posibles no son discretos, sino parte de
un intervalo continuo. Desde una perspectiva didactica, reconocer
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las diferencias conceptuales entre estos modelos ayuda a que
los estudiantes desarrollen un pensamiento probabilistico mas
flexible y ajustado a la variedad de situaciones que pueden en-
contrarse en contextos académicos, cientificos y profesionales.

La distribucion uniforme introduce la idea de equidad: todos
los resultados dentro del intervalo tienen la misma probabilidad.
Su sencillez favorece que los estudiantes transiten de situaciones
discretas a continuas sin perder de vista la nocion fundamental
de probabilidad. Es un punto de partida ideal para explorar co6mo
se comportan los valores cuando no existe preferencia por ningun
resultado especifico y cémo se distribuyen de manera homogé-
nea en un rango determinado.

La distribucién normal, por su parte, incorpora la nocién de
concentracién alrededor de un valor central. Su forma de “cam-
pana” no solo aparece en los libros de estadistica, sino que se
manifiesta en una gran cantidad de fenémenos cotidianos: apren-
dizajes, mediciones bioldgicas, desempefio académico, variacio-
nes naturales, entre otros. Desde la ensefianza, la normal permite
discutir ideas clave como el comportamiento de la variabilidad,
el papel del promedio y la importancia de los desvios respecto
a ese centro. Mdas aun, invita a los estudiantes a leer datos desde
una mirada integral, entendiendo que la mayoria de valores se
agrupan alrededor del centro y que los casos extremos, aunque
posibles, ocurren con menor frecuencia.

Finalmente, la distribucion exponencial aporta un modelo ade-
cuado para fendmenos en los que se espera que los eventos ocu-
rran de manera repentina y sin memoria. Su cardcter asimétrico
ayuda a los estudiantes a diferenciar situaciones donde el tiempo
entre eventos tiene un comportamiento decreciente: muchos
intervalos cortos y muy pocos intervalos largos. Este enfoque es
especialmente Util para interpretar procesos dindmicos, como
tiempos de espera, flujos de llamadas o llegadas a un sistema,
en los que la incertidumbre se expresa de forma distinta a la
simetria de la normal.

En conjunto, el estudio de estas tres distribuciones no solo
amplia el repertorio de modelos disponibles, sino que permite
comparar estructuras, formas, niveles de concentracién y signi-
ficados probabilisticos. A nivel didactico, este contraste favorece
una comprensiéon mas profunda de la probabilidad continua,
pues permite que los estudiantes reconozcan que cada modelo
responde a una loégica particular y se ajusta mejor a ciertos tipos
de fendmenos. Mas aun, invita a pensar la estadistica como un
lenguaje que describe comportamientos diversos,y no como un
conjunto rigido de férmulas.
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Sintesis conceptual y diddctica: hacia una comprension pro-
funda de las distribuciones y la modelacion estadistica

El estudio de las variables aleatorias, sus distribuciones y los mo-
delos que permiten describir fendmenos reales constituye un eje
fundamental dentro de la educaciéon estadistica contempordnea.
A lo largo de este capitulo se han presentado distintos tipos de
distribuciones cada una con sus propiedades particulares, pero
todas relacionadas por la necesidad de comprender la variabi-
lidad inherente a los datos y la manera en que los modelos per-
miten interpretarla y anticiparla. Este epigrafe final tiene como
proposito integrar los conceptos estudiados, ofrecer una lectura
pedagdgica articulada y mostrar coémo la modelacion sirve como
puente entre la teoria y los problemas reales que docentes y
estudiantes enfrentan en el aula.

Tal como sefialan Bakker (2004) y Batanero (2001), aprender
estadistica no consiste simplemente en manipular férmulas o
memorizar definiciones, sino en desarrollar un pensamiento que
permita comprender patrones, incertidumbres y relaciones dentro
de los datos. Desde esta perspectiva, las distribuciones continuas
no se presentan como objetos estdticos, sino como herramientas
que ayudan a interpretar fendmenos que se expresan en térmi-
nos de densidad, probabilidad acumulada y comportamiento
global. Comprender su forma, sus pardmetros y su utilidad en
contextos prdcticos permite al estudiante construir un sentido
estadistico que se fortalece mediante la experiencia, la discusion
y la simulacién.

Uno de los aportes mas relevantes en educacién estadisti-
ca proviene del trabajo de Wild y Pfannkuch (1999), quienes
sostienen que el pensamiento estadistico implica reconocer la
necesidad de los datos, transitar entre modelos y realidad, y
comprender que toda inferencia lleva implicita una dosis de in-
certidumbre. En ese marco, la integracién de las distribuciones
continUa siendo un pilar formativo, pues obliga a los estudiantes
a observar la forma de los datos, analizar su dispersion, describir
su comportamiento tipico y explicar los casos excepcionales.
La ensefianza de las distribuciones es, en este sentido, una en-
seflanza sobre como pensar la variabilidad, cdmo razonarla y
coémo comunicarla.

Asimismo, autores como Borovcnik (2016) han sefialado que
el desarrollo de la alfabetizacion probabilistica requiere no solo
comprender modelos tedricos, sino también interpretar qué sig-
nifican en contextos donde la informacién incompleta y la incer-
tidumbre son parte del problema.
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Este enfoque permite que la estadistica deje de percibirse
como una disciplina rigida para convertirse en un terreno de ex-
ploracion conceptual donde modelos como la distribucién normal
o la exponencial se interpretan como aproximaciones Utiles, pero
no exactas, de fendmenos que observamos en el mundo real.

La incorporacion de simulaciones en este capitulo responde
precisamente a esta vision contempordanea de la ensefianza es-
tadistica: utilizar herramientas tecnolégicas no solo para calcular,
sino para experimentar y visualizar comportamientos. Ben-Zvi
(2000) destaca que el uso de software, graficos dindmicos y
herramientas de simulacion amplia la capacidad del estudiante
para comprender fendmenos que, de otro modo, resultan abs-
tractos o dificiles de representar mentalmente.

En consonancia con este enfoque, el objetivo de este epigrafe
es reunir los elementos fundamentales que permiten comprender
las distribuciones continuas desde una perspectiva conceptualy
pedagodgica. Esto incluye analizar el papel de los pardmetros y
los momentos, reconocer la importancia de la variabilidad en la
modelacion de situaciones reales, y reflexionar sobre como estas
ideas contribuyen al desarrollo del pensamiento estadistico y la
alfabetizacion necesaria para enfrentar problemas del mundo
contempordneo, tal como subrayan Moore (2010), Watson (2006)
y Pfannkuch (2019).

Parametros, momentos y significado pedagdgico de la forma
de una distribucion
Comprender una distribucién de probabilidad implica, ante todo,
leer su forma. Esa forma simétrica, sesgada, aplanada, concen-
trada o dispersa, no es solo una caracteristica visual, sino una
expresion de como se comportan los datos, qué valores tienden
a apdarecer con mayor frecuencia y cudles son menos proba-
bles. En educacion estadistica, ensefar a interpretar la forma de
una distribucion representa uno de los desafios mas relevantes,
tal como destacan Batanero (2001), Borovcnik (2016) y Watson
(2006), porque exige que el estudiante transite de observar da-
tos puntuales a comprender patrones agregados que resumen
un fendmeno.

Desde un punto de vista formal, la descripcion de una distribu-
cidén se basa en sus pardmetros y momentos. Los parametros,co-
mo la mediq, la varianza, la desviacion estdndar o los percentiles;
permiten identificar el comportamiento central y la medida de
dispersion. Los momentos aportan informacién adicional sobre
la forma: si la distribucion es simétrica o estdinclinada hacia un
lado, si presenta colas ligeras o pesadas, o si concentra la mayoria
de valores alrededor de la media.
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Sin embargo, reducir la ensefianza a la simple definicién de
estos conceptos seria insuficiente. Como sefialan Bakker (2004) y
Wild y Pfannkuch (1999), el desafio pedagdgico radica en ayudar
a los estudiantes a comprender lo que estas medidas significan
en los datos, y no solo cdmo se calculan. Por ejemplo, entender
gue una desviacion estandar pequefia implica que la mayoria
de los valores estan cerca del promedio, mientras que una des-
viacién grande revela heterogeneidad, diversidad o variabilidad
significativa.

Esta comprension se vuelve especialmente importante cuando
se comparan distribuciones. La comparacién no consiste Uni-
camente en determinar cudl media es mayor, sino en analizar
coémo cambia la forma globaly qué implicaciones tiene para in-
terpretar el fenémeno. Tal como explican Moore (2010) y Stewart
(2013), aprender estadistica implica moverse constantemente
entre representaciones: de los datos individuales al histograma,
del histograma a los pardmetros, y de estos a una interpretacién
contextualizada.

a) La media y la mediana como indicadores del comporta-
miento central

El primer momento de una distribucion es su media. Desde
una perspectiva estadistica, representa el punto de equilibrio
del conjunto de datos, aquello que resume de forma sintética
el comportamiento tipico. Sin embargo, desde la educacion
estadistica y siguiendo a Watson (2006), es crucial ensefar
que la media no es necesariamente el valor mas frecuente, ni
siempre el mas representativo. Los estudiantes suelen con-
fundir “promedio” con “valor tipico”, lo que exige actividades
donde la media se compare con la moda, con la mediana o
con el rango intercuartilico.

La mediana, por su parte, aporta un elemento de interpre-
tacién muy valioso cuando la distribucién es asimétrica. En la
distribuciéon normal media y mediana coinciden, pero en la
distribucion exponencial la mediana es siempre menor que la
media debido a la presencia de colas largas hacia la derecha.
Esta diferencia es una oportunidad diddactica para discutir con
los estudiantes la importancia de la forma en la interpretacion
de los pardmetros.

Los trabajos de Biehler (2018) subrayan que ensefiar variabi-
lidad implica ensefar a interpretar el “tipico” no como un valor
Unico, sino como un rango razonable de resultados. De ahi que
la media cobre verdadero sentido cuando se acompafia de una
medida de dispersion, como la desviacion estandar.
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b) La varianza y la desviacion estandar como medidas de
variabilidad

El segundo momento de una distribucidn describe su disper-
sion. La varianza y la desviacion estandar permiten comprender
qué tan concentrados o dispersos estdn los valores con respecto
a la media. Ahora bien, desde la diddactica, explicar la varianza
puede ser una tarea compleja, pues el estudiante tiene dificul-
tades para interpretar el uso del cuadrado en su cdlculo y para
visualizar qué significa en términos de datos reales.

En cambio, la desviacion estandar al estar en las mismas uni-
dades que la variable original se vuelve una herramienta mucho
mds intuitiva. Moore (2010) insiste en que su ensefianza debe
apoyarse en ejemplos visuales, graficos y simulaciones que per-
mitan observar cémo aumenta o disminuye la dispersion en el
histograma cuando la desviacion cambia. Una actividad didac-
tica habitual consiste en tomar una muestra y generar nuevas
simulaciones con diferentes grados de variabilidad, de modo que
los estudiantes puedan ver cémo cambia la forma de la distribu-
cién en funcion de la dispersion.

En el caso de la distribucion normal, la relacion entre la des-
viacion estandar y las dreas bajo la curva constituye un recurso
pedagodgico muy potente. Permite comprender por qué valores
como 62 o 78 puntos en el caso de los resultados de la prueba
simulada representan desempefios comunes, mientras que pun-
tajes como 83 0 50 son menos frecuentes o incluso excepciona-
les. Esto conecta directamente la medida de dispersion con la
interpretacion contextual: la estadistica deja de ser un nUmero
y se convierte en un argumento.

argumento.

c) Asimetria, colas y significado contextual

La asimetria es quizduno de los elementos menos abordados
en los cursos iniciales, a pesar de su importancia para la inter-
pretacion de muchas distribuciones reales. Tal como recuerda
Borovcnik (2016), la mayor parte de los fendmenos aleatorios
no presentan simetria perfecta, sino que muestran sesgos mas o
menos pronunciados. En la practica, fendmenos como tiempos de
espera, rendimiento en tareas complejas o ingresos econdmicos
tienden a presentar colas largas hacia la derecha, como ocurre
con la distribucion exponencial que se utilizd en la simulacién
de llamadas.

d) Curtosis y concentracion

La curtosis analiza si una distribucion presenta colas mdas pe-
sadas o mds ligeras que la normal. Aunque puede parecer un
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concepto avanzado, resulta Util en situaciones donde se necesita
identificar fendmenos con alta presencia de valores extremos.
En contextos educativos, este parametro permite discutir sobre
dispersiones irregulares, situaciones de riesgo o variabilidad muy
alta, elementos que Watson (2006) considera fundamentales
para que el estudiante comprenda la incertidumbre inherente a
los datos reales.

Caso de estudio: Interpretacion de pardmetros, momentos y
forma en los resultados de una prueba diagndstica

Contexto general

Unainstitucién educativa ha iniciado un programa de refuerzo
en Matematica para estudiantes de primer curso de bachillerato.
Como punto de partida, se aplicé una prueba diagnoéstica de 40
items (cada uno vale 1punto) a 150 estudiantes. El puntaje total de
cada estudiante puede variar entre O y 40 puntos y se almacena
en una base de datos junto con un identificador de estudiante.

Los docentes no quieren limitarse a obtener un promedio ge-
neral. Su objetivo es:

* Describir como se distribuyen los puntajes en el grupo (ten-

dencia central y dispersiéon).

* Analizar qué tan homogénea es la cohorte (variabilidad de
los resultados).

* |dentificar si la distribucidn presenta asimetria (mas estu-
diantes con puntajes bajos o altos).

* Explorar niveles de desempefio (bajo, medio, alto) para
orientar mejor el plan de refuerzo.

* Extraer implicaciones diddacticas: inecesitan trabajar habi-
lidades bdsicas, resolucidon de problemas, comprensién de
funciones, etc.?

La distribucién presentada en la Figura 19 permite observar
con bastante claridad cémo se comportarian los puntajes de un
grupo de estudiantes si enfrentaran una prueba diagndstica de
40 preguntas bajo condiciones promedio.

El histograma muestra una forma aproximadamente simétrica,
con una mayor concentracion de estudiantes alrededor de los
22 puntos, valor que coincide con la media calculada mediante
la simulacién.

Este comportamiento sugiere que la mayoria del grupo presen-
ta un nivel de dominio intermedio sobre los contenidos evaluados.
Es decir, una buena parte de los estudiantes logra responder
correctamente un poco mas de la mitad de los items, mientras
que solo unos pocos alcanzan valores muy altos o muy bajos. La
presencia de una ligera dispersion hacia la derecha indica que
existen estudiantes que obtienen puntuaciones mas elevadas,
aungue representan un porcentaje reducido.
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Figura 19.
Distribucion de puntajes simulados en la prueba diagnoéstica de
Matemdtica
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Nota. La figura muestra la distribucion de los puntajes simulados de 150
estudiantes en una prueba diagnéstica de 40 items. Los datos se generaron
mediante una distribucién binomial con pardmetros n=40 y p=0,55.

Elandlisis también muestra que los puntajes extremos tanto muy
bajos como muy altos, son relativamente poco frecuentes. Esto es un
indicio de que, en general, el grupo no se encuentra polarizado, sino
que comparte un nivel de desempefo relativamente homogéneo.

Desde una perspectiva pedagdgica, este tipo de distribuciéon
resulta Util porque permite anticipar el nivel de apoyo que sera
necesario brindar al inicio del curso: un promedio moderado,
variabilidad controlada y pocos valores atipicos suelen asociarse
con grupos que requieren refuerzo puntual, pero no necesaria-
mente intervenciones intensivas.

Modelacion de fendmenos reales. variabilidad, patrones y prediccion
La estadistica se vuelve verdaderamente significativa cuando per-
mite comprender fendmenos reales. En el aula, esto implica ayudar
a los estudiantes a interpretar variabilidad, identificar patrones y
utilizar modelos para anticipar comportamientos posibles.

En coherencia con este enfoque, Biehler (2018) sostiene que
la modelacion estadistica representa un pilar para el desarrollo
del pensamiento estadistico porque permite que los estudiantes
pasen de describir datos a razonar con ellos y a tomar decisiones
fundamentadas en la incertidumbre.
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Este subepigrafe busca mostrar como las distribuciones continuas
funcionan como los parametros permiten realizar inferencias y predic-
ciones razonables. Através de los casos simulados trabajados previa-
mente, se demuestra que modelar no consiste en replicar la realidad
de manera exacta, sino en construir una representacion que ilumine
relaciones relevantes y ayude a responder preguntas pertinentes.

a) De los datos al modelo: interpretar la variabilidad como
rasgo del fendmeno

En educacién estadistica, uno de los desafios mas complejos
es lograr que los estudiantes no interpreten la variabilidad como
“error” o “ruido”, sino como una caracteristica natural del feno-
meno que se estudia. Watson (2006) y Pfannkuch (2019) enfati-
zan que desarrollar una mirada estadistica implica reconocer que
los datos reales rara vez siguen un patrdon perfecto y que esta
imperfeccion es justamente lo que hace necesaria la modelacion.

El caso de los puntajes en la prueba estandarizada es un
ejemplo claro. La variabilidad entre estudiantes no es un pro-
blema a corregir: es un rasgo esperado, producto de multiples
factores cognitivos, emocionales, socioculturales y pedagod-
gicos. Tal como explica DeVeaux, Velleman y Bock (2019), los
rendimientos suelen agruparse alrededor de un nivel promedio,
generando una forma aproximadamente simétrica que se ase-
meja a la curva normal. Esto no significa que la poblacion esté
“perfectamente normalizada”, sino que la normal es un modelo
adecuado para representar tendencias globales cuando los
factores que influyen son variados e independientes.

Al construir la simulacién en Ry en Jamovi y observar la
curva superpuesta, los estudiantes pueden comprender vi-
sualmente coémo el modelo refleja patrones reales: concentra-
cion alrededor del promedio, dispersion moderada, presencia
ocasional de puntajes altos y baja probabilidad de valores
extremos. En términos pedagodgicos, esta vinculacién entre
contexto, datos y modelo es lo que permite que la estadistica
deje de ser un conjunto de cdlculos y se convierta en una forma
de interpretar fendmenos.

b) Distribuciones para fendmenos distintos: normalidad, uni-
formidad y tiempos exponenciales
Cada distribucién continua describe una estructura interna dis-
tinta. Ensefar esta diferencia tiene implicaciones directas tanto
en la comprension conceptual como en la capacidad de aplicar
el modelo adecuado a cada caso. Cada distribucidon continua
describe una estructura interna distinta. Ensefiar esta diferencia
tiene implicaciones directas tanto en la comprensién conceptual
como en la capacidad de aplicar el modelo adecuado a cada caso.
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La distribucion normal: concentracion, simetria y comporta-
miento tipico

La distribucion normal aparece en procesos donde intervienen
multiples factores pequefios que actUan de manera acumulativa.
Montgomery y Runger (2018) explican que esta regularidad estd
respaldada por el Teorema Central del Limite, lo que convierte a
la normal en un modelo robusto para describir fenédmenos como
calificaciones, mediciones bioldgicas, errores instrumentales y
desempefios humanos. La simulacion de los 120 puntajes muestra
precisamente esta estructura: valores concentrados entre 62 y
78, simetria ligera y casos extremos poco frecuentes.

La ensefanza debe poner énfasis en que la normal no es un
“molde perfecto”, sino una herramienta para describir tendencias.
Como sugiere Moore (2010), los estudiantes deben aprender @
identificar cuando la forma observada se acerca a una normal y
cudndo no, para decidir si es un modelo pertinente.

La distribucion uniforme: equidad y ausencia de concentracion

La distribucién uniforme permite modelar fendmenos donde
todos los valores dentro de un intervalo son igualmente probables.
Aunque menos frecuente en aplicaciones reales, es fundamental
desde una perspectiva diddactica porque ayuda a introducir la
idea de densidad constante y a contrastarla con distribuciones
mas complejas. Stewart (2013) sostiene que su valor pedagdgico
radica en mostrar una forma ideal que raramente se observa en
la prdactica, pero que permite comprender principios fundamen-
tales sobre intervalos, continuidad y probabilidad.

Casos reales como la seleccion de nUmeros pseudoaleato-
rios, la simulacion de ubicaciones geogrdficas o la asignacién
de horarios pueden ilustrar este comportamiento. Cuando se
simulan datos uniformes en R o Jamovi, la ausencia de picos o
concentraciones facilita la discusion sobre qué significa “igual
probabilidad” en contextos continuos.

La distribucion exponencial: tiempos de espera y eventos
sin memoria

El caso de los intervalos entre llamadas en un centro de sopor-
te universitario es un ejemplo excelente de coémo la distribuciéon
exponencial describe fendmenos donde predominan los inter-
valos cortos, pero existen probabilidades no despreciables de
esperas mds largas. Wasserman (2010) resalta que la exponencial
se utiliza para modelar tiempos entre eventos independientes
en sistemas sin memoria, fendmeno que no puede ser descrito
adecuadamente con una distribucion normal.

La simulacién realizada en R revela una caida pronunciada en
los primeros minutos y una cola larga hacia la derecha, lo que
permite responder preguntas como:
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+ (Cudleslaprobabilidad de esperar mas de 10 minutos entre
llamadas?
+ ¢Quétan probable es que dos llamadas lleguen con menos
de 1 minuto de diferencia?
+ ¢Como impacta esta variabilidad en el niUmero de opera-
dores necesarios?
Este tipo de andlisis es clave para mostrar que la estadistica
no solo describe, sino que ayuda a tomar decisiones en escena-
rios reales.

c) Prediccion razonada: del modelo a la toma de decisiones

La estadistica no predice valores exactos; predice comporta-
mientos probables. James (2017) insiste en que la ensefianza de
la incertidumbre debe incluir la idea de “prediccidn razonada”: el
modelo no garantiza lo que sucederd, pero orienta lo que puede
esperarse.

En el caso de la distribucién normal de puntajes, el modelo
permite estimar la proporcion de estudiantes que probablemente
se ubiquen en el rango esperado (62-78) y detectar casos ati-
picos que requieren atenciéon pedagdgica. Esto es crucial para
la toma de decisiones educativas: identificar brechas, planifi-
car refuerzos, valorar desempefios atipicos o reconocer logros
excepcionales.

En el caso de la distribucién exponencial, la prediccién per-
mite anticipar picos de demanda y ajustar recursos: nUmero de
operadores, distribucion de turnos, tiempos de respuesta. Efron
y Tibshirani (1993) han contribuido significativamente a este
enfoque a través del bootstrapping y la simulacién como méto-
dos para generar intervalos de confianza en situaciones donde
la teoria tradicional resulta insuficiente. Integrar estas técnicas
ayuda a los estudiantes a comprender que los modelos estadis-
ticos no solo describen, sino que también permiten anticipar lo
gue podria ocurrir bajo distintas condiciones.

Autores como Hastie et al. (2009) y James et al. (2021) desta-
can que la prediccion estadistica se fortalece cuando se combi-
na la teoria con herramientas computacionales. En el aula, esto
implica promover experiencias donde los estudiantes simulen,
modifiquen pardmetros y observen cémo los modelos responden,
permitiendo un aprendizaje mas profundo y significativo.

Caso de estudio: Prediccion de la demanda de energia eléc-
trica en un campus universitario

Contexto general

Un campus universitario de tamafio medio ha comenzado a
experimentar aumentos inesperados en su consumo diario de
energia eléctrica. Estos cambios dificultan la gestion operativa
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el drea administrativa debe anticipar gastos, programar man-
tenimientos, prevenir sobrecargas en los edificios y garantizar
que la infraestructura responda adecuadamente a la demanda
del estudiantado y del personal docente.

Para comprender mejor el comportamiento del consumo, la
institucion implementa un sistema de monitoreo que registra me-
diciones horarias durante un trimestre completo. Con esta informa-
cion, el equipo técnico busca identificar patrones, reconocer fuen-
tes de variabilidad y construir modelos predictivos que permitan
tomar decisiones mas eficientes y anticipar situaciones criticas.

El propdsito central del estudio es modelar el comportamiento
del consumo energético, explicar sus fluctuaciones y generar
pronodsticos confiables para su gestion institucional.

Datos disponibles

Se recopilaron mediciones horarias durante 90 dias consecu-
tivos. Las variables registradas fueron:

* Hora del dia (0-23)

+ Consumo eléctrico (kWh) por edificio

* Condiciones climdticas (temperatura y nubosidad)

* Tipo dejornada (laboral, fin de semana o feriado)

*+ Eventos especiales (seminarios, congresos, actividades

masivas)

Preguntas que el equipo desea responder

El andlisis se orienta a resolver interrogantes clave que permi-
tan comprender y anticipar el comportamiento energético del
campus. Entre las principales preguntas se encuentran:

1.;:;Cbmo variaelconsumo de energia a lo largo del diay qué

tan estable es este comportamiento?

2. iExisten diferencias significativas entre el consumo regis-

trado en dias laborales y en fines de semana?

3. ¢En qué medida la temperatura contribuye al incremento

o disminucion del consumo diario?

4. sCudles son los patrones horarios o semanales mas caracte-

risticos y cudles representan los picos de mayor demanda?

5. ;Qué escenarios de consumo pueden anticiparse ante cam-

bios en la temperatura o ante la realizacion de eventos
institucionales?

6. :Qué decisiones operativas o presupuestarias pueden to-

marse a partir de las predicciones obtenidas?

La figura 20 evidencia que el consumo energético del campus
universitario no se mantiene constante a lo largo del dia, sino
que sigue un patrén claramente diferenciado segun el nivel de
actividad institucional. Durante la madrugada y las primeras ho-
ras de la mafana, el consumo promedio se mantiene en valores
cercanos a 40-43 kWh, lo que coincide con periodos de baja
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ocupacion y uso limitado de instalaciones. A partir de las 8:00,
se observa un ascenso pronunciado que alcanza niveles entre
58 y 60 kWh, representando el inicio de la jornada académica y
el encendido de equipos, oficinas y laboratorios.

Figura 20.
Patron diario del consumo energético promedio en el campus
universitario

Fatron diario del consumo en ol campus

" i LY B
] "] anw®
| o
" 2
2 = - .
3
'
n ¥
0} . .
S l"' L - .
0 b 10 1h .

Fir s il S E

Nota. La figura muestra la variacién del consumo medio de energia eléctrica
(kWh) a lo largo de las 24 horas del dia, calculado a partir del registro hora-
rio de un trimestre académico.

El consumo llega a su punto mas alto entre las 11:00 y las 15:00,
donde se registran valores cercanos a 65 kWh, momento que
coincide con el mayor flujo de estudiantes y actividades opera-
tivas. Hacia las 17:00 el consumo desciende gradualmente hasta
situarse nuevamente en torno a los 40 kWwWh por la noche.

La figura 21 muestra de manera clara que el consumo energé-
tico diario presenta comportamientos distintos entre dias labo-
rales y fines de semana. En los dias laborales, los valores oscilan
aproximadamente entre 30 y 100 kWh, con una mediana cercana
a los 55-60 kWh, lo que indica una demanda sostenidamente
alta durante la actividad académica regular. La amplitud del
rango y la presencia de consumos elevados sugiere una mayor
variabilidad vinculada al uso intensivo de aulas, oficinas, equipos
eléctricos y circulacion constante de personas.

En los fines de semana, en cambio, el consumo se reduce de
forma notable: los valores se concentran entre 15 y 70 kWh, con
una mediana alrededor de los 35-40 kWh, reflejando una activi-
dad institucional mds baja y homogénea. La aparicién de algu-
nos puntos atipicos sobre los 70-80 kWh sugiere la realizaciéon
ocasional de eventos o actividades extraordinarias que elevan
temporalmente la demanda
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Figura 21.
Consumo energético en dias laborales y fines de semana
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Nota. La figura compara la distribucion del consumo diario de energia
(kWh) entre dias laborales y fines de semana.

La figura 21 evidencia que, aunque el consumo energético
horario presenta una amplia dispersién, existe una tendencia
general alincremento conforme la temperatura ambiente au-
menta. Para temperaturas entre 15 y 20 °C, los consumos ob-
servados suelen situarse entre 20 y 60 kWh, con varios puntos
qgue descienden incluso por debajo de los 20 kWh. A medida
que la temperatura alcanza valores intermedios, entre 22 y 28
°C, la nube de puntos se vuelve mds densa y los consumos se
concentran principalmente entre 40 y 80 kWh, lo que sugiere
una mayor demanda de equipos de ventilacion, climatizacion
o incremento de la actividad en el campus.

Figura 22.
Relacién entre la temperatura y el consumo energético en el
campus
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Nota. La figura muestra la relacién entre la temperatura ambiente (°C) y
el consumo energético horario (kWh).
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En elrango mds alto, por encima de 30 °C, se observan consu-
mos que superan con facilidad los 80 kWwh, llegando en algunos
casos a valores cercanos a los 100 kWh. La linea de tendencia
ascendente confirma que la relacién entre temperatura y consu-
Mo, aunque moderada, es positiva: temperaturas mas elevadas
tienden a vincularse con mayores niveles de gasto energético.
Este patron cuantitativo permite inferir que el clima puede con-
vertirse en un factor relevante para planificar la gestion de la
demanda, especialmente en jornadas de calor intenso.

La figura 22 revela que el consumo energético promedio va-
ria de manera notable a lo largo de la semana, lo que sugiere
la presencia de patrones asociados al ritmo de actividad del
campus. Los valores mas bajos se registran los domingos y los
s@bados, con promedios cercanos a 38 kWh, lo que coincide con
la reduccion natural de actividades académicas y administrativas
durante el fin de semana.

Figura 23.
Consumo medio de energia por dia de la semana en el campus
universitario
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Nota. La figura muestra el consumo promedio de energia (kWh) registrado
para cada dia de la semana durante el periodo de observacion.

En contraste, los dias laborables muestran consumos signifi-
cativamente superiores. Entre ellos, lunes, martes, miércoles y
jueves presentan valores muy similares, rondando los 55 kWwh,
lo que evidencia un comportamiento estable y elevado de la
demanda en la primera parte de la semana. El viernes, aunque
mantiene un promedio elevado (aproximadamente 58 kWh), se
ubica como uno de los dias con mayor consumo, posiblemente
debido al cierre de actividades semanales, el uso intensivo de
laboratorios o la concentracién de eventos institucionales.
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La figura 23 muestra un comportamiento horario del consumo
energético caracterizado por una marcada variabilidad, con os-
cilaciones frecuentes entre valores bajos cercanos a los 20-30
kWh y picos que superan los 90 kWh en distintos momentos del
periodo observado.

Figura 24.

Serie temporal del consumo horario de energia en el campus
universitario
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Nota. La figura presenta la evolucion del consumo de energia (kWh) registra-
da hora a hora durante el periodo analizado.

Este patron refleja la dindmica propia de un campus univer-
sitario, en el que la demanda eléctrica se incrementa en franjas
asociadas a actividades académicas, uso de laboratorios, encen-
dido de sistemas de climatizacién o eventos puntuales, mientras
disminuye en horarios de menor ocupacién. Aunque no se aprecia
una tendencia clara al alza o a la baja durante el periodo anali-
zado, si se observan ciclos recurrentes de aumento y disminucion
que sugieren comportamientos diarios relativamente estables,
influenciados por rutinas institucionales.

Desarrollo del pensamiento estadistico y lectura critica de la
incertidumbre

La ensefianza de la estadistica no puede reducirse a la transmi-
sién de formulas, métodos o procedimientos. Implica, ante todo,
desarrollar en los estudiantes una forma particular de pensar:
un pensamiento estadistico capaz de interpretar la incertidum-
bre, cuestionar patrones aparentes, reconocer la variabilidad
como un elemento inherente a los fendmenos reales y utilizar
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modelos probabilisticos de manera critica y contextualizada. Wild
y Pfannkuch (1999) fueron pioneros en describir este enfoque,
afirmando que el pensamiento estadistico se basa en cuatro com-
ponentes esenciales: la necesidad de los datos, el entendimiento
de la variabilidad, la construccion de modelos y la integracién
de estos modelos en el razonamiento empirico.

estos modelos en el razonamiento empirico.

En coherencia con esta vision, este subepigrafe se centra en
como el estudio de las distribuciones continuas contribuye al desa-
rrollo de una alfabetizacion estadistica profunda, critica y orienta-
da alatoma de decisiones. La meta no es solo que los estudiantes
sean capaces de identificar la forma de una distribucion, sino
que puedan interpretar su significado, evaluar su pertinencia y
emplearla para explicar y comprender fendmenos reales.

a) La importancia de la incertidumbre como objeto de
ensefanza

En la mayoria de los contextos educativos, los estudiantes
se familiarizan con la nocidén de error, pero no con la nocion de
variabilidad. Mientras que el error se percibe como algo que
debe evitarse o correqirse, la variabilidad debe ser comprendida
como una propiedad inherente de los fendmenos y un insumo
clave para el andlisis estadistico. Autores como Borovcnik (2016)
y Pfannkuch (2019) han destacado que la incertidumbre no debe
abordarse desde una perspectiva puramente matematica, sino
también desde una perspectiva epistemoldgica y didactica: ¢quée
implica que un fendbmeno sea incierto?, ipor qué no podemos
predecir un valor exacto?, ;qué significa hablar de probabilidades
en lugar de certezas?

Cuando los estudiantes trabajan con simulaciones como las
realizadas en este capitulo comienzan a observar que, incluso
bajo un mismo modelo, los resultados pueden variar notablemen-
te entre repeticiones. Esta experiencia es crucial para romper la
idea de que la estadistica proporciona respuestas deterministas.
Simular 300 tiempos entre llamadas con una distribucion ex-
ponencial produce siempre un patrén reconocible, pero nunca
idéntico. Estairregularidad dentro de una regularidad general es
una puerta de entrada privilegiada al pensamiento estadistico.

Bakker (2004) sostiene que este tipo de experiencias practicas
permite que los estudiantes desarrollen una sensibilidad hacia
la estructura del fendmeno: comprenden qué aspectos son mas
estables (como la forma general de la curva) y cudles son mas
fluctuantes (como los valores puntuales de cada simulacién).
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Esta capacidad de distinguir tendencias de ruido es una de las
competencias centrales de la alfabetizacion estadistica.

b) La simulacion como herramienta para visvalizar patrones
y consolidar conceptos

El uso de simulaciones ocupa un lugar cada vez mas central
en la educacion estadistica contempordanea. Ben-Zvi (2000) ha
mostrado que las herramientas tecnoldégicas permiten a los es-
tudiantes visualizar patrones que de otro modo permanecen
ocultos, manipular pardmetros en tiempo real y observar coémo
se altera la forma de la distribucién cuando cambia la media, la
desviacion estandar o el pardmetro 2. Esta interactividad trans-
forma la relacion con la estadistica: de una actividad abstracta
basada en procedimientos, a una actividad exploratoria que
promueve la indagacion y el descubrimiento.

En este capitulo, las simulaciones generadas en Jamovi y R
permitieron recrear:

* Una distribucion normal de puntajes, donde los estudian-
tes pudieron identificar un comportamiento concentrado
alrededor del promedio, observar la simetria y reconocer
la baja probabilidad de casos extremos;

* una distribucién exponencial de tiempos de espera, donde
se evidencié la presencia de muchos intervalos cortos y
pocos intervalos largos, reforzando el concepto de “falta
de memoria” del modelo;

* unadistribucion uniforme, Util para explicar estructuras sin
concentracion, como la seleccion aleatoria en un intervalo
continuo.

Estas experiencias no solo fortalecen la comprension con-
ceptual, sino que promueven en los estudiantes una actitud in-
terrogativa: ¢por qué la curva tiene esa forma?, jqué sucede si
cambio el pardmetro?, ;coémo interpretar las colas largas?, iquée
implican los casos raros para la toma de decisiones? Esta actitud
inquisitiva es un componente clave del pensamiento estadistico,
como sefalan James (2017) y Watson (2006).

c) Competencias de lectura critica: interpretar modelos sin
idolatrarlos

Un desafio importante en la ensefianza consiste en evitar que
los estudiantes atribuyan a los modelos un estatus absoluto. La
estadistica trabaja con aproximaciones, no con certezas. Efron
y Tibshirani (1993) recuerdan que todo modelo es una represen-
tacién parcial del fendmeno, no su réplica exacta.
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Por ello es esencial que los estudiantes desarrollen una lectura cri-
tica que les permita preguntarse si un modelo es adecuado, si los su-
puestos se cumplen y si los resultados se interpretan correctamente.

El caso de los puntajes simulados con una distribucién normal
ilustra esta necesidad. Aunque la distribucion normal fue un mo-
delo adecuado, no implica que todos los fendmenos educativos
presenten simetria o concentracion alrededor de un promedio.
Del mismo modo, la distribucién exponencial permitié modelar
razonablemente los tiempos entre llamadas, pero seria inapropia-
do utilizarla para describir fenédmenos donde existe dependencia
temporal o donde los eventos no son aleatorios.

La lectura critica también implica comprender las consecuen-
cias prdacticas del modelo. En el caso exponencial, por ejemplo,
la probabilidad de intervalos menores de un minuto tiene im-
plicaciones directas para la gestién de personal: es necesario
considerar momentos de alta carga y evitar decisiones basadas
Unicamente en promedios. Tal como advierten James et al. (2021,
la estadistica aplicada requiere interpretar los modelos en su
contexto, reconociendo sus limites y alcances.

d) La alfabetizacion estadistica como competencia para el
siglo XXI

La alfabetizacion estadistica es considerada hoy una compe-
tencia esencial. Watson (2006) y Pfannkuch (2019) destacan que
esta competencia no se reduce al dominio técnico, sino que incluye
elementos éticos, comunicativos y epistemoldgicos: saber qué
afirmaciones son legitimas, qué incertidumbres deben explicitar-
se, cbmo comunicar resultados sin inducir a error y cémo tomar
decisiones pUblicas o institucionales fundamentadas en evidencia.

Este capitulo contribuye a esa alfabetizacién mostrando que:

* los modelos estadisticos permiten comprender fendmenos

complejos de manera mas clara y manejable;

* la variabilidad no es un problema, sino una fuente de

informacién;

* |os parametros y la forma de una distribucién cuentan his-

torias sobre el fendmeno;

* las simulaciones son herramientas pedagdgicas poderosas

para explorar, cuestionar y consolidar ideas;

* lalectura critica es indispensable para evitar conclusiones

simplistas o modelos inapropiados.

El recorrido realizado a lo largo de este epigrafe permitié arti-
cular de manera integrada tres dimensiones fundamentales de la
educacion estadistica contempordnea: (a) la comprensién de los
paradmetros y momentos como expresiones del comportamiento
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global de una distribuciéon; (b) la modelacién de fendmenos
reales a través de distribuciones continuas como la uniforme, la
normal y la exponencial; y (c) el desarrollo de un pensamiento
estadistico orientado a la interpretacion critica de la incertidum-
bre y la variabilidad.

Esta integracion es indispensable para formar ciudadanos
capaces de comprender datos, evaluar riesgos, interpretar ten-
dencias y tomar decisiones fundamentadas, tal como sefialan
Watson (2006) y Pfannkuch (2019). Una ensefianza que se limite
a presentar formulas pierde de vista la riqueza conceptual que
caracteriza a la estadistica como disciplina y como practica
social. Por ello, autores como Bakker (2004), Batanero (2001) y
Moore (2010) insisten en que la variabilidad debe convertirse en
el eje central del curriculo: no como un elemento accesorio, sino
como la clave para entender por qué necesitamos modelos pro-
babilisticos y como estos nos permiten pensar fendmenos reales.

Conclusiones

El Capitulo 3 mostré que comprender variables aleatorias y dis-
tribuciones continuas es esencial para interpretar la variabilidad
inherente a los fendbmenos reales, donde se enfatiza en que la
estadistica no debe ensefiarse como un conjunto de férmulas
aisladas, sino como una forma de pensar que permite identificar
patrones, reconocer incertidumbres y analizar datos desde una
perspectiva critica.

Las distribuciones uniforme, normal y exponencial no se pre-
sentan como objetos abstractos, sino como modelos que ayudan
a describir distintos comportamientos: equidad en la uniforme,
concentracion y simetria en la normal, y tiempos de espera asi-
meétricos en la exponencial.

Através de simulaciones desarrolladas en Ry Jamovi, el capi-
tulo mostré el valor educativo de visualizar patrones y contras-
tar lo esperado con lo observado. Este enfoque, ayuda al estu-
diantado a comprender que la estadistica opera en escenarios
donde la certeza es imposible, pero donde si es posible razonar
de manera informada. Las simulaciones permiten experimentar,
ajustar pardmetros y explorar como cambia la forma de una
distribucion, fortaleciendo la comprensién conceptual y el pen-
samiento estadistico.
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CarituLo IV

Pensamiento inferencial: del dato a
la argumentacion

Introduccion

Cuando trabajamos con datos en el aula o en la investiga-
cion social, tarde o temprano aparece una pregunta que no
puede responderse solo mirando una tabla o un grdfico: ¢po-
demos extender lo que vemos en esta muestra a un grupo
mds amplio? Este capitulo parte justamente de ese punto.
La estadistica inferencial nos permite dar el salto entre lo
conocido y lo posible, entre la informacidon que ya tenemos
y las conclusiones que buscamos construir. No se trata de
“adivinar” ni de confiar ciegamente en los nUmeros, sino de
aprender a razonar con incertidumbre y a tomar decisiones
informadas a partir de evidencias que nunca son perfectas,
pero si pueden ser suficientemente sélidas.

A lo largo de estas pdginas exploraremos coémo conceptos
como poblacién, muestra, sesgo, error estadndar o pruebas de
hipotesis se enlazan para formar una estructura de pensamien-
to que nos ayuda a interpretar situaciones reales. Veremos que
detras de cada estimacién hay elecciones que deben hacerse
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con cuidado: a quién incluir, cdbmo medir, qué instrumento usar,
cudnta variabilidad aceptar y qué tipo de pregunta se desea
responder. Cuando estas decisiones se vuelven conscientes, el
andlisis deja de ser un procedimiento mecdnico y se transforma
en una forma de lectura critica de la realidad.

Este capitulo invita a mirar los datos con una actitud reflexiva.
Estimar un pardmetro, construir un intervalo de confianza o con-
trastar una hipodtesis no tiene sentido si se realiza sin interpretar
el contexto que les da origen. Por eso, ademds de presentar las
herramientas inferenciales mds comunes, se propone una lectura
que conecte los resultados con escenarios educativos, sociales
y cotidianos. La intencién es que el lector descubra que la infe-
rencia estadistica no consiste en aplicar pruebas, sino en argu-
mentar con evidencias, reconocer limites, entender la variabilidad
y, sobre todo, aprender a justificar con claridad aquello que los
datos realmente permiten afirmar.

Poblacion, muestra y sesgo: decisiones de muestreo en la
prdctica
Comprender cémo se define una poblaciony cdmo se selecciona
una muestra es un paso decisivo para desarrollar un pensamiento
inferencial sélido. La poblacion nunca es solo un nUmero o una
lista: es una construccidn conceptual que orienta la mirada sobre
el fendmeno y define el alcance de la indagacién. Como explica
Batanero (2001), los estudiantes suelen tener dificultades para
distinguir entre “lo que se quiere estudiar”y “los datos que efecti-
vamente se tienen”, por lo que ensefiar a delimitar una poblaciéon
implica ensefiar a pensar el fendmeno desde su origen.

Construyendo significado. hacia una comprension critica de la
muestra

Desde esta perspectiva, la muestra adquiere un sentido mas
amplio que el de un simple subconjunto, una muestra representa
una ventana hacia algo mas grande; no pretende replicar la po-
blacién de manera exacta, sino proporcionar una base razona-
ble para realizar inferencias. Esto significa que seleccionar una
muestra requiere preguntarse quiénes estdn incluidos, quiénes
quedan fueray por qué. Estos interrogantes, que pueden parecer
menores, son imprescindibles para desarrollar una actitud critica
frente a los datos.
Ejemplo 1: La encuesta sobre hdbitos de lectura
Supongamos que una institucién quiere conocer los habitos de
lectura de los estudiantes de bachillerato.
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* Poblacion: todos los estudiantes de bachillerato de la

institucion.

* Muestra no probabilistica: Unicamente quienes asisten a la

biblioteca en la hora del recreo.

Aunque puede parecer practico, este tipo de muestra introduce
un sesgo de seleccion, porque quienes frecuentan la biblioteca
suelen tener mayor afinidad por la lectura. Este tipo de decisio-
nes afecta de manera directa la validez del estudio, ya que se
genera una imagen distorsionada del fendmeno.

En la prdactica educativa también resulta Util distinguir entre
meétodos probabilisticos y no probabilisticos. Los primeros buscan
garantizar que todos los individuos de la poblacion tengan algu-
na posibilidad conocida de ser seleccionados, mientras que los
segundos suelen basarse en la accesibilidad y la disponibilidad.

Ejemplo 2: Muestreo aleatorio simple en una clase

Un docente desea conocer el nivel de satisfaccién de sus es-
tudiantes con el trabajo en proyectos. En lugar de encuestar
solo a quienes llegaron temprano o levantaron la mano (muestra
sesgada), decide:

1. Numerar a todos los estudiantes del curso.

2. Usar una aplicacién para seleccionar 10 nUmeros al azar.

Este procedimiento reduce la influencia de preferencias per-
sonadles, tiempos de llegada o motivaciones individuales. Horton
(2015) sefiala que mostrar estos pasos a los estudiantes com-
plementa la ensefianza del muestreo con una dimensién ética y
metodolbgica.

Imaginemos ahora que se quiere estudiar la percepcién sobre
el uso de tecnologia en el aula en un colegio con una proporciéon
desigual entre hombres y mujeres. Si se toma una muestra alea-
toria simple, pueden quedar sobre o subrepresentados ciertos
grupos, lo que afectaria la posibilidad de comparar experiencias
o actitudes entre géneros. El muestreo estratificado permite or-
ganizar la poblacién por género y seleccionar al azar dentro
de cada estrato, de manera que las voces de todos los grupos
aparezcan en la proporcidon que les corresponde.

El concepto de sesgo también juega un papel central en este
epigrafe. No se trata de un error accidental, sino de una deforma-
cion estructural que compromete la inferencia y puede conducir
a conclusiones equivocadas sobre el comportamiento de una
poblacién. Para Biehler (2018), visibilizar el sesgo fortalece la
transparencia metodolégica, favorece posturas criticas y ayuda a
comprender que la produccién de datos no es neutral. En investi-
gaciones educativas, reconocer posibles fuentes de sesgo no solo
mejora la validez del estudio, sino que forma a los estudiantes
en una mirada mas ética y reflexiva sobre el andlisis de datos.
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El sesgo de no respuesta aparece con frecuencia en estudios
educativos que utilizan formularios digitales o encuestas en linea.
Imaginemos a un profesor que desea conocer la calidad de acceso
ainternet en los hogares de sus estudiantes. Aunque el formulario
se envia a toda la clase, tienden a responder quienes tienen buena
conectividad, mientras que aquellos con acceso limitado no logran
completarlo o directamente no pueden abrirlo. Este tipo de sesgo
es especialmente problemdtico porque excluye precisamente a
quienes enfrentan las mayores dificultades, generando un pano-
rama distorsionado sobre la brecha digital. Asi, lo que aparenta
ser un problema de “baja participacion” se transforma en una
amenaza real para la validez de las conclusiones.

Durante los Ultimos afos, Gelman (2021) ha subrayado que la
seleccion de muestras debe entenderse dentro de un ecosistema
mas amplio de inferencia. No basta con pensar en cudntos estu-
diantes responden; es necesario comprender como cada decisidon
metodoldgica influye en la calidad del andlisis estadistico. Trabajar
con multiples muestras, compararlas y examinar sus diferencias no
es un error metodolégico, sino una oportunidad pedagdégica para
mostrar que la variacion entre muestras es inherente al proceso
de recoleccion de datos. Cuando los estudiantes analizan estos
contrastes, desarrollan una comprensién mas profunda de por qué
las conclusiones no siempre coinciden incluso cuando se estudia
la misma poblacién.

La comparacién de dos muestras distintas permite ilustrar con
claridad cémo el sesgo afecta las inferencias. Supongamos que
dos grupos de trabajo desean estudiar el tiempo que los estu-
diantes dedican a estudiar matemdticas. El primero selecciona
una muestra completamente al azar, mientras que la segunda
encuesta Unicamente a quienes suelen entregar tareas puntual-
mente. Aunque ambos grupos investigan a la misma poblacion, sus
conclusiones inevitablemente divergen: el segundo grupo encon-
trardtiempos de estudio maés altos debido a la seleccidén sesgada.

Caso de estudio. Acceso digital, tiempo de estudio y sesgos de
muestreo
El andlisis conjunto del acceso digital, el tiempo de estudio y los
distintos sesgos de muestreo ofrece un escenario ideal para que
los estudiantes comprendan como la calidad de los datos influye
en la validez de las conclusiones estadisticas. En este caso de
estudio partimos de una situacién cercana a la realidad educa-
tiva: no todos los estudiantes tienen las mismas condiciones de
conectividad ni las mismas oportunidades de participar en una
encuesta, y estas diferencias pueden sesgar los resultados sin que
el investigador lo advierta.
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A través de la simulacién y el contraste entre distintos tipos
de muestra, el epigrafe permite observar cémo se modifican las
distribuciones, las tendencias y las relaciones entre variables
cuando el muestreo no se disefia cuidadosamente. Esta mirada
integradora ayuda a reconocer que la estadistica no solo descri-
be datos sino que evalta los procesos que los originan, invitando
a desarrollar una actitud critica y reflexiva frente a la informacion
que usamos para argumentar en contextos educativos.

Una universidad quiere analizar como se relacionan el acceso
a internet en el hogar, el tiempo semanal dedicado a estudiar
matematicas y la percepcidn sobre el uso de tecnologia en clase.
La cohorte estd formada por 300 estudiantes de primer afio: 60
por ciento mujeres y 40 por ciento hombres. Los responsables
del estudio deciden:

1. Definir la poblacién y estratos

* Poblacion:los 300 estudiantes matriculados en Matemdéticas

+ Estratos: género (mujer, hombre).

* Variables principales:

° genero (Mujer/Hombre)

acceso (bueno/limitado)

tiempo_estudio (horas de estudio de matemdticas por semana)

uso_tecnologia (escala 1-5 de acuerdo con el uso de

recursos digitales en clase).

2. Plan de muestreo estratificado por género

* Se selecciona una muestra de 120 estudiantes manteniendo
la proporcion de la poblacion: 72 mujeres y 48 hombres.

* Dentro de cada estrato, la seleccién es aleatoria simple.

* Objetivo: estimar el promedio de horas de estudio y la me-
dia de uso_tecnologia para cada género, comparando sus
intervalos de confianza.

3. Introduccidn del sesgo de no respuesta

* El cuestionario se aplica en linea. Responden con mayor

probabilidad quienes tienen buen acceso y con menor pro-
babilidad quienes tienen acceso limitado.

* Enlasimulacion se puede modelar, por ejemplo, que:

a. Estudiantes con acceso bueno responden con proba  bi-
lidad 0.85.

b. Estudiantes con acceso limitado responden con probabili-
dad 0.40.

+ Esto generard una muestra “realmente observada” donde
los estudiantes con dificultades de conectividad quedan
subrepresentados, lo que afectard la estimacidon de tiem-
po_estudio y uso tecnologia.

o
o

[e]
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4. Comparacion de dos muestras distintas sobre la misma
poblacion

* Grupo A (muestra cuidadosamente disefiada): usa el plan
estratificado anterior y controla el sesgo de no respuesta
(por ejemplo, llamando por teléfono a quienes no contestan).

* Grupo B (muestra sesgada): difunde el enlace del cues-
tionario solo por el aula virtual y toma como muestra “a
quienes respondan”, sin control adicional.

* Ambos grupos calculan medias, desviaciones estandar e
intervalos de confianza de tiempo_estudio y uso_tecnolo-
gia. Posteriormente comparan resultados y discuten coémo
el disefio muestral y el sesgo de no respuesta han influido
en las conclusiones.

La Figura 1 muestra que, en términos generales, los dos tipos
de muestra producen distribuciones de tiempo de estudio muy
parecidas, pero con matices que vale la pena mirar con lupa. En
la primera fila, correspondiente a la muestra estratificada ob-
servada, la media (6.77 horas) y la mediana (716 horas) indican
que la mayoria de estudiantes se sitUa alrededor de las 7 horas
semanales de estudio, con un 50 por ciento de los valores entre
aproximadamente 5.09 y 8.49 horas.

Figura 1.
Estadisticos descriptivos del tiempo de estudio en dos tipos de
muestra.

Rj Editor

Nota. La primera fila corresponde a la muestra estratificada observada,
afectada por el sesgo de no respuesta segun las probabilidades definidas en
la simulacién. La segunda fila representa la muestra espontdnea, recolectada
Unicamente entre quienes respondieron voluntariamente.

En la segunda fila, que representa la muestra esponténea re-
colectada solo entre quienes respondieron voluntariamente, la
media (6.70) y la mediana (6.78) son ligeramente menores y el
rango intercuartilico va de 511 a 8.43 horas. Es decir, los valores
centralesson cercanos, pero la muestra estratificada tiende a
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concentrar un poco mas el tiempo de estudio en torno a valores
algo superiores, mientras que la muestra espontdnea se “despla-
za” levemente hacia abajo. Estas pequefas diferencias, aunque
numéricamente modestas, son importantes desde el punto de
vista metodoldgico. La muestra estratificada intenta respetar la
estructura de la poblacién y controlar el sesgo de no respuesta,
por lo que ofrece una imagen mdas equilibrada del tiempo real
que el conjunto del estudiantado dedica a matemdticas.

La muestra espontdnea, en cambio, depende de quién decide
contestar el cuestionario, de modo que ciertos perfiles, por ejem-
plo: estudiantes con menos tiempo o con dificultades de acceso,
pueden quedar infrarrepresentados o sobrerrepresentados. El
resultado es que dos estudios que “miden lo mismo” y analizan
la misma poblacion terminan con resiUmenes descriptivos simi-
lares, pero no idénticos, recorddndonos que la forma en que se
selecciona a los participantes condiciona las conclusiones que
podemos sacar de los datos.

El grafico (Figura 2) revela que ambas muestras presentan una
distribucion similar en torno al tiempo de estudio, aunque con
matices que reflejan el impacto del disefio muestral.

Figura 2.
Distribucion del tiempo de estudio segun el tipo de muestra

R} Editor

Nota. La figura compara la variacién del tiempo semanal dedicado al estudio
entre dos estrategias de muestreo.

En la muestra estratificada se aprecia una mayor estabilidad
alrededor de los valores centrales, lo que sugiere que esta es-
trategia logra capturar mejor la diversidad real de la poblacion.
La muestra espontdnea, en cambio, tiende a mostrar mayor dis-
persion y una ligera caida en los valores centrales, lo que se
relaciona con la subrepresentacion de estudiantes con menor
acceso tecnoldgico y tiempos de estudio mds bajos.
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Los histogramas (Figura 3) permiten apreciar diferencias cla-
ras en la forma de las distribuciones entre las dos muestras. En
el panel correspondiente a la muestra estratificada se observa
una distribucion mas equilibrada, con varios picos moderados
que reflejan la diversidad real de hdbitos de estudio dentro de
la poblacion original.

En contraste, la muestra espontdnea muestra una mayor acu-
mulacién de estudiantes en los valores centrales, lo que indica
una tendencia hacia la homogeneizacion causada por el sesgo
de respuesta: quienes estudian mas horas o tienen mejor conec-
tividad tienden a participar en mayor proporcion.

Este contraste evidencia cobmo dos muestras que provienen de
la misma poblacién pueden ofrecer retratos distintos del fenéme-
no cuando la seleccion de participantes no garantiza igualdad
de oportunidades para responder.

Figura 3.
Histogramas del tiempo de estudio en las dos muestras
Rj Editor
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Nota. La figura presenta la distribucién del tiempo semanal dedicado al es-
tudio en dos estrategias de muestreo: una muestra estratificada observada y
una muestra espontdnea recolectada sin control de no respuesta.

La figura 4 evidencia una relacion positiva, aunque moderada,
entre la percepcion del uso de tecnologia en el aula y el tiempo
dedicado al estudio: a mayor valoracion del uso tecnolégico, los
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estudiantes tienden a reportar mas horas de trabajo académico
semanal. Sin embargo, la pendiente ligeramente mdas pronuncia-
da en la muestra espontdnea sugiere que la ausencia de control
sobre la no respuesta puede magnificar la relacion observada,
posiblemente porque los estudiantes mds motivados o con me-
jor conectividad participan en mayor proporcion en ese tipo de
muestreo. En la muestra estratificada, la linea de tendencia es
mas suave, reflejando un patrén mas equilibrado y representativo
de la poblacion original.

Figura 4.
Relacion entre uso de tecnologia y tiempo de estudio

Eelacion antre usd de tecndlagia v tempd da estudio

Tlempo de estudio semanal (horas)
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Nota. La figura muestra la relacién entre la percepcién del uso de tecnologia
en clase (escala de 1a 5) y el tiempo semanal dedicado al estudio, diferen-
ciada por tipo de muestra.

La experiencia con estas simulaciones ofrece al docente un
punto de partida poderoso para que los estudiantes compren-
dan que el andlisis de datos no es un ejercicio mecdanico, sino un
proceso que exige decisiones razonadas sobre la forma en que
se recolecta la informacion.

Al comparar muestras estratificadas, espontdneas y afectadas
por distintos tipos de sesgo, el profesorado puede mostrar que
los resultados numéricos dependen de como se selecciona a los
participantes. Esta constatacion ayuda a que los estudiantes
entiendan que la estadistica no solo describe datos, sino que
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también evalta la calidad de esos datos, y que instrumentos
como los diagramas de caja, histogramas y graficos de disper-
sion son herramientas para interpretar criticamente el proceso
de muestreo.

Apoyo diddctico: Desde una perspectiva didactica, trabajar
estos contenidos en el aula permite fomentar la reflexion sobre
la validez de las conclusiones y el cardcter ético de la produc-
cién de informacion. El docente puede guiar actividades en las
gue los estudiantes disefien sus propias encuestas, identifiquen
posibles fuentes de sesgo y analicen coémo estos influyen en los
resultados. Esto no solo desarrolla habilidades técnicas en el uso
de software como Jamovi, sino que fortalece el pensamiento
inferencial: la capacidad de cuestionar, argumentar y justificar
decisiones metodoldgicas. En definitiva, el abordaje de estos con-
tenidos contribuye a formar estudiantes mas criticos, conscientes
de la importancia de la representatividad y capaces de tomar
decisiones informadas en contextos reales de andlisis de datos.

Estimacion puntual y por intervalos: comprension del error y
la precision
En el andlisis de datos educativos, es habitual que docentes e
investigadores trabajen con muestras y no con la totalidad de la
poblacién. Esto implica tomar decisiones a partir de informacion
parcial, reconociendo que cada estadistico que calculamos es una
aproximacion y no un valor definitivo. Tal como explica Batanero
y Ben-2Zvi (2013), razonar estadisticamente exige comprender que
el dato muestral no es una copia del dato poblacional, sino una
expresidon condicionada por la variabilidad inherente al muestreo.
Garfield y delMas (2008) sefialan que muchos errores concep-
tuales surgen cuando los estudiantes interpretan la media o la
proporcion muestral como si fueran verdades exactas, sin consi-
derar cuanto podrian variar esos valores si se repitiera el estudio.

Por ello, este epigrafe desarrolla la estimacion puntual, el
error estdndar y los intervalos de confianza como herramientas
complementarias para razonar con incertidumbre. A partir de
ejemplos concretos y del aporte de investigadores en educacion
estadistica. El propdsito es que el docente pueda explicar por
qué un intervalo de confianza no es un “decorado”, sino un ins-
trumento esencial para comunicar precisién, reconocer limites
y tomar decisiones fundamentadas.

Estimacion puntual de mediasy proporciones. la primera apro-
ximacion al parametro
La estimacion puntual consiste en utilizar un valor Unico, por lo
general la media o la proporcion muestral, para aproximar un
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pardmetro poblacional. En la practica educativa, este procedi-
miento suele presentarse como un primer acercamiento al ra-
zonamiento inferencial, porque permite visualizar cémo un dato
resumen puede representar, de manera tentativa, a un conjunto
mucho mas amplio. Sin embargo, esta misma simplicidad es la
gue suele provocar malentendidos iniciales: muchas y muchos
estudiantes interpretan ese valor puntual como si fuera la “ver-
dadera” realidad de la poblacién, sin considerar la inevitable
variabilidad asociada al muestreo.
Segun Batanero y Ben-Zvi (2013), es justamente en esta etapa
donde emergen las primeras confusiones en el aula. El estudian-
tado, especialmente cuando no ha trabajado con muestras mul-
tiples, tiende a asumir que la media o proporcién obtenida es un
reflejo exacto de la poblacion, como si el proceso de muestreo no
introdujera ninguna variaciéon. Esta percepciéon es comprensible,
pues el pensamiento intuitivo suele preferir certezas, y la idea de
que diferentes muestras puedan producir resultados distintos se
percibe, al inicio, como una especie de “error” o inconsistencia
del procedimiento estadistico.
Garfield y delMas (2008) enfatizan que antes de avanzar hacia
los intervalos de confianza o hacia técnicas inferenciales mas
complejas, es indispensable que el estudiantado experimente la
variabilidad muestral de manera concreta. Observar cémo dos o
mMmds muestras extraidas de la misma poblacién generan estima-
ciones puntuales diferentes ayuda a comprender que estas no
son verdades absolutas, sino aproximaciones sujetas al azar. Este
paso pedagdgico, aunque sencillo, es crucial: constituye la base
para entender por qué una estimacion siempre debe ir acom-
pafada de una medida de incertidumbre y por qué la inferencia
estadistica, mds que ofrecer certezas, nos permite razonar con
niveles de precision y confianza.
Ejemplo 3. Estimacion puntual de una media y una proporcion
Una docente encuesta a 12 estudiantes sobre su tiempo semanal
de estudio y si poseen acceso estable a internet.

* Horas de estudio: 4,5,6,5,7,8,6,5,6,7,4,6

* Acceso estable (1=5si,0=n0):1,1,10,1,1,10,1,1,0,1

Media muestral: ¢ — Q ~ 5.75horas
12

.. . 9
Proporcion muestral: P=— =0.75

12

Estos valores representan estimaciones puntuales del tiempo
medio de estudio y de la proporcion de estudiantes con acceso
estable en la poblacién. Aunque son Utiles como una primera
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aproximacion, no deben interpretarse como descripciones de-
finitivas de la realidad poblacional. En esencia, funcionan como
una fotografia tomada desde un angulo particular: ofrecen infor-
macidon, pero no capturan la totalidad del fenémeno.

Sin embargo, como advierte Bakker (2004), una segunda
muestra, seleccionada bajo los mismos criterios y con el mismo
procedimiento, podria arrojar valores distintos. Esta variabilidad
no implica un error en el cdlculo ni una falla metodoldgica, sino
una caracteristica natural del trabajo con datos muestrales. Cada
muestra recoge una porcién diferente de la poblaciéon y, por tanto,
refleja matices propios de su composicién.

Ese diferencial recibe el nombre de error muestral, una conse-
cuenciainevitable de todo proceso de seleccién y un recordatorio
de que nuestras inferencias siempre llevan consigo un margen de
incertidumbre. Comprenderlo es fundamental en el aula: ayuda
a que el estudiantado no se quede Unicamente con el valor pun-
tual, sino que reconozca que toda estimacion es, en realidad, una
aproximacion sujeta al azar y que solo adquiere sentido cuando
se analiza junto con la variabilidad que la acompafia.

Ejemplo 4. Comparando dos cursos para comprender la esti-
macion puntual

Unainstitucidon educativa quiere explorar si existen diferencias
iniciales entre dos cursos paralelos de primer afio respecto a su
dedicacion académica y a las condiciones tecnoldgicas con las
que estudian. Para ello, una docente decide tomar una muestra
piloto de 10 estudiantes por curso, con el fin de realizar una pri-
mera aproximacién a los parédmetros poblacionales. La intencién
no es llegar a conclusiones definitivas, sino construir una mirada
preliminar que oriente futuras decisiones pedagdgicas.

Datos recolectados

Curso A

Horas semanales de estudio: 6,5,7,4,5,6,8,7,5,6

Acceso estable ainternet (1=5si,0 =n0):1,1,1,0,1,1,1,1,0,1

Curso B

Horas semanales de estudio: 3, 4,5, 4,3,5,4,3,4,5

Acceso estable ainternet (1=5si,0 =no0):0,1,0,0,1,0,1,0,0,1

1. Cdlculo de la media muestral en cada curso
Para cada curso se calcula la media de horas de estudio:

L _6+5HTHA4EYEHBHTHEH6 59 _
A~ 10 T R

3+4+5+4+3+5+4+3+44+5 40
— o =10 = 4.0horas

XB
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Estas medias sugieren que, en promedio, el Curso A dedica
mas tiempo al estudio que el Curso B. Sin embargo, siguiendo
las advertencias de Batanero y Ben-Zvi (2013), estas cifras no
deben asumirse como descripciones definitivas de la poblacién.
Una nueva muestra podria mostrar valores diferentes o incluso
invertir el patrén. Se trata de un primer vistazo a la posible rea-
lidad de ambos grupos.

2. Cdlculo de la proporcion muestral de acceso estable

Como la variable de acceso toma valores 0 y 1, la proporcién
de estudiantes con acceso estable en cada curso se calcula di-
vidiendo el nUmero de estudiantes con valor 1 para esa variable
para el total de estudiantes del curso.

En el Curso A, de los 10 estudiantes, 8 declaran tener acceso
estable: . 8

— = 0.80
Pa 10

En el Curso B, solo 4 de los 10 estudiantes tienen acceso estable:

—

Ps

4
— = 0.40
10

La interpretacion inicial es que la proporcion de estudiantes
con acceso estable a internet en el Curso A es aproximada-
mente el doble que en el Curso B. De nuevo, se trata de esti-
maciones puntuales que dependen de la muestra seleccionada
y que podrian variar si se repitiera el muestreo con otro grupo
de estudiantes.

La resolucion del ejercicio en R (Figura 5) confirma de ma-
nera precisa los valores obtenidos mediante el cdlculo manual.
Al agrupar los datos se obtiene que la media de horas de
estudio es de 5.9 horas en el Curso Ay 4.0 horas en el Curso
B, reproduciendo exactamente las fracciones 59/1059/1059/10
y 40/1040/1040/10 derivadas previamente. Del mismo modo,
el tratamiento de la variable acceso como binaria (O = no, 1=
si) permite calcular la proporcién de acceso estable a internet
como la media de dicha variable, dando como resultado 0.80
para el Curso Ay 0.40 para el Curso B.

Estas salidas muestran coémo R facilita el procesamiento de
datos y valida los procedimientos estadisticos fundamentales: la
estimacién puntual de una media y de una proporcidon. Ademdas, el
uso de dplyr permite generar una tabla resumen mds completa,
desde la cual se aprecia que la estructura de los datos coincide
con la teoria presentada y que las estimaciones puntuales pue-
den reproducirse y verificarse con herramientas computaciona-
les que favorecen la comprension del proceso inferencial desde
una perspectiva mas aplicada.
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Figura 5.
Relacién entre uso de tecnologia y tiempo de estudio

Nota. La figura muestra las estimaciones puntuales obtenidas a partir de una
muestra de 10 estudiantes por curso.

Error estandar e intervalos de confianza. comunicar la
incertidumbre
Una vez obtenidos los valores puntuales, la pregunta relevante
es: ;qué tan estables son estas estimaciones? En otras palabras,
ipodemos confiar en que la media o la proporcién obtenida
reflejan, al menos de manera aproximada, lo que ocurre en la
poblacion? El error estandar ofrece una primera pista para res-
ponder a esa inquietud, porque indica cudnto podrian fluctuar
las estimaciones si repitiéramos el muestreo una y otra vez bajo
las mismas condiciones.

A partir de esta idea surge una herramienta clave para el
razonamiento inferencial: los intervalos de confianza. Mas que
presentar un Unico valor como si fuera definitivo, estos inter-
valos ofrecen un rango plausible donde podria encontrarse el
parametro poblacional. Para el estudiantado, comprender esta
transicion del valor puntual al intervalo, es crucial para desa-
rrollar pensamiento estadistico maduro. Ya no se trata solo de
“calcular una media”, sino de reconocer que toda estimacion es
parte de un proceso sujeto al azar y que la incertidumbre no es
un defecto del metodo, sino una caracteristica inherente de la
realidad cuando trabajamos con datos muestrales.

Ejemplo 5:una muestra de 25 estudiantes registra un promedio
de 6,2 horas de estudio semanal, con una desviacion estandar
de 1,5 horas, lo que refleja una variabilidad moderada entre los
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tiempos reportados. Con este tamafio muestral, la estimacion de
la media se vuelve razonablemente estable, permitiendo cons-
truir un intervalo de confianza que no solo ofrece un valor central,
sino también un rango plausible donde podria encontrarse la
media poblacional real. Este tipo de andlisis resulta especial-
mente Util en contextos educativos, porque ayuda a interpretar
la informacion mas alld de un Unico nUmero y a comprender
hasta qué punto el promedio observado puede generalizarse a
un grupo mas amplio.

, 1.5
e Error estandar: SE = —— = 0.30
V25

25
* Margen de error: ME = 2.064 X 0.30 =~ 0.62

* Intervalo de confianza (95 %): [5,58; 6,82]

Siguiendo la explicacion de Gelman y Hill (2014), vale la pena
insistir en que un intervalo de confianza no debe tomarse como
si asegurara que “la media verdadera estd ahi dentro”. Lo fun-
damental no es ese intervalo en si, sino el proceso con el que se
construye. Si tuviéramos la posibilidad de repetir el estudio una
y otra vez, recogiendo nuevas muestras y calculando un nuevo
intervalo cada vez, descubririamos que aproximadamente el 95
% de ellos si terminaria conteniendo el valor real del pardmetro.
Ese es el sentido de hablar de “confianza” no es que este inter-
valo particular tenga una probabilidad del 95 % de ser correcto,
sino que el método funciona bien en el largo plazo. Entenderlo
asi nos ayuda a evitar lecturas exageradas y a ver el intervalo
como lo que realmente es: una expresion de la estabilidad del
procedimiento frente a la variabilidad natural de los datos.

Ejemplo 6. Una docente desea comprender cudn estable es
la estimacién del tiempo que sus estudiantes dedican al estudio
semanal. Para ello, toma una muestra de 30 estudiantes y obtiene
una media de 6,8 horas con una desviacion estandar de 1,9 horas.
A partir de estos valores, calcula el error estandar, dividiendo la
desviaciéon estandar entre la raiz cuadrada del tamafio muestral:

1.9
EE=—=0.35
V30

30
Este valor indica que, si el docente repitiera el muestreo bajo
las mismas condiciones, la media muestral podria oscilar apro-
ximadamente +£0,35 horas alrededor del valor observado. Con
esta informacién, construye un intervalo de confianza del 95 %,
utilizando la férmula habitualx4+1.96XEE . El resultado es:
6,84+1.96(0,35)=[6,1 horas, 7,5 horas].
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Estos resultados se pueden comprobar en R tal como muestra
la grdfica (Figura 5) que ilustra la idea central del intervalo de
confianza desde una perspectiva geomeétrica. El punto ubicado en
el centro corresponde a la media muestral de 6,8 horas, obtenida
a partir de la muestra. A su izquierda y derecha se muestran los
limites inferiores (6,12) y superior (7,48), conectados mediante
un segmento horizontal que representa el intervalo de confianza
del 95 %.

Figura 6.
Representacion geométrica de la media muestral y su intervalo de
confianza del 95 %

Resultados

Rj Editor

s R Bl S0 O 10 s ol 0 8 B %

i e TEFWE T

G IR L L

Nota. La figura muestra la media muestral de 6,8 horas ubicada en el centro
de la recta, acompafiada del intervalo de confianza del 95 %, cuyos limites in-
feriores y superiores son aproximadamente 6,12 y 7,48 horas, respectivamente.

Esta visualizaciéon permite comprender que la media mues-
tral no debe interpretarse como un valor exacto o definitivo,
sino como el punto mas representativo dentro de un rango mas
amplio de posibles valores. El intervalo funciona, asi como una
“zona plausible” donde, considerando la variabilidad propia del
muestreo, es razonable suponer que se encuentra la media po-
blacional. Cuanto mds corto sea este segmento, mayor serd la
precision de la estimacion; en cambio, un intervalo mds exten-
so indicaria mayor incertidumbre. Esta representacion grafica
facilita que estudiantes y docentes visualicen la incertidumbre
estadistica como una distancia sobre la recta numérica, haciendo
mds accesible el concepto de error de estimacion.
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La grdfica (Figura 6) representa la distribucion de 1000 me-
dias muestrales obtenidas mediante simulacién, lo que permite
visualizar codmo varian las medias cuando se repite el proceso
de muestreo muchas veces bajo las mismas condiciones. El his-
tograma muestra que la mayoria de las medias simuladas se
concentran alrededor del valor central de 6,8 (indicado por la
linea azul punteada), lo cual refleja el principio de que el prome-
dio de las medias muestrales tiende a aproximarse a la media
poblacional verdadera. Las lineas rojas delimitan el intervalo de
confianza del 95 % construido a partir de una sola muestra, y es
posible observar que gran parte de las medias simuladas cae
dentro de ese rango.

Figura 7.

Distribucion simulada de medias muestrales y ubicacion del intervalo
de confianza del 95 %

Simulacidn da medias muestrales {n = )

-

Fraceercia

H

(=R =,

Media mus Elral

Nota. La figura muestra la distribucion de 1000 medias muestrales obtenidas
mediante simulacién bajo una poblacién tedrica con media 6,8 y desviacién
estandar 1,9, utilizando un tamafio de muestra de 30.

Esta correspondencia visual evidencia que, si bien cada me-
dia puede fluctuar debido al azar del muestreo, el intervalo de
confianza suele capturar con alta probabilidad el valor real del
pardmetro.
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En conjunto, la figura ilustra que el intervalo no es un dato
aislado, sino una representacion geométrica de la incertidumbre,
basada en como se comportarian muchas posibles muestras
tomadas de la misma poblacion.

En sintesis, el estudio del error estadndar y de los intervalos
de confianza permite que el estudiantado comprenda que toda
estimacion basada en una muestra estdinevitablemente sujeta a
variacion. Mas que ofrecer resultados exactos, estas herramientas
ayudan a valorar la estabilidad de los cdlculos y a reconocer que
el promedio observado no es un punto fijo, sino una aproximacion
influida por el azar del muestreo. Visualizar esta incertidumbre
ya sea a través de rectas numeéricas o de simulaciones con mul-
tiples muestras, facilita que las y los estudiantes desarrollen un
sentido mas profundo de la inferencia estadistica. De este modo,
la ensefianza no se limita al cdlculo mecdnico, sino que invita a
interpretar los resultados con cautela, a estimar rangos plausi-
bles y a fundamentar afirmaciones basadas en evidencia mas
sélida y reflexiva.

Variabilidad, tamarfio muestral y precision. comprender qué

significa “estimar bien”
La amplitud de un intervalo de confianza depende directamente
de la variabilidad de los datos y del tamafio muestral, dos ele-
mentos que determinan cudnta informacion aportan realmente
la muestra sobre la poblacion. Horton (2015) recuerda que una
estimacion mdas precisa no implica necesariamente que sea co-
rrecta, sino que refleja una menor dispersion alrededor del valor
observado. En otras palabras, la precision habla de estabilidad,
no de veracidad absoluta.

Esta distincion es clave en la ensefianza, porque permite al
estudiantado comprender que incluso un intervalo muy estrecho
sigue siendo una aproximacion influida por el azar. En la misma
linea, Biehler (2018) recomiendan trabajar con representaciones
visuales de intervalos superpuestos, de modo que el estudian-
tado pueda observar de manera intuitiva cémo los intervalos
se vuelven mds cortos a medida que aumenta el tamafio de
la muestra. Este enfoque visual ayuda a entender por qué una
muestra grande no garantiza una estimacién perfecta, pero si
una mayor consistencia entre muestras sucesivas, fortaleciendo
asi la interpretaciéon critica de la incertidumbre estadistica.

Eijemplo 7: Un ejemplo sencillo permite apreciar esta idea.
Supongamos que una docente mide el tiempo de lectura diaria
de dos grupos diferentes. En el primer caso, toma una muestra
pequefa de 10 estudiantes y obtiene una media de 25 minutos
con un intervalo de confianza del 95 % entre 18 y 32 minutos.
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En el segundo caso, repite el estudio con una muestra mucho
mayor, de 80 estudiantes, y obtiene una media muy similar, de 24
minutos, pero con unintervalo mas estrecho: de 22 a 26 minutos.

Aunque ambas muestras proporcionan valores cercanos, los
intervalos muestran historias distintas. El primero es amplio y
refleja gran incertidumbre: la media poblacional podria estar bas-
tante por encima o por debajo del valor observado. El segundo,
en cambio, ofrece un rango mucho mads preciso, mostrando que
con mds datos la estimacion se vuelve mas estable y confiable.
Para el estudiantado, visualizar y comparar estos dos intervalos
facilita comprender por qué el tamafio muestral influye tanto en
la precision y por qué no basta con un solo valor puntual para
interpretar un fenédmeno con rigor estadistico.

La figura 7 permite ver cémo cambia la precisién de una es-
timacién cuando se trabaja con muestras de distinto tamano.
En el primer caso, con solo diez estudiantes, el error estandar
es bastante alto y el intervalo de confianza termina siendo muy
ancho, lo que deja claro que la media obtenida puede alejarse
bastante del valor real en la poblacién. En cambio, cuando se
amplia la muestra a ochenta estudiantes, la situacion mejora
de forma notable: el error estadndar disminuye y el intervalo se
estrecha, lo que indica que la media calculada es mucho mas
estable y confiable.

Figura 8.
Comparacion del error estandar, desviacion estandar e intervalos de
confianza en muestras pequenas y grandes.

Rj Editor Rj Editor

Caso 1 BED 2

Errar eotdndar 3.571 Errgr aiTindar 1.83
Dexviacidn sstindar 11.29 Desviacidn gstdndar g, 0

IC 9% % reconstrulds 1§, 32) IC 95 % reconatruido = [22, 26]

Nota. La figura muestra los valores de error estdndar, desviacién estadndar

e intervalos de confianza reconstruidos para dos escenarios hipotéticos: un
primer caso con una muestra pequefia de 10 estudiantes y un segundo caso
con una muestra grande de 80 estudiantes.

Esta comparacién ayuda a entender un punto esencial en
estadistica: no basta con obtener una media, sino que es im-
portante reconocer cudnta incertidumbre la acompafiay como
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esaincertidumbre se reduce a medida que se cuenta con mas
informaciéon. El desarrollo de este epigrafe permite comprender
que la estimacion puntual y la estimacion por intervalos son dos
caras complementarias de un mismo proceso: dproximarnos
al conocimiento de una poblacién asumiendo con claridad la
incertidumbre que implica trabajar con muestras. La media, la
proporcién u otros estadisticos muestrales constituyen un primer
acercamiento al pardmetro, pero solo adquieren sentido pleno
cuando se analizan junto con el error estandar y los intervalos de
confianza, que cuantifican la variabilidad inherente al muestreo
y nos ofrecen un rango plausible para interpretar los resultados.
Los ejemplos desarrollados muestran de forma concreta como
la precision aumenta al incrementar el tamafo muestral, pero
también evidencian que la exactitud de una estimacidon depende
tanto de la variabilidad como de la calidad del disefio de mues-
treo. De este modo, “estimar bien” no consiste Unicamente en
aplicar férmulas, sino en valorar criticamente los supuestos, las
condiciones y los limites del procedimiento utilizado.

Desde una perspectiva didactica, el epigrafe subraya la im-
portancia de ensefar la inferencia estadistica como un proceso
argumentativo y no como un conjunto de cdlculos mecdanicos.
Hacer visible la incertidumbre, comparar muestras, construir
intervalos y discutir su interpretacion ayuda al estudiantado a
reconocer que la estadistica es una herramienta para razonar
con evidencia, no para producir verdades absolutas. Finalmente,
comprender el papel de la variabilidad, la precision y la incerti-
dumbre fortalece una alfabetizacidn estadistica critica, capaz
de guiar decisiones educativas informadas y coherentes con los
retos contempordneos de andlisis de datos.

Pruebas de hipdtesis: sentido, pasos y lectura critica
En el dmbito educativo es frecuente encontrarse con pregun-
tas que requieren mas que una simple descripcién de datos. El
docente quiere saber si una intervencion realmente mejord el
rendimiento de su grupo, si dos metodologias producen efectos
distintos sobre el aprendizaje, o si un programa de formacion
genera cambios significativos en las actitudes del estudiantado.
En cada uno de estos casos, observar diferencias en los datos no
es suficiente: se necesita un modo de evaluar si dichas diferen-
cias pueden atribuirse a la intervencion y no al azar propio del
muestreo. Este es el papel que cumplen las pruebas de hipotesis,
un tipo de razonamiento inferencial que nos permite valorar la
evidencia y tomar decisiones fundamentadas.

Las pruebas de hipdtesis son uno de los contenidos mas difici-
les para el estudiantado, no porque las formulas sean complejas,
sino porque exigen comprender ideas abstractas como azar,
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variabilidad, evidencia y razonamiento condicional. Por ello, el
reto del docente es presentar este tema de manera cercana,
conceptual y gradual, mostrando que el contraste de hipdtesis
no es un algoritmo, sino una forma de pensar con datos.

El propdsito inferencial. por qué contrastamos hipotesis en
educacion
La finalidad de una prueba de hipodtesis no es “probar que algo
es verdad”, sino evaluar si la evidencia empirica es suficiente-
mente fuerte como para cuestionar una afirmacidon inicial. Esa
afirmaciéon inicial se denomina hipdtesis nula (H ) y representa
un punto de referencia técnico: igualdad de medias, ausencia
de cambio o estabilidad de proporciones. No es una postura
personal ni una creencia, sino un Marco que permite ordenar el
andlisis y comparar lo que observamos con lo que esperariamos
si nada hubiera cambiado.

Como explica Ben-Zvi y Garfield (2004), el valor pedagdgico
de ensefar pruebas de hipdtesis radica en desarrollar un pensa-
miento critico que permita leer resultados de manera contextua-
lizada. En educacion, contrastar hipdtesis es Util para determinar
si una metodologia es realmente mejor que otra, si un programa
tuvo un impacto apreciable, o si los grupos estudiados muestran
diferencias que merecen atencion. Trabajar con hipotesis ayuda
ademads a que el estudiantado comprenda que las conclusiones
estadisticas no son absolutas: dependen del tamafo de la mues-
tra, de la variabilidad de los datos y del nivel de evidencia que
estemos dispuestos a aceptar. Este enfoque evita interpretacio-
nes simplistasy fomenta una mirada mas cuidadosa, donde cada
resultado se analiza en funcion del contexto, las limitaciones y
las decisiones que se pretenden fundamentar.

Ejemplo 8: un docente implementa un programa de tutorias
para mejorar los hdbitos de estudio de su grupo. Para evaluar si
el programa tiene efecto, registra las horas de estudio semanal
de 10 estudiantes antes y después de la intervencion.

Los datos (en horas) se muestran en la siguiente tabla 1:

Pregunta clave: ;Es razonable atribuir este aumento de 0,7
horas al programa de tutorias, o podria deberse simplemente
al azar?

Comparacion Pretest vs. Postest en horas de estudio

La prueba t para muestras pareadas mostrd una diferencia
estadisticamente significativa entre las horas de estudio antes
y después del programa de tutorias.

Los resultados de la prueba t para muestras pareadas (Tabla
2) indican que existe una diferencia estadisticamente significati-
va entre las horas de estudio antes y después de la intervenciéon
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docente, 1(9) = -4.58, p = .001. La diferencia media observada
fue de 0.70 horas, lo que revela un incremento en el tiempo que
los estudiantes dedicaron al estudio semanal tras participar en el
programa de tutorias. El intervalo de confianza del 95 por ciento
[-1.05, -0.354] confirma que este aumento es consistente y no
atribuible al azar. En conjunto, estos resultados sugieren que la
intervenciéon tuvo un efecto positivo y significativo en los hdbitos
de estudio del grupo evaluado.

Tabla 1.
Horas de estudio registradas antes y después de la intervencioén en el
programa de tutorias

Estudiante Z::':Z; Postest (después)
1 4 5
2 5 6
3 5 6
4 6 7
5 6 7
6 7 7
7 5 6
8 7 7
9 6 7
10 7 7

Nota. Los datos corresponden a las horas de estudio semanal reportadas por
los estudiantes en dos momentos: antes del programa de tutorias (pretest) y
después de su aplicacion (postest).

Los resultados descriptivos muestran un patréon bastante cla-
ro (Tabla 3): después de la intervencion, las y los estudiantes
estudian mas y de forma mdas homogénea. La media de horas
de estudio pasa de 5.80 en el pretest a 6.50 en el postest, y la
mediana aumenta de 6 a 7 horas. Es decir, no solo sube el pro-
medio, sino que también el valor “tipico” se desplaza hacia un
mayor numero de horas, lo que sugiere que el cambio no se debe
a uno o dos casos extremos, sino a un ajuste general del grupo.

Ademads, la desviacion estandar disminuye de 1.033 a 0.707
y el error estandar también se reduce, lo que indica que, tras
la intervencion, las respuestas se concentran mds alrededor de
la media. En términos sencillos, antes del programa habia mas
dispersion en los hdbitos de estudio; después, el grupo no solo
estudia un poco mds, sino que sus comportamientos son mas
parecidos entre si. Todo esto respalda la idea de que la interven-
cion de tutorias contribuyd a mejorar y estabilizar las horas de
estudio semanal del grupo.
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Tabla 2.
Resultados de la prueba t para muestras pareadas en horas de estu-
dio antes y después de la intervencion

Estadistico Valor
t -458
gl 9
o} 0.001
Diferencia | -0.700
media
(post - pre)
Error estdn-| 0153
dar (EE)
IC 95% [-1.05;
-0.354]

Nota. La prueba t pareada compara las puntuaciones del pretest y postest
de las horas de estudio.

Tabla 3.
Estadisticos descriptivos de las horas de estudio antes y después de la
intervencion

Variable N Media Mediana DE EE
pre 10 5.80 6.00 1.033 0.327
post 10 6.50 7.00 0.707 0.224

Nota. a tabla presenta los estadisticos descriptivos correspondientes
a las horas de estudio registradas en el pretest y el postest.

El andlisis de situaciones donde una misma muestra es eva-
luada en dos momentos o condiciones distintas como ocurre
en los estudios pre-post, antes-después o en comparaciones
repetidas en el tiempo; constituye una oportunidad privilegiada
para desarrollar razonamiento estadistico profundo en el aula. La
literatura ha mostrado que este tipo de tareas permite trabajar
simultdneamente la variabilidad, el significado del cambio y la
capacidad de argumentar con datos, tres dimensiones que son
esenciales en la alfabetizacion estadistica moderna (Batanero,
20071, Garfield & Ben-Zvi, 2008).

Ademads, analizar diferencias dentro del mismo grupo facilita que
los estudiantes comprendan cdmo evoluciona cada individuo y no
solo los promedios, reforzando la idea de que la estadistica es una
herramienta para interpretar fendmenos reales mdas que un con-
junto de algoritmos aislados (Bakker, 2004). Desde un enfoque mas
amplio del pensamiento estadistico, diversos autores destacan que
estas actividades fortalecen la capacidad de conectar informacién,
interpretar evidencia y justificar conclusiones de manera critica.
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Se presenta a continuacion un procedimiento general, aplica-
ble a cualquier situacién donde se comparan dos mediciones en
una misma muestra, estructurado para favorecer una compren-
sion conceptual, interpretativa y contextualizada.

Procedimiento diddctico para resolver problemas con com-
paraciones de medidas pareadas

1. Comprender el propdsito de la comparacion

El proceso comienza con la lectura cuidadosa del con-
texto: qué se midid, por qué se midié dos veces y qué se
espera responder con los datos. Esta fase inicial es clave
porque evita que el andlisis se limite a ejecutar una prueba,
permitiendo que el estudiantado construya una pregunta
de investigacion con sentido . En este punto se aclara qué
representa cada medicion y cémo encaja dentro del fené-
meno estudiado.

2. Identificar que los datos son pareados
El siguiente paso consiste en reconocer que las dos mediciones
provienen de las mismas personas, grupos o unidades de andlisis.
Esto diferencia claramente esta situacién de los problemas con
muestras independientes y justifica el uso de procedimientos que
trabajan con diferencias individuales.

Explorar descriptivamente las dos mediciones

Antes de realizar cualquier contraste formal, es necesario re-
visar medias, medianas, dispersién y patrones de cambio. Esta
exploracion permite que los estudiantes generen expectativas
razonables acerca del resultado inferencial como un componente
esencial del aprendizaje estadistico significativo. La intencién es
comprender la “historia” de los datos antes de pasar al modelo
(Batanero, 2001)

3. Calcular y analizar las diferencias individuales

En este paso se construye una nueva variable: la diferencia en-
tre la sequnda y la primera medicion. Este tipo de reformulacion
del problema ayuda a centrar el andlisis en la unidad fundamental
del cambio y favorece el desarrollo del pensamiento estadistico.
Se revisa cudntas diferencias son positivas, negativas o nulas,
y qué magnitud tienen. Esto convierte un problema potencial-
mente abstracto en una lectura simple: ;hay evidencia de que
la mayoria de las personas cambio?

4. Formular hipdtesis estadisticas comprensibles

Aqui se presenta la estructura formal de la inferencia: la hipote-
sis nula establece que la diferencia media en la poblaciéon es cero,
mientras que la alternativa plantea la existencia de un cambio.

5. Aplicar la prueba estadistica adecuada

Una vez construida la variable diferencia, se selecciona la
prueba apropiada:t pareada si se asume normalidad, o Wilcoxon
si el patron de diferencias no es normal. Se recomiendan usar
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software como Jamovi o R para que el estudiantado dedique
mas tiempo a interpretar y menos a ejecutar cdalculos mecdanicos
(Garfield & delMas ,2008).

6. Interpretar los resultados en el contexto del problema

La interpretacion combina varios elementos: el valor p, el in-
tervalo de confianza, la direccion y magnitud del cambio y el
tamanfo del efecto.

7. Elaborar conclusiones fundamentadas y reflexivas

Finalmente, se redacta una conclusion que responda directamente la
pregunta inicial, resuma el cambio observado y considere limitaciones
y posibles implicaciones. Esta etapa es donde se evidencia el pensa-
miento estadistico maduro: no se trata de “ganar” una prueba, sino de
interpretar datos para comprender y mejorar una situacion concreta.

Hipotesis nula y alternativa: del lenguaje cotidiano al lenguaje
académico
Antes de aplicar cualquier contraste, es necesario formular con
claridad la hipoétesis nula (H ) y la alternativa (H ). Garfield y
delMas (2008) sefialan que esta formulacidon constituye una de
las principales barreras conceptuales para el estudiantado: con
frecuencia confunden las hipotesis con sus expectativas, creen-
cias personales o con el resultado que desean obtener. Desde
esta perspectiva, la dificultad no reside Unicamente en la notacién
estadistica, sino en comprender que las hipotesis funcionan como
“puntos de partida” para evaluar evidencia y no como afirma-
ciones que deban defenderse o demostrar de manera absoluta.

Desde la educacion estadistica con enfoque constructivista,
autores como Batanero y Diaz (2011) destacan que el aprendi-
zaje de las pruebas de hipdtesis requiere que el estudiantado
reconstruya el significado de conceptos como variabilidad, in-
certidumbre y evidencia. Sin este andamiaje conceptual, las
hipotesis tienden a interpretarse como etiquetas rigidas en lugar
de ser entendidas como herramientas para razonar con datos.

Por ejemplo:

Lenguaje cotidiano: “Creo que el grupo que usa la plataforma
estudia mas que el grupo que no la usa.”

Formulacion estadistica:

Ho:pr =p2 Hy:pr >po

Esta traduccion facilita que el estudiantado establezca cone-
xiones entre sus ideas previas y los conceptos formales.

Ejemplo 9: En un curso de estadistica, el docente decide probar
una plataforma digital de estudio. La mitad del grupo trabaja con
la plataforma durante un mes; la otra mitad sigue estudiando solo
con el material impreso habitual. Al final del periodo, el docente
les pide que registren cudntas horas a la semana dedicaron al
estudio de la asignatura.
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Los resultados (resumidos) son los siguientes:

Grupo 1: con plataforma n; = 28

+ Media de horas de estudio: X; = 6.3

« Desviaciéon estandar: sy = 1.2

Grupo 2:sin plataforma ny = 30

+ Media de horas de estudio: X; = 5.5

* Desviacion estandar: sy =1.3

La pregunta del docente es muy simple en lenguaje cotidiano:

“¢Realmente la plataforma ayuda a que el estudiantado estu-
die mas, o esta diferencia se podria explicar solo por el azar?”

A partir de aqui entramos al terreno formal.

Hipodtesis en lenguaje cotidiano y en lenguaje estadistico

Primero recogemos la intuiciéon:

Lenguaje cotidiano: “Creo que el grupo que usa la plata-
forma estudia mas horas que el grupo que no la usa.”

Eso lo traducimos a notacion estadistica:

* M1:media poblacional de horas de estudio de quienes usan

la plataforma.

* M2:media poblacional de horas de estudio de quienes no la

usan.

Entonces:

* Hipdtesis nula (Hy): la plataforma no cambia el tiempo me-

dio de estudio.
HO [y = [lg

* Hipotesis alternativa (H;):la plataforma aumenta el tiempo

medio de estudio.
H]_ U1 > g

Tomamos un nivel de significaciéon habitual: a=0,05, prueba
unilateral (solo nos interesa si aumenta).

1. Tipo de prueba

Tenemos dos grupos distintos de estudiantes, sin empareja-
miento, con medias y desviaciones estdndar conocidas. Lo mas
natural es usar una pruebat para muestras independientes (ver-
sion de Welch, que no supone varianzas iguales).

En términos mas pedagdgicos: vamos a comparar “media con
plataforma” frente a “media sin plataforma”, teniendo en cuenta
la variabilidad de cada grupo y el tamafo muestral.

2. Diferencia observada entre las medias

Calculamos primero la diferencia simple:
X; — X3 =6.3 — 5.5 = 0.8 "horas”

Es decir, en promedio, el grupo con plataforma declara estu-
diar 0,8 horas mas por semana. La pregunta es:

¢0,8 horas es una diferencia suficientemente grande como
para no atribuirla al azar?
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3. Cdlculo del error estandar de la diferencia

La diferencia entre medias no se interpreta en el vacio; hay
que considerar cudnta dispersion hay en cada grupo y cuantos
estudiantes participaron. Para eso usamos el error estadndar de
la diferencia:

Elevamos al cuadrado las desviaciones estandar:

s?=(1.2)2=1.44

s2=(1.3)>=1.69
Dividimos cada varianza entre su tamafno muestral:

s? 1.44
n; 28
s2 1.69

— = —— =~ 0.0563
115)) 30

Sumamos esos dos valores:
0.0514 + 0.0563 =~ 0.1077

Hacemos la raiz cuadrada:
EEdif =+v0.1077 = 0.33

Ese 0,33 es el error estadndar de la diferencia de medias: una
medida de cudnto esperariamos que se mueva la diferencia entre
grupos solo por el azar del muestreo.

4. Estadistico t

Ahora comparamos la diferencia observada con el tamafo de
ese error estandar:

_X;—X; 08

t = = ~ 2.44
EEgif 0.33

Mientras mdas grande es t en valor positivo, mdas lejos estd nues-
tra diferencia de “cero diferencias” en unidades de error estandar.

5. Grados de libertad y p-valor (idea general)

Con la version de Welch, los grados de libertad son aproxi-
madamente 56. No hace falta que el estudiantado memorice la
formula exacta; lo importante es saber que se usan para buscar
el valor critico o el p-valor en la distribucion t.

Para unos 56 grados de libertad y una prueba unilateral: un
valor t cercano a 2,44 da un p-valor alrededor de 0,07.

Eso significa que, si en realidad no hubiera diferencia entre
los grupos (si Hy fuera cierta), la probabilidad de obtener una
diferencia tan grande como 0,8 horas, o incluso mayor, solo por
azar, seria de alrededor del 1 %. Es decir, bastante baja.
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8. Decision estadistica

Como el p-valor es = 0,01y nuestro nivel de significacién era
a=0,05:

. p<a

+ RechazamosHy.

Los datos que hemos observado no encajan bien con la idea de
que la plataforma no produce ninguna diferencia. Hay evidencia
suficiente para pensar que si tiene efecto.

9. Interpretacion en lenguaje humano

Una forma de comunicar el resultado, sin tecnicismos innece-
sarios, podria ser:

Con la informacién recogida, la diferencia de 0,8 horas se-
manales de estudio entre el grupo que uso6 la plataforma y el
que no la usé es demasiado grande como para atribuirla solo al
azar. Los andlisis estadisticos sugieren que la plataforma digital
si estd asociada con un mayor tiempo de estudio, al menos en
este contexto y con este grupo de estudiantes.

* Desde un enfoque frecuentista, hablas de probabilidad de

observar esos datos si la hipdtesis nula fuera cierta.

*+ Desde una mirada diddactica y constructivista, enfatizas
el proceso: partir de una conjetura en lenguaje cotidiano,
traducirla a hipotesis formales, analizar la variabilidad y,
finalmente, volver a un lenguaje comprensible para tomar
decisiones educativas.

La figura 8 permite comparar de forma precisa el comporta-

miento de ambos grupos a partir de sus valores estimados.

El grupo que trabajé con la plataforma obtuvo una media de
6,3 horas de estudio por semana, con un intervalo de confianza
del 95 % entre 5,84 y 6,77 horas. En contraste, el grupo sin pla-
taforma registré una media menor, 5,5 horas, cuyo intervalo de
confianza se ubica entre 5,02 y 5,99 horas.

Cuando se observan juntos, estos intervalos revelan un patréon
interesante: aunque existe una ligera superposiciéon entre ambos
rangos, la mayor parte del intervalo del grupo con plataforma
gueda por encima del intervalo correspondiente al grupo sin
plataforma. Esto, junto con la diferencia en las medias, sugiere
una ventaja consistente a favor del uso de la plataforma digital.
Ademas, el error estandar es menor en ambos casos (00,2268 y
0,2373), lo cualindica que las estimaciones son razonablemente
estables para tamafios muestrales de 28 y 30 estudiantes.

Comprender la diferencia entre la hipbtesis nula y la hipdtesis
alternativa es un paso esencial para que el estudiantado pueda
interpretar con sentido cualquier contraste estadistico. Cuando
los estudiantes logran traducir sus intuiciones y preguntas co-
tidianas al lenguaje formal de la estadistica, dejan de ver las
hipotesis como frases abstractas y empiezan a reconocerlas
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como herramientas que permiten organizar el razonamiento y
dar estructura a la investigacion.

Esta transicion del lenguaje comun al académico no solo cla-
rifica qué se quiere evaluar, sino que también ayuda a evitar
malentendidos frecuentes, como creer que la hipbtesis nula ex-
presa una opinion personal o un deseo de resultado. En realidad,
la hipotesis nula funciona como un punto de referencia que per-
mite valorar la evidencia, mientras que la alternativa expresa la
direccion o el tipo de cambio que interesa analizar. Cuando el
docente acompafia este proceso con ejemplos cercanos y ex-
plicaciones sencillas, la formulacién de hipdtesis deja de ser un
tramite técnico y se convierte en un ejercicio de reflexiéon que
fortalece la capacidad de pensar con rigor y claridad.

Figura 9.

Comparacion de las medias de horas de estudio entre los grupos con
y sin plataforma, con intervalos de confianza del 95 %

Rj Editar
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Nota. La figura muestra las medias semanales de estudio para los dos gru-
pos: uno que trabajo con la plataforma digital y otro que utilizé Unicamente
material impreso.

Pruebas Z y t de Student! criterios para decidir
La eleccion entre una prueba Zy una prueba t de Student no es
un asunto meramente técnico; constituye una decision clave para
garantizar que las inferencias realizadas reflejen adecuadamente
la incertidumbre presente en los datos. En términos generales,
esta decisiéon depende de dos elementos fundamentales:

177



Pensamiento inferencial: del dato a la argumentacién

el tamafio de la nuestra y la disponibilidad de la desviaciéon
estadndar poblacional. Sin embargo, diversos autores han mos-
trado que este criterio bdsico debe matizarse para evitar inter-
pretaciones errbneas o conclusiones precipitadas.

Gelman y Hill (2014) advierten que aplicar la prueba Z sin
considerar el origen de la desviacién estandar suele conducir
a un exceso de confianza en las conclusiones, porque ignora la
variabilidad adicional asociada a la estimaciéon muestral. Este
planteamiento coincide con la perspectiva cldsica de Student
(1908), quien desarrolld su distribucion precisamente para corre-
gir el sesgo que se introducia al trabajar con muestras pequefias.

Desde un enfoque mds diddactico, Batanero y Diaz (2011) sefa-
lan que muchos estudiantes creen que ambas pruebas son equi-
valentes o intercambiables, lo que genera errores conceptuales
frecuentes. Por ello, recomiendan enfatizar en la ensefianza que la
prueba Z sejustifica Unicamente cuando 0 es conocida o cuando
los tamafios muestrales son lo suficientemente grandes como
para que la estimacion de la desviacion estandar sea estable.

En la literatura reciente, autores como Cumming (2014) des-
taca que la prueba t incorpora explicitamente la incertidumbre
del error estandar, lo que la vuelve mas adecuada para investi-
gaciones en ciencias sociales y educativas, donde los tamafios
de muestra tienden a ser moderados o reducidos.

En resumen, aunque la regla general indica que la prueba Z
se utiliza cuando © es conocida on > 30, y la prueba t cuando ©
es desconocida o la muestra es pequefia, los autores coinciden
en que la prueba t ofrece una representacion mas fiel de la in-
certidumbre en la mayoria de contextos educativos. Su uso no
solo ajusta de manera mas adecuada el error estandar, sino que
promueve una comprension mas critica del proceso inferencial.

Ejemplo 10. Situacién cercana a una prueba Z: 0 conocida y
muestra grande

Imagina que el Ministerio aplica cada afio una prueba estan-
darizada de matemdticas a todo el pais. A partir de muchos afios
de aplicacién, se sabe que los puntajes se distribuyen aproxima-
damente con media poblacional po = 500 puntos y desviacion
estandar poblacional 6 = 100 puntos.

Este afio, una provincia que ha implementado un nuevo pro-
grama de apoyo reporta una muestra de 100 estudiantes con
una media de X = 530 puntos. La pregunta es:

¢.Se puede concluir que el programa estd asociado con un au-
mento real en los puntajes, o esa diferencia de 30 puntos podria
deberse solo al azar?

Los resultados del andlisis (Tabla 4) indican que la media ob-
servada de los puntajes (530 puntos) se encuentra tres errores
estandar por encima de la media poblacional histérica de 500
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puntos. El estadistico Z = 3 y su p-valor bilateral (p =.0027) mues-
tran que esta diferencia de 30 puntos es muy poco probable que
se deba Unicamente al azar. El intervalo de confianza del 95 %
(510.4 a0 549.6) tampoco incluye el valor de la media poblacional,
reforzando esta conclusion.

Tabla 4,
Resultados de la prueba Z para evaluar el efecto del programa en los
puntajes

Estadfistico Valor
Media 530
muestral
Media pobla- 500
cional (H )
Error estdn- 10
dar (SE)
Estadistico Z 3.00
p (bilateral) 0.0027
IC 95 % [510.4 ;549.6]

Nota. La tabla resume los resultados de una prueba Z aplicada para com-
parar la media observada de una muestra de 100 estudiantes con la media
poblacional histérica de 500 puntos.

En términos practicos, hay evidencia estadistica sélida para
afirmar que el programa implementado estd asociado con una
mejora real en el rendimiento académico de los estudiantes en
la prueba estandarizada.

Ejemplo 11. Situacion tipica de prueba t: 6 desconociday mues-
tra pequefa

Ahora pensemos en un escenario mucho mas habitual en edu-
cacion:un docente en un solo curso quiere saber si su estrategia
de evaluacion formativa ha incrementado el tiempo de estudio
semanal de su grupo. Para ello recoge datos de 12 estudiantes
y obtiene:

+ Media muestral: X = 6

* Desviacion estandar muestral: s = 1.2

* Hipdtesis de referencia: antes de la intervencién, el grupo

estudiaba en torno a 6 horas.

Los resultados de la prueba t de una muestra (Figura 9) indican
que el grupo estudia, en promedio, 6,18 horas semanales, muy
cerca de las 6 horas que se tomaron como valor de referencia.
La desviacién estandar es 0,753, y con 12 estudiantes esto se
traduce en un error estandar de 0,217.
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Los resultados de la prueba t de una muestra (Figura 9) indican
que el grupo estudia, en promedio, 6,18 horas semanales, muy
cerca de las 6 horas que se tomaron como valor de referencia.
La desviacién estandar es 0,753, y con 12 estudiantes esto se
traduce en un error estandar de 0,217.

Figura 10.

Resultados de la prueba t de una muestra para el tiempo de estudio
semanal

Prueba t de una Muestra

Nota. La figura presenta los resultados de una prueba t de una muestra apli-
cada a 12 estudiantes, con el fin de comparar la media observada de horas
de estudio semanal (6,18 horas) con el valor de referencia de 6 horas.

Al comparar la media observada con el valor de 6 horas,
Jamovi calcula un estadistico t(11) = 0,843 con un p = 0,417. Este
p-valor es mucho mayor que 0,05, de modo que no hay evidencia
estadistica para rechazar la hipodtesis de que la media real sea 6
horas; la diferencia de 0,18 horas puede explicarse perfectamente
por la variabilidad normal entre estudiantes.

El tamafio del efecto de Cohen (d = 0,243) tambiéen refuerza
esta lectura: se trata de un efecto pequefio, lo que sugiere que,
aun si existiera algun cambio real, su magnitud seria modesta.
En resumen, con estos datos no podemos afirmar que la estra-
tegia de evaluaciéon haya modificado de forma clara el tiempo
de estudio del grupo; mas bien, los resultados son coherentes
con la idea de que el alumnado sigue estudiando alrededor de
6 horas por semana.

Apoyo diddctico: Trabajar con pruebas de hipdtesis en el aula
no deberia convertirse en un ejercicio mecdnico de “aplicar fér-
mulas”, sino en una oportunidad para que el estudiantado com-
prenda qué significa realmente comparar evidencia con una afir-
macion inicial. En el ejemplo analizado, los resultados muestran
gue la media observada no es estadisticamente distinta del valor
de referencia, lo que invita a pensar que los datos, por si solos,
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no sostienen la idea de un cambio relevante en el tiempo de es-
tudio. Desde una perspectiva formativa, esto permite conversar
con los estudiantes sobre la importancia de mirar mas alld de la
diferencia numérica y atender a la variabilidad, al tamafio de la
muestra y al contexto en el que se recogen los datos.

Este tipo de andlisis también ayuda a desmontar la expectativa
frecuente de que toda intervencién debe producir un aumento
inmediato y visible. Entender que la ausencia de diferencias sig-
nificativas no es un “fracaso”, sino un resultado posible y valioso,
fomenta en el aula una postura mas critica y honesta frente a la
evidencia. A la vez, abre la puerta para que los estudiantes re-
flexionen sobre qué otros factores podrian estar influyendo, qué
ajustes metodoldgicos serian necesarios o qué tipo de evidencias
complementarias podrian recabarse.

Errores tipo | y tipo Il en el razonamiento estadistico

En el corazéon de toda prueba de hipdtesis existe una tension
entre dos riesgos inevitables: equivocarse por exceso de con-
fianza o equivocarse por exceso de cautela. Estos riesgos se
formalizan en la estadistica inferencial como error tipo | y error
tipo I, conceptos centrales para comprender que toda decision
basada en datos estd sujeta aincertidumbre y que nunca traba-
jamos con conclusiones absolutas, sino con grados de evidencia.

El error tipo | (@) ocurre cuando se rechaza la hipotesis nula
siendo esta verdadera. Es, en términos practicos, declarar que
“hay un efecto” donde realmente no lo hay. En educacion, este
error puede llevar a pensar que una intervencion didactica pro-
dujo mejoras cuando, en realidad, los resultados observados po-
drian explicarse por el azar o la variabilidad natural de los grupos.
Su importancia radica en que, si no se controla, se corre el riesgo
de implementar estrategias o programas ineficaces, generando
expectativas infundadas, uso inadecuado de recursos o conclu-
siones pedagodgicas equivocadas.

Por otro lado, el error tipo |l (5) aparece cuando no se rechaza
la hipotesis nula siendo esta falsa. En este caso, el peligro consiste
en pasar por alto un efecto real: creer que una intervencidén “no
funciona” cuando en verdad si produce un impacto. Este tipo de
error tiene consecuencias relevantes en entornos educativos,
porque puede llevar a descartar prdacticas valiosas, no dar con-
tinuidad a estrategias prometedoras o desestimar cambios que
requieren mds tiempo o condiciones mas estables para hacerse
visibles. Su probabilidad estd asociada al tamafio de la muestra,
la variabilidad de los datos y la magnitud del efecto: cuanto mas
pequefios sean los grupos o mds dispersa sea la informacion,
mayor es el riesgo de no detectar diferencias que si existen.

181



Pensamiento inferencial: del dato a la argumentacién

Comprender ambos errores es fundamental para la toma de
decisiones informada. En la prdctica, no se trata simplemente de
memorizar definiciones, sino de entender que toda inferencia
estadistica implica un equilibrio: minimizar el error tipo | redu-
ce la probabilidad de falsas alarmas, pero aumenta el riesgo de
cometer un error tipo Il, es decir, de dejar pasar efectos reales.
De la misma manera, aumentar la sensibilidad para detectar
cambios puede elevar el riesgo de concluir que un resultado es
significativo cuando en realidad no lo es. Este juego de compen-
saciones obliga a reflexionar sobre el contexto de investigacion,
las implicaciones pedagdgicas y los costos de equivocarse en
uno u otro sentido.

Ejemplos que el docente puede desarrollar:

Ejemplo 12. Evaluacion de un nuevo método de enseianza

Unainstitucion introduce un método innovador de ensefianza
de matemdaticas y quiere comprobar si esta mejora el rendimiento
respecto al enfoque tradicional. Se comparan las calificaciones
de ambos grupos mediante una prueba estadistica.

Error tipo | (falso positivo)

El andlisis indica que el nuevo método mejora el rendimiento,
por lo que la escuela decide implementarlo. Sin embargo, en
realidad no existe una mejora real; la diferencia observada se
debe al azar o a factores externos (motivacion inicial, afinidad
del docente, clima del aula).

La consecuencia es que la institucion adopta una estrategia
gue solo parece eficaz, invirtiendo tiempo, recursos y expecta-
tivas en algo que no produce los resultados prometidos.

Error tipo Il (falso negativo)

El andlisis no encuentra diferencias significativas y se concluye
gue el método no aporta beneficios. Sin embargo, el método si
mejora el rendimiento, pero el estudio no fue capaz de detectarlo
(por ejemplo, por usar una muestra demasiado pequefa).

El resultado es que la escuela descarta una herramienta
realmente Util que podria haber apoyado el aprendizaje del
estudiantado.

Ejemplo 13. Programa de tutorias para mejorar habitos de
estudio

Una docente aplica un programa de tutorias para fortalecer
la organizacion del tiempo en un grupo de estudiantes y evalUa
si aumentan sus horas de estudio semanales.

Error tipo |

Se concluye que las tutorias aumentaron las horas de estudio,
pero en realidad los cambios se deben a un examen cercano que
motivo al grupo a estudiar mas.

El riesgo es atribuirle al programa un efecto que no proviene
del programa, generando una falsa sensacién de éxito.
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Error tipo Il

Los andlisis no detectan un aumento significativo, por lo que
se piensa que las tutorias no funcionan. Pero el programa si ge-
nerd cambios, solo que estos fueron pequefios o requieren mas
tiempo para consolidarse.

El riesgo es abandonar una intervencién que si aportaba me-
joras, aunque de forma progresiva.

Ejemplo 14. Deteccidon temprana de dificultades de aprendizaje

Se utiliza una prueba diagndstica para identificar a estudian-
tes con riesgo de dificultades lectoras.

Error tipo |

La prueba sefiala que un nifio tiene riesgo cuando en realidad
no lo tiene.

Enla practica, esto puede llevar aintervenciones innecesarias,
ansiedad para la familia o desvio de recursos educativos.

Error tipo Il

La prueba no detecta a una nifia que realmente si necesita
apoyo.

Como consecuencia, la estudiante no recibe la ayuda oportuna
y sus dificultades podrian profundizarse con el tiempo.

Desde un enfoque formativo, ensefiar los errores tipo | y tipo |l
permite desarrollar en el estudiantado una mirada critica sobre
las afirmaciones basadas en datos. Los ayuda a reconocer que
la estadistica no busca certezas absolutas, sino decisiones razo-
nables apoyadas en evidencia. También favorece el desarrollo de
un pensamiento mds matizado: no todo resultado “significativo”
implica un cambio real, ni toda ausencia de significacién indica
falta de impacto. Al integrar estos conceptos en el andlisis edu-
cativo, se promueve una comprension mas profunda del caracter
provisional y contextual de las conclusiones estadisticas, forta-
leciendo la capacidad de interpretar datos de manera reflexiva
y responsable.

Contrastes mds comunes en contextos educativos (proporcio-
nes, medias, diferencias)
Comprender los contrastes mas habituales en investigacién edu-
cativa implica mucho mas que aplicar procedimientos estadisti-
cos; supone, como argumentan Batanero y Diaz (2011), reconocer
la incertidumbre inherente a los datos y leerla de forma critica
para tomar decisiones informadas. Garfield y delMas (2008) afia-
den que la fortaleza de estos contrastes radica en su capacidad
para articular preguntas educativas reales con herramientas
cuantitativas transparentes.
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Desde esta mirada, los contrastes se presentan en dos grandes
grupos: los que se aplican a proporciones y variables categéri-
cas, y los que se aplican a medias y diferencias entre grupos. La
diferenciacion no es meramente técnica.

Contrastes para proporciones y variables categéricas

En educaciéon, una gran parte de la informacion que se recoge
no es numeérica continua sino categdérica: aprobar o no aprobar,
asistir o no asistir, alto o bajo desempefio, riesgo o no riesgo,
logro o no logro. Estas variables permiten describir situaciones
relevantes, pero exigen métodos especificos para poder con-
trastar hipotesis o estudiar asociaciones entre grupos. Como
plantean Batanero y Diaz (2011), comprender cdmo se analizan
las proporciones es fundamental para desarrollar un pensamiento
estadistico auténtico, pues la interpretacién de estos contrastes
se vincula directamente con decisiones educativas reales: asig-
nacién de recursos, intervenciones focalizadas o evaluacién de
programas.

Los contrastes para proporciones permiten responder pre-
guntas como:

+ ¢La proporcion de estudiantes con logro mejora luego de

una intervencion?

+ ¢Dos grupos muestran patrones similares de aprobacion?

+ ¢(Existe relacion entre la participacion y el nivel de

desempefio?

Garfield y delMas (2008) subrayan que estos contrastes son
especialmente pedagdgicos porque ayudan al estudiantado a
pasar de la observacion de frecuencias “a simple vista” a una
interpretacidon rigurosa basada en evidencia y variabilidad.

A continuacién, se desarrollan los contrastes mas habituales.

a) Comparacion de proporciones: prueba Z para una o dos
proporciones

La prueba Z es uno de los contrastes mas utilizados para com-
parar proporciones cuando el tamafio de la muestra es lo sufi-
cientemente grande como parajustificar la aproximacion normal.
Su fundamento radica en que, al incrementarse el nUmero de
observaciones, la distribucién muestral de la proporcién tiende a
adoptar una forma aproximadamente normal, lo que permite cal-
cular errores estandar y realizar inferencias con mayor precision.

Este comportamiento se explica por el principio general de las
aproximaciones asintoticas, ampliamente discutido por Gelman y
Hill (2014), quienes sefialan que muchos procedimientos inferen-
ciales ganan estabilidad conforme aumenta la informacién dispo-
nible en los datos. En ese sentido, la prueba Z no solo se apoya
en un criterio técnico, sino en una logica estadistica que busca
garantizar conclusiones mas fiables a partir de la variabilidad
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muestraly del comportamiento esperado de la distribucion bajo
condiciones de gran tamafio de muestra.

Se utiliza cuando:

1. La variable es dicotomica (si/no).

2. El tamafio muestral garantiza la aproximaciéon normal:

3.np>5 and n(l-—p)>5.

4. Se comparan proporciones con un valor de referencia (una

proporcion) o entre grupos (dos proporciones).

5. El objetivo es evaluar si la diferencia observada refleja un

cambio real o solo fluctuaciones aleatorias.

Como advierte Gelman y Hill (2014), la clave pedagdgica no es
solo calcular la prueba, sino interpretar el resultado en términos
de incertidumbre y tamafio del efecto.

Ejemplo 15. Prueba Z para una proporcion

Una institucion desea saber sial menos el 70 % de estudiantes
alcanza el nivel esperado en comprension lectora.

Datos:

45 de 60 estudiantes lograron el nivel — p =0.75

Hipotesis:

-« Ho:p=0.70

- Hi:p>0.70

Interpretacion:

La diferencia entre 0.70 y 0.75 puede parecer relevante, pero
la prueba Z ayuda a evaluar si este incremento podria aparecer
por azar. Un valor p pequefio sugiere que la proporcidon real en
la poblacidn podria estar por encima de 0.70.

Cumming (2014) recomienda acompafar siempre esta prueba
con un intervalo de confianza del 95 %, porque permite comunicar
con claridad la incertidumbre alrededor de la proporcién observada.

Ejemplo 15. Prueba Z para dos proporciones

Situacion:

Una docente implementa un modulo digital y desea saber si
aumento la proporcion de estudiantes aprobados.

* Antes:18/30 aprueban entonces 0.60

* Después: 24/30 aprueban entonces 0.80

Se usa Z para dos proporciones porque:

* Se comparan dos momentos distintos.

* Ambas proporciones provienen de muestras independientes.

* Las frecuencias cumplen los supuestos de normalidad

aproximada.

Interpretacion: La diferencia de 0.20 es notable, pero la pre-
gunta clave es:

;essuficientemente grande como para atribuirla al programa
y no al azar?

El contraste Z y su intervalo de confianza aportan evidencia
mas robusta que una simple comparacion descriptiva.
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b) Prueba Xz (chi cuadrado) de independencia

La prueba 1> es uno de los contrastes més utilizados para
determinar si dos variables categoéricas estdn asociadas o si sus
distribuciones son independientes. En el dmbito educativo, su
utilidad es particularmente relevante porque permite identifi-
car patrones que no siempre se distinguen a simple vista en las
tablas de frecuencias. Agresti (2018) explica que este contraste
resulta esencial cuando se investigan relaciones entre atributos
cualitativos, pues permite evaluar si las diferencias entre valores
observados y esperados son atribuibles al azar o responden a
un efecto real. Es adecuada cuando:

* Ambas variables son categéricas.

*+ Se desea saber silas categorias de una variable estdn aso-

ciadas a las categorias de otra.

* Las frecuencias esperadas son > 5 (Howell, 2017).

* Elinterés no es casual, sino relacional.

Ejemplo 16. Se quiere saber si el nivel Igctor se relaciona con
asistir o no a un programa de apoyo. (X de independencia en
lectura y asistencia)

Tabla 5.
Asistencia a tutorias sequn el nivel lector del estudiantado
Nivel lector | Asiste No asiste
Adecuado 12 &
Bajo 16 4

Nota. La tabla presenta la distribucién conjunta del nivel lector y la asistencia
a tutorias.

Desde una perspectiva diddactica, Batanero y Diaz (2011) des-
tacan que entender la l6gica de este contraste ayuda al alum-
nado a interpretar adecuadamente la variabilidad y desarrollar
un razonamiento estadistico mas critico y fundamentado. En
conjunto, estos aportes consolidan a la prueba  como una he-
rramienta indispensable para analizar perfiles de riesgo, estra-
tegias de estudio y diversas dindmicas educativas basadas en
datos categéricos.

c) Pruebas exactas y alternativas no paramétricas

En el andlisis de datos educativos, la eleccién de una prueba
estadistica apropiada depende tanto del tipo de variable como de
los supuestos que estas cumplen, por lo que comprender la l6gica
detrds de los métodos disponibles es fundamental para realizar
inferencias solidas. Agresti (2018) enfatiza que, antes de aplicar
cualguier contraste, es necesario evaluar si las condiciones tedricas
se sostienen, ya que de ello depende la validez de los resultados.
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Del mismmo modo, Batanero y Diaz (2011) destacan gue muchos
errores en la interpretacidn estadistica provienen de una com-
prension insuficiente sobre la naturaleza de las distribuciones y
la variabilidad, lo que subraya la importancia de ensefiar no solo
técnicas, sino también sus fundamentos conceptuales. Por su
parte, Batanero y Ben-Zvi (2013) muestran que el razonamiento
sobre variabilidad es clave para interpretar correctamente las di-
ferencias entre grupos y tomaqr decisiones basadas en evidencia.

Cuando los supuestos de X no se cumplen, por ejemplo, cuan-
do alguna frecuencia es menor a 5; por tanto, es necesario recu-
rrir a alternativas mas robustas, como:

* Prueba exacta de Fisher

* Prueba de McNemar (cuando las mediciones son pareadas)

Mayo (2018) subraya que estas pruebas “severas” refuerzan la
validez del andlisis, pues evitan conclusiones erréneas basadas en
frecuencias insuficientes. Las contribuciones de Bakker (2004) se
suman a esta perspectiva al sefalar que el uso de herramientas
y métodos adecuados permite representar de manera mas pre-
cisa los patrones que emergen de los datos, algo especialmente
relevante en entornos educativos donde las muestras no siempre
cumplen los supuestos ideales.

Ejemplo 17. Fisher exacta con grupos pequefios

Un grupo pequefo de 10 estudiantes participa en un micro
taller. Se desea saber si el taller se relaciona con completar
una tarea.

Tabla 6.
Relacion entre asistencia a tutorias y cumplimiento de tareas
Completa tarea Si No
Asiste 5 1
No asiste 2 2

Nota. La tabla muestra la distribucion de estudiantes seglUn su asistencia a
las tutorias y el cumplimiento de las tareas asignadas.

Las frecuencias son bajas en algunas celdas.

Por ello,X no esrecomendable y se utiliza Fisher exacta, que
calcula la probabilidad exacta de obtener una distribucién igual
o mas extrema bajo Hy.

Interpretacion:

Sip < 0.05, se concluye que el patron entre asistenciay comple-
tar la tarea no es aleatorio. Dado el tamafio reducido, esta prueba
evita sobre interpretar diferencias que podrian ser producto del
azar. Los contrastes para proporciones y variables categoricas son
herramientas especialmente Utiles para interpretar situaciones edu-
cativas que, a simple vista, pueden parecer triviales o evidentes.
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A través de estos procedimientos es posible reconocer cam-
bios, asociaciones y tendencias que no siempre se muestran de
forma clara en los datos brutos.

Lo verdaderamente valioso, desde el punto de vista formativo,
es que permiten al estudiantado mirar mas alla de la intuicién
inicial y preguntarse qué tan probable es que una diferencia
observada se deba realmente al fendmeno que interesa o, por
el contrario, sea producto del azar.

El andlisis de proporciones invita a pensar en la variabilidad, en
la forma en que se distribuyen los resultados y en la importancia
de considerar el tamafio de la muestra antes de sacar conclusio-
nes apresuradas. Esta reflexion es clave en contextos educativos,
donde las decisiones deben basarse en evidencia confiable.

Contrastes para medias y diferencias entre grupos
Comparar medias es una de las tareas mas frecuentes en inves-
tigacion educativa: analizar si un grupo estudia mas que otro, si
una intervencion mejora puntajes, si dos modalidades de ense-
flanza producen diferencias en el rendimiento o si los estudian-
tes cambian su desempefio antes y después de un programa.
Estas comparaciones son habituales porque permiten evaluar
el impacto de las prdacticas pedagdgicas, contrastar enfoques
metodoldgicosy comprender mejor cobmo evolucionan los apren-
dizajes en diferentes contextos.

Como sefialan Kline (2013) y Howell (2017), elegir correcta-
mente un contraste supone atender tres aspectos esenciales: la
naturaleza de las variables, el cumplimiento de los supuestos
estadisticos y la forma en que se organiza el disefio del estudio.
Cuando estas decisiones se toman con criterios sélidos, el andlisis
de medias deja de ser un mero ejercicio aritmético y se convier-
te en una herramienta de interpretacién que ayuda a explicar
por qué ciertos grupos se comportan de manera distinta, qué
cambios son atribuibles a una intervencién y qué variabilidad
responde mas al azar que a efectos reales.

Como sefalan Kline (2013) y Howell (2017), elegir correcta-
mente un contraste requiere considerar tres aspectos esenciales:

1. el tamafo de la muestra,

2. la forma en que se distribuyen los datos y

3. si se conoce o no la desviacién estdndar poblacional.

De la combinacién de estos criterios surgen diferentes pruebas
para comparar medias. A continuacion, se desarrollan las mas
utilizadas en educacioén, junto con sus fundamentos conceptuales
y ejemplos explicados paso a paso.

1. Prueba Z para una media: 0 conocida y tamafo grande

La prueba Z se utiliza en situaciones donde se conoce la des-
viacion estandar poblacional (0)o cuando el tamafio muestral es
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lo suficientemente grande para que la distribucidon de la media
se aproxime a la normal.

Aunque en educacion rara vez se conoce O, este contraste si-
gue siendo Util para fines didacticos, sobre todo para introducir
el razonamiento inferencial.

Ejemplo 18: Una institucion afirma que, en promedio, sus es-
tudiantes dedican 6 horas semanales al estudio. Una muestra
grande de n = 80 estudiantes reportan:

Media muestral = 6.4 horas

O poblacional (conocida por estudios previos) = 1.5 horas

Hipotesis:

Hp:n=6

Hi:unz6

Interpretacion:

Si el valor Z resulta significativo, indica que el tiempo prome-
dio en esta muestra difiere del valor institucional, lo que sugiere
que podrian haberse producido cambios reales en los hdbitos
de estudio. Sin embargo, el punto clave como explica Cumming
(2014), no es el estadistico Z en si, sino evaluar si la diferencia
observada es coherente con la variabilidad que razonablemente
podria esperarse en este tipo de datos. Esta perspectiva enfa-
tiza que la interpretacién no debe centrarse Unicamente en la
significacion, sino en comprender cudn plausible es el cambio
a la luz de la variabilidad muestral y del intervalo de confianza
que la acompana.

2. Prueba t para muestrasindependientes: comparar dos gru-

pos distintos

Se usa cuando se desea comparar las medias de dos grupos
independientes, como:

* estudiantes de dos cursos,

*+ dos metodologias diferentes,

* grupos con y sin intervencion,

* condiciones de aprendizaje presenciales y virtuales.

Howell (2017) subraya que las condiciones clave para esta
prueba son:

* Independencia entre los grupos

* Aproximada normalidad en cada conjunto

* Homogeneidad de varianzas (cuando se usa la version

clasica)

Cuando no se cumple la homogeneidad, se utiliza la correccion
de Welch, mas robusta.

Ejemplo 20

Una docente quiere saber si un mddulo digital mejora el des-
empefio. Compara:
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Tabla 7.
Estadisticos descriptivos de los puntajes segun participacion en la
plataforma virtual

Grupo n Media DE

con 30 6.3 12
plataforma

Sin
plataforma

30 55 1.3

Nota. La tabla presenta los estadisticos descriptivos de los puntajes obteni-
dos por los estudiantes que trabajaron con la plataforma virtual y aquellos
que no la utilizaron.

Hipotesis:
« Ho:pi =2

« Hy:pp >pe

* Interpretacion:

Si el valor pes menor que 0.05, los datos sugieren que quienes
utilizaron la plataforma estudiaron mdas. No obstante, este resul-
tado solo indica que la diferencia dificilmente se deba al azar; no
dice nada sobre cudn grande o importante es. Por eso, el tamafio
del efecto —como el d de Cohen— es indispensable para valorar
si la diferencia observada es realmente significativa en términos
educativos. Mientras el p refleja la evidencia estadistica, el ta-
mafio del efecto permite comprender la magnitud del cambio y
si este tiene un impacto que pueda considerarse relevante para
la practica docente o para la toma de decisiones institucionales.

3. Prueba t para muestras pareadas: antes y después

La prueba t para muestras pareadas resulta especialmente
Util cuando se quiere evaluar un cambio real en un mismo grupo
de personas tras una intervencion, actividad o experiencia edu-
cativa. A diferencia de los andlisis que comparan grupos distin-
tos, aqui cada participante se convierte en su propio punto de
referencia: se observa cémo estaba antes y cdmo se encuentra
después.

Este enfoque permite aislar de mejor manera el efecto de la
intervencion, porque elimina la variabilidad que existe entre indi-
viduos. En contextos educativos, esta prueba ayuda a responder
preguntas muy habituales, como si un programa de tutorias me-
jora el rendimiento, si una estrategia didactica incrementa la mo-
tivacion, o si una herramienta tecnoldgica facilita el aprendizaje.

Se usa cuando las mediciones proceden del mismo grupo en
dos momentos:

* pretest y postest,

* antes y después de una intervencion,

* dos tareas realizadas por los mismos estudiantes.

190



Saquinaula Brito José Luis

Ejemplo 21

Una docente aplica tutorias durante cuatro semanas. Antes y
después, registra las horas de estudio:

* Pretest: media=5.8

* Postest: media =65

* Diferencia media = 0.7 horas

Hipotesis:

- Ho:pair =0

« Hy:pgr >0

Interpretacion:

Si la diferencia promedio resulta estadisticamente significati-
va, puede interpretarse que el aumento en las horas de estudio
estdasociado al programa. Sin embargo, como destaca Cumming
(2014), la significacion por si sola no basta para comprender el
alcance real del cambio. El intervalo de confianza de la diferencia
proporciona informacién esencial sobre cudnta mejora es razo-
nable esperar y cudnta incertidumbre existe alrededor de esa
estimaciéon. De este modo, no solo se identifica que el programa
produce un efecto, sino también la magnitud y la precisién con
gue puede describirse dicho efecto, lo que permite tomar deci-
siones mas informadas y realistas en el dmbito educativo.

4. ANOVA de un factor: tres o mds medias

Howell (2017) explica que el ANOVA contrasta la variabilidad
entre grupos con la variabilidad dentro de ellos. Cuando la varia-
cion entre las medias grupales es mucho mayor que la dispersién
gue existe dentro de cada grupo, resulta poco probable que esa
diferencia sea producto de fluctuaciones aleatorias. En ese caso
se concluye que existe evidencia de diferencias significativas en-
tre los grupos. Esta logica convierte al ANOVA en una herramienta
especialmente valiosa para estudiar fendmenos educativos en los
gue se desea comparar varios métodos, intervenciones o niveles
de desempefo sin perder rigor estadistico.

Ejemplo 22. Tres modalidades de estudio (A, By C) producen
los siguientes resultados:

Interpretacion:

Un ANOVA significativo indica que al menos una de las me-
dias difiere del resto, pero no especifica entre qué grupos se
encuentran esas diferencias. Esta informacion es crucial en la
interpretacion, ya que el andlisis global solo sefiala la existencia
de una variacion sistematica, sin precisar su origen. Por ello, una
vez obtenida una F significativa, es necesario complementar el
andlisis con comparaciones post hoc, que permiten identificar
con precision qué pares de medias presentan diferencias esta-
disticamente relevantes.
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Estas pruebas controlan el error asociado a realizar multiples
comparaciones y ofrecen una vision mdas detallada del efecto,
facilitando conclusiones vdlidas sobre las modalidades que real-
mente se distinguen entre si.

En sintesis, los contrastes para medias constituyen una herra-
mienta esencial para comprender como varian los aprendizajes
y las prdacticas educativas en distintos grupos y contextos. Mas
allad de las férmulas, su verdadero valor radica en ayudar a in-
terpretar si las diferencias observadas reflejan cambios reales
o simplemente variabilidad propia del muestreo. Elegir entre
una pruebat, una prueba Z o un ANOVA implica considerar con
cuidado el disefio del estudio, el tamafio de la muestra y el tipo
de datos disponibles; pero, sobre todo, exige una lectura critica
que no se limite al valor p, sino que incorpore los intervalos de
confianza y el tamafo del efecto como parte del argumento pe-
dagodgico. Cuando se ensefian y aplican desde esta perspectiva,
estos contrastes se transforman en un medio para fortalecer la
toma de decisiones informada, fomentar la reflexion sobre la
evidencia y promover una comprensiéon mds profunda de los
procesos educativos que se busca analizar.

Eifbc;giflilcos descriptivos de los puntajes segun modalidad de estudio
Grupo Media DE n
A 6.1 1. 25
B 56 1.3 25
C 6.8 1.0 25

Nota. Los datos presentan las medias, desviaciones estdndar y tamafios
muestrales de tres modalidades de estudio (A, By C).

Conclusiones

El capitulo 4 mostrd que la inferencia estadistica es, ante todo,
una forma de pensar con datos y no solo un conjunto de féormulas.
Trabajar con poblacidn, muestra y sesgo permitié comprender
que toda conclusidn se apoya en decisiones de muestreo que
pueden acercarnos o alejarnos de la realidad que queremos es-
tudiar. La idea de que “los datos no hablan solos” atraviesa todo
el capitulo: es necesario preguntarse quiénes participaron, cobmo
se recogid la informacion y qué tipo de preguntas se pretende
responder para que el andlisis tenga sentido.

Al abordar la estimacién puntual y por intervalos, asi como el
tamafo muestral y la precision, el capitulo insistido en que toda
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estimacién va acompafada de incertidumbre. Lejos de ser un
error, esa incertidumbre es una caracteristica propia del trabajo
con muestras y debe aprender a interpretarse con herramientas
como el error estdndar, los intervalos de confianza y el andlisis
de la variabilidad. En esa misma l6gica, las pruebas de hipodtesis
se presentaron como un puente entre el lenguaje cotidiano y el
lenguaje académico: formular Hyy Hy, elegir la prueba adecua-
da y analizar el valor p y el tamafio del efecto solo tiene sentido
si se vincula con una pregunta real sobre cambios, diferencias o
relaciones entre grupos.

Finalmente, el capitulo resalté la importancia de formar una
actitud critica frente a los resultados estadisticos. La inferen-
cia no entrega verdades absolutas, sino evidencias que deben
leerse con prudencia, reconociendo sus limites y el contexto
en gue se producen. Cuando el estudiantado aprende a jus-
tificar sus conclusiones, a discutir la calidad de los datos y a
reconocer qué puede y qué no puede afirmarse a partir de un
andlisis, la estadistica deja de ser una lista de procedimientos
para convertirse en una herramienta de argumentacion.

Referencias

Agresti, A. (2018). Statistical methods for the social sciences
(5.9 ed.). Pearson.

Bakker, A. (2004). Design research in statistics education: On
symbolizing and computer tools [Tesis doctoral, Utrecht
University]. CD- Press.

Batanero, C. (2001). Didactica de la estadistica. Universidad de
Granada.

Batanero, C., & Ben-Zvi, D. (2013). Reasoning about variability in
statistics education. Springer.

Batanero, C., & Diaz, C. (2011). Estadistica y probabilidad en
educacion matemdtica. Editorial Sintesis.

Ben-Zvi, D., & Garfield, J. (2004). The challenge of developing
statistical literacy, reasoning and thinking. Springer.

Biehler, R. (2018). Perspectives on modeling variability and
statistical reasoning in education. Springer.

Cumming, G.(2014). The new statistics: Why and how. Psychological
Science, 25(1), 7-29. hitos:/doi.org/10.11///095679/613504966

Garfield, J., & delMas, R. (2008). Research on reasoning about
variability. En D. Ben-Zvi & J. Garfield (Eds.), The challenge
of developing statistical literacy, reasoning and thinking (pp.
201-226). Springer.

193


https://doi.org/10.1177/0956797613504966

Pensamiento inferencial: del dato a la argumentacién

Garfield, J., & delMas, R. (2008). Helping students learn to reason
about statistical inference: A review of research. Statistics
Education Research Journal, 7(2), 39-54.

Gelman, A. (2021). Regression and other stories. Cambridge
University Press.

Gelman, A., & Hill, J. (2014). Data analysis using regression and
multilevel/hierarchical models. Cambridge University Press.
Horton, N. J. (2015). Helping students think with data: Tools for
improving statistical reasoning. Journal of Statistics Education,

23(2),1-12. hitps:/doiorg/10.1080/10691898.2015 1186897350

Howell, D. C. (2017). Statistical methods for psychology (8th ed.).
Cengage Learning.

Kline, R. B. (2013). Beyond significance testing: Statistics reform
in the behavioral sciences (2nd ed.). American Psychological
Association.

Mayo, D. G. (2018). Statistical inference as severe testing: How to
get beyond the statistics wars. Cambridge University Press.

Sorto, M. A. (2006). Identifying content knowledge for teaching
statistics in middle grades [Tesis doctoral, Texas State
University-San Marcos].

Student. (1908). The probable error of a mean. Biometrika, 6(1),
1-25. hitps:/doi.org/101093/biomet/6.11]

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesleuy.

194


https://doi.org/10.1080/10691898.2015.11889730
 https://doi.org/10.1093/biomet/6.1.1

	Capítulo I
	Figura 1.
	Estadísticos descriptivos de la calificación final sin recuperación.
	Figura 2.
	Estadísticos descriptivos del puntaje del proyecto
	Figura 3.
	Histograma de la calificación final sin recuperación.
	Figura 4.
	Distribución de las calificaciones finales sin recuperación
	Figura 5.
	Distribución de las estaturas registradas en el grupo de estudio
	Figura 6.
	Distribución registrada de la estatura y características del grupo de estudio
	Figura 7.
	Distribución de estudiantes según la lectura de al menos un libro al mes 
	Figura 8. 
	Registro de las características del grupo de estudio utilizadas para el análisis
	Figura 9.
	Distribución de estudiantes que aprueban Matemática según el curso
	Figura 10. 
	Datos cualitativos y cuantitativos registrados
	Figura 11.
	Registro de variables observables y latentes en el grupo de estudiantes
	Figura 12.
	Operacionalización de la competencia digital docente
	Figura 13.
	Puntuaciones registradas en las dimensiones de la competencia digital docente
	Figura 14.
	Distribución de ejercicios resueltos sin ayuda por los estudiantes
	Figura 15
	Registros de ejercicios resueltos sin ayuda por los estudiantes en los cursos A y B
	Figura 16
	Diagrama de caja de las notas obtenidas por los estudiantes de los cursos A y B
	Figura 16.
	Registros de presión arterial sistólica (PAS) de los pacientes 
	Figura 17.
	Estadísticos descriptivos de la presión arterial sistólica en los grupos Taller y Control
	Figura 17.
	Medidas descriptivas de la presión arterial sistólica (PAS) en los grupos Taller y Control.
	Figura 18
	Medidas descriptivas de las horas de estudio sin valores atípicos.
	Figura 19
	Medidas descriptivas de las horas de estudio sin valores atípicos.



	Capítulo II
	Figura 1.
	Resultados de la simulación de 1000 lanzamientos de un dado en el entorno Python de GeoGebra
	Figura 2.
	Resultados de la simulación de 50 extracciones aplicada a la variable “Color” 
	Figura 3.
	Representación de sucesos mutuamente excluyentes en un experimento aleatorio
	Figura 4.
	Representación del espacio muestral continuo 



	Capítulo III
	Figura 11.
	Figura 1.
	Estadísticos descriptivos del grado de puntualidad respecto de las 08h00
	Figura 2.
	Distribución del grado de puntualidad de los estudiantes respecto de las 08h00
	Figura 3.
	Estadísticos descriptivos del tiempo total de entrega (en minutos)
	Figura 4.
	Histograma del tiempo total de entrega de pedidos por aplicación
	Figura 5.
	Correlación entre las horas de uso del celular y la cantidad de notificaciones recibidas
	Figura 6.
	Dispersión entre las horas de uso del dispositivo móvil y la cantidad de notificaciones recibidas
	Figura 7.
	Modelo de regresión lineal entre el uso del celular (horas) y el número de notificaciones recibidas
	Figura 8.
	Estadísticos descriptivos de la velocidad de conexión medida en intervalos de pocos segundos
	Figura 9.
	Distribución de la velocidad de conexión (Mbps)
	Figura 10.
	Distribución de los tiempos empleados por los estudiantes para completar el nivel del videojuego educativo
	Figura 12.
	Distribución de estudiantes que reconocen correctamente la fracción en el nivel inicial del videojuego educativo
	Figura 13.
	Frecuencia de respuestas correctas e incorrectas en el reconocimiento de fracciones
	Figura 14 .
	Distribución binomial de botellas correctas en un lote de 20 unidades con probabilidad de éxito p = 0.95.
	Figura 15 .
	Distribución de Poisson del número de llamadas por hora en un centro de soporte ￼    
	 
	Figura 16.
	Distribución simulada de los tiempos de inicio de las pruebas de carga en un servidor educativo
	Figura 17.
	Distribución simulada de puntajes en una prueba estandarizada de razonamiento matemático (n = 120).
	Figura 18. 
	Simulación de tiempos entre llamadas en un centro de soporte universitario (n = 300).
	Figura 19. 
	Distribución de puntajes simulados en la prueba diagnóstica de Matemática
	Figura 20.
	Patrón diario del consumo energético promedio en el campus universitario
	Figura 21.
	Consumo energético en días laborales y fines de semana
	Figura 21.
	Relación entre la temperatura y el consumo energético en el campus
	Figura 22.
	Consumo medio de energía por día de la semana en el campus universitario
	Figura 23.
	Serie temporal del consumo horario de energía en el campus universitario
	Estadísticos descriptivos del tiempo empleado para completar el nivel del videojuego educativo

	Capítulo IV
	Figura 1.
	Estadísticos descriptivos del tiempo de estudio en dos tipos de muestra.
	Figura 2. 
	Distribución del tiempo de estudio según el tipo de muestra
	Figura 3.
	Histogramas del tiempo de estudio en las dos muestras
	Figura 4.
	Relación entre uso de tecnología y tiempo de estudio
	Figura 5.
	Relación entre uso de tecnología y tiempo de estudio
	Figura 5.
	 Representación geométrica de la media muestral y su intervalo de confianza del 95 %
	Figura 6.
	Distribución simulada de medias muestrales y ubicación del intervalo de confianza del 95 %
	Figura 7.
	Comparación del error estándar, desviación estándar e intervalos de confianza en muestras pequeñas y grandes.
	Figura 8. 
	Comparación de las medias de horas de estudio entre los grupos con y sin plataforma, con intervalos de confianza del 95 %
	Figura 9. 
	Resultados de la prueba t de una muestra para el tiempo de estudio semanal



	Capítulo I
	Comprender la estadística desde la experiencia: fundamentos y representaciones

	Introducción
	La estadística como herramienta para describir la realidad
	Tipos de datos y variables en contextos educativos y sociales
	Tabulación y representaciones gráficas: leer y comunicar información
	Medidas de tendencia central y dispersión: interpretar la información numérica

	Conclusiones
	Referencias 


	Capítulo II
	Pensar el azar: fundamentos didácticos y conceptuales de la probabilidad
	Introducción
	De la intuición del azar al concepto formal de probabilidad
	Experimentos aleatorios, sucesos y espacio muestral
	Reglas básicas de la probabilidad y su interpretación
	Estrategias didácticas y mediaciones tecnológicas para el desarrollo del razonamiento probabilístico

	Conclusiones
	Referencias


	Capítulo III
	 Variables aleatorias, distribuciones y modelación estadística
	Introducción
	Variable aleatoria: concepto, sentido y ejemplos contextualizados
	Función de probabilidad y función de densidad: interpretación didáctica
	Distribuciones discretas: Bernoulli, binomial y Poisson
	Distribuciones continuas: uniforme, normal, exponencial
	Síntesis conceptual y didáctica: hacia una comprensión profunda de las distribuciones y la modelación estadística

	Conclusiones 
	Referencias 


	Capítulo IV
	Pensamiento inferencial: del dato a la argumentación
	Introducción
	 Población, muestra y sesgo: decisiones de muestreo en la práctica
	Estimación puntual y por intervalos: comprensión del error y la precisión
	Pruebas de hipótesis: sentido, pasos y lectura crítica
	Contrastes más comunes en contextos educativos (proporciones, medias, diferencias)

	Conclusiones
	Referencias





