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Prólogo

La estadística y la probabilidad suelen presentarse como ma-
terias difíciles, llenas de fórmulas y procedimientos que mu-
chos aprenden sin llegar a comprender del todo. Sin embargo, 
la realidad actual nos recuerda cada día que pensar con datos 
es una habilidad indispensable para interpretar información, 
tomar decisiones informadas y participar de manera crítica en 
la vida social. Este libro surge de la necesidad de acercar estos 
conceptos de un modo claro y significativo, mostrando que la 
estadística no es un lenguaje reservado para expertos, sino una 
herramienta para comprender mejor el mundo.

A lo largo de sus capítulos, el texto propone un recorrido que 
conecta los contenidos con situaciones reales, ejemplos cotidia-
nos y preguntas auténticas que dan sentido a cada técnica. Más 
que explicar procedimientos, busca revelar la lógica que hay 
detrás de ellos y cómo pueden ayudarnos a describir, comparar, 
predecir y argumentar a partir de datos. De este modo, cada 
noción estadística se convierte en un punto de partida para 
pensar, no en un requisito que se aprende de memoria.

El enfoque didáctico que atraviesa la obra coloca en el centro 
la variabilidad, la incertidumbre y la necesidad de formar un 
pensamiento crítico. Las simulaciones, los ejemplos contextua-
lizados y las interpretaciones guiadas están presentes no para 
reemplazar el razonamiento, sino para enriquecerlo. Aprender 
estadística implica aprender a preguntar, dudar, interpretar y 
justificar; es un ejercicio intelectual que invita a mirar con aten-
ción las historias que se esconden detrás de los datos.

Este libro está dirigido a docentes, estudiantes e incluso lec-
tores que, sin formación especializada, desean comprender 
mejor la información que los rodea. La intención es acompañar 
al lector en la construcción de una mirada más reflexiva frente 
a los datos y al azar, fortaleciendo su capacidad para interpre-
tar la complejidad del mundo actual. Si estas páginas logran 
despertar curiosidad, claridad conceptual y una actitud crítica 
frente a la información, habrán cumplido su misión fundamental.
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Capítulo I

Comprender la estadística desde 
la experiencia: fundamentos y 

representaciones 

Introducción

Hablar de estadística en educación suele remitirnos, casi de 
inmediato, a tablas, números y gráficos. Sin embargo, detrás 
de cada dato hay una historia: un estudiante que asistió 
o faltó, un grupo que aprendió con mayor o menor ritmo, 
una realidad social que se mueve con matices que ningún 
promedio puede capturar por completo. Este capítulo nace 
justamente de esa idea: los datos no son solo cifras; son re-
presentaciones de experiencias humanas que merecen ser 
leídas con atención y sensibilidad.

A medida que analizamos información educativa o social, des-
cubrimos que lo importante no es únicamente “cuánto” ocurre un 
fenómeno, sino cómo se comporta, qué tan uniforme es, dónde 
aparecen tensiones y en qué lugares se esconden diferencias que 
pueden pasar inadvertidas. Por eso, la estadística descriptiva no 
es un ejercicio frío, sino una forma de mirar. A veces los valores 
se agrupan y nos hablan de estabilidad; en otras ocasiones se 
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dispersan y revelan desigualdades, excepciones o procesos que 
están tomando rumbos inesperados. En este recorrido, media 
y mediana nos dan una primera impresión, pero la dispersión, 
los valores atípicos y la variabilidad aportan la profundidad que 
permite interpretar el panorama completo.

En tiempos donde la información circula con rapidez y se sim-
plifica sin miramientos, aprender a leer datos con criterio se 
vuelve una habilidad esencial. No basta aceptar un promedio 
como verdad absoluta; hay que preguntarse qué esconde, qué 
muestra y qué transforma. Estas preguntas no son técnicas, son 
intelectuales y éticas: nos obligan a mirar más allá del número y 
reconocer las realidades diversas que conviven dentro de cual-
quier conjunto de datos.

El capítulo que sigue se propone acompañar al lector en esa 
tarea. No pretende convertir la estadística en un conjunto de fór-
mulas, sino en una herramienta para pensar con mayor claridad. 
A lo largo de las secciones, encontraremos ejemplos, compara-
ciones, casos reales y situaciones que permiten entender cómo 
los datos adquieren sentido cuando se interpretan con cuidado. 
La intención es que cada lector, sea docente, investigador o 
estudiante, pueda acercarse a la estadística como un modo de 
comprender lo que ocurre a su alrededor y no solo como un 
contenido que debe memorizarse.

Con esta mirada abierta y reflexiva iniciamos el capítulo, invi-
tando a detenerse, observar, comparar y, sobre todo, interpretar. 
Porque en educación y en la vida misma entender los datos es, 
al final, una forma de entender a las personas y las historias que 
dan origen a esos datos.

La estadística como herramienta para describir la realidad
La estadística se ha convertido en un recurso indispensable para 
interpretar fenómenos sociales, educativos, científicos y coti-
dianos. Su presencia en la toma de decisiones, en los medios de 
comunicación, en las instituciones y en la vida diaria ha transfor-
mado la manera en que las personas comprenden su entorno. Sin 
embargo, detrás de cada dato y de cada representación existe 
un proceso que merece ser examinado con detenimiento. Los 
números no son meras copias de la realidad; son construccio-
nes que dependen de decisiones conceptuales, metodológicas 
y contextuales. Comprender este trasfondo permite desarrollar 
un pensamiento más reflexivo sobre lo que significan los datos 
y sobre cómo influyen en la manera en que narramos el mundo.

El propósito de este epígrafe es profundizar en esta dimen-
sión menos visible de la estadística, articulando tres aspectos 
esenciales. En primer lugar, se examina cómo se construyen los 
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datos y qué factores intervienen en su configuración. En segundo 
lugar, se aborda el papel de las representaciones estadísticas, 
entendidas como narraciones visuales que no solo muestran 
información, sino que orientan la interpretación del fenómeno. 
Finalmente, se explora la relación entre lo individual y lo colecti-
vo, subrayando las tensiones que emergen cuando se sintetizan 
experiencias diversas en cifras agregadas. La intención no es 
cuestionar el valor de la estadística, sino mostrar su complejidad 
y destacar la necesidad de un pensamiento cuidadoso al utilizarla 
para describir la realidad.

	
La construcción de los datos: decisiones que configuran la 

realidad
Los datos son frecuentemente presentados como entidades ob-
jetivas, como si fueran una reproducción fiel de la realidad ob-
servable. Sin embargo, toda producción de datos implica una 
serie de decisiones técnicas y conceptuales que influyen en lo 
que finalmente se recoge y registra. Garfield y Ben-Zvi (2008) 
señalan que un dato no es solo un número; es el resultado de una 
operación de medición que presupone categorías, instrumentos 
y criterios que no son a jenos al contexto cultural y educativo en 
el que se generan. Por ello, comprender cómo se construyen los 
datos es un paso fundamental para interpretar adecuadamente 
lo que representan.

La primera decisión aparece en la definición del fenómeno 
a estudiar. Para analizar los hábitos de estudio de un grupo de 
estudiantes, por ejemplo, es necesario decidir qué se entiende 
por “estudiar”: ¿leer?, ¿resolver ejercicios?, ¿preparar trabajos?, 
¿participar en tutorías? Cada elección delimita un tipo de infor-
mación y excluye otras formas de actividad. Batanero y Borovcnik 
(2016) advierten que la delimitación conceptual del objeto de 
estudio determina la naturaleza de los datos y, por tanto, la pers-
pectiva desde la cual se describirá el fenómeno. Un “dato” sobre 
horas de estudio solo representa una parte de la experiencia 
educativa, no su totalidad.

La segunda decisión recae en la forma de medición. En mu-
chos contextos escolares se emplean cuestionarios donde los 
estudiantes estiman cuántas horas dedican a una actividad. Sin 
embargo, la percepción del tiempo es subjetiva y puede variar-
considerablemente. Los registros automáticos, como plataformas 
virtuales que contabilizan minutos de conexión, proporcionan 
información más precisa, pero también introducen nuevos pro-
blemas: ¿todo el tiempo de conexión implica estudio activo?, 
¿qué ocurre con las actividades no registradas digitalmente? 
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Estos interrogantes muestran que la medición nunca es com-
pletamente transparente. Cada instrumento captura un aspecto, 
pero deja fuera otros.

La tercera decisión se relaciona con la selección de la muestra. 
Los resultados obtenidos dependen en gran medida de quiénes 
participan en la recolección de datos. Wild y Pfannkuch (1999) 
explican que la representatividad es un aspecto crucial del pen-
samiento estadístico. En el aula, esto se evidencia cuando se 
analizan encuestas a partir de la participación voluntaria: quienes 
responden suelen ser estudiantes más comprometidos o con más 
disponibilidad, lo que tiende a sesgar los resultados. 

Estas decisiones no son fallas; son parte del proceso natural 
de producción de datos. No obstante, comprenderlas permite 
reconocer que los datos no “hablan” solos: son interpretaciones 
codificadas de la realidad. Este reconocimiento es esencial para 
evitar conclusiones simplificadas, especialmente en fenómenos 
sociales complejos como el aprendizaje, la convivencia escolar 
o la participación estudiantil.

Cuando la institución analiza las calificaciones finales de un 
grupo de 8 estudiantes (Figura 1), observa que el promedio al-
canza 6,81, mientras que la mediana se sitúa en 6,65. 

Figura 1.
Estadísticos descriptivos de la calificación final sin recuperación.

 

Nota. La figura presenta los estadísticos descriptivos calculados en Jamovi a 
partir del rendimiento final de 8 estudiantes.

Como se muestra en la Figura 2, estas cifras muestran que la 
mayoría de los estudiantes se mueve en un rango de desempeño 
intermedio, sin grandes distancias entre la media y el valor cen-
tral. Aun así, el comportamiento de las notas evidencia diferencias 
importantes: el estudiante con menor puntuación obtiene 4,80, 
mientras que el de mayor rendimiento llega a 9,00. 

Esa amplitud refleja que algunos avanzan con mayor segu-
ridad, mientras otros requieren un acompañamiento más cer-
cano. Si bien estas cifras no capturan la complejidad completa 
del aprendizaje, sí ofrecen una primera lectura útil para que el 
equipo docente identifique tendencias, reconozca necesidades 
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y a juste sus estrategias de enseñanza con miras a fortalecer el 
proceso formativo. 

Figura 2.
Estadísticos descriptivos del puntaje del proyecto

 

Nota. La figura resume los valores descriptivos obtenidos en la variable 
“Proyecto”, incluyendo la media, mediana, desviación típica y los puntajes 
mínimo y máximo registrados en el grupo.

Esa amplitud refleja que algunos avanzan con mayor segu-
ridad, mientras otros requieren un acompañamiento más cer-
cano. Si bien estas cifras no capturan la complejidad completa 
del aprendizaje, sí ofrecen una primera lectura útil para que el 
equipo docente identifique tendencias, reconozca necesidades 
y a juste sus estrategias de enseñanza con miras a fortalecer el 
proceso formativo. 

Representar para comprender: narrativas estadísticas y sus 
límites
Las representaciones estadísticas (gráficos, tablas, diagramas y 
resúmenes numéricos) ocupan un papel central en la compren-
sión de los fenómenos. Una tabla bien organizada o un gráfico 
claro puede revelar patrones, tendencias y relaciones que no son 
visibles en los datos en bruto. Sin embargo, representan más que 
una simple traducción; construyen narraciones que orientan la 
interpretación del fenómeno. Curcio (1989) enfatiza que la com-
prensión de los gráficos depende tanto del diseño como de las 
capacidades lectoras del observador, y ambos aspectos pueden 
modificar sustancialmente el sentido atribuido a los datos.
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La selección del tipo de representación ya es, en sí misma, 
una elección cargada de significado. Un gráfico de líneas su-

giere continuidad temporal; un diagrama de barras destaca com-
paraciones entre categorías; un histograma permite visualizar la 
forma de distribución; un boxplot revela variabilidad y valores 
atípicos. En el aula, muchos estudiantes interpretan cada gráfico 
como si mostrara la “verdad” de los datos, sin notar que cada 
representación enfoca un aspecto y deja otros en segundo plano. 

Un ejemplo ilustrativo aparece cuando se comparan histogra-
mas de diferentes tamaños de intervalo: la misma distribución 
puede verse dispersa o concentrada según cómo se definan 
los rangos, generando conclusiones distintas. Por ejemplo, en la 
Figura 3 se observa que las calificaciones del examen final tien-
den a concentrarse en un rango intermedio, principalmente entre 
5 y 7 puntos, donde se ubica la mayoría del grupo. Solo aparecen 
dos casos que se apartan de esa franja: un estudiante con un 
puntaje alto de 9 y otro con una nota baja de 4. Esta distribución 
sugiere un nivel de rendimiento relativamente uniforme, aunque 
con diferencias puntuales que permiten identificar tanto un des-
empeño destacado como una dificultad aislada dentro del grupo.

Figura 3.
Histograma de la calificación final sin recuperación.

 

Nota. El gráfico muestra la distribución de las calificaciones finales sin re-
cuperación obtenidas por ocho estudiantes, generada mediante el software 
Jamovi.

Las elecciones estéticas también influyen en la interpretación. 
El uso de colores intensos, ejes truncados o escalas desigua-
les puede exagerar diferencias mínimas o minimizar patrones 
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importantes. Esto se observa con frecuencia en medios de co-
municación y redes sociales. Un gráfico que muestra el aumento 
de un indicador de salud puede parecer alarmante si el eje inicia 
cerca del valor máximo, aun cuando el cambio real sea pequeño. 
Enseñar a identificar estos efectos ayuda a los estudiantes a 
desarrollar una lectura más cuidadosa de las representaciones 
visuales.

La narrativa que construye un gráfico también depende del 
orden de los elementos. Una tabla puede mostrar los datos or-
denados alfabéticamente o según valor numérico, dando énfasis 
a diferentes aspectos. En un gráfico de barras, el orden puede 
sugerir tendencias inexistentes. 

Por ejemplo, cuando las calificaciones se representan respetan-
do el orden original de los estudiantes en la tabla, la gráfica ofrece 
una imagen mucho menos lineal y, en apariencia, más caótica. 
Las barras suben y bajan sin seguir una secuencia reconocible, 
lo que refleja con mayor fidelidad la variabilidad real del grupo. 
En este caso, el gráfico no sugiere ninguna tendencia general de 
mejora o deterioro, sino que muestra simplemente las diferencias 
individuales de cada estudiante (Figura 4). 

Esta representación resulta más transparente porque evita 
imponer una estructura visual que no está presente en los datos. 
Ver el gráfico sin ordenar permite comprender el rendimiento 
desde una perspectiva más abierta, donde lo relevante no es la 
forma global del dibujo, sino las particularidades de cada caso. 
Al contrastarlo con la versión ordenada, se hace evidente cómo 
pequeñas decisiones de presentación pueden modificar la na-
rrativa visual sin modificar los valores, recordándonos que toda 
representación gráfica implica una interpretación y no única-
mente una descripción literal de los datos.

Apoyo didáctico: En contextos educativos, la lectura de gráfi-
cos se convierte en una actividad fundamental para desarrollar 
el pensamiento estadístico. Garfield y Ben-Zvi (2008) señalan 
que los estudiantes deben aprender no solo a “leer” datos, sino a 
“leer entre los datos”: preguntarse qué se destaca, qué se omite y 
qué decisiones gráficas influyen en lo que se percibe. Actividades 
como comparar diferentes representaciones del mismo conjunto 
de datos permiten observar cómo cambia la interpretación según 
el modelo elegido. Esta experiencia resulta reveladora, pues los 
estudiantes descubren que la representación no es neutra. 

Otro elemento clave es el uso de medidas de resumen. La 
media, la mediana, el rango o la desviación estándar son herra-
mientas poderosas para sintetizar información, pero también 
pueden simplificar en exceso el fenómeno. Una media puede 
ocultar desigualdades internas, mientras que un rango no informa 
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sobre la distribución real de los valores. Cuando se presentan 
únicamente los resúmenes numéricos, se corre el riesgo de trans-
mitir una imagen parcial. Wild y Pfannkuch (1999) destacan que 
el pensamiento estadístico requiere ir y venir entre lo global y lo 
particular, evitando quedarse solo con uno de esos niveles.

Figura 4.
Distribución de las calificaciones finales sin recuperación
 

Nota. La figura presenta la distribución de las calificaciones finales sin 
recuperación obtenidas por ocho estudiantes. El gráfico fue generado en el 
software Jamovi y permite observar, de manera comparativa, el desempeño 
individual de cada estudiante en el examen final.

Otro elemento clave es el uso de medidas de resumen. La 
media, la mediana, el rango o la desviación estándar son herra-
mientas poderosas para sintetizar información, pero también 
pueden simplificar en exceso el fenómeno. Una media puede 
ocultar desigualdades internas, mientras que un rango no infor-
ma sobre la distribución real de los valores. Cuando se presen-
tan únicamente los resúmenes numéricos, se corre el riesgo de 
transmitir una imagen parcial. Wild y Pfannkuch (1999) destacan 
que el pensamiento estadístico requiere ir y venir entre lo global 
y lo particular, evitando quedarse solo con uno de esos niveles.

Ejemplo: en una clase de primer año de bachillerato, el docente 
decidió registrar la estatura de sus 12 estudiantes con el fin de 
analizar la variabilidad del grupo y trabajar conceptos básicos 
de estadística. Las estaturas, medidas en centímetros, fueron las 
siguientes: 150, 152, 155, 158, 160, 162, 163, 165, 167, 168, 170 y 185 
(Figura 5). Con esta información desea describir la distribución 



23

Saquinaula Brito José Luis

del grupo, identificar medidas de tendencia central y reconocer 
posibles diferencias entre estudiantes. A partir de estos datos, el 
objetivo es que los alumnos comprendan cómo se comporta una 
variable cuantitativa continua en un conjunto real de personas y 
qué conclusiones pueden extraerse de su análisis.

Figura 5.
Distribución de las estaturas registradas en el grupo de estudio

 

Nota. La figura muestra la tabla descriptiva generada en Jamovi a partir de 
las estaturas registradas para los doce participantes del grupo. Se incluyen 
medidas de tendencia central y dispersión que permiten observar la varia-
bilidad del conjunto, así como el valor del percentil 25, útil para interpretar la 
distribución de los datos.

La tabla de descriptivos muestra que se trabajó con las es-
taturas de 12 estudiantes, cuya media y mediana coinciden en 
163 cm. Este dato sugiere que el centro de la distribución está 
claramente ubicado alrededor de ese valor y que no hay una 
asimetría marcada en la parte central del conjunto. El mínimo 
registrado es de 150 cm y el máximo de 185 cm, lo que indica 
un rango amplio de estaturas dentro del grupo. Además, el per-
centil 25 se sitúa en 157 cm, de modo que una cuarta parte de 
los estudiantes mide menos de esa cifra, mientras que el resto 
se concentra por encima. En conjunto, la tabla permite apreciar 
que, aunque la mayoría de las estaturas se agrupa en torno a 
valores medios, existe al menos un estudiante significativamente 
más alto, lo que aporta variabilidad al grupo y ayuda a discutir 
cómo los valores extremos influyen en el análisis estadístico.
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En definitiva, representar datos significa construir una narra-
tiva visual o numérica que guía la interpretación. Reconocer esta 
característica es fundamental para evitar lecturas superficiales 
y para apreciar que cada representación ilumina aspectos dis-
tintos de la realidad. 

Enseñar esta dimensión narrativa permite que los estudiantes 
comprendan que los gráficos no solo muestran; también cuentan 
historias que deben ser interpretadas con cuidado.

De lo individual a lo colectivo: tensiones y efectos de las agre-
gaciones estadísticas
Uno de los desafíos más significativos de la estadística consiste 
en traducir experiencias individuales en descripciones colecti-
vas. Esta transición entre lo particular y lo general constituye un 
proceso complejo en el que se sintetizan múltiples realidades 
para obtener indicadores globales. Sin embargo, esta síntesis 
puede generar tensiones importantes, especialmente cuando los 
resúmenes estadísticos ocultan variaciones internas que resultan 
relevantes para comprender el fenómeno.

Gal (2002) advierte que la interpretación de estadísticas agre-
gadas requiere habilidades que permitan distinguir entre patro-
nes colectivos y comportamientos individuales. En el aula, este 
desafío se evidencia cuando los estudiantes analizan encuestas 
que mencionan promedios, porcentajes o medianas sin mostrar 
la distribución completa.

Por ejemplo: Supón que se aplica una encuesta rápida a 20 
estudiantes de un colegio para saber si leen al menos un libro 
al mes. Además, se registra: Curso: (8.º / 9.º), Género (Mujer / 
Hombre) y si Lee libro al mes (Sí / No) (Figura 6). Como se podrá 
comprobar “el 70 por ciento de los estudiantes lee al menos un 
libro al mes” ofrece una visión general del grupo, pero no revela 
si existen diferencias significativas entre subgrupos, como curso, 
género, acceso a recursos o motivación lectora. 

Los resultados muestran que, de los 20 estudiantes encuesta-
dos, 14 afirman leer al menos un libro al mes, lo que representa 
el 70 % del grupo, mientras que 6 (30 %) señalan que no tienen 
este hábito de lectura mensual (Figura 7).

A primera vista, la cifra de quienes sí leen sugiere una práctica 
relativamente extendida de lectura en el estudiante, pero al mismo 
tiempo evidencia que casi un tercio permanece al margen de esa 
rutina. Esta información permite sostener el enunciado de que 
“el 70 por ciento de los estudiantes lee al menos un libro al mes”, 
aunque sigue siendo un dato global: no indica si este comporta-
miento se distribuye de la misma manera entre cursos, géneros 
u otras características, por lo que todavía no es posible saber si 
existen subgrupos con mayor o menor participación en la lectura. 
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Figura 6.
Distribución registrada de la estatura y características del grupo de 
estudio

 

Nota. La figura muestra la base de datos utilizada para el análisis descriptivo 
del grupo de estudiantes generada en Jamovi.

Figura 7.
Distribución de estudiantes según la lectura de al menos un libro al 
mes 
 

Nota. La tabla resume las respuestas de los 20 estudiantes encuestados so-
bre si leen al menos un libro al mes.

Estas tensiones también se observan en el análisis del rendi-
miento académico. Cuando se presentan los resultados de una 
evaluación mediante una media y una desviación estándar, se 
obtiene una descripción global del grupo. 
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Sin embargo, esta representación puede ocultar la existencia 
de estudiantes que requieren apoyo específico. Dos grupos con 
la misma media pueden tener distribuciones muy diferentes: en 
uno, todos los estudiantes pueden situarse cerca del promedio; 
en el otro, puede haber brechas considerables entre quienes 
obtienen puntajes altos y bajos. En contextos educativos, estas 
diferencias son esenciales para planificar estrategias pedagó-
gicas personalizadas.

La cuestión de las agregaciones cobra especial relevancia 
cuando se analizan fenómenos sociales complejos, como la dis-
tribución de recursos, las condiciones de vida o la participación 
ciudadana. Ben-Zvi y Makar (2016) sostienen que los estudian-
tes deben aprender a examinar estos indicadores desde una 
perspectiva que considere tanto los patrones globales como 
las dinámicas internas. Por ejemplo, un estudio sobre el acceso 
a internet puede mostrar que el “80 por ciento de los hogares 
posee conexión”, pero ese número no informa sobre la calidad 
del servicio, la disponibilidad de dispositivos o el uso efectivo de 
plataformas digitales. La agregación oculta diferencias que pue-
den ser cruciales para comprender desigualdades educativas.

Las tensiones entre lo individual y lo colectivo se vuelven aún 
más visibles cuando se consideran fenómenos donde existen va-
lores extremos. Un ejemplo habitual en clase consiste en analizar 
ingresos familiares. La media puede verse fuertemente influida 
por pocos valores muy altos, mientras que la mediana puede 
ofrecer una descripción más fiel del comportamiento típico. En 
este caso, la media no representa adecuadamente al grupo. 
Estas situaciones muestran que la elección del indicador no solo 
depende de criterios técnicos, sino también del propósito de la 
descripción.

  Apoyo didáctico: En la práctica docente, trabajar con distri-
buciones completas permite que los estudiantes comprendan 
la riqueza y complejidad de los datos. Actividades donde se 
comparan diferentes grupos, donde se identifican segmentos 
con comportamientos divergentes o donde se analizan valores 
atípicos ayudan a reconocer que la realidad social es diversa y 
que las estadísticas deben interpretarse con matices. La com-
prensión profunda de estas tensiones favorece una mirada más 
sensible hacia las diferencias dentro de los grupos.

Por otra parte, la agregación también tiene efectos en la toma 
de decisiones. Cuando las instituciones educativas utilizan indi-
cadores globales para establecer políticas, existe el riesgo de 
ignorar las particularidades de ciertos estudiantes o contextos. La 
estadística puede contribuir a decisiones informadas, pero solo 
si se reconoce la complejidad de los datos y se evita la tentación 



27

Saquinaula Brito José Luis

de reducir los fenómenos a cifras únicas. En el aula, esto se pue-
de trabajar mediante estudios de caso donde los estudiantes 
analicen cómo varían las conclusiones según se consideren o no 
los detalles internos de la distribución. 

Tipos de datos y variables en contextos educativos y sociales
Comprender los tipos de datos y las variables que los generan 
es esencial para analizar cualquier fenómeno educativo o social 
con seriedad intelectual. Aunque la clasificación de datos suele 
presentarse como un procedimiento técnico, su alcance es mucho 
más profundo: permite reconocer el modo en que los fenómenos 
se conceptualizan, se traducen en información y finalmente se 
interpretan. En palabras de Garfield y Ben-Zvi (2008), la estadís-
tica no opera sobre una copia exacta de la realidad, sino sobre 
una versión conceptualizada de ella. Esta idea resulta decisiva 
en educación, donde los fenómenos incluyen emociones, percep-
ciones, comportamientos, aprendizajes y contextos que rara vez 
son simples de reducir a números.

La literatura en educación estadística ha mostrado que los da-
tos no son entidades neutrales. Wild y Pfannkuch (1999) explican 
que todo análisis estadístico comienza con decisiones invisibles: 
qué observar, cómo medir, cómo registrar y qué considerar re-
levante. Por ello, reflexionar sobre los tipos de datos y variables 
no solo fortalece la comprensión técnica de la estadística, sino 
que también promueve un pensamiento crítico indispensable 
para interpretar fenómenos educativos y sociales en toda su 
complejidad.

A continuación, se desarrollan tres dimensiones fundamenta-
les: la naturaleza del dato, la clasificación cualitativa y cuantita-
tiva, y la construcción de variables que permiten comprender y 
representar la realidad desde múltiples ángulos.

Comprender la naturaleza del dato: significados, decisiones y 
contextos
Cada dato que aparece en un gráfico, una tabla o un informe 
escolar representa una serie de decisiones previas: qué se consi-
dera relevante, qué se omite, qué se clasifica y qué se cuantifica. 
Esta dimensión, a menudo invisible, configura la forma en que 
comprendemos los fenómenos. Según Gal (2002), interpretar 
datos sin preguntarse por su origen conduce a conclusiones 
apresuradas, pues la información nunca está desligada del con-
texto que la produce.

En educación, este asunto se hace evidente en la evaluación 
del aprendizaje. Cuando un docente asigna una calificación nu-
mérica, esa cifra parece clara, objetiva y comparable. 
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Sin embargo, detrás de ella existe un entramado metodológico: 
criterios de evaluación, ponderaciones, tipos de tareas, carácter 
de las actividades y nivel de complejidad de los ítems. Batanero 
y Díaz (2011) señalan que incluso en contextos aparentemente 
cuantitativos, como la evaluación escolar, intervienen compo-
nentes cualitativos que moldean el dato final.

Un ejemplo puede estar referido a que un informe puede indi-
car que “el 90 por ciento de los estudiantes aprueba Matemática”, 
lo cual parece dar una imagen positiva (Figura 8),es decir los 
datos del grupo pueden dar la impresión de que el rendimiento 
en Matemática es homogéneo, pues la mayoría de estudiantes 
aprueba la asignatura.

Figura 8. 
Registro de las características del grupo de estudio utilizadas para el 
análisis

 

Nota. La figura muestra la base de datos ingresada en Jamovi con infor-
mación del curso, género y desempeño académico de los 20 estudiantes 
encuestados.

Sin embargo, cuando se revisa con detenimiento la distribución 
por cursos (Figura 9), tal como se muestra en la tabla, aparecen 
matices que el valor global por sí solo no revela. Aunque en cada 
curso se observa un predominio de estudiantes que aprueban, 
la proporción de aprobados y no aprobados no es idéntica entre 
niveles. 



29

Saquinaula Brito José Luis

Figura 9.
Distribución de estudiantes que aprueban Matemática según el curso

 
Nota. La tabla resume cuántos estudiantes aprobaron y reprobaron 
Matemática en cada curso.

En 8.º y 11.º, por ejemplo, la aprobación es claramente mayo-
ritaria, mientras que en 9.º y 10.º el número de estudiantes que 
no superan la materia es más visible. Esto demuestra que la cifra 
total funciona como un indicador sintético, pero también puede 
ocultar diferencias internas importantes. Para comprender el fe-
nómeno educativo con mayor precisión, no basta con quedarse 
en el porcentaje general: es necesario observar los subgrupos, 
contrastar patrones y situar el dato dentro de un contexto más 
amplio.

Otros ejemplos pueden describir situaciones similares como, 
por ejemplo: supongamos que un investigador desea medir la 
“participación en clase”. Podría registrarla como número de in-
tervenciones orales (cuantitativo), como categoría (alta, media, 
ba ja), como nivel de iniciativa (ordinal) o mediante notas de 
observación (cualitativo descriptivo). Cada modalidad produce 
datos distintos, y por lo tanto, interpretaciones distintas. Wild y 
Pfannkuch (1999) afirman que estas decisiones forman parte del 
pensamiento estadístico y deben enseñarse explícitamente para 
que los estudiantes comprendan el carácter construido del dato.

Por ello, comprender la naturaleza del dato implica reconocer 
que todo registro es fruto de una decisión. Formar estudiantes 
capaces de analizar críticamente información requiere ense-
ñarles que los datos no son simples productos de medición, sino 
interpretaciones codificadas de la realidad.
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Datos cualitativos y cuantitativos: matices, tensiones y posibi-
lidades analíticas
La distinción entre datos cualitativos y cuantitativos es funda-
mental, pero también es frecuente caer en simplificaciones. En 
educación y sociedad, estas categorías conviven y se comple-
mentan, y su interacción permite captar la complejidad de los 
fenómenos. Garfield y Ben-Zvi (2008) indican que cada tipo de 
dato abre y cierra determinadas posibilidades analíticas, por lo 
que la elección del tipo de dato nunca es trivial.

Datos cualitativos: comprender significados y categorías
Los datos cualitativos permiten registrar aspectos que no se 

pueden expresar numéricamente: percepciones, categorías, ex-
periencias, narraciones o clasificaciones no ordinales. Estos datos 
son indispensables para comprender dimensiones humanas como 
la motivación, el clima escolar, la convivencia o la percepción 
docente. Por eso, en educación y ciencias sociales, los datos cua-
litativos no constituyen un complemento, sino una parte esencial 
de la representación estadística.

Entre los datos cualitativos, los nominales identifican catego-
rías sin orden natural. Ejemplos frecuentes son:

•	 tipo de recurso digital utilizado,
•	 asignatura favorita,
•	 rol asumido en el trabajo grupal,
•	 área de interés profesional.
Esta información ayuda a comprender la diversidad del grupo, 

aunque no permite establecer jerarquías.
En cambio, los ordinales sí establecen un orden, aunque sin 

distancias cuantificables entre categorías:
•	 niveles de motivación,
•	 percepción del clima escolar,
•	 calidad del aprendizaje según el propio estudiante,
•	 niveles de logro.
Gal (2002) advierte que una dificultad habitual aparece cuan-

do los datos ordinales se convierten artificialmente en núme-
ros para realizar promedios. Esa práctica puede dar una falsa 
sensación de precisión. Por ejemplo, asignar valores del 1 al 5 a 
percepciones sobre satisfacción puede ser útil para análisis ex-
ploratorios, pero promediar esas respuestas no implica que las 
distancias entre categorías sean iguales.

Datos cuantitativos: magnitudes, decisiones y límites
Los datos cuantitativos permiten medir cantidades y realizar 

operaciones matemáticas. No obstante, que sean numéricos no 
significa que sean precisos o neutros. Como señalan Garfield 
y Ben-Zvi (2008), todo dato cuantitativo está mediado por un 
instrumento y por un criterio de medición.
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Los datos discretos representan conteos enteros: número de 
tareas realizadas, de errores cometidos o de libros leídos.

Los datos continuos pueden tomar muchos valores dentro de 
un intervalo: tiempo de estudio, temperatura, calificaciones con 
decimales.

Sin embargo, en educación, muchos datos que parecen con-
tinuos provienen de escalas discretas. Una calificación de 8,7 
da la sensación de exactitud, pero su significado depende de la 
estructura de la evaluación. Wild y Pfannkuch (1999) explican que 
la precisión numérica no es sinónimo de precisión conceptual.

Tensiones entre ambos tipos de datos
En fenómenos educativos y sociales, lo cualitativo y lo cuan-

titativo se entrelazan. Investigar la motivación, por ejemplo, re-
quiere articular:

•	 datos cuantitativos (tiempo dedicado, tareas completadas),
•	 datos cualitativos (razones, percepciones, emociones),
•	 y datos ordinales (nivel de interés, disposición para 

aprender).
Ben-Zvi y Makar (2016) sostienen que los análisis más sólidos 

provienen de integrar diferentes tipos de datos, pues permiten 
captar matices que un único enfoque no logra mostrar. Esta vi-
sión integrada resulta especialmente relevante en educación, 
donde las variables contienen dimensiones afectivas, cognitivas, 
sociales y contextuales.

Un ejemplo de la utilización de estas variables (Figura 10) 
puede estar referido a la necesidad que tenga un docente de 
comprender por qué algunos estudiantes muestran mejores re-
sultados en Ciencias Naturales que otros, a pesar de recibir las 
mismas explicaciones en clase.

Para tener una mirada más clara, el docente puede decidir 
recopilar información sencilla pero significativa: qué tipo de ac-
tividades disfrutan más, cuánto tiempo dedican a estudiar en 
casa y cómo les fue en la última evaluación. Con esa pequeña 
muestra, se puede descubrir si las preferencias de aprendizaje 
y el esfuerzo individual se reflejan en el rendimiento académico, 
y, sobre todo, qué tipo de actividades podría potenciar en sus 
clases. A partir de los datos registrados, se espera analizar los 
patrones que surgen y plantear recomendaciones que permitan 
reforzar el proceso de enseñanza y aprendizaje con estrategias 
más acordes a las necesidades reales del grupo. 
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Figura 10. 
Datos cualitativos y cuantitativos registrados

 

Nota. La figura presenta la información recopilada por el docente para com-
prender mejor las características y el desempeño de los estudiantes.

 Apoyo didáctico: Para comprender mejor por qué algunos 
estudiantes avanzan con mayor facilidad en Ciencias Naturales, 
el docente puede trabajar con un conjunto de variables que le 
permitan observar tanto aspectos descriptivos del grupo como 
indicadores de rendimiento. Por un lado, incorporar variables 
cualitativas, como el género y la actividad de aprendizaje que 
cada estudiante prefiere, porque estos datos ofrecen pistas sobre 
los estilos de participación, la motivación y las formas en que 
cada niño se involucra con los contenidos. Por otro lado, incluir 
variables cuantitativas, como la calificación obtenida y las horas 
semanales de estudio, ya que aportan medidas objetivas que 
permiten contrastar el desempeño real y el nivel de dedicación 
fuera del aula.

 Con esta combinación, el docente puede identificar si existe 
alguna relación entre la manera en que los estudiantes apren-
den y los resultados que alcanzan, y así determinar qué tipo de 
estrategias podría fortalecer en sus clases. El análisis de esta 
información pretende, en última instancia, orientar decisiones 
pedagógicas más a justadas a las necesidades y características 
del grupo.

Variables educativas y sociales: construcción, interpretación 
y efectos
Las variables constituyen el eje estructural de cualquier análisis 
estadístico. Sin ellas, los datos carecen de forma y las preguntas 
de investigación quedan en un plano abstracto. En contextos edu-
cativos y sociales, definir adecuadamente una variable implica 
un ejercicio de interpretación que va mucho más allá de escoger 
un nombre o un formato de registro. Como señalan Garfield y 
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Ben-Zvi (2008), toda variable refleja una elección conceptual que 
delimita qué aspectos del fenómeno serán observados, cuáles 
permanecerán invisibles y qué sentido adquieren los valores que 
posteriormente se analizarán. Por ello, comprender la construc-
ción de las variables es comprender también la manera en que 
representamos la realidad.

Esta dimensión es particularmente relevante en educación, 
donde se estudian fenómenos complejos que integran dimensio-
nes cognitivas, afectivas, sociales y culturales. Variables como 
“aprendiza je”, “participación”, “motivación”, “clima escolar”, 
“bienestar emocional” o “competencia digital” no son objetos 
simples ni directamente observables. Cada una puede abordar-
se desde múltiples perspectivas, y la manera en que se elige 
operacionalizarlas condiciona profundamente la interpretación 
posterior. Wild y Pfannkuch (1999) destacan que la calidad de 
un análisis estadístico depende en gran parte de la solidez con-
ceptual con la que se definan las variables iniciales, pues estas 
actúan como filtros que dan forma a la realidad analizada.

Definir una variable implica tomar posición respecto de lo 
que se considera importante en un fenómeno. En el estudio del 
rendimiento académico, por ejemplo, existen múltiples formas 
de conceptualizarlo:

1.	 Como puntaje en pruebas estandarizadas.
Ofrece datos comparables, pero captura solo una parte del 

aprendizaje.
2.	 Como promedio de calificaciones.
Integra actividades diversas, aunque puede verse influido por 

criterios poco homogéneos.
3.	Como logro en estándares curriculares.
Se centra en desempeños específicos, pero exige sistemas de 

evaluación consistentes.
4.	Como desarrollo de competencias.
Refleja procesos, pero requiere instrumentos más complejos 

y subjetivos.
5.	 Como autopercepción del propio aprendizaje.
Incorpora la voz del estudiante, aunque no mide directamente 

habilidades objetivas.
Cada definición origina una variable distinta y conduce a “ver-

siones” diferentes del mismo fenómeno. Batanero y Díaz (2011) 
explican que la elección de una variable no es neutra: implica 
escoger un ángulo de análisis y renunciar a otros posibles. Esta 
renuncia es inevitable, pero debe ser consciente y argumentada. 

Supongamos que una institución evalúa la efectividad de su 
nuevo programa de Matemática. Si la variable seleccionada es 
“puntaje en pruebas estandarizadas”, se obtendrá una lectura 
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centrada en habilidades específicas. Si la variable elegida es 
“confianza matemática”, la lectura será emocional y motivacio-
nal. Si la variable utilizada es “uso de estrategias de resolución 
de problemas”, la evaluación se centrará en prácticas cognitivas. 
Una misma intervención puede parecer exitosa o limitada según 
la variable escogida.

Este ejemplo evidencia por qué el acto de definir variables 
constituye una parte esencial del análisis y no un simple paso 
preliminar.

Variables observables y variables latentes
En educación y ciencias sociales es frecuente distinguir entre 

variables observables y variables latentes.
Variables observables
Son aquellas que pueden registrarse directamente mediante 

instrumentos concretos, como:
•	 número de horas de estudio;
•	 asistencia diaria;
•	 cantidad de intervenciones orales;
•	 puntaje obtenido en una prueba;
•	 frecuencia de uso de una plataforma digital.
Estas variables permiten un registro más objetivo, pero no ne-

cesariamente capturan la totalidad del fenómeno. Por ejemplo, 
medir la “participación” solo como número de intervenciones 
puede invisibilizar a estudiantes que participan mediante la es-
cucha activa, el trabajo colaborativo o la escritura.

Variables latentes
Las variables latentes representan constructos no directamen-

te observables, tales como:
•	 motivación;
•	 sentido de pertenencia;
•	 ansiedad matemática;
•	 clima escolar;
•	 liderazgo estudiantil;
•	 percepción de competencia.
Gal (2002) recuerda que estas variables requieren procedi-

mientos indirectos de medición implica asumir modelos teóricos 
y criterios interpretativos. Su complejidad no las vuelve menos 
valiosas; al contrario, permiten estudiar dimensiones profundas 
de la experiencia educativa. No obstante, requieren interpre-
taciones cuidadosas, pues pueden variar según el instrumento 
utilizado y el contexto de aplicación.

Por ejemplo, con el propósito de comprender mejor cómo se 
relacionan ciertos hábitos académicos con factores más profun-
dos del aprendizaje, una docente decidió recopilar información 
de ocho estudiantes de quinto año. 
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Para ello registró varias variables observables, como las ho-
ras de estudio semanal, el porcentaje de asistencia, el número 
de intervenciones orales y el puntaje obtenido en una prueba 
reciente (Figura 11). Junto con ello, aplicó una escala tipo Likert 
para evaluar variables latentes vinculadas al funcionamiento 
emocional y social del grupo, específicamente la motivación, la 
ansiedad matemática, el sentido de pertenencia y la percepción 
del clima escolar. 

Figura 11.
Registro de variables observables y latentes en el grupo de 
estudiantes

 

Nota. La figura muestra la matriz de datos ingresada en Jamovi, donde se 
combinan variables observables, como horas de estudio, asistencia, inter-
venciones y puntaje en la prueba, junto con variables latentes evaluadas 
mediante escala Likert, entre ellas motivación, ansiedad matemática, sentido 
de pertenencia y clima escolar.

El interés del docente será identificar si existen patrones entre 
estos dos tipos de variables, por ejemplo, si los estudiantes con 
mayor motivación tienden a estudiar más, si la ansiedad mate-
mática se refleja en menores puntajes o si un clima escolar más 
favorable se asocia con mejores intervenciones en clase. Con la 
información registrada, se busca analizar estas relaciones para 
fundamentar decisiones pedagógicas que ayuden a fortalecer 
el aprendizaje y el bienestar del grupo.

Operacionalizar: transformar un concepto en una medida
Operacionalizar significa traducir un concepto abstracto en 

indicadores concretos y medibles. Este proceso exige una com-
prensión clara del constructo teórico.

Para comprender de manera más precisa la competencia 
digital docente (Figura 12), un investigador puede comenzar 
identificando aquellos aspectos que son visibles en la práctica 
educativa. 
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Entre ellos se encuentran el nivel de alfabetización tecnológica, 
la variedad de herramientas digitales que el docente emplea y 
la frecuencia con la que las utiliza en sus clases.

Figura 12.
Operacionalización de la competencia digital docente

Nota. La figura detalla las dimensiones, indicadores y tipos de variables 
empleados para operacionalizar la competencia digital docente. Se incluyen 
además ejemplos de ítems formulados en escala Likert de 1 a 5.
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Sin embargo, también intervienen dimensiones menos evi-
dentes que requieren una mirada más profunda. La capacidad 
de adaptación a entornos virtuales, la confianza que el docente 
percibe al manejar plataformas digitales y su habilidad para 
integrar esos recursos con intención pedagógica constituyen 
componentes esenciales de la competencia digital.

Apoyo didáctico: Estos elementos permiten observar cómo el 
profesorado incorpora la tecnología en su rutina pedagógica y 
hasta qué punto domina funciones básicas y aplicaciones que 
facilitan el desarrollo de actividades de enseñanza y aprendizaje, 
así como entender no solo el uso instrumental de las herramien-
tas, sino también cómo el docente las incorpora de manera es-
tratégica para enriquecer los procesos educativos y responder 
a las demandas de los entornos digitales actuales.

Cada uno de estos aspectos representa dimensiones diferen-
tes de una misma variable. Garfield y Ben-Zvi (2008) sostienen 
que la operacionalización debe ser coherente con los objetivos 
del estudio y con la naturaleza del fenómeno. Una definición ex-
cesivamente estrecha puede producir análisis incompletos; una 
excesivamente amplia puede dificultar la interpretación.

La Figura 13 reúne los puntajes asignados a cada docente en 
las distintas dimensiones que conforman la competencia digital, 
y permite observar de manera conjunta cómo se distribuyen los 
niveles de alfabetización tecnológica, la variedad y frecuencia 
de uso de herramientas digitales, así como la adaptación, la 
confianza y la integración pedagógica

Figura 13.
Puntuaciones registradas en las dimensiones de la competencia digi-
tal docente

 

Nota. La figura muestra la matriz de datos ingresada en Jamovi correspon-
diente a las seis dimensiones evaluadas de la competencia digital docente.

Las puntuaciones recogidas en las diferentes dimensiones de la 
competencia digital docente muestran que no se trata solo de “saber 
usar” tecnología, sino de integrar ese saber en la práctica cotidiana,
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se observan perfiles más consolidados, con valores altos y rela-
tivamente equilibrados en alfabetización tecnológica, frecuencia 
de uso e integración pedagógica, junto a otros más irregulares, 
donde la confianza o la adaptación a entornos virtuales quedan 
rezagadas. 

El contexto como parte integral de la variable
Entender una variable sin considerar el contexto en el que sur-

ge es una de las formas más comunes de distorsionar la realidad 
que se intenta analizar. Una medida tan simple como el “tiempo 
dedicado al estudio” puede adquirir significados radicalmente 
distintos según el entorno social y educativo en el que se obser-
ve. En contextos urbanos, suele interpretarse como una señal de 
esfuerzo o disciplina; en zonas rurales, en cambio, puede revelar 
carencias materiales que obligan al estudiante a invertir más 
tiempo para lograr los mismos resultados. También puede ser ex-
presión de dinámicas familiares complejas o de niveles elevados 
de presión académica. Del mismo modo, el “logro académico” no 
representa un estándar universal, pues depende de los criterios 
de evaluación de cada institución, la disponibilidad de recursos, 
las prácticas docentes y las expectativas socioculturales que in-
fluyen en lo que cada comunidad considera un buen desempeño.

Esta variabilidad en el significado de las variables ha sido 
ampliamente discutida en la literatura contemporánea sobre 
educación y análisis de datos. Ben-Zvi y Makar (2016) advierten 
que interpretar variables sin atender al contexto produce con-
clusiones incompletas y, en muchos casos, desconectadas de la 
experiencia real de los estudiantes. Considerar el contexto no 
solo enriquece la interpretación estadística, sino que también 
permite tomar decisiones pedagógicas más justas y pertinentes, 
evitando generalizaciones que invisibilizan las múltiples realida-
des que conviven dentro del sistema educativo.

Efectos de una definición inadecuada de la variable
La manera en que se define una variable determina, en gran 

medida, la calidad y la profundidad del análisis que se puede rea-
lizar con ella. Cuando una variable está mal construida o parte de 
una definición limitada, los resultados se vuelven incompletos y, 
en ocasiones, abiertamente contradictorios. Por ejemplo, reducir 
el “abandono escolar” únicamente a la inasistencia prolongada 
deja fuera factores estructurales como la inseguridad, el trabajo 
infantil o la migración, todos ellos ampliamente documentados 
en estudios internacionales (UNESCO, 2021).

 Algo similar ocurre cuando se pretende medir el “bienestar 
estudiantil” solo con escalas cuantitativas, lo que puede ocultar 
experiencias subjetivas, relaciones familiares frágiles o tensiones 
emocionales que requieren una lectura cualitativa más profunda. 
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Incluso en el ámbito disciplinar, definir la “competencia ma-
temática” únicamente mediante pruebas de cálculo conduce a 
ignorar dimensiones clave como el razonamiento, la argumen-
tación o la modelización.

Diversos investigadores han insistido en que la definición 
de una variable no es un trámite conceptual, sino una decisión 
metodológica con efectos directos sobre la interpretación de 
los datos. Hernández-Sampieri y Mendoza (2018) destacan que 
una variable mal delimitada genera mediciones inconsistentes 
que comprometen la validez de los resultados. Del mismo modo, 
Messick (1995) advierte que la validez de un constructo depen-
de no solo de los instrumentos que lo miden, sino también de 
la claridad con que se define su estructura conceptual. En este 
sentido, reflexionar sobre la construcción de las variables no es 
un lujo académico, sino una condición esencial para producir 
análisis estadísticos responsables y decisiones pedagógicas bien 
fundamentadas. 

De manera general, la elección de las variables en educación 
no es un detalle técnico, sino una decisión que orienta qué se 
considera valioso y, por tanto, qué tipo de prácticas y políticas se 
impulsan. Cuando una institución decide medir solo rendimiento 
numérico, termina reforzando lógicas centradas en pruebas y 
resultados estandarizados; si incorpora variables de desarro-
llo socioemocional, abre espacio a tutorías, acompañamiento y 
cuidado; y si valora la participación, fomenta actividades cola-
borativas y voces estudiantiles más visibles. 

Tabulación y representaciones gráficas: leer y comunicar 
información
La tabulación y las representaciones gráficas constituyen un com-
ponente fundamental del razonamiento estadístico. No se trata 
únicamente de ordenar datos o de embellecer información, sino 
de transformar registros dispersos en narrativas comprensibles. 
Tanto en educación como en los estudios sociales, los gráficos y 
las tablas no solo muestran cifras: construyen significados, revelan 
patrones y permiten que las personas entiendan fenómenos que, 
sin estas herramientas, serían invisibles o incomprensibles. Como 
afirman Garfield y Ben-Zvi (2008), la representación gráfica no 
es un añadido decorativo de la estadística, sino la vía por la cual 
los estudiantes aprenden a pensar con datos.

Al analizar cómo los datos se organizan y representan, apare-
cen dos dimensiones esenciales: la posición teórica y la posición 
didáctica, que examina cómo estas herramientas pueden favo-
recer aprendizajes significativos en las aulas
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La articulación entre ambas perspectivas permite compren-
der que tabular y graficar no son actividades mecánicas, sino 
procesos que exigen interpretación, reflexión y comunicación.

Tabular para organizar y revelar patrones
La tabulación constituye la primera estructura formal que permite 
convertir un conjunto disperso de registros en una organización 
significativa. Wild y Pfannkuch (1999) explican que el pensamien-
to estadístico inicia con la capacidad de “imponer estructura” 
sobre datos desorganizados; en otras palabras, construir una for-
ma que permita ver lo que antes era invisible. Las tablas revelan 
frecuencias, distribuciones, agrupamientos y comportamientos 
inusuales, y actúan como un puente entre los datos brutos y las 
interpretaciones posteriores.

Por ejemplo, un docente quiso comprender por qué algunos 
estudiantes estaban teniendo dificultades en el último bloque de 
Matemática, para ello, les pidió que anotaran de manera anónima 
cuántos ejercicios de la guía habían logrado resolver sin ayuda. 
Al finalizar la clase, tenía una lista desordenada de números:

3, 5, 4, 2, 10, 4, 3, 4, 2, 3, 12, 4, 5. A primera vista, esa serie de 
valores no decía mucho. Podría parecer simplemente una mezcla 
irregular de cantidades sin patrón evidente. Sin embargo, cuando 
decidió organizar los datos en una tabla de frecuencias (Figura 
14), la situación cambió por completo.

Figura 14.
Distribución de ejercicios resueltos sin ayuda por los estudiantes
 

Nota. La figura muestra la frecuencia con la que los estudiantes resolvieron 
ejercicios de manera autónoma.

En este sentido llama la atención es que la mayoría de los 
estudiantes se mueve entre 2 y 4 ejercicios resueltos; de hecho, 
casi siete de cada diez están en ese rango. Esto da la sensación 
de que la guía les resultó manejable, pero todavía exigente:ha-
cen algunos ejercicios por su cuenta, pero no tantos como para
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pensar que todos dominan el tema con soltura. También se 
ve un pequeño grupo que llega a 5 ejercicios, lo cual refuerza la 
idea de un rendimiento bastante parejo, sin demasiadas diferen-
cias dentro del conjunto principal.Por otra parte, destaca los dos 
valores más altos, 10 y 12 ejercicios. Son casos aislados, pero no 
por eso menos importantes. Más bien, funcionan como señales 
claras de que hay estudiantes que están muy por encima del 
resto, ya sea porque entienden el contenido con mayor facilidad 
o porque han tenido más práctica previa. Estos contrastes no se 
notaban en la lista de números desordenados, pero la tabla los 
pone en evidencia de inmediato

En contextos educativos, tabular implica tomar decisiones 
conceptuales: seleccionar variables, definir categorías, es-
tablecer niveles de detalle y ordenar la información según 
criterios analíticos. Un docente que analiza la evolución del 
rendimiento en Matemática puede tabular por unidades de 
aprendiza je, por niveles de logro o por frecuencia de activida-
des. Cada tabulación construye una lectura distinta del mismo 
fenómeno. Lo mismo ocurre en estudios sociales: tabular el 
acceso a internet por territorio, edad o nivel socioeconómico 
genera interpretaciones específicas, y todas están mediadas 
por las elecciones iniciales del investigador.

Desde una perspectiva teórica, este proceso muestra que la 
tabla no es neutral: es una construcción que destaca unos aspectos 
y atenúa otros. Batanero y Díaz (2011) señalan que toda tabulación 
conlleva un posicionamiento conceptual, pues las decisiones sobre 
la organización del dato determinan las posibilidades de interpre-
tación. En consecuencia, tabular implica comprender el fenómeno 
y, simultáneamente, delimitar su lectura.

La investigación en educación estadística coincide en que mu-
chos estudiantes reproducen tablas sin comprender las implica-
ciones de cada decisión. Garfield y Ben-Zvi (2008) indican que la 
enseñanza debería enfatizar que tabular no es llenar casillas, sino 
estructurar información para pensar con ella. Por eso, trabajar con 
datos reales permite que los estudiantes descubran patrones y 
comprendan el sentido de la organización.

Representaciones gráficas: visualizar, interpretar y construir 
narrativas

Las representaciones gráficas constituyen una ampliación vi-
sual del razonamiento estadístico. Curcio (1989) estableció que 
comprender un gráfico implica leer datos, leer entre los datos y 
leer más allá de los datos, es decir, interpretar relaciones, detectar 
tendencias y formular conclusiones. 
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En este sentido, los gráficos son formas de narración visual que 
permiten transformar lo cuantitativo en relaciones descriptivas 
más accesibles.

•	 Los distintos tipos de gráficos ofrecen perspectivas 
diferenciadas:

•	 Gráficos de barras: permiten comparar categorías y visua-
lizar contrastes inmediatos.

•	 Gráficos de líneas: describen trayectorias temporales y fa-
cilitan analizar cambios y ritmos.

•	 Histogramas: muestran la forma de la distribución y revelan 
simetrías, sesgos o concentraciones.

•	 Diagramas de caja: permiten observar variabilidad, disper-
sión y valores atípicos.

•	 Gráficos de dispersión: exponen relaciones entre variables, 
especialmente al analizar asociaciones.

•	 Gráficos de sectores: muestran proporciones, aunque re-
quieren interpretaciones cautelosas.

Desde una posición teórica, Garfield y Ben-Zvi (2008) desta-
can que las representaciones visuales realizan una transforma-
ción conceptual del fenómeno. Un histograma no solo reproduce 
frecuencias; sintetiza la estructura completa de la variable. Un 
diagrama de caja no solo ordena datos; visibiliza desigualdades 
internas que no se perciben en promedios o valores individua-
les.Por ejemplo, para conocer mejor la realidad de cada grupo 
(Figura 15)., un docente comparó las notas de los cursos A y B 
utilizando un diagrama de caja. 

Aunque ambos cursos tenían promedios similares el gráfico 
mostró diferencias importantes (Figura 16) en el curso A las califi-
caciones estaban más agrupadas, mientras que en el curso B había 
una dispersión mucho mayor, con estudiantes muy avanzados y 
otros con claras dificultades. Esta visualización le permitió recono-
cer que, aunque los dos cursos parecían similares en los números 
generales, sus necesidades internas eran distintas y necesitaban 
estrategias de apoyo diferenciadas.

La literatura crítica observa que los gráficos pueden inducir 
interpretaciones erróneas cuando las escalas, colores o catego-
rías no se eligen con criterio. Gal (2002) sostiene que la lectura 
crítica de gráficos se ha vuelto un componente indispensable 
de la alfabetización estadística contemporánea, especialmente 
en un entorno saturado de información visual. Comprender un 
gráfico implica analizar no solo lo que se muestra, sino también 
las decisiones detrás de su diseño.
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Figura 15
Registros de ejercicios resueltos sin ayuda por los estudiantes en los 
cursos A y B

 

Nota. La figura muestra la matriz de datos ingresada en Jamovi con las cali-
ficaciones obtenidas por los estudiantes de ambos cursos.

Figura 16
Diagrama de caja de las notas obtenidas por los estudiantes de los 
cursos A y B
 

Nota. El diagrama muestra la distribución de las calificaciones registradas en 
ambos cursos.

La literatura crítica observa que los gráficos pueden inducir 
interpretaciones erróneas cuando las escalas, colores o catego-
rías no se eligen con criterio. Gal (2002) sostiene que la lectura 
crítica de gráficos se ha vuelto un componente indispensable 
de la alfabetización estadística contemporánea, especialmente
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en un entorno saturado de información visual. Comprender un 
gráfico implica analizar no solo lo que se muestra, sino también 
las decisiones detrás de su diseño.

En educación, enseñar a representar datos implica no solo 
aprender a construir gráficos, sino comprender qué tipo de grá-
fico responde mejor a cada pregunta de investigación. Wild y 
Pfannkuch (1999) explican que representar visualmente permite 
que los estudiantes avancen desde la observación hacia la expli-
cación. Al producir gráficos propios, deben justificar decisiones, 
argumentar sus interpretaciones y construir una comunicación 
basada en datos.

La mirada investigativa: evidencias, dificultades y aportes al 
razonamiento estadístico
La investigación en educación estadística ha dedicado especial 
atención a comprender cómo los estudiantes leen, interpretan 
y producen tablas y representaciones gráficas, y cuáles son los 
procesos cognitivos implicados en estas tareas. Desde sus pri-
meros desarrollos, este campo ha mostrado que la capacidad 
de traba jar con representaciones no se adquiere de manera 
espontánea; por el contrario, demanda instrucción explícita, ex-
periencias progresivas y oportunidades para interactuar críti-
camente con datos reales. Garfield y Ben-Zvi (2008) enfatizan 
que el razonamiento estadístico se construye mediante ciclos 
de interpretación, discusión y comunicación, donde las tablas y 
los gráficos cumplen un papel central. La investigación confirma 
que estas representaciones son algo más que herramientas vi-
suales: son mediadores cognitivos que orientan la comprensión, 
estructuran el pensamiento y permiten construir argumentos 
basados en datos.

Investigaciones sobre cómo se comprende una representación: 
niveles, procesos y vacíos persistentes

Uno de los aportes más influyentes en este campo proviene 
del trabajo de Curcio (1989), quien estableció tres niveles de 
comprensión gráfica: leer los datos, leer entre los datos y leer 
más allá de los datos. Este modelo ha sido validado por múltiples 
estudios posteriores y sigue siendo un referente para analizar 
la evolución del pensamiento estadístico. “Leer los datos” im-
plica identificar valores explícitos; “leer entre los datos” exige 
comparar, inferir y detectar tendencias; y “leer más allá” supo-
ne interpretar patrones, anticipar comportamientos o justificar 
conclusiones. La investigación muestra que muchos estudiantes 
permanecen anclados en el primer nivel, incluso en grados su-
periores, lo que evidencia una brecha entre la exposición a los 
gráficos y el desarrollo efectivo del razonamiento.
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Wild y Pfannkuch (1999) ampliaron esta mirada al mostrar 
que los estudiantes suelen centrarse en detalles superficiales, 
como puntos aislados o segmentos llamativos, mientras ignoran 
la estructura global de la distribución. Esta atención fragmenta-
da dificulta que adviertan variabilidad, tendencias o relaciones 
estadísticas más complejas.

Estudios recientes confirman que la comprensión de un grá-
fico depende de procesos cognitivos simultáneos: decodifica-
ción visual, reconocimiento de patrones, articulación entre la 
representación y la variable conceptual, y contextualización del 
fenómeno. No basta con identificar puntos o barras; es impres-
cindible comprender qué significan en relación con la pregunta 
que motivó el análisis.

Dificultades documentadas: errores recurrentes y obstáculos 
conceptuales

La literatura investigativa identifica una serie de dificultades 
recurrentes que enfrentan los estudiantes al trabajar con tablas 
y gráficos. Estas dificultades no se limitan a errores técnicos, 
sino que revelan obstáculos más profundos del razonamiento 
estadístico.

Entre los desafíos más frecuentes se encuentran:
1.	 Interpretación literal y no relacional del gráfico
Los estudiantes tienden a describir lo que “ven” sin relacionarlo 

con el fenómeno. Garfield y Ben-Zvi (2008) documentan casos 
donde los alumnos interpretan una línea ascendente como “sube 
porque sí”, sin conectar el cambio con la variable estudiada.

2.	 Confusión entre forma visual y magnitud
Especialmente con gráficos de barras o áreas, algunos estu-

diantes creen que una barra más ancha representa “más” aunque 
no sea más alta. Esto muestra una lectura centrada en rasgos 
perceptuales y no en las variables (Curcio, 1989).

3.	  Dificultad para interpretar variabilidad
La variabilidad suele ser uno de los conceptos más difíciles. En 

diagramas de caja, por ejemplo, muchos estudiantes no identifi-
can valores atípicos o interpretan la mediana como un “promedio 
más exacto” (Garfield & Ben-Zvi, 2008).

4.	Problemas para leer escalas no uniformes
Cuando los ejes cambian la escala, el gráfico puede parecer 

engañoso. La investigación muestra que los estudiantes rara vez 
detectan estas decisiones de diseño, lo que afecta la interpreta-
ción crítica (Gal, 2002).

5.	 Sobrerreliance en valores individuales
Los estudiantes suelen fijarse en el valor máximo o mínimo sin 

considerar patrones globales. La mirada queda fragmentada y 
no se construyen conclusiones integradas.
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6. Falta de conexión entre tabla y gráfico
Muchos estudiantes no vinculan la tabla con la representación 

visual correspondiente. La investigación señala que estas dos 
herramientas se trabajan de forma aislada, cuando en realidad 
están profundamente conectadas (Batanero & Díaz, 2011).

Estas dificultades muestran que la comprensión de gráficos 
no depende únicamente de verlos o reproducirlos, sino de desa-
rrollar una mirada analítica que permita reconocer estructuras, 
relaciones y significados.

Los estudios en didáctica de la estadística han identificado 
prácticas que favorecen el desarrollo de la comprensión gráfica:

1.	 Trabajar con datos reales y significativos: 
Ben-Zvi y Makar (2016) muestran que los estudiantes desarro-

llan mayor sensibilidad hacia los patrones y tendencias cuando 
los datos provienen de fenómenos familiares: asistencia, hábitos 
digitales, rendimiento, percepciones. La cercanía favorece la 
formulación de preguntas y la interpretación crítica.

2.	 Combinar varias representaciones del mismo fenómeno
La investigación indica que presentar un mismo conjunto de 

datos en tabla, histograma, gráfico de líneas y diagrama de caja 
permite a los estudiantes comprender diferentes facetas de la 
distribución. Esta triangulación desarrolla una comprensión más 
robusta (Garfield & Ben-Zvi, 2008).

3.	 Promover la explicación oral y escrita
Explicar un gráfico obliga a estructurar el pensamiento. Los 

estudios señalan que cuando los estudiantes justifican por qué 
eligieron un tipo de gráfico o cómo interpretan la tendencia, la 
comprensión se profundiza.

4.	Enseñar explícitamente la lectura crítica
Gal (2002) sostiene que la educación moderna debe abor-

dar la manipulación visual de datos. Enseñar a detectar escalas 
truncadas, gráficos engañosos o narrativas sesgadas fortalece 
la alfabetización estadística.

5.	 Guiar la construcción de gráficos, no solo su lectura
Construir gráficos requiere tomar decisiones: elegir la escala, 

seleccionar el tipo de gráfico, organizar los datos. La investi-
gación confirma que este proceso es más formativo que leer 
gráficos ya hechos (Wild & Pfannkuch, 1999).

Trabajar con tablas y representaciones gráficas no solo ayuda 
a “embellecer” los datos, sino que se convierte en una vía privile-
giada para desarrollar componentes centrales del razonamiento 
estadístico. La tabulación permite estructurar el fenómeno, orde-
nar información dispersa y hacer visibles patrones que de otro 
modo pasarían desapercibidos, mientras que los gráficos facilitan 
la comprensión de la variabilidad, la forma de la distribución
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y la presencia de valores extremos. Esta organización visual 
de la información vuelve más accesible la comparación entre 
grupos, distribuciones y tendencias, y crea un soporte concreto 
para la construcción de argumentos basados en datos. En esa 
línea, autores como Garfield y Ben-Zvi (2008) destacan que el 
trabajo sistemático con representaciones tabulares y gráficas 
favorece que el estudiante pase de “ver números” a interpretar 
evidencias, lo que fortalece la capacidad de justificar conclusio-
nes de manera fundamentada.

Al mismo tiempo, la lectura crítica de gráficos reales abre la 
puerta a una ciudadanía más informada y reflexiva. Gal (2002) 
subraya que la alfabetización estadística implica no solo com-
prender procedimientos, sino también interpretar mensajes que 
circulan en medios, informes y debates públicos. Desde esta 
perspectiva, las representaciones actúan como un puente entre 
datos, contexto y narrativa: permiten conectar valores numéricos 
con significados sociales, educativos y culturales, y cuestionar 
qué se muestra, qué se oculta y qué se da por supuesto. En sín-
tesis, la investigación en educación estadística coincide en que 
el uso intencional de tablas y gráficos es uno de los caminos más 
sólidos para desarrollar un pensamiento estadístico auténtico, 
basado en comprensión, análisis crítico y comunicación clara de 
la información (Garfield & Ben-Zvi, 2008; Gal, 2002).

Medidas de tendencia central y dispersión: interpretar la in-
formación numérica
La interpretación de datos numéricos requiere comprender cómo 
se organizan, cómo se concentran y qué tan alejados se en-
cuentran los valores respecto a un punto de referencia. En este 
proceso, las medidas de tendencia central y dispersión consti-
tuyen herramientas esenciales para sintetizar la información y 
revelar patrones que no son visibles a simple vista. Garfield y 
Ben-Zvi (2008) destacan que estas medidas permiten enten-
der la estructura de un fenómeno, identificar comportamientos 
típicos y evaluar la variabilidad que caracteriza a los datos. En 
educación y en las ciencias sociales, esta comprensión resulta 
especialmente relevante, pues muchos fenómenos presentan 
distribuciones heterogéneas que requieren análisis cuidadoso 
para evitar interpretaciones simplistas.

Comprender estas medidas no es únicamente un ejercicio téc-
nico: implica desarrollar la capacidad de argumentar con datos, 
contextualizar valores numéricos y reconocer que los resúmenes 
estadísticos deben interpretarse a la luz del fenómeno estudiado. 
En esta sección se amplía la reflexión sobre estas medidas, inte-
grando ejemplos concretos y aportes de la investigación reciente.



48

Comprender la estadística desde la experiencia: fundamentos y representaciones

Comprender el “centro”: media, mediana y moda como repre-
sentaciones del valor típico
Las medidas de tendencia central permiten sintetizar un conjunto 
de datos en un solo valor, pero cada una expresa una forma distin-
ta de interpretar qué significa “lo característico” de un grupo. La 
media suele entenderse como un punto de equilibrio: suma todos 
los valores y los distribuye de manera uniforme. Sin embargo, 
cuando existen diferencias marcadas dentro del conjunto, este 
promedio puede ofrecer una visión distorsionada. La mediana, en 
cambio, señala el valor que divide a la población en dos partes 
iguales y se mantiene estable incluso frente a valores extremos. 
La moda aporta otra mirada complementaria, pues identifica el 
valor que aparece con mayor frecuencia y resulta especialmente 
útil cuando se analizan categorías o preferencias. Estas distincio-
nes no son simplemente técnicas; responden a preguntas sobre 
cómo se comportan realmente los datos y qué tan homogéneo 
o diverso es un fenómeno.

En el campo educativo y social, elegir la medida adecuada 
es fundamental para comprender la realidad sin perder matices. 
Prodromou (2019) señala que los estudiantes desarrollan un pen-
samiento estadístico más profundo cuando trabajan con datos 
auténticos, porque pueden observar directamente cómo la media 
se desplaza cuando aparecen valores atípicos, cómo la mediana 
captura la estabilidad del grupo y cómo la moda revela patrones 
de comportamiento que de otro modo pasarían desapercibidos. 

Del mismo modo, Konold et al. (2017) señalan destacan que 
enseñar estas diferencias ayuda a superar la idea de que la es-
tadística se reduce a algoritmos, promoviendo en cambio una 
lectura crítica y contextualizada de la información. En conjunto, 
estos aportes muestran que comprender las medidas centrales 
implica mucho más que calcular números: implica aprender a 
interpretar el sentido de los datos y a reconocer qué dicen sobre 
el fenómeno que se estudia.

Por ejemplo, en un centro de salud comunitario se implementó 
recientemente un taller educativo para pacientes con hiperten-
sión, con el propósito de mejorar sus hábitos diarios y ayudarles 
a controlar la presión arterial. Después de un mes, el equipo mé-
dico quiso comprobar si existían diferencias reales entre quienes 
participaron en el taller y quienes continuaron con la atención 
habitual. 

Para ello, registraron la presión arterial sistólica de un grupo de 
pacientes en ambos escenarios y organizaron los datos (Figura 
17) con el fin de comparar la distribución de valores, identificar 
posibles patrones y evaluar si el taller estaba teniendo un impacto 
clínicamente significativo. 
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El análisis de estos resultados permitirá orientar decisiones so-
bre la continuidad del programa y sobre la necesidad de a justes 
en las intervenciones educativas que se ofrecen a la comunidad.

Figura 17.
Registros de presión arterial sistólica (PAS) de los pacientes 

 

Nota. La figura muestra la matriz de datos utilizada en el análisis.

Figura 18.
Estadísticos descriptivos de la presión arterial sistólica en los grupos 
Taller y Control
 

Nota. La tabla presenta los valores de N, media, mediana y moda de la pre-
sión arterial sistólica (PAS) en ambos grupos.
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Los resultados descriptivos (Figura 17) muestran un patrón 
claro: aunque ambos grupos tienen el mismo número de partici-
pantes, las medidas de tendencia central son consistentemente 
más bajas en el grupo que asistió al taller. Tanto la media como 
la mediana se sitúan en 129 mmHg en este grupo, mientras que 
en el grupo control alcanzan alrededor de 145 mmHg. Incluso 
los valores más frecuentes (moda) siguen esta misma dirección.

Prodromou (2019) mostró que traba jar con datos reales y 
dinámicos permite que los estudiantes entiendan cómo valores 
extremos afectan la media, cómo la mediana refleja estabilidad 
y cómo la moda evidencia patrones de preferencia o comporta-
miento. Estos elementos convierten la enseñanza de las medidas 
centrales en una oportunidad para promover pensamiento crítico 
sobre los datos.

La dispersión como clave interpretativa: variación, estabilidad 
y desigualdad en los datos
En el análisis estadístico, comprender únicamente los valores 
centrales de un conjunto de datos suele resultar insuficiente para 
interpretar el comportamiento real de un fenómeno. La dispersión 
se convierte, por ello, en una clave interpretativa fundamental, 
ya que permite evaluar el grado en que los valores se alejan del 
centro y, con ello, reconocer patrones de variación, niveles de 
estabilidad y formas de desigualdad presentes en los datos. Por 
ejemplo, si conectamos la idea de variación con los datos de pre-
sión arterial sistólica (PAS) de los dos grupos (Taller y Control), 
podemos imaginar la siguiente situación: en el grupo Taller, la 
mayoría de los valores se concentran cerca de los 129 mmHg (que 
coinciden en la media y la mediana), con registros que oscilan en 
un rango relativamente estrecho alrededor de ese valor.

Esto indicaría una variación baja y, por tanto, un comporta-
miento más estable del indicador en las personas que participa-
ron en la intervención educativa. En cambio, en el grupo Control, 
donde la media y la mediana se sitúan en 145 mmHg, los valores 
podrían estar mucho más dispersos, con algunos participantes 
ligeramente por encima de 140 mmHg y otros con cifras cercanas 
o superiores a 160 mmHg. Aunque ambos grupos tienen el mismo 
tamaño muestral (n = 8), la mayor variación en el grupo Control 
sugeriría heterogeneidad estructural y posibles influencias ex-
ternas no controladas, como diferencias en el acceso a controles 
médicos o en la adherencia a tratamientos.

La dispersión también ofrece una ventana interpretativa so-
bre la estabilidad. Un conjunto con baja desviación estándar o 
bajo rango intercuartílico suele interpretarse como estable, en 
el sentido de que sus valores no difieren abruptamente entre sí.
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Esto es especialmente relevante cuando se evalúan procesos 
educativos, donde la estabilidad puede sugerir que los apren-
dizajes son relativamente homogéneos, o en estudios clínicos, 
donde una baja dispersión podría indicar respuestas similares al 
tratamiento. En contraste, valores con amplia dispersión alertan 
sobre contextos inestables, brechas internas o procesos que re-
quieren mayor atención o diferenciación metodológica.

Figura 19.
Medidas descriptivas de la presión arterial sistólica (PAS) en los gru-
pos Taller y Control.
 

Nota. La figura muestra el número de participantes y las principales medidas 
de tendencia central y dispersión de la presión arterial sistólica (PAS) por 
grupo.

Finalmente, la dispersión constituye un indicador clave para 
analizar la desigualdad. Mientras medidas como la media o la 
mediana describen tendencias generales, la dispersión revela 
la distancia entre grupos o individuos. En investigaciones sobre 
rendimiento académico, ingreso económico o acceso a servicios, 
una alta dispersión puede reflejar inequidades estructurales que 
se ocultan tras un valor central aparentemente adecuado.

De manera general, la dispersión no es un elemento técnico 
aislado, sino un recurso interpretativo que aporta profundidad ana-
lítica. Permite reconocer cuánto cambian los datos, cuán estable es 
un proceso y qué desigualdades emergen dentro de un conjunto.
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Integrar esta mirada favorece análisis más rigurosos y deci-
siones mejor fundamentadas, especialmente en contextos edu-
cativos, sociales o de investigación aplicada. 

Comprender los valores atípicos: impacto interpretativo, de-
cisiones analíticas y sentido del dato

El análisis estadístico contemporáneo exige observar no solo 
lo que ocurre “en el centro”, sino también cómo ciertos valores 
inusuales (valores atípicos u outliers) influyen en la comprensión 
de un fenómeno. Lejos de ser simples anomalías, estos valores 
pueden constituir señales importantes sobre desigualdades, com-
portamientos excepcionales o transformaciones emergentes del 
contexto. Bakker y Wagner (2019) subrayan que su interpretación 
adecuada depende del propósito analítico: un valor extremo 
puede enriquecer el análisis o distorsionarlo, según cómo se 
contextualice.

Las medidas de tendencia central y dispersión reaccionan de 
forma distinta frente a los valores atípicos y la media por su parte 
es muy sensible a los valores extremos, Un solo valor inusual-
mente alto puede arrastrar el promedio y alterar por completo 
la interpretación. La mediana, en cambio, permanece estable y 
puede convertirse en una alternativa más adecuada cuando el 
conjunto presenta desigualdades estructurales, como ocurre con 
ingresos o acceso a dispositivos tecnológicos.

Las medidas de dispersión también se ven afectadas: la des-
viación estándar aumenta de manera notable ante un valor ex-
tremo, y el rango puede volverse engañoso si un solo dato inflado 
define la amplitud del conjunto. En este sentido, el recorrido 
intercuartílico (RIC) se vuelve especialmente útil porque se con-
centra en el 50% de datos centrales, ignorando los extremos y 
ofreciendo una visión más robusta del comportamiento general.

Consideremos el siguiente ejemplo sin valores extremos (Figura 
18), las horas de estudio se distribuyen de manera homogénea, 
con una media y mediana de 5.50, una desviación típica baja 
(1.05) y un rango acotado entre 4 y 7 horas. 

Sin embargo, al incorporar el valor atípico de 20 horas ( Figura 
19), la media aumenta abruptamente a 7.57 y la desviación típica 
sube a 5.56, indicando una dispersión mucho mayor.

En contraste, la mediana cambia mínimamente (de 5.50 a 6) y 
el RIC solo aumenta ligeramente, lo que confirma su estabilidad 
frente a valores extremos. Este comportamiento evidencia que la 
media, el rango y la desviación estándar son altamente sensibles 
a los outliers, mientras que la mediana y el RIC ofrecen una re-
presentación más robusta del comportamiento central del grupo.
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Figura 20.
Medidas descriptivas de las horas de estudio sin valores atípicos.
 

Nota. La figura muestra la base de datos y las medidas descriptivas corres-
pondientes a las horas de estudio registradas por seis estudiantes

Figura 21.
Medidas descriptivas de las horas de estudio sin valores atípicos.

 

Nota. La figura muestra la base de datos y las medidas descriptivas corres-
pondientes a las horas de estudio registradas por siete estudiantes

En educación y ciencias sociales, los valores atípicos suelen 
ser “puntos de tensión interpretativa”, según Konold et al. (2017) 
señalan, pues pueden evidenciar situaciones de riesgo, inequi-
dades o dinámicas que requieren atención. Un estudiante que 
obtiene una calificación considerablemente inferior al resto no es 
un error estadístico: puede señalar dificultades de aprendizaje, 
problemas emocionales o falta de recursos. En estudios sociales, 
un ingreso extremadamente bajo o alto puede reflejar desigual-
dades profundas o transformaciones socioeconómicas en curso.
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Las investigaciones recientes destacan además el papel de la 
tecnología en la comprensión de los valores atípicos. Prodromou 
(2019) demuestra que la manipulación dinámica de datos permite 
visualizar instantáneamente cómo se altera la media o la des-
viación estándar cuando aparece un outlier. Bakker y Akkerman 
(2019), por su parte, recuerdan que en entornos de big data los 
valores extremos pueden indicar errores, pero también fenóme-
nos emergentes que requieren análisis crítico.

Conclusiones

Al recorrer este capítulo se hizo evidente que la estadística des-
criptiva no es solo un conjunto de técnicas, sino una forma de 
aproximarse a la realidad con una mirada más atenta y cons-
ciente. Las medidas de centro, la dispersión y la identificación 
de valores atípicos permiten interpretar fenómenos educativos 
y sociales con mayor precisión, evitando quedarse en afirma-
ciones simplificadas que pierden de vista la complejidad de los 
datos. Comprender cómo se comportan los valores dentro de un 
conjunto ayuda a reconocer patrones, detectar desigualdades y 
tomar decisiones mejor fundamentadas.

También se vuelve claro que las representaciones estadísticas 
son herramientas que acompañan el pensamiento crítico. Un 
promedio, por sí solo, nunca cuenta toda la historia; solo cuan-
do se contrasta con la variabilidad, la forma de la distribución y 
la presencia de casos inusuales es posible obtener una lectura 
completa. Esta perspectiva invita a analizar con cuidado cual-
quier afirmación sustentada en datos, especialmente en ámbitos 
como la educación o la salud, donde cada número representa 
situaciones humanas que requieren sensibilidad e interpretación 
contextualizada.

Finalmente, el capítulo subraya la importancia de formar a 
estudiantes y profesionales capaces de dialogar con los datos, 
no solo de reproducir cálculos. En un entorno saturado de infor-
mación, la capacidad de interpretar tablas, gráficos y estadísticas 
se transforma en una competencia esencial para participar de 
manera crítica en la vida académica y social. Aprender a mirar 
más allá del valor central, a preguntarse por lo que los números 
muestran y por lo que ocultan, es un paso fundamental para 
construir una comprensión más honesta y profunda de los fenó-
menos que estudiamos.
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Capítulo II

Pensar el azar: fundamentos 
didácticos y conceptuales de la 

probabilidad

Introducción

El estudio de la probabilidad invita a mirar el mundo desde una pers-
pectiva distinta, una en la que la incertidumbre no es un obstáculo, sino 
una puerta para comprender cómo se comportan los fenómenos que 
no siguen un patrón fijo. En la vida cotidiana convivimos con el azar sin 
pensarlo demasiado: cuando anticipamos el clima, participamos en un 
juego, tomamos una decisión con información incompleta o interpreta-
mos una noticia basada en datos. Sin embargo, esas experiencias suelen 
construir intuiciones que, aunque útiles, no siempre coinciden con la ma-
nera en que la probabilidad describe matemáticamente lo posible. Este 
capítulo propone adentrarse en ese territorio fronterizo entre intuición y 
formalización, explorando cómo las personas interpretan la incertidumbre, 
cómo se estructura un experimento aleatorio y cómo pueden enseñarse 
las ideas fundamentales del azar de forma significativa.

Desde una perspectiva didáctica, pensar el azar implica reconocer 
que las ideas probabilísticas no se desarrollan de manera espontánea. 
Requieren experiencias que permitan observar la variabilidad, discutir 
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expectativas, contrastar lo que creemos que debería ocurrir con lo que 
realmente sucede y elaborar modelos que ayuden a organizar esa com-
plejidad. A través de ejemplos, simulaciones, representaciones y análisis 
de situaciones reales, este capítulo busca mostrar cómo la probabilidad 
puede enseñarse no como una colección de reglas aisladas, sino como 
un modo de razonamiento que nos permite interpretar, predecir y tomar 
decisiones en contextos donde no existe certeza absoluta.

En conjunto, el contenido de este capítulo invita a construir una com-
prensión más profunda y humana del azar. No se trata únicamente de 
aprender a calcular probabilidades, sino de desarrollar una sensibilidad 
para reconocer patrones en la incertidumbre, cuestionar intuiciones 
iniciales y valorar el papel que juega el razonamiento probabilístico en 
la vida diaria. Pensar el azar, en este sentido, es también aprender a 
pensar con apertura, cautela y sentido crítico frente a un mundo que 
rara vez se comporta de manera totalmente predecible.

De la intuición del azar al concepto formal de probabilidad
Comprender la probabilidad comienza mucho antes de encontrarse 
con definiciones formales: nace en la manera en que las personas 
interpretan lo inesperado, anticipan resultados o explican por qué 
ciertos eventos suceden y otros no. Desde edades tempranas, todos 
desarrollamos ideas intuitivas sobre el azar basadas en experiencias 
cotidianas, conversaciones, juegos y observaciones informales; sin 
embargo, estas intuiciones no siempre coinciden con la lógica ma-
temática que sustenta el concepto de probabilidad. Este epígrafe 
propone un tránsito reflexivo desde esas primeras percepciones, a 
veces imprecisas o cargadas de sesgos, hacia una comprensión más 
rigurosa y estructurada del azar. Se busca mostrar que la probabili-
dad no surge de memorizar reglas, sino de reconstruir el pensamiento 
inicial, confrontarlo con fenómenos reales y reconocer que detrás de 
la incertidumbre existen patrones y modelos capaces de describir, 
con sorprendente precisión, el comportamiento de lo aleatorio.

La intuición del azar: creencias, expectativas y razonamientos 
espontáneos
La manera en que niños, jóvenes e incluso adultos conciben el azar 
está profundamente anclada en la experiencia cotidiana. Antes de 
llegar al aula, las personas ya han desarrollado una serie de creen-
cias implícitas sobre cómo “deberían” comportarse los fenómenos 
inciertos. Estas ideas conforman lo que la literatura denomina in-
tuiciones del azar, una categoría que recoge percepciones previas, 
razonamientos espontáneos y explicaciones culturalmente trans-
mitidas. Aunque estas intuiciones no forman parte del lenguaje 
matemático formal, sí constituyen el punto de partida desde el cual 
se construye el pensamiento probabilístico escolar.
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Los estudios recientes han confirmado que estas intuiciones 
no desaparecen con el tiempo; por el contrario, evolucionan, 
se complejizan y continúan influyendo en la interpretación de 
los fenómenos aleatorios incluso en la adultez. Retamal y Alsina 
(2022), en un estudio con estudiantes chilenos de 8 a 14 años, 
muestran que la mayoría espera que los resultados aleatorios 
se “compensen” rápidamente, especialmente en secuencias de 
lanzamientos de monedas o dados. 

A esta expectativa de equilibrio inmediato se suman otras 
creencias igual de arraigadas, que suelen aparecer con fuerza 
cuando las personas intentan explicar situaciones marcadas por 
la incertidumbre. En el ámbito educativo latinoamericano, Alsina 
y Salcedo (2020) han mostrado que muchos estudiantes inter-
pretan el azar desde supuestos cargados de causalidad o de 
intención, como si los resultados no fueran producto de un pro-
ceso aleatorio sino de algún tipo de fuerza oculta. Así, cuando un 
dado arroja varios valores altos seguidos, no es raro que algunos 
lo atribuyan a que el dado está “cargado” o a que un jugador 
trae mala suerte, aun cuando el objeto sea perfectamente justo. 

Estas explicaciones, por más equivocadas que sean desde la 
perspectiva matemática, no deben verse únicamente como fallos 
conceptuales. Más bien reflejan un esfuerzo por dotar de sentido 
a la variabilidad natural del azar, un intento por encontrar esta-
bilidad donde no siempre la hay. Esta necesidad de organizar 
lo incierto es una reacción profundamente humana y se hace 
visible tanto en situaciones cotidianas como en el aprendizaje 
formal de la probabilidad. Por eso, más que corregir de manera 
directa estas ideas, la tarea educativa consiste en acompañar a 
los estudiantes para que puedan reconocer por qué surgen, qué 
función cumplen y cómo es posible reemplazarlas por una com-
prensión más rigurosa del carácter aleatorio de los fenómenos. 

Apoyo didáctico: En este escenario, el papel del docente no 
consiste en “corregir” de inmediato estas ideas, sino en compren-
derlas como parte de un sistema de pensamiento más amplio. 
La literatura contemporánea insiste en que las intuiciones son 
recursos cognitivos útiles cuando se integran adecuadamente a 
actividades de exploración, discusión y reflexión. 

Un ejemplo concreto puede ilustrar esta transición. Si en 
un grupo de estudiantes se lanza una moneda diez veces y 
aparece una secuencia de cinco caras consecutivas, es fre-
cuente escuchar afirmaciones como: “Ahora tiene que salir 
sello” o “Va a equilibrarse”. Cuando el docente repite el expe-
rimento cien o doscientas veces o utiliza una simulación digital 
que permite miles de repeticiones los estudiantes observan 
que la proporción se acerca a 50 %, pero que no existe una 
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compensación inmediata tras una racha. Esta observación 
empírica genera una tensión cognitiva que impulsa la reorga-
nización conceptual.

Este tipo de experiencias pone en evidencia la importancia 
de la intuición como punto de partida del pensamiento probabi-
lístico. Lejos de ser un obstáculo, constituye una base fértil para 
desarrollar discusiones, experimentos y análisis que conduzcan 
progresivamente hacia la comprensión formal del azar. En pala-
bras de Fischbein y Malkiel (2019), “el pensamiento intuitivo no 
desaparece con el aprendizaje; se transforma y continúa cohabi-
tando con las ideas formales, influyendo en la toma de decisiones 
incluso cuando la teoría es conocida”.

En síntesis, comprender las intuiciones del azar implica re-
conocer la complejidad cognitiva, emocional y cultural desde 
la que los estudiantes interpretan los fenómenos inciertos. La 
enseñanza de la probabilidad no puede limitarse a transmitir 
reglas; debe partir de estas creencias iniciales, generando un 
diálogo entre la intuición y el conocimiento matemático que 
permita construir, de manera gradual y sólida, una nueva forma 
de pensar lo indeterminado.

La construcción del concepto formal de probabilidad: del ex-
perimento al modelo matemático
Transitar desde la intuición hacia el concepto formal de proba-
bilidad implica un cambio epistemológico profundo. No se trata 
únicamente de aprender definiciones, sino de comprender que 
el azar posee regularidades que solo emergen cuando los fenó-
menos se analizan de manera sistemática. Para que este tránsito 
ocurra de forma significativa, la literatura reciente propone tres 
pilares: experimentación, simulación y formalización progresiva.

a) La experimentación como puente entre intuición y pensa-
miento frecuencial

El traba jo con experimentos repetidos permite que los es-
tudiantes observen la estabilización de las frecuencias relati-
vas. Chance et al. (2016) señalan que esta aproximación simula-
tion-based favorece la comprensión de que la probabilidad no 
es una predicción individual, sino una descripción colectiva del 
comportamiento del azar. Cuando los estudiantes realizan solo 
unas pocas repeticiones, sus expectativas intuitivas dominan la 
interpretación; pero cuando aumentan el número de ensayos, 
comienzan a advertir que la variabilidad empieza a “ordenarse”.

La integración de herramientas digitales ha sido clave en 
esta transformación pedagógica. Prodromou (2019) demuestra 
que las simulaciones permiten visualizar la convergencia de 
frecuencias, comparar modelos y experimentar con escenarios 
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que serían imposibles de reproducir manualmente. Este enfo-
que, además, reduce el sesgo perceptual y permite trabajar con 
volúmenes de datos suficientes para que los patrones probabi-
lísticos sean evidentes.

Por ejemplo, un docente de matemáticas desea que sus es-
tudiantes comprendan cómo se comporta el azar cuando se 
repite muchas veces un mismo experimento. Para ello, propone 
simular 1000 lanzamientos de un dado equilibrado utilizando 
Python dentro de GeoGebra (Figura 1). La idea es que los estu-
diantes observen cuántas veces aparece cada cara, comparen 
esas frecuencias con el valor teórico esperado y reflexionen so-
bre por qué, aun tratándose de un proceso aleatorio, empiezan 
a aparecer patrones cuando se trabaja con una cantidad grande 
de datos. 

Figura 1.
Resultados de la simulación de 1000 lanzamientos de un dado en el 
entorno Python de GeoGebra

 

Nota. La figura muestra el código utilizado para realizar la simulación, así 
como la tabla generada con las frecuencias absolutas y relativas de cada 
cara del dado.

Al revisar los resultados de la simulación, lo primero que llama 
la atención es que ninguna cara del dado aparece con una fre-
cuencia muy distinta de las demás. Cada una se mueve alrededor 
del 16 o 17 por ciento, que es justamente lo que uno esperaría 
si el dado fuera equilibrado y todas las caras tuvieran la misma 
probabilidad de salir. Hay pequeñas variaciones entre ellas, pero 
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son normales y esperables en cualquier proceso aleatorio: algu-
nas caras aparecen unas pocas veces más o menos, sin que eso 
signifique que el dado “prefiera” una en particular.

Lo interesante de este ejercicio es que permite ver cómo el 
azar empieza a mostrar regularidades cuando se trabaja con un 
número grande de lanzamientos. Aunque cada tiro es imprede-
cible, el conjunto de los 1000 ensayos deja entrever un patrón 
estable que se acerca bastante al valor teórico. Esa estabilidad 
no se aprecia en lanzamientos aislados, pero se hace evidente 
cuando se dispone de suficientes datos. Justamente ahí está el 
valor educativo de la simulación: ayuda a que los estudiantes 
comprendan que la probabilidad no es una idea abstracta, sino 
algo que se puede observar y analizar cuando se mira el com-
portamiento de muchos casos juntos.

b) Las interpretaciones contemporáneas de la probabilidad 
como recursos complementarios

Aunque históricamente la probabilidad se enseñó casi exclusi-
vamente desde la interpretación clásica, la investigación reciente 
señala la importancia de introducir múltiples enfoques. Biehler 
(2018) argumenta que la comprensión profunda del azar requiere 
que los estudiantes conozcan las tres grandes perspectivas:

•	 clásica, basada en casos equiprobables;
•	 frecuencial, donde la probabilidad es un límite de frecuencias;
•	 bayesiana, donde se interpreta como grado de creencia 

actualizado con información disponible.
En los últimos años, el enfoque bayesiano ha adquirido reno-

vada relevancia en la educación matemática debido a su cer-
canía con situaciones reales donde la información evoluciona. 
Investigaciones como las de Benavoli y Zaffalon (2022) explican 
que este enfoque ayuda a comprender fenómenos como diag-
nósticos médicos, evaluaciones de riesgo y procesos de toma de 
decisiones donde las probabilidades dependen del conocimiento 
previo.

c) La formalización como construcción progresiva de 
significado

Uno de los avances didácticos más significativos de la úl-
tima década es la incorporación de la argumentación como 
un componente central del aprendiza je probabilístico. Zieffler 
et al. (2018) señalan que la enseñanza de la probabilidad no 
puede limitarse a repetir procedimientos ni a resolver ejer-
cicios de manera automática. Lo realmente formativo ocurre 
cuando los estudiantes deben explicar por qué un resultado 
es más plausible que otro y qué evidencias sostienen esa idea. 
En ese proceso, se ven obligados a pensar en la relación entre 
sus intuiciones, los datos que observan y la coherencia de sus 



62

Pensar el azar: fundamentos didácticos y conceptuales de la probabilidad

propias explicaciones. El aula se convierte así en un espacio 
donde las ideas se ponen a prueba, donde las afirmaciones 
deben justificarse y donde los argumentos se vuelven tan im-
portantes como los números.

Esta forma de trabajar desplaza el enfoque tradicional centra-
do en algoritmos y abre la puerta a una comprensión más profun-
da de la probabilidad. Cuando los estudiantes discuten, revisan y 
confrontan sus razonamientos, comienzan a ver la probabilidad 
como una herramienta para interpretar el mundo y no solo como 
un tema más del currículo. La disciplina se articula entonces con 
la toma de decisiones, el análisis crítico de la información y la 
valoración de la evidencia, habilidades indispensables en la vida 
cotidiana y en cualquier campo profesional. En este sentido, ar-
gumentar no es un añadido complementario, sino una vía para 
que la probabilidad cobre sentido y se conecte con la manera 
en que las personas enfrentan la incertidumbre.

d) La probabilidad como forma de interpretar la realidad
El aprendiza je formal de la probabilidad tiene efectos más 

amplios que el dominio de técnicas matemáticas. Permite com-
prender fenómenos complejos del entorno: desde la epidemio-
logía hasta la economía, desde las tendencias sociales hasta el 
análisis de datos científicos. McGrayne (2014) recuerda que los 
modelos probabilísticos han transformado la manera en que 
las sociedades toman decisiones, evalúan riesgos y predicen 
comportamientos.

En el aula, la probabilidad se convierte así en una herramienta 
para pensar críticamente la incertidumbre. Cuando los estu-
diantes comprenden que no todos los eventos pueden predecir-
se, pero sí pueden analizarse, y que los datos pueden orientar 
decisiones basadas en evidencia, el azar deja de ser un mis-
terio y se convierte en una ventana para interpretar el mundo 
contemporáneo.

Por ejemplo, en una actividad de aula, el docente plantea que 
una caja contiene fichas de dos colores: rojas y azules, en una 
proporción desconocida para los estudiantes. Con el propósito 
de explorar cómo se comportan los fenómenos aleatorios, cada 
estudiante debe simular 50 extracciones con reemplazo y regis-
trar el resultado de cada una (Figura 2). 

Los resultados muestran que, de las 50 extracciones realizadas, 
el color rojo apareció 33 veces y el azul 17 veces. Esto significa 
que, en la muestra obtenida, aproximadamente el 66 % de las 
fichas fueron rojas y el 34 % azules. Si la probabilidad de obtener 
rojo y azul fuera la misma (0,5 cada una), esperaríamos frecuen-
cias más equilibradas, cercanas a 25 y 25. 
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Sin embargo, la prueba binomial arroja un valor p = 0,033, 
lo que indica que es poco probable obtener una diferencia tan 
marcada únicamente por azar si la probabilidad real fuera 0,5.

En términos sencillos, los datos sugieren que el color rojo tie-
ne una probabilidad mayor que el azul en este experimento, es 
decir, en la ca ja hay, efectivamente, más fichas rojas que azules 
y eso se refleja en la simulación. Desde la perspectiva del aula, 
este resultado permite a los estudiantes ver que, aunque cada 
extracción individual es impredecible, al reunir muchos datos 
aparecen patrones que ayudan a entender mejor el comporta-
miento del azar y a tomar decisiones basadas en evidencias y 
no solo en intuiciones.

Figura 2.
Resultados de la simulación de 50 extracciones aplicada a la variable 
“Color” 

 

Nota. La figura muestra la distribución observada de 50 extracciones con 
reemplazo entre los colores rojo y azul en jamovi.

Experimentos aleatorios, sucesos y espacio muestral
Introducir la probabilidad en el aula implica conducir a los es-
tudiantes hacia la comprensión de que el azar no es una fuerza 
misteriosa ni un capricho de la naturaleza, sino un fenóme-
no que puede describirse, analizarse y modelarse. En la vida 
cotidiana todos hemos experimentado situaciones donde los 
resultados no pueden predecirse con certeza: un balón que 
rebota de forma irregular, una rifa escolar, la aparición o no de 
un medicamento en una farmacia, el éxito de una semilla plan-
tada por estudiantes en una actividad de Ciencias Naturales. 
Estas experiencias espontáneas son, en esencia, experimentos 
aleatorios, y constituyen un entorno pedagógico privilegiado 
para iniciar la reflexión probabilística.
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El experimento aleatorio como experiencia fundante de la 
incertidumbre
Cuando introducimos la probabilidad en el aula, no partimos de 
fórmulas ni de definiciones formales, sino de una experiencia muy 
humana: la sensación de no saber qué va a pasar. Lanzar una 
moneda, mezclar fichas en una bolsa, esperar el resultado de un 
sorteo, sembrar semillas en un experimento escolar o registrar 
la lectura de un sensor en condiciones ligeramente cambiantes 
son ejemplos cercanos de situaciones donde el resultado es in-
cierto, aunque el procedimiento sea claro. A estas situaciones las 
llamamos experimentos aleatorios.

En términos sencillos, un experimento aleatorio es una acción 
que se realiza bajo ciertas reglas y que puede repetirse muchas 
veces, pero cuyo resultado individual no puede predecirse con 
certeza. La didáctica de la probabilidad se apoya precisamente 
en ese contraste: los estudiantes se sorprenden ante secuencias 
que les parecen “raras” y, a partir de esa sorpresa, se abre es-
pacio para discutir qué significa realmente hablar de azar y de 
probabilidad. 

Un aspecto clave es que los experimentos aleatorios permiten 
trabajar no solo con contenidos matemáticos, sino también con 
habilidades transversales. Aizikovitsh-Udi y Amit (2011) mostraron 
que una unidad didáctica centrada en la probabilidad en la vida 
cotidiana, con discusión colectiva y actividades de investigación, 
favorece el desarrollo del pensamiento crítico y creativo en el 
alumnado. Esto refuerza la idea de que no se trata únicamente de 
“calcular probabilidades”, sino de aprender a formular conjeturas, 
justificar decisiones y revisar creencias a partir de evidencias.

En una actividad de ciencias, puede interesarnos el suceso 
“la planta germina antes del día siete”; en un contexto digital, 
“la plataforma registra más de diez accesos en una hora”. Los 
sucesos no están “dados” de antemano en la realidad, sino que 
son selecciones analíticas que dependen de las preguntas que 
formulamos. Esta idea aparece con fuerza en los trabajos recopi-
lados por Batanero, Chernoff, Engel, Lee y Sánchez (2016), donde 
se muestra cómo las decisiones sobre qué eventos se estudian 
condicionan el tipo de razonamiento probabilístico que surge 
en el aula. 

Desde una perspectiva didáctica, es fundamental que los es-
tudiantes aprendan a describir y representar los sucesos de dis-
tintas maneras. El uso de diagramas de Venn (Figura 3), tablas, 
esquemas verbales, materiales manipulativos o simulaciones 
en computadora permite visualizar relaciones como la unión, la 
intersección y la complementariedad. 
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Figura 3.
Representación de sucesos mutuamente excluyentes en un experimen-
to aleatorio
 

Nota. La gráfica muestra dos conjuntos que representan los sucesos “sacar 
un caramelo de fresa” y “sacar un caramelo de limón”.

La gráfica ayuda a que el razonamiento probabilístico que 
ocurre en el aula tome forma concreta. Cuando el estudiante 
ve los dos círculos separados y los puntos dentro de cada uno, 
entiende sin necesidad de fórmulas que ciertos sucesos no 
pueden darse al mismo tiempo y que todo se decide por los 
resultados posibles que allí aparecen. Esa representación sen-
cilla les permite reconocer ideas como la unión, la intersección 
o la ausencia de ella, y mirar la probabilidad como una rela-
ción entre sucesos y no solo como un número que aparece por 
cálculo. En otras palabras, el diagrama actúa como un apoyo 
visual que organiza el pensamiento del alumnado y les permite 
discutir, comparar y justificar con mayor claridad por qué un 
suceso es compatible con otro o por qué no lo es.

En la obra colectiva Teaching and Learning Stochastics: 
Advances in Probability Education Research, se muestran múl-
tiples experiencias en las que estas representaciones ayudan 
a superar malentendidos frecuentes, por ejemplo, cuando el 
alumnado confunde sucesos mutuamente excluyentes con 
sucesos independientes, o interpreta la probabilidad solo 
como “frecuencia aproximada” sin considerar la estructura 
del experimento. 

Todo ello nos lleva a una conclusión importante: los expe-
rimentos aleatorios y los sucesos son, al mismo tiempo, he-
rramientas matemáticas y dispositivos didácticos. Al diseñar 
actividades, el profesorado tiene la oportunidad de elegir qué 
experiencias de azar ofrecer, qué sucesos proponer al aná-
lisis y qué preguntas formular para que los estudiantes no 
se queden solo con la anécdota (“salió cara muchas veces”),                  
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sino que avancen hacia una reflexión más estructurada (“¿es 
razonable este resultado?, ¿qué esperábamos?, ¿cómo pode-
mos comprobarlo?”).

El espacio muestral: mapear lo posible para comprender lo 
probable
Si el experimento aleatorio es el escenario y los sucesos son los 
focos que elegimos encender, el espacio muestral es el mapa 
completo de lo posible. Lo definimos como el conjunto de todos 
los resultados que pueden darse en un experimento, sin omitir 
ninguno y sin repetirlos. Aunque la definición parece sencilla, su 
construcción suele ser un punto crítico para el aprendizaje.

Las investigaciones recogidas en Research on Teaching and 
Learning Probability muestran que muchos estudiantes tienen 
dificultades para enumerar correctamente el espacio muestral, 
sobre todo en experimentos compuestos.  No es raro que, al tra-
bajar con el lanzamiento de dos dados, consideren que (2, 5) y (5, 
2) son el mismo resultado, o que en un problema de selección de 
equipos no distingan entre “orden” y “combinación”. Estas dificul-
tades no son simples errores de cálculo: revelan problemas más 
profundos en la comprensión de la estructura del experimento.

Por esa razón, Batanero y Borovcnik (2016) recomiendan traba-
jar el espacio muestral mediante representaciones sistemáticas: 
listas ordenadas, diagramas en árbol, tablas de doble entrada, 
cuadros combinatorios, entre otros. Estas herramientas ayudan 
a que el alumnado vea la organización interna del conjunto de 
resultados y descubra, por ejemplo,

por qué la suma 7 en dos dados tiene más formas de obtener-
se que la suma 2 o la suma 12. A partir de ahí, se abre el camino 
para discutir si todos esos resultados son igualmente probables 
o no, y qué consecuencias tiene esto para el cálculo posterior.

Ahora bien, el espacio muestral no siempre es uniforme ni 
discreto. En muchos fenómenos reales  el conjunto de resulta-
dos posibles es muy amplio o incluso infinito. En estos casos, 
no se trata de enumerar uno por uno todos los elementos, sino 
de describir el espacio muestral con modelos más globales 
(intervalos, distribuciones, funciones). 

La gráfica (Figura 4) ilustra cómo, en muchos fenómenos 
reales, el espacio muestral no puede describirse como una lis-
ta finita de resultados, sino solo mediante modelos continuos. 
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Figura 4.
Representación del espacio muestral continuo 

 
Nota. La figura ilustra cómo, en un fenómeno continuo, el espacio muestral 
no se describe enumerando resultados individuales, sino a través de modelos 
globales.

El intervalo horizontal representa todos los valores posibles del 
tiempo de espera entre 0 y 10 minutos: no es una colección de 
puntos aislados, sino una infinitud de posibilidades en un rango 
continuo. Sobre ese mismo eje, la barra uniforme muestra un 
modelo simplificado donde todos los tiempos serían igualmente 
probables, mientras que la curva exponencial evidencia un com-
portamiento más cercano a situaciones reales, donde los valores 
pequeños son más frecuentes y la probabilidad decae a medida 
que aumenta el tiempo. Esta superposición permite visualizar 
que, en contextos de mediciones continuas o datos generados 
por sensores, no tiene sentido enumerar caso por caso, sino que 
se requiere una función o distribución que describa cómo se 
reparte la probabilidad

Los trabajos recientes de Chernoff y Sriraman (2020) insisten 
en la necesidad de que, incluso en niveles iniciales, el profesorado 
ayude a los estudiantes a distinguir entre la idea de “lista finita 
de resultados” y la de “rango de valores posibles”, preparando 
el terreno para una comprensión futura de las distribuciones de 
probabilidad. 

La literatura también muestra que la construcción del espacio 
muestral está estrechamente vinculada con el desarrollo de la 
alfabetización probabilística del profesorado y del estudiante. 
En el volumen editado por Batanero y Chernoff (2016), diversos 
capítulos analizan cómo las creencias docentes, su formación 
previa y su familiaridad con las representaciones del azar influ-
yen directamente en las tareas que proponen y en la manera de 
orientar la discusión en clase. Cuando el profesorado concibe el 



68

Pensar el azar: fundamentos didácticos y conceptuales de la probabilidad

espacio muestral solo como un requisito técnico para “apli-
car la fórmula”, tiende a reducir las actividades a ejercicios 
mecánicos de listado. En cambio, cuando lo entiende como un 
modelo que organiza lo posible y que da sentido a la noción 
de probabilidad, diseña experiencias donde los estudiantes 
participan activamente en su construcción, contrastan sus 
propias enumeraciones y discuten distintas maneras de re-
presentar lo mismo.

En términos didácticos, esto implica traba jar de manera 
articulada las tres nociones: experimento aleatorio, sucesos y 
espacio muestral. El estudiante debe acostumbrarse a seguir 
una especie de “ruta de modelización”:

•	 Describir claramente el experimento: qué se hace, cómo 
se repite, qué condiciones se mantienen.

•	 Identificar todos los resultados posibles y construir el 
espacio muestral de forma organizada.

•	 Seleccionar los sucesos que interesan y representarlos 
como subconjuntos del espacio muestral.

•	 Analizar, a partir de este marco, si tiene sentido hablar 
de probabilidades iguales, diferentes, aproximadas o 
empíricas.

Cuando esta ruta se vuelve habitual, el cálculo de probabili-
dades deja de ser un procedimiento aislado y se convierte en la 
consecuencia natural de una forma de pensar. Como sintetiza 
Batanero et al. (2016) al hablar del “sentido estadístico”, el 
objetivo no es solo que el alumnado responda correctamente 
a un ejercicio, sino que pueda explicar por qué una probabili-
dad es razonable en función del contexto, del experimento y 
de los posibles resultados. 

Reglas básicas de la probabilidad y su interpretación
Las reglas básicas de la probabilidad constituyen el núcleo 
conceptual desde el cual se articulan modelos, simulaciones 
y razonamientos sobre fenómenos inciertos. En la práctica 
educativa, su enseñanza requiere superar la visión algorítmica 
centrada en fórmulas, y avanzar hacia un enfoque interpre-
tativo que ayude a comprender por qué estas reglas tienen 
sentido y cómo se vinculan con procesos reales. Esto impli-
ca transitar de intuiciones primarias a representaciones más 
formales, reconociendo que la probabilidad, lejos de ser un 
mero cálculo, es un lengua je para describir la incertidumbre 
(Kahneman, 2011).
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Reglas esenciales del razonamiento probabilístico: unión, inter-
sección y complemento de sucesos

La regla de la adición permite calcular la probabilidad de 
que ocurra al menos uno de dos sucesos. El principio central 
es evitar la doble contabilidad de resultados compartidos:

 Esta expresión no solo es una 
relación algebraica, sino una representación del modo en que se 
distribuyen los resultados dentro de un espacio muestral. Cuando 
los sucesos son mutuamente excluyentes, la fórmula se simplifica, 
ya que no existe intersección:

Por ejemplo, si en una biblioteca hay 40 libros de probabili-
dad, 30 de estadística y 10 que pertenecen a ambas áreas, la 
probabilidad de que un libro seleccionado al azar pertenezca a 
al menos una de esas categorías es: 

Este tipo de situaciones favorece el razonamiento visual me-
diante diagramas de Venn, los cuales, según Duval (2017), per-
miten coordinar el registro gráfico con el registro simbólico, pro-
moviendo una comprensión más profunda.

La regla de la multiplicación establece cómo calcular la pro-
babilidad de que dos sucesos ocurran simultáneamente. Su for-
mulación depende de la relación entre los sucesos:

•	 , si A y B son independientes.
•	 , en el caso general.
Este es uno de los puntos donde más errores conceptuales se 

observan, especialmente entre estudiantes que asumen que la 
independencia es una condición natural o “intuitiva” (Garfield & 
Ben-Zvi, 2008). Para ilustrarlo, imaginemos dos extracciones su-
cesivas sin reemplazo desde una urna con 5 fichas rojas y 5 azu-
les. La probabilidad de extraer dos fichas rojas consecutivas es: 

 

Aquí el segundo suceso depende del primero, porque el es-
pacio muestral cambia tras la primera extracción. Este razona-
miento es clave para comprender fenómenos dependientes como 
pruebas diagnósticas, procesos de calidad o cadenas de eventos.

La regla del complemento establece que la probabilidad de 
que no ocurra un suceso es:

Aunque simple, esta regla posee un alto valor heurístico. En 
análisis de riesgo, fiabilidad o epidemiología, suele ser más fácil 
determinar la probabilidad del suceso contrario y restarlo de 1. 



70

Pensar el azar: fundamentos didácticos y conceptuales de la probabilidad

Por ejemplo, si la probabilidad de que un examen clínico produzca 
un falso positivo es 0,08, entonces la probabilidad de que no lo 
produzca es: P(no falso positivo)=

Esta regla también permite repensar situaciones acumulativas. 
Por ejemplo: “¿Cuál es la probabilidad de que ninguna de las tres 
máquinas falle durante una jornada?”. Si la probabilidad de que 
cada máquina falle es ba ja e independiente, es más eficiente 
calcular el complemento del suceso “al menos una falla”. 

Dimensiones interpretativas de las reglas: clásico, frecuencial 
y bayesiano
Las reglas básicas de la probabilidad no deberían enseñarse 
como herramientas aisladas ni como un conjunto de recetas que 
el estudiantado memoriza sin comprender. Su sentido profundo 
emerge cuando se interpretan desde diferentes perspectivas 
epistemológicas que, históricamente, han dado forma al con-
cepto de probabilidad. Reconocer estas interpretaciones ayuda 
a evitar una visión reducida del azar y favorece un aprendizaje 
más reflexivo.

En términos generales, la literatura especializada identifica 
tres grandes marcos interpretativos:

1.	 Interpretación clásica: adecuada para espacios equiproba-
bles y finitos, donde los resultados se consideran igualmente 
posibles. Es la visión heredada de Laplace, para quien la 
probabilidad consistía en el cociente entre casos favora-
bles y casos posibles (Hacking, 2006). Ejemplo: al lanzar 
un dado perfecto, la probabilidad de obtener un número 
par se determina dividiendo los tres resultados favorables 
(2, 4, 6) entre los seis posibles.

2.	 Interpretación frecuencial: enfatiza la probabilidad como 
límite de las frecuencias relativas de un suceso cuando 
un experimento se repite un gran número de veces. Esta 
interpretación, asociada a von Mises (1981), fundamenta 
la probabilidad en la estabilidad estadística que emerge 
a largo plazo. Ejemplo: si se repite el lanzamiento de una 
moneda diez mil veces y se observa que “cara” aparece 
aproximadamente la mitad de las veces, se considera que 
la probabilidad converge hacia 0.5.

3.	 Interpretación subjetiva o bayesiana: concibe la probabi-
lidad como un grado razonable de creencia basado en la 
información disponible. Esta visión, impulsada desarrolla-
da actualmente en estadística bayesiana, sostiene que la 
probabilidad refleja el nivel de confianza que un individuo 
asigna a la ocurrencia de un evento dado cierto conocimien-
to previo (Gelman et al., 2021). Ejemplo: un médico puede 
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asignar una probabilidad preliminar del 20 por ciento a 
que un paciente tenga una enfermedad, basándose en su 
experiencia previa y en la prevalencia poblacional, antes 
incluso de solicitar pruebas diagnósticas.

Las simulaciones, especialmente con herramientas digitales 
como GeoGebra, R o Jamovi, se han convertido en un recurso 
esencial para articular estas tres interpretaciones. Al repetir un 
proceso miles de veces, el estudiantado observa de primera 
mano cómo la frecuencia relativa se aproxima a la probabilidad 
teórica, fenómeno que ya von Mises (1981) identificaba como 
fundamento de la estabilidad del azar. Esta aproximación visual, 
dinámica y experimental permite que la probabilidad deje de ser 
un concepto meramente abstracto y se convierta en un patrón 
observable.

Por ejemplo, al simular diez mil lanzamientos de una mo-
neda en Jamovi, se obtiene una gráfica donde la proporción 
de caras oscila fuertemente al inicio, pero se estabiliza alre-
dedor de 0.5 conforme aumentan las repeticiones. Esto per-
mite una conversación didáctica rica: ¿por qué se observan 
fluctuaciones al principio?, ¿qué significa la “estabilidad” 
del azar?, ¿qué relación tiene este comportamiento con la 
interpretación frecuencial?

Del mismo modo, en GeoGebra se puede construir un applet 
que represente el lanzamiento de un dado con un botón que eje-
cuta simulaciones incrementales: 10, 50, 100, 500, 1000 intentos. 
A medida que el número de repeticiones aumenta, la frecuencia 
relativa de cada cara se va alineando con la distribución equi-
probable esperada de la interpretación clásica. Esta actividad 
brinda al estudiantado la oportunidad de confrontar sus propias 
intuiciones y reconocer que el azar no es caos absoluto, sino 
variabilidad organizada.

Para Batanero, Contreras y Díaz (2016), estas experiencias 
constituyen un medio poderoso para desarrollar el razonamien-
to probabilístico: permiten comparar la intuición inicial con la 
evidencia empírica, discutir fenómenos como la ley de los gran-
des números o los sesgos cognitivos y construir gradualmente 
una comprensión estructurada del azar. Las simulaciones actúan 
como “escenarios de exploración controlada”, donde el docente 
guía y provoca preguntas significativas.

Técnicas de conteo: permutaciones, variaciones y combinaciones
Comprender la probabilidad en el marco de la interpretación 
clásica exige disponer de un conjunto de herramientas que per-
mitan determinar el número de resultados posibles asociados a 
un experimento aleatorio. Estas herramientas, conocidas como 
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técnicas de conteo o métodos combinatorios, constituyen un 
puente entre la estructura del espacio muestral y las reglas bá-
sicas de la probabilidad. 

La combinatoria no surge como una colección aislada de pro-
cedimientos, sino como una forma rigurosa de responder pre-
guntas del tipo “¿cuántos arreglos posibles existen?”, “¿cuántas 
formas hay de seleccionar elementos?”, o “¿de cuántas maneras 
puede organizarse una situación?”. Estas preguntas aparecen en 
innumerables contextos: distribución de turnos, asignación de 
puestos, códigos de seguridad, rutas posibles, juegos de azar, 
muestreos, entre otros. Desde una mirada didáctica, este carácter 
transversal permite emplear problemas contextualizados que 
ayuden a los estudiantes a visualizar la estructura del conteo 
antes de recurrir a expresiones formales (Lockwood, 2013).

En este subepígrafe se profundiza en los fundamentos de las téc-
nicas de conteo mediante cuatro bloques: (a) el principio aditivo y el 
principio multiplicativo; (b) el concepto de factorial como mecanismo 
de ordenación; (c) permutaciones y variaciones; y (d) combinaciones. 
Se incorporan ejemplos, interpretaciones y dificultades didácticas, así 
como una articulación explícita con el cálculo probabilístico.

Principios básicos: aditivo y multiplicativo
Los dos principios fundamentales de la combinatoria son sor-

prendentemente simples, pero se encuentran en el origen de 
todos los métodos posteriores.

pero se encuentran en el origen de todos los métodos 
posteriores.

a) Principio aditivo
Si un suceso puede ocurrir de mmm maneras y otro suceso 

diferente puede ocurrir de nnn maneras, y ambos sucesos no 
pueden darse simultáneamente, entonces el número total de 
maneras en que puede ocurrir uno u otro es: m+n. Este principio 
refleja situaciones de alternativa excluyente.  Por ejemplo, si un 
estudiante puede elegir entre 5 proyectos de matemáticas y 3 de 
ciencias, y no puede combinar áreas, tiene 8 opciones posibles. 
Desde la didáctica, este principio suele confundirse con situa-
ciones multiplicativas, de modo que trabajar listas exhaustivas 
o diagramas de árbol iniciales ayuda a fortalecer la distinción 
(Brousseau, 1997).

b) Principio multiplicativo
Si un procedimiento se compone de dos etapas independientes, 

donde la primera puede realizarse de m maneras y la segunda de n 
maneras, entonces el número total de procedimientos posibles es: 
m×n.m. Este principio modela situaciones de elección sucesiva. Por 
ejemplo, si un candado tiene 4 posiciones posibles en la primera 
rueda y 6 en la segunda, entonces hay 4×6=244  códigos posibles.
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Ambos principios constituyen la base para construir espacios 
muestrales complejos sin necesidad de enumeración. Al enseñar-
les, es útil alternar diagramas de árbol, tablas y representaciones 
gráficas, pues facilitan la transición desde lo intuitivo hacia la 
formalización (Duval, 2017).

La factorial: fundamento del ordenamiento
El símbolo factorial, ¡denotado como n!, expresa el nú-

mero de maneras de ordenar , elementos distintos:
 .Su importancia es crucial: apa-

rece en permutaciones, variaciones, combinaciones, coeficientes 
binomiales e incluso en modelos probabilísticos como la distri-
bución binomial y la distribución hipergeométrica.

Desde una perspectiva didáctica, se observa que los estu-
diantes suelen entender intuitivamente que “ordenar elementos” 
genera muchas opciones, pero no siempre conectan esta idea 
con la factorial. Proponer tareas que incluyan organizar personas 
en una fila, ordenar libros o generar claves ayuda a establecer 
un puente entre la intuición y la expresión formal.

Ejemplo: ¿Cuántas maneras hay de ordenar 5 libros distintos 
en un estante?

.
Permutaciones y variaciones: ordenaciones con y sin restricción
a) Permutaciones sin repetición
Una permutación consiste en ordenar todos los elementos 

disponibles. Si hay n elementos distintos, el número de permu-
taciones es:  

Ejemplo: Ordenar 7 banderas diferentes en una ceremonia: 

b) Permutaciones con repetición
Si algunos elementos se repiten, la fórmula incorpora divisio-

nes factoriales: 

Ejemplo: La palabra “MATEMÁTICA” tiene 10 letras, con repeti-
ciones de A (3), M (2) y T (2):  

Este tipo de tareas suele ser cognitivamente más complejas, 
pues exige reconocer la causa de la sobrecontabilidad. Se reco-
mienda trabajarlas desde manipulaciones de cartas o bloques 
antes de introducir la fórmula.

Variaciones (con y sin repetición)
Las variaciones modelan situaciones donde se seleccionan 

algunos elementos y el orden importa. 
Variaciones sin repetición: 
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Ejemplo: Seleccionar y ordenar 3 estudiantes de un grupo de 

Variaciones con repetición: 
Ejemplo: Generar códigos de 4 dígitos usando los números
0–9: 
Las variaciones son particularmente valiosas para modelar claves, 

rutas, asignaciones y sistemas de muestreo. En la práctica docente, 
su mayor dificultad radica en distinguir cuándo el orden importa y 
cuándo no; tareas comparativas ayudan a clarificar esta idea.

Combinaciones: selección sin orden
Las combinaciones se utilizan cuando se seleccionan elemen-

tos sin importar el orden. La fórmula general es: 

Ejemplo: ¿De cuántas maneras puede formarse un comité de 
4 personas entre 12 candidatos? C(12,4)=495.

Desde la enseñanza, es frecuente que los estudiantes confun-
dan variaciones y combinaciones, lo que exige diseñar secuen-
cias de actividades que exploren explícitamente el rol del orden 
mediante representaciones alternativas (diagramas, árboles, 
listados parciales, simulaciones digitales).

Dificultades didácticas y orientaciones pedagógicas
La investigación en didáctica de la probabilidad y la combinatoria 

(Jones et al., 2007) ha identificado las siguientes dificultades habituales:
1.	 Confusión entre orden y no orden:

Los estudiantes tienden a asumir que ordenar y seleccionar 
son equivalentes. Estrategia: actividades comparativas con 
objetos manipulables.

2.	 Uso mecánico de fórmulas:
Aplican expresiones sin comprender la estructura combi-
natoria subyacente.
Estrategia: construir primero el conteo mediante diagramas, 
tablas y listados parciales.

3.	Sobrecarga cognitiva:
La combinatoria implica coordinar varios niveles de 
abstracción.
Estrategia: integrar tecnología (GeoGebra, Python, Jamovi) 
para visualizar procesos.

4.	Dificultad para identificar el tamaño del espacio muestral:
Estrategia: trabajar casos pequeños y aumentar progresi-
vamente la complejidad.
De manera general las técnicas de conteo constituyen un 
componente esencial para comprender y aplicar la proba-
bilidad desde la interpretación clásica. Su enseñanza debe 



75

Saquinaula Brito José Luis

equilibrar la formalización matemática con estrategias di-
dácticas que permitan a los estudiantes construir signifi-
cado, visualizar estructuras de selección y ordenamiento, y 
conectar estos procedimientos con el cálculo probabilístico. 
Con apoyo de herramientas digitales, representaciones múl-
tiples y problemas contextualizados, es posible transformar 
la combinatoria en un campo accesible, potente y formativo 
dentro del estudio del azar.

Estrategias didácticas y mediaciones tecnológicas para el 
desarrollo del razonamiento probabilístico
El desarrollo del razonamiento probabilístico constituye uno de 
los desafíos más relevantes en la educación matemática contem-
poránea. No se trata únicamente de enseñar a calcular proba-
bilidades, sino de favorecer que el estudiantado comprenda el 
carácter incierto de numerosos fenómenos y pueda interpretar, 
modelar y argumentar sobre situaciones donde la variabilidad y 
el azar juegan un papel esencial. Investigaciones recientes han 
mostrado que las intuiciones iniciales sobre el azar suelen ser 
frágiles, guiadas por ideas espontáneas, heurísticos o sesgos 
cognitivos que dificultan una comprensión formal (Kahneman, 
2011). Por esta razón, es indispensable construir ambientes di-
dácticos que permitan vincular la experiencia intuitiva del azar 
con su conceptualización matemática, articulando estrategias de 
enseñanza con herramientas tecnológicas que apoyen la visua-
lización, la experimentación y la simulación digital.

La didáctica de la probabilidad reconoce al menos tres ejes 
fundamentales para formar un pensamiento probabilístico ro-
busto: (a) la exploración de fenómenos aleatorios mediante ex-
perimentos reales o virtuales; (b) la explicitación y el cuestiona-
miento de intuiciones erróneas; y (c) la construcción progresiva 
de modelos simbólicos y gráficos que permitan interpretar la 
incertidumbre (Jones et al., 2007). Integrar estos ejes exige di-
señar secuencias didácticas donde la manipulación, el análisis 
exploratorio y la representación visual sean tan importantes como 
el cálculo formal. Es aquí donde la tecnología adquiere un rol 
protagónico: las simulaciones digitales permiten repetir procesos 
aleatorios miles de veces en pocos segundos, observar patrones 
emergentes, contrastar hipótesis intuitivas con evidencia empí-
rica y comprender la estabilidad estadística.

Estrategias didácticas centradas en la exploración, la indaga-
ción y el diálogo

Una estrategia central para el desarrollo del razonamiento 
probabilístico es promover situaciones de exploración guiada, 
donde el estudiantado pueda manipular objetos, experimentar
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con fenómenos aleatorios sencillos y formular conjeturas. 
Actividades como lanzar monedas, seleccionar fichas de una 
urna, explorar juegos de azar o analizar situaciones de incer-
tidumbre cotidiana permiten generar preguntas, comparar 
resultados y construir gradualmente ideas clave, como la no-
ción de espacio muestral, frecuencia relativa, independencia 
y variabilidad.

El valor pedagógico de estas experiencias no reside solo 
en la manipulación física, sino en la forma en que se articulan 
con la discusión socio matemática: ¿por qué los resultados 
no siguen un patrón fijo?, ¿por qué a veces parecen acer-
carse a un valor estable?, ¿cómo distinguir lo aleatorio de lo 
determinista? 

Otra estrategia clave es el uso de representaciones múlti-
ples, tal como sugiere Duval (2017). Tablas, diagramas de árbol, 
gráficos de barras, simulaciones y listas permiten reorganizar 
la información de distintas maneras, facilitando la comprensión 
de relaciones que no siempre son visibles en una sola repre-
sentación. Aquí es importante no “imponer” la fórmula desde 
el inicio; más bien, se busca que los estudiantes construyan 
primero la estructura combinatoria o probabilística del pro-
blema y solo después formalicen el procedimiento.

La modelación didáctica también constituye un recurso 
poderoso: crear situaciones donde el estudiantado deba cons-
truir un modelo probabilístico, validarlo con datos simulados 
o reales, y argumentar su pertinencia, refuerza la conexión 
entre teoría y práctica. En este tipo de tareas, los estudiantes 
deben justificar por qué su espacio muestral es adecuado, qué 
suposiciones realizan (por ejemplo, equiprobabilidad), y cómo 
sus predicciones se contrastan con los resultados observados.

Tecnología y visualización: simulaciones del azar, experi-
mentación digital y análisis dinámico

Las tecnologías digitales ofrecen un entorno privilegiado 
para explorar el azar. Herramientas como GeoGebra, Python, 
Desmos, Jamovi o plataformas de simulación permiten ejecu-
tar cientos o miles de repeticiones de un experimento aleato-
rio, mostrar la evolución de la frecuencia relativa, comparar 
resultados, identificar convergencias y visualizar oscilaciones. 
Este enfoque no solo acelera procesos que serían muy lentos 
de ejecutar manualmente, sino que también promueve una 
comprensión profunda de la interpretación frecuencial de la 
probabilidad y del carácter estable de las leyes estadísticas 
(von Mises, 1981; Batanero, Contreras & Díaz, 2016).
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Estas herramientas también facilitan el traba jo con repre-
sentaciones dinámicas. Por ejemplo, un gráfico interactivo que 
actualiza la frecuencia relativa en tiempo real mientras se eje-
cuta una simulación permite observar las oscilaciones iniciales, 
la progresiva reducción de la variabilidad y la emergencia de 
un valor estable. 

Integración didáctica: de la intuición a la formalización me-
diante experiencias tecnológicas

Integrar estrategias didácticas con herramientas tecnológicas 
implica diseñar secuencias donde la exploración inicial del azar 
dé paso a la modelación simbólica y al análisis formal. Una po-
sible estructura didáctica podría incluir:

1.	 Experiencia intuitiva
El estudiantado observa o manipula un fenómeno aleatorio 

(por ejemplo, extraer fichas de una urna).
2.	 Discusión de predicciones e hipótesis
Se expresan expectativas informales: “creo que debería salir 

más o menos la mitad”, “creo que a veces se equilibrará”.
3.	Simulación digital
Se ejecutan muchas repeticiones para contrastar intuiciones 

con resultados empíricos.
4.	Construcción de representaciones
Se analizan gráficos de frecuencias, histogramas o diagramas 

dinámicos.
5.	 Formalización matemática
Se introducen expresiones como probabilidad teórica, espacio 

muestral, independencia o combinaciones, ya conectadas con la 
experiencia.

6.	Reflexión metacognitiva
Se discute cómo la simulación ayuda a comprender la proba-

bilidad y qué sesgos se han superado.

Conclusiones

Este capítulo ha mostrado que entender la probabilidad va mucho 
más allá de aprender fórmulas. Supone reconocer que, cuando 
hablamos de azar, nuestras primeras intuiciones suelen estar 
llenas de ideas parciales, patrones que creemos ver donde no 
los hay y expectativas que no siempre se sostienen al mirar los 
datos con calma. Trabajar con experimentos aleatorios sencillos, 
discutir qué esperamos que ocurra y comparar esas expectativas 
con lo que realmente sucede permite que el estudiantado tome 
conciencia de esa distancia entre intuición y realidad, y empiece 
a construir una mirada más crítica sobre la incertidumbre.
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A lo largo del capítulo también se vio que conceptos como ex-
perimento aleatorio, espacio muestral, sucesos, independencia o 
reglas básicas de la probabilidad solo adquieren sentido cuando 
se vinculan con situaciones concretas. No basta con enunciarlos: 
hay que explorarlos mediante ejemplos, representaciones múl-
tiples y conversaciones en el aula que ayuden a responder pre-
guntas del tipo “qué puede pasar”, “qué consideramos posible” 
y “cómo contamos los casos”. De este modo, la probabilidad deja 
de ser un recetario de técnicas y se convierte en un lenguaje para 
describir y analizar fenómenos donde intervenir directamente 
no es posible, pero sí es posible modelar y anticipar.

Finalmente, el capítulo ha subrayado el papel de la tecnología 
como aliada para pensar el azar. Las simulaciones digitales, los 
gráficos dinámicos y la posibilidad de repetir un experimento 
miles de veces en segundos permiten ver cómo las frecuencias 
relativas se estabilizan, cómo emergen regularidades y cómo se 
ponen a prueba los modelos teóricos. Integrar estas herramientas 
en la enseñanza no solo facilita los cálculos, sino que ayuda a 
que las y los estudiantes construyan un razonamiento probabilís-
tico más profundo, capaz de sostener decisiones informadas en 
contextos reales donde la incertidumbre está siempre presente.
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Capítulo III

 Variables aleatorias, distribuciones 
y modelación estadística

Introducción

Comprender los fenómenos que observamos en la realidad implica 
reconocer que no todos se comportan de manera fija o predecible. 
Las calificaciones de un curso, el tiempo que tarda en llegar un bus, 
el número de mensajes que recibimos en un día o la cantidad de 
personas que acuden a un servicio son ejemplos cotidianos en los que 
la variación está siempre presente. Este capítulo parte de esa idea: 
para describir y explicar la variabilidad necesitamos herramientas 
que permitan capturarla, representarla y analizarla con sentido. Las 
variables aleatorias y las distribuciones estadísticas cumplen justa-
mente ese papel, convirtiéndose en un puente entre los datos que 
observamos y los modelos que elaboramos para comprenderlos.

A lo largo del capítulo, el lector encontrará un recorrido que 
inicia en el concepto de variable aleatoria como una manera de 
formalizar la incertidumbre y organizar los posibles valores que 
puede tomar un fenómeno. Desde allí se avanza hacia las funciones 
de probabilidad y densidad, que permiten describir patrones, iden-
tificar regularidades y anticipar comportamientos. Este enfoque no 
se limita a la técnica: busca mostrar cómo los modelos estadísticos 
ofrecen una forma de narrar la variabilidad y de interpretar tanto 
lo esperado como lo excepcional dentro de un conjunto de datos.
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Finalmente, el capítulo invita a pensar las distribuciones no como 
figuras abstractas, sino como representaciones de historias reales. 
Cada distribución dice algo sobre el fenómeno que la originó: si los 
resultados son simétricos o están sesgados, si los valores extremos 
son comunes o raros, si los eventos ocurren de manera uniforme o 
concentrada. Comprender estas características es fundamental para 
modelar fenómenos reales, analizar patrones y tomar decisiones 
informadas. Con este propósito, el capítulo combina teoría, ejemplos 
contextualizados y reflexiones didácticas que ayudan a dar sentido a 
una de las dimensiones más potentes y formativas de la estadística.

Variable aleatoria: concepto, sentido y ejemplos contextualizados
La variabilidad forma parte de nuestra vida diaria de maneras tan 
sutiles que, con frecuencia, pasa desapercibida. La hora exacta en 
que llega el bus, el número de mensajes que recibimos durante la 
mañana, el tiempo que tarda en calentarse el agua o la cantidad 
de estudiantes que faltan un lunes cualquiera son situaciones 
donde los resultados nunca son totalmente predecibles. Aunque 
solemos convivir con estas fluctuaciones sin pensarlo demasiado, 
representan el punto de partida para comprender uno de los con-
ceptos más poderosos de la probabilidad: la variable aleatoria.

Lejos de ser una idea puramente técnica, la variable aleatoria 
es una forma de dar estructura matemática a la incertidumbre, 
permitiendo analizar fenómenos que no se comportan de manera 
fija. Desde esta perspectiva, comprenderla es comprender que 
el mundo no es estático ni exacto, pero sí presenta patrones y 
regularidades. Esta idea, central en el pensamiento probabilístico, 
fundamenta los modelos que articulan este capítulo.

Con este propósito, el epígrafe se desarrolla en tres momentos:
1.	 Fundamentos conceptuales y cognitivos, donde se recons-

truye el significado profundo del concepto;
2.	 Clasificación y modelación, donde se vincula la variable 

aleatoria con sus representaciones y usos;
3.	Dificultades comunes, donde se identifican obstáculos que 

interfieren en su comprensión.
A lo largo del desarrollo, se incorporan múltiples ejemplos co-

tidianos que demuestran que este concepto vive en el corazón 
de nuestra experiencia diaria.

La variable aleatoria como estructura de la variabilidad: fun-
damentos conceptuales y cognitivos
Comprender una variable aleatoria implica, ante todo, reco-
nocer la naturaleza constante de la variación en el entorno. 
Pensemos, por ejemplo, en la hora exacta en que un estudiante 
se conecta a una clase virtual. Aunque todos saben que la sesión 
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empieza a las 08h00, cada día se observa una ligera variación: 
07h58, 08h01, 08h03… Esa diferencia, pequeña pero persistente, 
muestra que incluso las actividades rutinarias están atravesadas 
por fluctuaciones que no responden al azar caótico, sino a la 
combinación de múltiples factores: tráfico, conexión a internet, 
temperatura del dispositivo, horarios familiares.

Batanero (2001) afirma que el principal desafío es desmontar 
la expectativa determinista que la escuela ha cultivado durante 
años: la idea de que repetir un procedimiento debería producir 
siempre el mismo resultado. Sin embargo, la vida diaria de-
muestra lo contrario. Cuando un estudiante realiza cinco veces 
un mismo experimento de caída libre con sensores digitales, 
los tiempos nunca coinciden exactamente. Cuando grabamos 
un audio, la duración de cada fragmento presenta pequeñas 
variaciones.

La variable aleatoria surge para conceder significado mate-
mático a esa variabilidad natural.

Stewart (2013) ilustra que, aunque cada resultado individual 
sea incierto, la colección de muchos resultados revela un com-
portamiento regular. Esto explica por qué fenómenos como el 
tiempo de carga de una página web, la cantidad de pasos que 
da una persona en la mañana o el número de usuarios en una 
cafetería durante una hora tienden a seguir patrones que pueden 
observarse, representarse e incluso modelarse.

Moore (2010) sugiere que, en lugar de comenzar con defini-
ciones formales, es más apropiado partir de actividades donde 
el estudiante experimente la variación. Por ejemplo:

•	 	Temperatura del aula a lo largo del día.
Aunque se mida con el mismo termómetro, los valores fluctúan: 

22.1°C, 22.3°C, 21.8°C…
•	 Tiempo que tarda en hervir agua en distintas cocinas.
Incluso usando la misma olla y la misma cantidad de agua, el 

tiempo cambia ligeramente.
•	 Número de interrupciones durante una clase virtual.
Algunas sesiones tienen una sola interrupción, otras cuatro o 

cinco.
Estos fenómenos no necesitan grandes laboratorios para ser 

observados; se encuentran en cualquiera de nuestras rutinas. 
Identificarlos y analizarlos permite que el estudiante capte de 
forma natural el papel de la variable aleatoria.Bakker (2004) y 
Ben-Zvi (2000) sostienen que este tipo de experiencias facilita 
que el concepto emerja como un modelo interno que organiza la 
variabilidad. Es decir, el estudiante aprende que la variable alea-
toria no representa un número, sino el abanico de posibilidades 
de un fenómeno que nunca se repite idénticamente.
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Borovcnik (2016) agrega que este proceso no es inmediato, 
pues exige reconocer tres niveles de estructuración:

•	 El fenómeno variable (lo que observamos).
•	 Los valores posibles (el espacio de resultados).
•	 El significado numérico asignado a cada resultado (la 

formalización).
La combinación de estos tres niveles da origen a un marco 

conceptual potente que permite comprender la variación como 
un fenómeno ordenado.

Apoyo didáctico: Desde el punto de vista didáctico el docen-
te propone la siguiente situación: si se registra durante varios 
días la hora real de llegada de los estudiantes, teniendo como 
referencia la hora de entrada oficial (08h00). Observa llegadas 
como 07h55, 07h58, 08h02, 08h07, etc. El objetivo es mostrar 
que la puntualidad no es fija, sino una variable aleatoria con-
tinua ligada a muchos factores.

El fenómeno que nos interesa analizar es el “grado de pun-
tualidad”, que puede definirse a partir de dos formas de me-
dición: la hora exacta de llegada o, de manera más operativa 
para el traba jo estadístico, los minutos de adelanto o retraso 
con respecto a las 08h00. Esta segunda opción resulta espe-
cialmente útil en herramientas como Jamovi, ya que permite 
expresar la puntualidad como una variable aleatoria continua, 
capaz de asumir múltiples valores dentro de un intervalo ra-
zonable, por ejemplo, desde −10 hasta +15 minutos. Desde la 
perspectiva didáctica, trabajar con este tipo de variable ofrece 
oportunidades claras para el aprendiza je: por un lado, ayuda 
al estudiante a reconocer la variabilidad como una caracte-
rística natural de los fenómenos reales, y por otro, permite 
hacer visible la importancia del comportamiento global de 
los datos, mostrando que lo fundamental no es un día aislado 
sino el modo en que el conjunto se comporta en su totalidad.

Para efectos didácticos, puedes traba jar con un conjunto 
pequeño (Tabla 1), por ejemplo, 20 observaciones de “minu-
tos respecto de las 08h00” (valores negativos = llegan antes; 
positivos = llegan después). 

Como se observa en la Figura 1, la puntualidad del grupo se 
organiza en torno a una ligera tardanza promedio. La media 
es de 0,78 minutos y la mediana de 1 minuto, lo que indica que, 
en general, los estudiantes llegan apenas después de la hora 
oficial. La desviación típica de 3,07 minutos muestra una va-
riabilidad moderada, con llegadas que oscilan entre 4 minutos 
antes y 5 minutos después de las 08h00.
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Tabla 1.
Registro diario del grado de puntualidad de los estudiantes

Día Estudiante Minutos_08h00

1 A -3

1 B 2

1 C 5

2 A -1

2 B 1

2 C 4

3 A -4

3 B 0

3 C 3

… … …

Nota. La tabla presenta los valores observados de minutos de adelanto o re-
traso respecto de las 08h00 para cada estudiante en tres días consecutivos.

Figura 1.
Estadísticos descriptivos del grado de puntualidad respecto de las 
08h00
 

Nota. La figura presenta los estadísticos descriptivos correspondientes a los 
minutos de adelanto o retraso respecto de las 08h00, registrados en una 
muestra de nueve observaciones sin valores perdidos.

El gráfico de cajas (Figura 2) muestra con claridad las diferen-
cias en el grado de puntualidad de los tres estudiantes, expresado 
en minutos de adelanto o retraso respecto de las 08h00.
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Figura 2.
Distribución del grado de puntualidad de los estudiantes respecto de 
las 08h00

 

Nota. La figura representa el grado de puntualidad de tres estudiantes, ex-
presado en minutos de adelanto o retraso con relación a las 08h00.

El estudiante A presenta valores negativos agrupados alrede-
dor de −3 minutos, lo que indica que llega sistemáticamente antes 
de la hora acordada. El estudiante B muestra un patrón más cer-
cano a la puntualidad, con una mediana ligeramente superior a 1 
minuto y una variabilidad moderada. Por su parte, el estudiante 
C se caracteriza por retrasos consistentes entre 3 y 5 minutos, 
evidenciando un comportamiento más tardío de forma estable. 
La dispersión dentro de cada caja es baja, lo que sugiere que las 
conductas individuales se mantienen relativamente constantes.

Representar, clasificar y modelar la variabilidad: tipos de varia-
bles, ejemplos y proyecciones didácticas (versión ampliada con 
ejemplos)
Una vez que el estudiante reconoce que la variabilidad es natural 
y que los resultados no son fijos, surge la necesidad de represen-
tarla y clasificarla. Aquí es donde la variable aleatoria adopta 
sus formas más conocidas: discreta y continua.

Variables aleatorias discretas
Son aquellas que toman valores contables. Este tipo de varia-

ble aparece continuamente en la vida cotidiana, aunque pocas 
veces lo notemos. Por ejemplo:

•	 Número de llamadas telefónicas recibidas en una mañana.
•	 Cantidad de veces que un ascensor se detiene entre pisos.
•	 Número de estudiantes que entregan una tarea el mismo día.
•	 Cuántas frutas defectuosas aparecen en una caja.
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DeVeaux, Velleman y Bock (2019) explican que estas variables 
son ideales para introducir la relación entre frecuencia y proba-
bilidad, porque permiten observar variación sin perder precisión 
en el conteo.

Variables aleatorias continuas
Modelan fenómenos donde los valores no se cuentan, sino que 

se miden. Por ejemplo:
•	 Tiempo que tarda en descargarse un archivo.
•	 Cantidad de lluvia acumulada en un día.
•	 Nivel de ruido en decibelios en una avenida céntrica.
•	 Frecuencia cardíaca en reposo a lo largo de varios minutos.
Hastie et al. (2009) señalan que estos fenómenos requieren 

funciones de densidad y gráficas que distribuyen probabilidades 
de manera fluida. Por ello, las variables continuas constituyen la 
base de muchos modelos en ingeniería, medicina, meteorología 
y ciencias sociales.

Para reforzar el sentido del concepto de variable aleatoria, 
es útil recurrir a situaciones cotidianas que permitan a los estu-
diantes reconocer cómo la incertidumbre se manifiesta en fenó-
menos reales. Por ejemplo, la temperatura del café de la mañana 
nunca es exactamente igual, lo que la convierte en un caso típico 
de variable continua: puede ser 78.4 °C, 79.1 °C o 78.9 °C, entre 
muchos otros valores posibles. 

Algo distinto ocurre con el número de reproducciones de un 
video en redes sociales, que cambia conforme a la actividad 
de los usuarios y solo puede tomar valores enteros, por lo que 
constituye una variable discreta. También el tiempo que tarda en 
llegar un taxi solicitado por aplicación fluctúa de manera natural, 
aunque la plataforma anuncie “4 minutos”: en la práctica puede 
ser 3.7, 4.2 o 4.9 minutos, evidenciando nuevamente un compor-
tamiento continuo. Por último, contar cuántas personas pasan 
por la entrada de una tienda cada media hora implica trabajar 
con cantidades enteras y, por tanto, con una variable discreta.

Además, comprender cómo una variable aleatoria se vincula 
con su función de probabilidad permite reconocer que los fenó-
menos no solo producen resultados diversos, sino que también 
lo hacen con diferentes grados de frecuencia. Algunos valores 
aparecen de manera más habitual porque responden a regu-
laridades propias del proceso, mientras que otros son menos 
probables, aunque posibles. 

Este reconocimiento, que muchas veces no surge de mane-
ra intuitiva, es fundamental para interpretar adecuadamente 
cualquier distribución y para desarrollar habilidades críticas al 
analizar informes, simulaciones o representaciones gráficas. Tal 
como enfatiza James (2021), la función de probabilidad no es 
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solo una herramienta matemática, sino una forma de narrar por 
qué ciertos resultados tienen mayor peso en el comportamiento 
del sistema.

Desde esta perspectiva, la variabilidad deja de ser un obstá-
culo y pasa a convertirse en una fuente de información valiosa 
para explicar el fenómeno observado. En correspondencia con lo 
planteado por Wild y Pfannkuch (1999), reconocer la estructura 
probabilística de los datos permite que las decisiones dentro del 
ciclo  se sostengan en criterios sólidos, potenciando un razona-
miento estadístico más profundo y fundamentado.

Integrar esta comprensión también fortalece las fases de pla-
nificación y análisis, pues la función de probabilidad ayuda a jus-
tificar por qué se selecciona una determinada variable aleatoria 
y cómo deben interpretarse sus patrones de variación.En este 
sentido Wild y Pfannkuch (1999), plantean que el grupo toma 
decisiones clave:

•	 Problema: ¿qué tan predecible es el tiempo de entrega?
•	 Plan: ¿qué variables registramos?
•	 Datos: número de paradas y tiempo total.
•	 Análisis: comparación, visualización, identificación de 

patrones.
•	 Conclusión: existe variabilidad, pero no caos; hay un inter-

valo probable y factores que explican las desviaciones.
Esta toma de decisiones es reconocida como ciclo PPDAC. Un 

ejemplo que el docente puede concebir puede tener como obje-
tivo en comprender cómo un mismo fenómeno puede involucrar 
variables aleatorias discretas y continuas, analizar su variabilidad 
y vincularlo con las etapas del ciclo PPDAC.

Situación: “Imagina que pides comida o un servicio de mensa-
jería por una aplicación móvil. A veces llega rápido, otras veces 
tarda un poco más, aunque parezca que siempre recorre la misma 
ruta. ¿Por qué ocurre esto? ¿Qué características del recorrido 
podrían explicar la variación?”

El grupo de docentes registró información de 15 pedidos reales 
en diferentes días y horarios (Tabla 2). Se observó:

•	 Número de paradas del repartidor (semáforos, interseccio-
nes, congestión). Variable aleatoria discreta (valores: 3, 5, 
4, 6, 7…).

•	 Tiempo total de entrega (minutos y segundos desde la con-
firmación hasta la recepción). Variable aleatoria continua 
(valores entre 14.3 y 23.8 minutos).
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Tabla 2.
Registro de pedidos y características del trayecto en distintos horarios 
del día

Pedido Paradas Tiempo_min

1 3 14.3

2 5 17.8

3 4 19.1

4 6 21.4

5 7 23.8

6 4 18.2

7 5 17.5

8 6 19.9

9 3 15.0

10 7 22.3

11 5 18.7

12 4 16.9

13 6 20.5

14 5 19.0

15 7 21.8
Nota. Los datos corresponden a 15 pedidos reales registrados en distintos 
días y horarios. La variable Paradas representa un conteo discreto del núme-
ro de detenciones del repartidor durante el trayecto, mientras que Tiempo_
min indica el tiempo total de entrega en minutos, medido como una variable 
continua.

Los estadísticos descriptivos (Figura 3) revelan que el tiem-
po típico de entrega se sitúa alrededor de los 19 minutos, dado 
que la media y la mediana prácticamente coinciden. Esta cer-
canía sugiere que no existen valores extremos que distorsionen 
la distribución.

El histograma del tiempo de entrega (Figura 4) evidencia que 
el proceso no es completamente regular, pero tampoco caótico. 
La mayoría de los pedidos se concentra en un intervalo central 
cercano a los 18–20 minutos, lo que sugiere un “tiempo típico” de 
entrega alrededor de ese rango. Los valores más cortos (cercanos 
a 14–15 minutos) y los más largos (por encima de 22 minutos) 
aparecen con menor frecuencia, lo que indica que representan 
situaciones menos habituales, posiblemente asociadas a condi-
ciones de tráfico poco usuales, cambios en la demanda o parti-
cularidades de la ruta.
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Figura 3.
Estadísticos descriptivos del tiempo total de entrega (en minutos)

 

Nota. La tabla presenta los principales estadísticos descriptivos del tiempo 
total de entrega registrado en 15 pedidos realizados mediante aplicación 
móvil.

La diferencia entre el tiempo mínimo (14.3 minutos) y el máxi-
mo (23.8 minutos) evidencia que, aunque el fenómeno es varia-
ble, las entregas se mantienen dentro de un intervalo relativa-
mente acotado. Estos resultados permiten anticipar patrones que 
luego pueden relacionarse con la función de densidad y con la 
interpretación probabilística del fenómeno.

El histograma del tiempo de entrega (Figura 4) evidencia que 
el proceso no es completamente regular, pero tampoco caótico. 
La mayoría de los pedidos se concentra en un intervalo central 
cercano a los 18–20 minutos, lo que sugiere un “tiempo típico” de 
entrega alrededor de ese rango. Los valores más cortos (cercanos 
a 14–15 minutos) y los más largos (por encima de 22 minutos) 
aparecen con menor frecuencia, lo que indica que representan 
situaciones menos habituales, posiblemente asociadas a condi-
ciones de tráfico poco usuales, cambios en la demanda o parti-
cularidades de la ruta.

En conjunto, la gráfica muestra una distribución unimodal con 
ligera asimetría hacia la derecha, consistente con la idea de que, 
en algunos casos, el pedido puede demorarse más de lo esperado, 
pero es poco común que llegue extremadamente rápido.

Este histograma es muy útil para que los estudiantes descu-
bran que la variabilidad del tiempo de entrega no es un “defecto 
del sistema”, sino una característica natural del fenómeno. A 
partir de la gráfica pueden discutir preguntas como: ¿qué inter-
valo de tiempos consideraríamos razonable para un pedido?, 
¿qué tan raro es obtener un tiempo muy corto o muy largo?, 
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¿qué factores del contexto podrían mover la distribución hacia 
la derecha o hacia la izquierda (hora pico, lluvia, saturación de 
pedidos)? De este modo, el gráfico se convierte en un punto de 
partida para hablar de variable aleatoria continua, de frecuencia 
y de probabilidad de manera cercana a su experiencia cotidiana.

Figura 4.
Histograma del tiempo total de entrega de pedidos por aplicación
 

Nota. El gráfico muestra la distribución del tiempo total de entrega (en minu-
tos) de 15 pedidos realizados mediante una aplicación móvil.

Errores comunes y dificultades conceptuales (versión ampliada 
con ejemplos cotidianos)
A pesar de que la variabilidad forma parte de la vida cotidiana, 
muchos estudiantes tienen dificultades para reconocer su pa-
pel dentro del análisis estadístico. Estas dificultades surgen de 
ideas intuitivas pero equivocadas que es necesario problema-
tizar desde la didáctica. Entre las más comunes se encuentran 
las siguientes:

a)	 Interpretar la variabilidad como un error
Es frecuente que el estudiante piense que, si los datos cambian, 

es porque “algo salió mal”. Sin embargo, la variación aparece 
incluso en situaciones totalmente habituales: el tiempo que tarda 
en hervir el agua cambia, aunque se utilice la misma olla, la dura-
ción efectiva de una canción varía por milésimas al reproducirla 
varias veces y un dispositivo móvil nunca consume exactamente 
la misma batería en dos días similares. Superar esta creencia 
permite comprender que la variabilidad no es una falla, sino un 
rasgo natural del fenómeno que merece ser estudiado.
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b)	 Suponer que todos los resultados son equiprobables
Esta idea suele provenir de ejemplos escolares idealizados, 

como lanzar una moneda o extraer fichas al azar. En la vida real, 
la equiprobabilidad es excepcional: algunas rutas de entrega son 
sistemáticamente más rápidas que otras, ciertas horas concentran 
mayor tráfico vehicular y los usuarios de redes sociales tienden 
a ser más activos en momentos específicos del día. Reconocer 
estas diferencias ayuda a entender que, en la mayoría de los fe-
nómenos, no todos los resultados tienen la misma probabilidad 
de ocurrir.

c)	 Confundir la variable aleatoria con sus valores
Muchos estudiantes se quedan únicamente con el dato 3 lla-

madas, 7 mensajes, 5 minutos, y pierden de vista que la variable 
aleatoria representa el fenómeno completo. Los valores son solo 
manifestaciones puntuales de ese fenómeno, no la variable en 
sí misma. Esta distinción es clave para avanzar hacia una com-
prensión más conceptual.

d)	 Pensar que toda variable aleatoria debe ser discreta
La predominancia de ejercicios escolares centrados en con-

teos refuerza esta idea. No obstante, en la vida diaria abundan 
mediciones continuas: el nivel de glucosa en sangre, la velocidad 
de conexión a internet, la temperatura ambiental o la intensidad 
del sonido. Mostrar estos ejemplos ayuda a ampliar el repertorio 
mental del estudiante y a reconocer la diversidad de variables 
presentes en su entorno.

e)	 Asociar variabilidad con caos absoluto
Como señala Watson (2006), muchos estudiantes interpretan 

la variabilidad como desorden o falta de estructura. En reali-
dad, una variable aleatoria permite identificar patrones globa-
les incluso cuando los valores fluctúan. La variación no implica 
caos, sino una organización que puede describirse, modelarse 
y comprenderse

f)	 Desconectar la variable del fenómeno real
Otro obstáculo frecuente es mencionar una variable sin 

justificar su pertinencia o sin relacionarla con el fenómeno 
que se desea estudiar. Esto ocurre cuando no se reflexiona 
sobre preguntas esenciales: ¿tiene sentido medir el número de 
carros por minuto o la velocidad promedio?, ¿qué representa 
realmente el “tiempo de espera”?, ¿los valores posibles son 
razonables para el fenómeno? 
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Como advierten Biehler (2018) y Pfannkuch (2019), esta des-
conexión empobrece el proceso de modelación y limita la capa-
cidad del estudiante para interpretar adecuadamente los datos.

De manera general la variable aleatoria no es una fórmula ni 
un tecnicismo: es una manera de comprender el mundo tal como 
es, con toda su variación natural. Permite dar sentido a fenóme-
nos cotidianos, formar modelos, comparar comportamientos y 
construir las distribuciones que se estudian en los epígrafes si-
guientes. Su comprensión profunda depende de unir experiencia, 
representación y modelación; de ahí que los ejemplos cotidianos 
sean una herramienta esencial para hacer visible la estructura 
del azar en la vida real.

Función de probabilidad y función de densidad: interpretación 
didáctica
La comprensión de una variable aleatoria alcanza una nueva 
profundidad cuando los estudiantes descubren que los valores 
observados no solo cambian, sino que lo hacen siguiendo patro-
nes que pueden describirse, representarse y modelarse. En este 
punto, la función de probabilidad y la función de densidad se 
convierten en herramientas esenciales para entender cómo se 
distribuye la variación, pues permiten reconocer que algunos re-
sultados aparecen con mayor frecuencia que otros. Como afirma 
Batanero (2001), una enseñanza significativa de estos concep-
tos debe partir de las experiencias de variación vividas por el 
propio estudiante y no únicamente de definiciones formales. En 
este sentido, la función de probabilidad y la función de densidad 
no son objetos matemáticos descontextualizados, sino formas 
organizadas de expresar la estructura del fenómeno aleatorio. 
Ambas funcionan como una especie de mapa conceptual que 
ofrece información sobre dónde se concentra la mayor parte de 
los resultados, cuáles son poco frecuentes y cómo se distribuye 
el comportamiento global del sistema.

La función de probabilidad como narrativa de la variación 
discreta.
Cuando se trabaja con variables discretas, la función de proba-
bilidad asigna a cada valor posible un número que representa 
su probabilidad de ocurrencia. Sin embargo, tal como señala 
Moore (2010), este concepto se comprende mejor si se construye 
a partir de la inspección de frecuencias reales antes que des-
de símbolos matemáticos. Observar, por ejemplo, el número de 
paradas que realiza un repartidor en distintos pedidos permite 
descubrir que ciertos valores, como 5 o 6, tienden a ser más 
frecuentes que otros. 
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Esta observación inicial abre la puerta a una interpretación 
más estructurada del fenómeno: la distribución de probabilidades 
no nace de una fórmula, sino del análisis de la variación obser-
vada. Borovcnik (2016) insiste en que este paso es fundamental, 
pues ayuda al estudiante a entender que la probabilidad no se 
reparte de manera uniforme, sino que refleja diferencias reales 
en el comportamiento del fenómeno.

En un ambiente de aula, un docente puede pedir a los estudian-
tes que organicen los datos en una tabla de frecuencias y luego 
construyan un gráfico de barras. A partir de ello, las discusiones 
emergen de manera natural: 

•	¿por qué algunas situaciones son más probables que otras?, 
•	¿qué condiciones del contexto podrían explicar las 

diferencias?, 
•	¿por qué es razonable que la probabilidad de observar una 

sola parada sea menor que la de observar cinco? 
La función de probabilidad se convierte, entonces, en una 

manera de narrar la historia del fenómeno discreto, de distinguir 
entre resultados comunes y raros, y de reflexionar sobre qué 
factores podrían modificar la distribución. Desde la perspectiva 
de Ben-Zvi (2000), estas discusiones no solo fortalecen la com-
prensión matemática, sino también la capacidad del estudiante 
para vincular los modelos con su propia experiencia cotidiana.

Por ejemplo, un docente propone trabajar con una situación 
muy cercana a la realidad cotidiana de los estudiantes: el uso del 
teléfono celular a lo largo del día. Para ello, se plantea analizar 
cómo dos aspectos del mismo fenómeno: el tiempo que cada 
persona pasa usando su dispositivo y la cantidad de notificacio-
nes que recibe, pueden comportarse de manera distinta desde 
el punto de vista estadístico.

Durante una semana, un grupo de 10 estudiantes registró de 
forma voluntaria y sistemática dos tipos de datos por día:

1.	 El tiempo total de uso del celular, medido en horas con 
decimales. Este registro varía de manera continua a lo 
largo del día, ya que el uso no ocurre en unidades exac-
tas, sino en intervalos que pueden tomar cualquier valor 
dentro de un rango.

2.	 El número de notificaciones recibidas, considerando 
mensa jes, alertas de aplicaciones, redes sociales y re-
cordatorios.Este conteo solo puede tomar valores ente-
ros, lo que lo convierte en un ejemplo típico de variable 
aleatoria discreta.

El objetivo del docente es que los estudiantes descubran 
cómo un mismo contexto puede contener variables de natu-
raleza distinta, y cómo esta diferencia influye en la manera 
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en que se organizan, se representan y se interpretan los da-
tos.Los datos propuestos por el docente son los siguientes 
(Tabla 3):

Tabla 3.
Tiempo de uso del celular y número de notificaciones registradas por 
los estudiantes 

Estudiante Uso_celular_horas Notificaciones

1 3.2 45

2 4.8 62

3 2.1 30

4 5.4 75

5 3.9 58

6 6.2 81

7 4.1 50

8 5.8 77

9 2.7 36

10 6.5 90
Nota. Los datos corresponden a un registro semanal realizado por 10 es-
tudiantes, quienes anotaron su tiempo total de uso del teléfono celular (en 
horas) y el número de notificaciones recibidas durante un día típico.

La matriz de correlación (Figura 5) muestra que existe una 
relación lineal muy fuerte y positiva entre el uso del celular en 
horas y la cantidad de notificaciones recibidas. El coeficiente de 
Pearson es r = 0.988, lo cual indica que, a medida que aumenta 
el tiempo que un estudiante utiliza su celular, también tiende a 
aumentar el número de notificaciones que recibe. 

Figura 5.
Correlación entre las horas de uso del celular y la cantidad de notifica-
ciones recibidas

 

Nota. La matriz presenta el coeficiente de correlación de Pearson entre el 
tiempo de uso del celular (en horas) y el número de notificaciones recibidas 
por cada estudiante.
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Además, el valor de significación (p < .001) confirma que esta 
relación no es producto del azar, sino que es estadísticamente 
significativa incluso con un tamaño de muestra reducido (gl = 8). 
En términos prácticos, este patrón sugiere que los estudiantes 
con mayor exposición al celular están más expuestos a recibir 
notificaciones, lo cual coincide con comportamientos habituales 
de uso de redes sociales, mensajería y aplicaciones interactivas.

El gráfico de dispersión (Figura 6) muestra la relación entre 
el tiempo de uso del celular (en horas) y el número de notifica-
ciones recibidas por cada estudiante. Visualmente, los puntos 
siguen un patrón ascendente: a medida que aumenta el tiempo 
de uso, también aumenta la cantidad de notificaciones. 

Este comportamiento indica una relación lineal positiva fuerte 
entre ambas variables. Es decir, los estudiantes que utilizan el 
celular durante más horas tienden a recibir un mayor número 
de notificaciones. No se observan valores atípicos ni casos que 
se alejen del patrón general, lo que sugiere que la relación es 
consistente en todo el conjunto de datos.

En términos prácticos, esta relación tiene sentido: un mayor 
tiempo activo en el dispositivo implica mayor interacción con 
redes sociales, mensa jería y aplicaciones que generan notifi-
caciones, por lo que la tendencia ascendente es coherente con 
el comportamiento real del uso del celular.

Figura 6.
Dispersión entre las horas de uso del dispositivo móvil y la cantidad de 
notificaciones recibidas
 

Nota. El gráfico muestra la relación entre las horas de uso del celular y el 
número de notificaciones recibidas por los estudiantes.
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La regresión lineal simple (Figura 7) predice el número de 
notificaciones recibidas por los estudiantes. El modelo resultó 
significativo,  , lo que indica que el 97.6 % de la variabi-
lidad en las notificaciones se explica mediante el tiempo de uso 
del dispositivo.

El coeficiente de regresión para el predictor fue estadística-
mente significativo,  . Esto implica que, 
por cada hora adicional de uso del celular, se esperan aproxima-
damente 13 notificaciones más, en promedio. El intercepto no fue 
significativo, b = 1.63, p = .646, lo que sugiere que su valor carece 
de interpretación sustantiva para este contexto.

En conjunto, los resultados muestran una relación lineal fuer-
te y positiva entre el tiempo de uso del celular y la cantidad de 
notificaciones recibidas.

Figura 7.
Modelo de regresión lineal entre el uso del celular (horas) y el número 
de notificaciones recibidas

 

Nota. El modelo de regresión lineal predice la cantidad de notificaciones 
recibidas a partir de las horas de uso del celular.

Apoyo didáctico: Al finalizar este análisis, es importante que 
el docente reconozca que trabajar con datos reales no solo for-
talece la comprensión estadística, sino que también abre opor-
tunidades para que los estudiantes desarrollen un pensamiento 
crítico sobre los fenómenos que los rodean. 
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Desde la mirada de Wild y Pfannkuch (1999), cada situación 
que se modela en el aula debe invitar a que el estudiante tome 
decisiones, compare alternativas y se pregunte por las condicio-
nes que generan la variabilidad observada. 

De igual manera, la perspectiva de Ben-Zvi (2000) recuerda 
que la construcción de significado en estadística ocurre cuando 
los estudiantes logran vincular los modelos con sus propias ex-
periencias, y no cuando memorizar fórmulas es el centro de la 
actividad. Por ello, se sugiere diseñar tareas donde la exploración 
de datos, la construcción de gráficos y la interpretación conjunta 
permitan transformar la incertidumbre en explicaciones razona-
das y conscientes. Finalmente, siguiendo a Biehler (2018), orientar 
la discusión hacia la relación entre contexto y datos favorece que 
los estudiantes entiendan la estadística como una herramienta 
para comprender el mundo, y no como una colección de proce-
dimientos aislados. Así, la enseñanza se vuelve más significativa, 
situada y coherente con los desafíos de la alfabetización esta-
dística contemporánea.

La función de densidad: dar forma gráfica a la variación continua
Cuando el fenómeno que se estudia produce valores que pue-
den cambiar de manera suave y sin saltos, la variable aleatoria 
continua se convierte en la herramienta conceptual adecuada 
para describirlo. En estos casos, la probabilidad ya no se atribu-
ye a valores puntuales, sino a intervalos, y es precisamente aquí 
donde la función de densidad adquiere sentido. Tal como señalan 
Hastie et al. (2009), la densidad funciona como una curva que 
capta la intensidad con la que ciertos valores tienden a aparecer, 
mostrando la estructura subyacente del fenómeno sin perder la 
riqueza propia de la variabilidad continua.

Desde un punto de vista didáctico, esta noción suele resultar 
abstracta al inicio. Por ello, es útil partir de representaciones 
empíricas, como los histogramas construidos a partir de datos 
reales. A medida que se acumulan observaciones (los tiempos 
de descarga de un archivo, los cambios en la temperatura del 
aula a lo largo de la mañana o la velocidad de conexión durante 
una videollamada) las barras del histograma permiten ver zonas 
donde los valores se agrupan con mayor frecuencia. Sin embar-
go, esta representación, aunque informativa, suele ser rugosa. 
La función de densidad suavizada, en cambio, transforma esa 
irregularidad en una curva continua que revela patrones más 
nítidos. James (2021) enfatiza que esta representación no pre-
tende identificar un valor exacto, sino ayudar a comprender la 
tendencia general del fenómeno y, sobre todo, a reconocer qué 
intervalos concentran mayor probabilidad.
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Para ilustrarlo, consideremos la fluctuación de la velocidad 
de conexión a internet durante una videollamada, un fenómeno 
cotidiano para muchos estudiantes. 

Si se registra la velocidad cada poco segundo, aparecen va-
lores como 9.8 Mbps, 11.2 Mbps, 10.7 Mbps, 12.5 Mbps o 8.9 Mbps, 
que varían sin saltos abruptos. Al graficar estos datos en un 
histograma, es posible observar que la mayor parte se concen-
tra entre 10 y 12 Mbps, mientras que las velocidades muy bajas 
o excepcionalmente altas aparecen con menor regularidad. La 
densidad suavizada construida a partir de estos datos da forma 
a esa variación: muestra un “pico” alrededor del intervalo donde 
la conexión suele estabilizarse y una caída progresiva hacia los 
extremos menos frecuentes, capturando de manera visual lo que 
los números por sí solos no revelan.

Tabla 4.
Velocidad de conexión a Internet medida en Mbps en 20 casos 
observados

Caso Velocidad_Mbps

1 9.8

2 11.2

3 10.7

4 12.5

5 8.9

6 10.3

7 11.0

8 10.9

9 11.5

10 9.7

11 10.8

12 12.0

13 11.7

14 9.9

15 10.5

16 11.3

17 10.1

18 12.2

19 9.5

20 11.1
Nota. Cada registro representa la velocidad promedio de descarga (en Mbps) 
obtenida en un caso individual mediante una prueba básica de conectividad.
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En este ejemplo el docente debe hacer presentar la situación 
con determinadas reflexiones tales como:

•	 “Para esta actividad vamos a traba jar con un conjunto 
de datos que simula la medición real de la velocidad de 
conexión a internet. Imaginemos que estamos en un la-
boratorio de informática y queremos analizar qué tan 
estable es la velocidad de nuestra red durante un minu-
to. Para ello, realizamos una medición automática cada 
poco segundo 

•	 Como suele ocurrir en cualquier red doméstica o institu-
cional, la velocidad no se mantiene fija. A veces aumenta 
ligeramente, otras veces disminuye, y de vez en cuando 
presenta picos o caídas poco frecuentes. Eso es justa-
mente lo que queremos estudiar: la variación natural en 
un fenómeno continuo.

•	 Los 20 valores que vamos a analizar (Tabla 4) represen-
tan velocidades registradas en intervalos muy cortos de 
tiempo. Algunos valores aparecen alrededor de los 10 u 
11 Mbps, que es donde la conexión tiende a estabilizarse. 
Otros valores se alejan un poco más, como 8.9 Mbps o 
12.5 Mbps, que corresponden a momentos donde la red 
está más cargada o más libre. Ninguno de estos cambios 
es abrupto; simplemente forman parte de la variabilidad 
propia del sistema.

•	 Quiero que observen estos datos como lo haría un analis-
ta: no se trata solo de mirar números, sino de preguntarse 
cómo se comporta la velocidad en general. ¿En qué rango 
se concentra la mayor parte de las mediciones? ¿Qué 
tan frecuentes son las velocidades extremas? ¿Cómo se 
vería esta información en un histograma y en una cur-
va de densidad? Este análisis nos permitirá comprender 
mejor cómo funciona una variable aleatoria continua y 
cómo la función de densidad nos ayuda a interpretar su 
comportamiento global.”

Una vez ingresados los datos en Jamovi y generados los 
estadísticos descriptivos (Figura 8) podemos observar que 
la velocidad de conexión presenta una variación natural pero 
claramente estructurada. La media de 10.8 Mbps y la mediana 
de 10.9 Mbps indican que la mayor parte de las mediciones se 
concentran alrededor de este valor central, lo que sugiere un 
comportamiento relativamente estable del sistema. La desvia-
ción típica, cercana a 0.95 Mbps, confirma que la variabilidad 
es moderada: las oscilaciones existen, pero no son abruptas. 
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Figura 8.
Estadísticos descriptivos de la velocidad de conexión medida en inter-
valos de pocos segundos

 

Nota. La figura muestra los estadísticos descriptivos correspondientes a 20 
mediciones reales de velocidad de conexión (en Mbps) tomadas en interva-
los cortos de tiempo.

El histograma (Figura 9) muestra de manera clara cómo varía 
la velocidad de conexión a internet cuando se realizan medi-
ciones sucesivas en intervalos muy cortos. Lo primero que se 
observa es que los valores no son fijos ni completamente regu-
lares: se mueven entre aproximadamente 9 y 12.5 Mbps, refle-
jando la variabilidad natural propia de un fenómeno continuo. 
Sin embargo, esta variación no es caótica. 

La curva de densidad suavizada, superpuesta sobre las ba-
rras, ayuda a visualizar el patrón subyacente: existe una concen-
tración evidente alrededor de los 10 y 11 Mbps, donde se registra 
la mayor frecuencia de observaciones. Esto sugiere que, aunque 
la velocidad fluctúa, tiende a estabilizarse sobre un rango típico.
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Figura 9.
Distribución de la velocidad de conexión (Mbps)

 

Nota. El histograma muestra 20 mediciones de velocidad de conexión a in-
ternet tomadas en intervalos cortos. 

El valor pedagógico de esta representación está en que ofrece 
a los estudiantes un puente entre la experiencia y la abstracción. 
La curva de densidad permite plantear preguntas que movilizan 
el razonamiento probabilístico: ¿qué condiciones explican que la 
mayor densidad esté concentrada en ciertos rangos?, ¿por qué 
ocurren las caídas de velocidad?, ¿cómo podría modificarse la 
curva en momentos de alta congestión digital? De acuerdo con 
Hastie et al. (2009), interpretar la densidad implica reconocer que 
la variabilidad no es caótica, sino estructurada; y como sugiere 
James (2021), esa estructura solo se vuelve evidente cuando 
se observa cómo la probabilidad se distribuye a lo largo de un 
continuo.

Interpretación conjunta: del dato al modelo y del modelo al 
fenómeno
Aunque la función de probabilidad y la función de densidad co-
rresponden a naturalezas distintas, ambas comparten un propó-
sito esencial: organizar y explicar la variabilidad del fenómeno 
aleatorio. Desde una perspectiva conceptual, estas dos funcio-
nes no deberían enseñarse como compartimentos aislados, sino 
como herramientas que permiten observar un mismo proceso 
desde dos ángulos complementarios. Wild y Pfannkuch (1999), 
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al presentar el ciclo PPDAC, recuerdan que la fase de Análisis 
exige interpretar patrones, identificar tendencias y vincular los 
resultados con el contexto; es decir, pasar del dato al modelo y 
del modelo de vuelta al fenómeno. Desde esta mirada, tanto la 
función de probabilidad como la función de densidad ayudan 
a responder preguntas centrales del razonamiento estadístico: 
¿qué valores son habituales?, ¿cuáles resultan inusuales?, ¿qué 
forma tiene la distribución?, ¿qué revela esa forma sobre la es-
tructura interna del fenómeno?

Para ilustrar esta integración puede utilizarse un ejemplo cer-
cano al entorno escolar: el proceso de puntuación de un video-
juego educativo. En muchos juegos, el punta je por completar 
determinados retos se expresa mediante números enteros, lo que 
permite modelar su comportamiento mediante una función de 
probabilidad. Sin embargo, el tiempo que tarda cada estudiante 
en completar el nivel, medido en segundos o décimas de segun-
do, varía de forma continua y requiere una función de densidad 
para representar su distribución. 

Enunciado: En un curso de Matemáticas, el docente incorpora 
un videojuego educativo sobre fracciones como recurso para 
fortalecer la comprensión conceptual y el razonamiento de los 
estudiantes (Tabla 5). 

Cada vez que un estudiante completa el nivel 1, el sistema 
registra dos tipos de información: un puntaje entero asociado 
a la cantidad de retos superados, que constituye una variable 
aleatoria discreta, y el tiempo total empleado para completar 
el nivel, medido en segundos con una cifra decimal, que corres-
ponde a una variable aleatoria continua

 El propósito del análisis es examinar cómo se distribuyen los 
puntajes obtenidos por los estudiantes, cómo se comportan los 
tiempos registrados y, finalmente, cómo ambos modelos pueden 
interpretarse en conjunto para describir patrones de desempeño 
típicos, identificar variabilidad entre estudiantes y comprender 
mejor el proceso de aprendizaje mediado por el videojuego.

Los resultados descriptivos (Figura10) muestran que el tiempo 
empleado por los estudiantes para completar el nivel del video-
juego es bastante consistente dentro del grupo. La media (48.5 
s) y la mediana (47.7 s) son muy similares, lo que indica una dis-
tribución equilibrada sin grandes desviaciones. La variabilidad 
es moderada, con una desviación típica de 4.96 segundos, lo que 
sugiere que la mayoría de los estudiantes se concentra en un 
rango de desempeño relativamente estrecho. Los valores míni-
mos (41.8 s) y máximo (56.4 s) confirman la ausencia de tiempos 
atípicos, evidenciando que el nivel tiene una dificultad adecuada 
y que los estudiantes mantienen un ritmo de ejecución similar.
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Tabla 5.
Resultados de puntaje y tiempo de resolución del nivel 1 en un video-
juego educativo de fracciones

Estudiante Puntaje Tiempo_seg

1 30 47.2

2 35 52.8

3 40 44.5

4 30 55.1

5 45 42.7

6 35 49.3

7 40 46.9

8 50 41.8

9 35 53.6

10 45 43.9

11 40 48.2

12 30 56.4

Nota. La tabla presenta los puntajes obtenidos (variable aleatoria discreta) 
y los tiempos de resolución en segundos con una cifra decimal (variable 
aleatoria continua) registrados por 12 estudiantes tras completar el nivel 1 del 
videojuego educativo sobre fracciones.

Figura 10.
Estadísticos descriptivos del tiempo empleado para completar el nivel 
del videojuego educativo

 

Nota. La figura muestra los valores descriptivos del tiempo total (en segun-
dos) que tardaron los 12 estudiantes en completar el nivel.
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Por otra parte, la gráfica (Figura 11) permite observar que, 
aunque los estudiantes muestran cierta variabilidad en el tiempo 
que tardan en completar el nivel, la mayoría se concentra en un 
intervalo relativamente estrecho. La mediana ubicada cerca de 
los 48 segundos, indica un tiempo típico de ejecución, mientras 
que la amplitud entre los cuartiles sugiere diferencias modera-
das en el ritmo de trabajo de cada estudiante. Los valores más 
alejados del centro reflejan desempeños más rápidos o más len-
tos, que pueden deberse a factores como la familiaridad con el 
videojuego, el nivel de atención o el grado de comprensión de 
los retos planteados. En conjunto, el diagrama ofrece una visión 
clara de cómo se distribuyen los tiempos y permite al docente 
identificar tanto patrones generales como posibles casos que 
merecen una observación más detallada.

Figura 11.
Distribución de los tiempos empleados por los estudiantes para com-
pletar el nivel del videojuego educativo

 

Nota. El diagrama de caja representa la variabilidad del tiempo (en segun-
dos) que los estudiantes emplearon para completar el nivel.

Cuando ambos modelos se analizan juntos, los estudiantes 
pueden comprender que el desempeño en el videojuego no es 
totalmente predecible, pero tampoco arbitrario. Se observan 
regularidades: ciertos puntajes se repiten porque reflejan niveles 
de dominio frecuentes, y los tiempos se concentran en un rango 
porque dependen de la dificultad del nivel, la familiaridad con la 
mecánica o la concentración del estudiante.
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 DeVeaux, Velleman y Bock (2019) destacan que esta capaci-
dad para anticipar tendencias sin perder de vista la complejidad 
del fenómeno es una de las fortalezas del razonamiento proba-
bilístico. Watson (2006) complementa esta idea al señalar que 
uno de los desafíos centrales en la educación estadística consiste 
en mostrar que la variabilidad tiene estructura, que el azar no 
implica caos, sino un patrón que puede interpretarse y explicarse.

En general, la articulación entre las funciones de probabili-
dad y densidad permite que el estudiante transite de los datos 
concretos a los modelos abstractos, y de estos, nuevamente 
al fenómeno que les dio origen. De esta forma, la estadística 
se convierte en una herramienta para comprender situaciones 
reales, no solo en una técnica para producir gráficos. Este mo-
vimiento entre niveles (dato, modelo y fenómeno) constituye 
una de las competencias clave en la alfabetización estadística 
contemporánea y un elemento indispensable para formar ciu-
dadanos capaces de interpretar la incertidumbre de manera 
crítica y fundamentada.

Distribuciones discretas: Bernoulli, binomial y Poisson
Las distribuciones discretas constituyen un eje fundamental 
para comprender cómo se organiza la variabilidad cuando los 
fenómenos se expresan mediante conteos o resultados pun-
tuales. Este tipo de modelos permite que el estudiante avance 
desde una intuición primaria del azar hacia una interpretación 
más estructurada del comportamiento probabilístico. Tal como 
señalan Wild y Pfannkuch (1999), una enseñanza eficaz de la 
probabilidad requiere que el estudiante aprenda a identificar 
patrones, explicar tendencias y situar cada resultado dentro 
del contexto que lo origina. En esta línea, DeVeaux, Velleman y 
Bock (2019) destacan que las distribuciones discretas son espe-
cialmente valiosas porque ofrecen un marco claro y accesible 
para analizar fenómenos que, aunque variables, conservan una 
estructura interna reconocible.

A continuación, se desarrollan tres modelos ampliamente uti-
lizados: Bernoulli, binomial y Poisson, cada uno acompañado de 
un ejemplo contextual y orientaciones didácticas que favorecen 
el razonamiento probabilístico en el aula.

Distribución de Bernoulli: decisiones binarias y eventos con dos 
resultados
La distribución de Bernoulli modela fenómenos que solo pueden 
tener dos resultados mutuamente excluyentes: éxito o fracaso, 
sí o no, ocurre o no ocurre. Es el modelo discreto más simple: 
cada ensayo se representa mediante un valor binario (1 o 0). Su 
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profundidad conceptual reside en que permite introducir la idea 
de probabilidad como una medida de tendencia de largo plazo 
más que como una predicción absoluta del próximo resultado.

Cuando un fenómeno se describe mediante una Bernoulli, se 
asume que:

1.	 Cada ensayo es independiente: el resultado anterior no 
influye en el siguiente.

2.	 La probabilidad de éxito p se mantiene constante.
3.	No hay más de dos posibilidades: cualquier matiz o varia-

ción se simplifica a “éxito” o “fracaso”.
Aunque su estructura es simple, su interpretación didáctica 

es profunda. Como señala Watson (2006), la comprensión de 
Bernoulli ayuda a desmontar ideas erróneas comunes, como creer 
que después de una racha de fracasos “ya es hora” de que llegue 
un éxito (falacia del apostador). La Bernoulli permite conversar 
con estudiantes sobre cuándo un fenómeno puede razonable-
mente considerarse binario y qué implicaciones tiene hacerlo.

Trabajar con Bernoulli posibilita preguntas como:
•	¿Qué factores determinan la probabilidad de éxito?
•	¿Qué significa realmente “éxito” en un fenómeno concreto?
•	¿Qué pasa si la probabilidad cambia a lo largo del tiempo?
Wild y Pfannkuch (1999) sugieren aprovechar estas discusiones 

para fortalecer la comprensión contextual del fenómeno, ya que 
la Bernoulli es tanto un modelo matemático como una forma de 
mirar la realidad. Para estos autores, enseñar una distribución 
no debería limitarse a presentar su fórmula o a resolver ejerci-
cios mecánicos; por el contrario, es fundamental ayudar a los 
estudiantes a reconocer que detrás de cada variable dicotómica 
existe una historia, una situación y un proceso de toma de deci-
siones. La distribución Bernoulli invita a distinguir entre eventos 
que ocurren y eventos que no ocurren, pero esta simplicidad 
aparente encierra una manera poderosa de comprender el mun-
do: muchas experiencias humanas pueden describirse mediante 
esta lógica binaria.

Caso de estudio: Reconocimiento de fracciones mediante un 
videojuego educativo

En una clase de Matemáticas de séptimo año, el docente in-
troduce un videojuego educativo centrado en el reconocimien-
to de fracciones simples. Cada estudiante debe completar una 
actividad inicial del juego en la que se presentan diez tarjetas 
digitales y, en cada una, se evalúa si el estudiante identifica co-
rrectamente la fracción representada. El sistema registra para 
cada estudiante una variable dicotómica llamada Reconoce_frac, 
que toma el valor de 1 si el estudiante reconoce correctamente 
la fracción del ejercicio final del nivel, y 0 si no lo logra.
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El propósito del docente es analizar el desempeño general 
del grupo en esta tarea inicial para identificar patrones de 
logro, determinar la proporción de estudiantes que presentan 
dificultades y tomar decisiones pedagógicas informadas para 
los siguientes niveles del videojuego.

Los resultados descriptivos (Figura 12) muestran que parti-
ciparon doce estudiantes y no hubo datos perdidos. La media 
del desempeño es 0.667, lo cual indica que, en promedio, 
aproximadamente dos tercios del grupo logra reconocer co-
rrectamente la fracción presentada en el nivel inicial. La me-
diana y la moda, ambas iguales a 1, refuerzan esta tendencia: 
la mayoría de estudiantes tiene un resultado correcto. La des-
viación típica, de 0.492, sugiere una variabilidad moderada 
dentro del grupo, coherente con el hecho de que solo existen 
dos valores posibles (0 y 1) en esta variable.

El análisis de frecuencias aporta una lectura más clara: 8 
de 12 estudiantes (66.7%) reconocen correctamente la frac-
ción, mientras que 4 estudiantes (33.3%) no lo logran. Este 
comportamiento dicotómico usual en variables discretas es 
fundamental para la toma de decisiones pedagógicas. Por 
ejemplo, el docente puede deducir que, aunque la mayoría 
de los estudiantes muestra un dominio adecuado del conte-
nido, existe un grupo significativo (un tercio del curso) que 
requiere apoyo adicional antes de avanzar a actividades más 
complejas dentro del videojuego.

La Figura 13 permite visualizar de manera sencilla cómo 
se distribuyen las respuestas de los estudiantes en la tarea 
inicial de reconocimiento de fracciones. El gráfico de barras 
muestra una clara diferencia entre quienes logran identifi-
car correctamente la fracción presentada y quienes no lo 
consiguen. De los 12 estudiantes evaluados, ocho responden 
correctamente, mientras que cuatro presentan dificultades, 
lo que equivale a un 66.7 % y un 33.3 %, respectivamente. 

Esta asimetría evidencia que, aunque la mayoría del grupo 
domina el concepto evaluado, existe un porcenta je impor-
tante que requiere apoyo pedagógico adicional antes de 
avanzar a niveles más complejos del videojuego educativo. 
La interpretación conjunta del gráfico y de las estadísticas 
descriptivas sugiere que los estudiantes con errores podrían 
beneficiarse de experiencias de refuerzo, explicaciones vi-
suales suplementarias o retroalimentación inmediata dentro 
del propio entorno digital. 



108

 Variables aleatorias, distribuciones y modelación estadística

Figura 12.
Distribución de estudiantes que reconocen correctamente la fracción 
en el nivel inicial del videojuego educativo
.

Nota. La figura presenta los resultados de 12 estudiantes en la variable dico-
tómica Reconoce_frac, donde 1 indica reconocimiento correcto de la fracción 
y 0 indica error.

Desde el punto de vista didáctico, este caso permite a los 
estudiantes comprender cómo una variable aleatoria discreta 
puede analizarse mediante herramientas estadísticas simples, y 
cómo la interpretación de frecuencias y medidas de tendencia 
central se utiliza para caracterizar comportamientos de aprendi-
zaje. Además, contextualiza la estadística dentro de un entorno 
cercano y motivador, como el uso de videojuegos educativos, 
reforzando el sentido práctico del análisis de datos en situacio-
nes reales del aula.

Wild y Pfannkuch destacan que cuando el docente vincula el 
modelo con el contexto, se genera una comprensión más rica 
porque los estudiantes dejan de ver la probabilidad como un cál-
culo aislado y comienzan a interpretarla como una herramienta 
para explicar fenómenos reales.
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De este modo, la distribución Bernoulli se convierte en un 
puente entre el razonamiento matemático y la lectura crítica 
del entorno, permitiendo a los estudiantes identificar patrones, 
formular hipótesis y analizar situaciones cotidianas desde una 
perspectiva estadística más profunda.

Figura 13.
Frecuencia de respuestas correctas e incorrectas en el reconocimien-
to de fracciones

 

Nota. El gráfico muestra la distribución de respuestas de 12 estudiantes en la 
tarea de reconocimiento de fracciones. La categoría 1 corresponde a estu-
diantes que identificaron correctamente la fracción, mientras que la catego-
ría 0 indica respuestas incorrectas.

Distribución binomial: la acumulación de éxitos en múltiples 
intentos
La binomial extiende la lógica de Bernoulli a un conjunto de n 
ensayos independientes, todos con la misma probabilidad de 
éxito. Su esencia radica en describir cuántos éxitos se obtienen 
en un número fijo de intentos. Este modelo introduce un nuevo 
nivel de complejidad porque ya no se trata de analizar un solo 
evento binario, sino la variación acumulada de muchos.
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La distribución binomial requiere cuatro elementos:
1.	 Número fijo de ensayos n: no se detiene hasta completar 

los intentos.
2.	 Independencia entre intentos.
3.	 Probabilidad constante de éxito p.
4.	Interés en el conteo de éxitos, no en el orden de aparición.
De acuerdo con DeVeaux, Velleman y Bock (2019), la binomial 

es una herramienta poderosa para investigar patrones: revela 
que ciertos resultados son más probables que otros (por ejem-
plo, obtener 5 aciertos en 10 intentos cuando p=0.5), y que los 
extremos son menos frecuentes. Esto permite introducir gráficas 
que muestran cómo se concentra la probabilidad alrededor de 
valores centrales, favoreciendo la comprensión del comporta-
miento típico del fenómeno.

La enseñanza de la binomial permite trabajar preguntas como:
•	¿Cuáles son los resultados “esperables”?
•	¿Cómo cambia la distribución si aumenta el número de 

ensayos?
•	¿Cómo influye un cambio en p sobre la forma de la 

distribución?
•	¿Por qué los resultados muy altos o muy bajos son menos 

probables?
Caso de estudio: “La calidad en una planta de producción de 

botellas”
Una empresa dedicada a la producción de botellas plásticas 

utiliza un sistema automático de inspección que detecta si cada 
botella fabricada cumple con los estándares de calidad. Cada 
botella puede clasificarse como defectuosa (0) o no defectuosa 
(1). A partir de registros históricos, los ingenieros determinaron 
que la probabilidad de que una botella salga correctamente fa-
bricada es aproximadamente p = 0,92, ya que en promedio el 8 
% presenta algún defecto. Además:

1.	 En cada lote se inspeccionan exactamente 20 botellas, por 
lo que el número de ensayos es fijo.

2.	 La inspección es independiente para cada botella.
3.	 La probabilidad de que una botella salga en buen estado 

se mantiene relativamente estable durante un mismo ciclo 
de producción.

4.	 El interés está en contar cuántas botellas no defectuosas 
hay en un lote, no en el orden de inspección.

Estas condiciones permiten modelar el número de botellas 
correctas en un lote mediante una distribución binomial con 
parámetros n=20 y p=0,92.

Sea la variable aleatoria: X=número de botellas en buen estado 
dentro del lote Entonces: X=Binomial (n=20, p=0,92)
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Preguntas que la empresa desea responder
•	¿Cuál es la probabilidad de obtener exactamente 19 botellas 

correctas en un lote de 20?
•	¿Cuál es la probabilidad de que el lote tenga al menos 18 

botellas correctas?
•	¿Qué tan probable es obtener 16 o menos, lo cual implicaría 

activar una alarma de control de calidad?
•	¿Cuántos defectos son “esperables” en un lote típico?
•	¿Qué valores serían considerados “atípicos” o señal de un 

problema en la línea de producción?
La distribución mostrada en la Figura 14 permite comprender 

de manera directa cómo se comporta un proceso productivo 
cuando la probabilidad de obtener un resultado “correcto” es 
muy alta. En este caso, el modelo binomial describe el número 
de botellas correctamente envasadas dentro de un lote de 20 
unidades, asumiendo que cada botella tiene una probabilidad 
de éxito del 95 %. 

Figura 14 .
Distribución binomial de botellas correctas en un lote de 20 unidades 
con probabilidad de éxito p = 0.95.

 

Nota. La figura presenta la distribución teórica de probabilidades del número 
de botellas correctas bajo un modelo binomial con n = 20 y p = 0.95.

Al observar la gráfica, se vuelve evidente que los valores más 
probables se concentran en la parte derecha del eje horizontal: ob-
tener 18, 19 o incluso las 20 botellas correctas no solo es posible, sino 
que representa la situación más habitual. Estos resultados reflejan 
un proceso estable, con una línea de producción que comete muy 
pocos errores y que, por tanto, genera lotes de calidad consistente.
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Este tipo de comportamiento es especialmente útil para que 
los estudiantes visualicen la idea de “resultado esperable”, un 
concepto que suele ser abstracto cuando se explica únicamen-
te desde ecuaciones o fórmulas. Al trabajar con la distribución 
binomial en un contexto concreto como el control de calidad, se 
puede mostrar que las probabilidades no son simples números, 
sino herramientas para anticipar patrones y reconocer cuándo 
un proceso funciona como debería. 

Desde un enfoque pedagógico, la gráfica ofrece una oportuni-
dad para promover discusiones valiosas en el aula. Los estudian-
tes pueden reflexionar sobre cómo cambia la forma de la distri-
bución si la probabilidad de éxito disminuye, o qué implicaciones 
tiene aumentar el tamaño del lote. También permite introducir la 
distinción entre lo “posible” y lo “probable”, y comprender por qué 
ciertos valores casi nunca se observan, aunque no sean imposi-
bles. En resumen, este tipo de representación visual, sostenida 
por un caso cercano al mundo laboral, ayuda a que la estadística 
deje de verse como un conjunto de procedimientos mecánicos 
y se convierta en una herramienta para interpretar fenómenos 
reales con mayor claridad y sentido.

James (2021) resalta que este tipo de análisis ayuda al es-
tudiante a visualizar la estructura del fenómeno, no solo a me-
morizar fórmulas. Esta observación es crucial porque, en la 
enseñanza habitual, la distribución binomial suele reducirse a 
un conjunto de procedimientos que parecen abstractos y desli-
gados de la experiencia. Sin embargo, cuando se trabaja desde 
situaciones concretas como acertar preguntas en un cuestio-
nario, registrar éxitos en un experimento o evaluar intentos en 
un videojuego educativo; la binomial deja de ser una expresión 
algebraica y se convierte en una herramienta para comprender 
cómo se acumulan los resultados en escenarios donde el azar 
interviene repetidamente.

Distribución de Poisson: conteo de eventos en intervalos
La distribución de Poisson se utiliza para modelar eventos que 
ocurren de forma independiente dentro de un intervalo, ya sea 
de tiempo, espacio o cualquier unidad continua. A diferencia 
de Bernoulli y binomial, no existe un número fijo de ensayos: la 
Poisson describe la frecuencia de aparición de sucesos relativa-
mente raros, regidos por una tasa promedio estable.
Un fenómeno sigue una Poisson cuando:
1.	 Los eventos son infrecuentes respecto al tamaño del 

intervalo.
2.	 Los eventos ocurren uno a la vez, sin simultaneidad.
3.	 La tasa promedio λ es constante.
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4. La ocurrencia en un intervalo no afecta otro intervalo 
(independencia).

Hastie et al. (2009) explican que Poisson es especialmente 
útil para describir procesos donde no es posible identificar cla-
ramente el número de ensayos, pero sí observar un patrón de 
ocurrencias. Por ello, la Poisson permite captar regularidades 
invisibles a simple vista: aunque los valores fluctúen día a día, la 
tasa promedio mantiene una estabilidad sorprendente.

A nivel educativo, traba jar con la Poisson abre la puerta a 
reflexiones como:

•	 	¿Qué significa que un fenómeno tenga una “tasa estable”?
•	¿Qué diferencia a la Poisson de la binomial?
•	¿Por qué algunos días ocurren muchos eventos y otros casi 

ninguno?
•	¿Qué factores del contexto pueden modificar la tasa 

promedio?
James (2021) enfatiza que este tipo de modelos permite com-

prender fenómenos aparentemente caóticos desde una perspec-
tiva analítica que revela patrones, no azar puro. Para este autor, 
la clave no reside solamente en calcular probabilidades, sino en 
aprender a “leer” el comportamiento de los eventos a través del 
lente adecuado.

Caso de estudio: La llegada de llamadas a un centro de so-
porte técnico

En una institución educativa que ofrece soporte tecnológico 
a docentes y estudiantes, existe un pequeño centro de atención 
encargado de resolver problemas relacionados con plataformas 
virtuales, contraseñas, conexión a redes, videoconferencias y 
accesos a la intranet institucional. Con el crecimiento de la ma-
trícula y la migración hacia entornos digitales, la demanda de 
soporte ha aumentado en los últimos ciclos académicos. Para 
mejorar la gestión del servicio, la coordinación decide analizar 
cuántas llamadas recibe el centro por hora durante los momentos 
de mayor actividad.

Después de revisar los registros de varias semanas, el equipo 
observa que, durante las horas pico de la mañana, el número 
de llamadas que ingresan cada hora fluctúa entre 6 y 14, con 
un promedio estable cercano a 10 llamadas por hora. Además, 
las llamadas parecen llegar de manera independiente unas de 
otras, sin patrones definidos más allá de la intensidad propia de 
ese horario.

Debido a estas características se propone modelar el número 
de llamadas por hora mediante una Distribución de Poisson con 
parámetro λ  llamadas por hora.
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Preguntas que el área de soporte desea responder
1.	¿Cuál es la probabilidad de recibir exactamente 8 llamadas 

en una hora?
2.	¿Qué tan probable es recibir 15 o más llamadas, lo que po-

dría saturar la capacidad del personal?
3.	¿Qué valor de llamadas por hora puede considerarse típico 

y cuál sería un valor atípico que debería activar una alerta?
4.	¿Cuál es el número esperado de llamadas por hora y qué 

tan grande puede ser su variabilidad?
5.	¿Cómo podría cambiar esta distribución si se incrementa 

el número de usuarios o si una plataforma falla de manera 
inesperada?

Voy a asumir el modelo que definimos antes: λ
donde X es el número de llamadas por hora.

La distribución presentada en la figura 15 permite observar 
cómo se comporta el número de llamadas que llegan por hora a 
un centro de soporte cuando el proceso sigue un patrón de ocu-
rrencia aleatoria con una tasa promedio estable. El valor de λ = 
10 indica que, en condiciones normales, se esperan alrededor de 
diez llamadas por hora. Esto se evidencia en la forma del gráfico: 
la barra correspondiente a este valor es una de las más altas y 
constituye el centro de la distribución.

Figura 15 .
Distribución de Poisson del número de llamadas por hora en un centro 
de soporte     
 

Nota. La figura muestra la distribución teórica de probabilidades para el 
número de llamadas que llegan en una hora, modelada mediante una Poisson 
con parámetro
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De igual manera, se aprecia que los valores inmediatamen-
te cercanos a la media como 8, 9, 11 o 12 llamadas, mantienen 
probabilidades relativamente altas. Esto sugiere que, aunque 
el promedio es diez, existe una fluctuación natural que hace 
completamente razonable observar ligeras variaciones de 
una hora a otra. Hacia ambos extremos, en cambio, las barras 
disminuyen de manera pronunciada. Los resultados muy ba jos 
(por ejemplo, menos de 4 llamadas) o muy altos (16 o más) 
aparecen con probabilidades considerablemente pequeñas, 
lo que indica que representan situaciones poco habituales. 

La forma ligeramente sesgada hacia la derecha, propia de 
la distribución de Poisson, muestra que, aunque es más pro-
bable registrar un volumen de llamadas similar al promedio, 
siempre existe una pequeña posibilidad de que la demanda 
del servicio aumente más de lo esperado. Esta “cola” hacia la 
derecha es especialmente importante desde una perspectiva 
operativa, ya que permite anticipar episodios de saturación 
y planificar recursos de manera preventiva. En síntesis, la 
distribución ofrece una mirada detallada y realista sobre la 
variabilidad del sistema, permitiendo identificar con claridad 
qué situaciones deben considerarse normales y cuáles po-
drían requerir atención o intervención del equipo de soporte.

  Apoyo didáctico: El docente puede aprovechar y reflexio-
nar con los estudiantes en relación a los procedimientos ma-
temáticos que fundamentan la interpretación:

1. Probabilidad de recibir exactamente 8 llamadas

Si          λ      

Entonces: .            

Para                         k=8 y λ
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2. Probabilidad de recibir 15 o más llamadas

 Se busca: . 
Para calcularlo, se usa la probabilidad complementaria:
                      

Dónde:          

Por eso:        

3. Valores típicos y atípicos
Con el criterio usual (probabilidad < 5 %), usamos:
Para el límite inferior (valores muy bajos):

                    

Para el límite superior (valores muy altos):
                   
                     

Dónde:        

                     

Valores con probabilidad menor a 0.05 se consideran atípicos.

4. Valor esperado y variabilidad de la Poisson
Media: λ

Varianza: λ

Desviación estándar: σ λ

Para λ 	:		     y  σ
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5.Cómo cambia la distribución si aumenta la demanda
La forma de la distribución depende solo de λ:
Si aumenta la demanda (más usuarios entonces más llamadas):
                                    λ
•	 	La media aumenta.
•	 La desviación estándar aumenta.
•	 La distribución se desplaza hacia la derecha.
•	 Se vuelve más probable observar valores altos.

No hay fórmula adicional: solo cambia el parámetro λ en las 
fórmulas anteriores.

En general, modelar un fenómeno mediante distribuciones 
discretas como Bernoulli, Binomial o Poisson ofrece una vía privi-
legiada para dotar de sentido a comportamientos que, a primera 
vista, pueden parecer erráticos o difíciles de anticipar. Estas 
herramientas permiten revelar patrones estables, variaciones 
significativas y señales tempranas de cambio que no se perciben 
de forma intuitiva. Lo que inicialmente se presenta como una 
colección dispersa de datos adquiere estructura y se convierte 
en una representación cuantificable de los procesos que operan 
en el fondo. 

El uso de distribuciones discretas como Bernoulli, Binomial o 
Poisson se convierte en una herramienta clave para que docentes 
y estudiantes comprendan el comportamiento del azar más allá 
de la intuición. Estas distribuciones permiten reconocer patrones, 
estimar variabilidad y anticipar situaciones que, sin un marco 
probabilístico, parecerían simplemente caprichosas. Como afir-
ma James (2017), el valor pedagógico de la probabilidad radica 
en mostrar que la incertidumbre puede ser organizada y anali-
zada mediante modelos conceptuales que revelan la estructura 
del fenómeno. Bajo esta mirada, la enseñanza de la probabilidad 
deja de centrarse únicamente en cálculos para transformarse en 
una forma de leer la realidad, interpretarla con mayor nitidez y 
tomar decisiones didácticas y profesionales más informadas.

Distribuciones continuas: uniforme, normal, exponencial
Las distribuciones continuas constituyen uno de los pilares 
centrales para el análisis del azar en contextos donde la va-
riable aleatoria puede asumir infinitos valores dentro de un 
intervalo real. Este tipo de distribuciones resulta fundamental 
en el modelamiento moderno de datos, especialmente cuando 
se estudian fenómenos que varían en el tiempo, procesos de 
medición, punta jes de desempeño, duraciones, rendimientos 
o fluctuaciones de condiciones físicas. A diferencia de las dis-
tribuciones discretas como la Bernoulli, binomial o Poisson; las 
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distribuciones continuas no cuentan sucesos aislados, sino que 
describen la densidad con la que la probabilidad se reparte 
sobre un conjunto ininterrumpido de posibilidades.

De Veaux, Velleman y Bock (2019) destacan que la adopción 
de distribuciones continuas es esencial porque muchos fenó-
menos reales no pueden describirse adecuadamente mediante 
conteos, sino mediante mediciones: un tiempo, una distancia, una 
temperatura, una calificación continua, un nivel de esfuerzo. En 
estas situaciones, la naturaleza del fenómeno exige considerar 
la variación no como saltos discretos, sino como una progresión 
suave en la que cada punto del intervalo es posible, aunque con 
distinta probabilidad.

Comprender las distribuciones continuas implica reconocer 
cómo se concentra la probabilidad en ciertas zonas del intervalo, 
cómo cambian las formas de una curva y cómo estos modelos 
permiten identificar regularidades ocultas. Montgomery y Runger 
(2018) subrayan que el análisis de datos reales requiere, en pri-
mera instancia, distinguir si la variable responde a un modelo 
continuo o discreto, pues de ello dependen los métodos de esti-
mación, inferencia y predicción que pueden aplicarse.

Tres distribuciones continuas ocupan un lugar central en este 
marco conceptual: la uniforme, la normal y la exponencial. Cada 
una responde a una lógica distinta de variación y modela una 
familia de fenómenos característicos. Su estudio permite desa-
rrollar en los estudiantes una comprensión profunda del azar y 
una mirada crítica hacia los datos observados.

Distribución Uniforme: igualdad de posibilidades en un intervalo
La distribución uniforme continua en el intervalo [a,b] se caracte-
riza por asignar la misma probabilidad a cualquier subintervalo 
de igual longitud dentro del rango. Esto significa que la densidad 
de probabilidad es constante, una idea que Rice (2007) considera 
fundamental para iniciar el recorrido conceptual hacia modelos 
continuos más elaborados.

Su función de densidad es: 

y su probabilidad acumulada crece de manera lineal:
                                 
                                      

A nivel conceptual, la distribución uniforme es clave porque 
introduce la idea de “densidad constante”, un principio que apa-
rece más adelante en modelos de simulación, procesos aleatorios 
y algoritmos de generación de números pseudoaleatorios.
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Caso de estudio: Selección aleatoria de intervalos para prue-
bas de carga en un servidor educativo

En una universidad que trabaja con una plataforma virtual para 
educación a distancia, el equipo de ingeniería necesita realizar 
pruebas de carga para evaluar la resistencia del servidor en di-
ferentes momentos del día. Para evitar introducir sesgos como 
realizar pruebas solo en horas de baja actividad; se decide que 
el instante exacto en que se ejecutará cada prueba debe ser 
completamente aleatorio dentro de un intervalo de diez horas 
(8:00 a 18:00).

El equipo define que cualquier minuto del intervalo es igual-
mente probable, sin preferir momentos de mayor uso o descan-
so del servidor. Ba jo este supuesto, el tiempo de inicio de cada 
prueba puede modelarse mediante una distribución uniforme 
continua en el intervalo [0,600] minutos.

De acuerdo con Rice (2007), la distribución uniforme es ade-
cuada cuando se parte de un principio de equidad o de igno-
rancia total sobre qué valor será más probable, y proporciona 
una base conceptual sólida para introducir la idea de densidad 
constante en variables continuas. Además, Richard De Veaux, 
Velleman y Bock (2019) recuerdan que este tipo de modelos 
ayuda a evitar patrones involuntarios que distorsionan un análisis 
experimental.

Preguntas que el equipo desea responder
•	¿Cuál es la probabilidad de que una prueba ocurra entre 

las 11:00 y las 11:30?
•	¿Con qué frecuencia las pruebas podrían coincidir con el 

horario de clase virtual sin ser programadas así?
•	¿Qué tan dispersos se distribuyen los tiempos de inicio 

cuando la asignación es realmente uniforme?
La simulación (Figura 16) confirma la idea de que los tiempos 

de inicio de las pruebas se comportan como una distribución 
uniforme en [0, 600] minutos (de 8:00 a 18:00). El histograma 
es prácticamente plano: en todos los tramos del eje horizontal 
hay frecuencias similares, lo que indica que ningún momento del 
intervalo es claramente más frecuente que otro. Las descriptivas 
numéricas apuntan en la misma dirección: la media es ≈ 298.5 
minutos y la mediana ≈ 296.7, ambas muy cercanas al centro 
teórico del intervalo (300 minutos). La desviación típica ≈ 172 
coincide con el valor esperado para una uniforme [0, 600], y 
los valores mínimo y máximo se aproximan bastante a 0 y 600, 
como cabría esperar en una simulación grande.

Los dos valores de probabilidad que aparecen (≈ 0.0485 y ≈ 
0.1976) responden a las preguntas del equipo: la primera es la 
probabilidad estimada de que una prueba caiga entre las 11:00 
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y las 11:30 (unos 30 minutos dentro de las 10 horas totales), y la 
segunda es la probabilidad de que coincida con la franja de clase 
virtual considerada (aprox. 20 % del intervalo total). En resumen, 
estos resultados muestran que el procedimiento de asignación 
aleatoria logra lo que se buscaba: las pruebas se distribuyen de 
forma equitativa a lo largo del día, sin concentrarse en horas de 
mayor o menor actividad, y las probabilidades de coincidir con 
intervalos específicos dependen únicamente de la longitud de 
esos intervalos, no de un sesgo del sistema.

Figura 16.
Distribución simulada de los tiempos de inicio de las pruebas de car-
ga en un servidor educativo

 

Nota. El histograma muestra la distribución de 10 000 tiempos de inicio ge-
nerados bajo una distribución uniforme continua en el intervalo de 0 a 600 
minutos, equivalente al periodo comprendido entre las 8:00 y las 18:00.



121

Saquinaula Brito José Luis

Este ejercicio ofrece una oportunidad valiosa para que los 
estudiantes comprendan cómo una distribución uniforme per-
mite modelar situaciones donde todas las posibilidades tienen 
la misma probabilidad. Al simular miles de tiempos de inicio y 
observar que el histograma se mantiene prácticamente plano, 
se hace evidente que no existe un “momento privilegiado” den-
tro del intervalo, lo que ayuda a romper ideas intuitivas pero 
erróneas sobre la aleatoriedad. Además, al calcular probabili-
dades asociadas a tramos específicos del día, los estudiantes 
pueden apreciar que estas dependen únicamente de la longitud 
del intervalo considerado, y no de supuestos subjetivos sobre el 
comportamiento del sistema. En resumen, la actividad muestra 
cómo la simulación en R y jamovi se convierte en una herramien-
ta didáctica poderosa: permite visualizar conceptos abstractos, 
contrastar expectativas con resultados empíricos y fortalecer 
la comprensión de la probabilidad como modelo para describir 
fenómenos reales

La distribución normal: variación alrededor de un centro
La distribución normal es quizá la distribución continua más 
influyente en estadística y en la enseñanza del análisis de da-
tos. Su carácter central proviene de su capacidad para modelar 
fenómenos donde los valores tienden a agruparse alrededor 
de una media, y donde las desviaciones extremas son cada vez 
menos frecuentes.

Definida por su media μ y desviación estándarσ , su densidad es:
                            
                             

��

�
�

Esta fórmula representa una curva simétrica con forma de 
campana. La mayor parte de la probabilidad se concentra en 
el intervalo μ σ /, y casi toda enμ σ. Esto explica la conocida 
“regla empírica” del 68–95–99.7 %.

Según De Veaux et al. (2019), la normal no solo describe nume-
rosos fenómenos naturales como estaturas, errores de medición 
o variaciones fisiológicas; sino que también sirve como base para 
procedimientos inferenciales clásicos.

Sin embargo, Montgomery y Runger (2018) destacan que su 
poder explicativo no depende tanto de su forma, sino del Teorema 
Central del Límite (TCL). Este teorema establece que el prome-
dio de muchas variables independientes tiende a distribuirse 
normalmente, incluso cuando las variables originales no lo son. 
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Por ello:
•	 	 el punta je promedio de una clase,
•	 el tiempo promedio de ejecución de un algoritmo,
•	 la producción diaria promedio de una máquina,
tienden a a justarse a una normal.
Caso de estudio: Variabilidad de los punta jes en una prueba 

estandarizada de razonamiento matemático
En un colegio con programas de evaluación continua, los 

docentes aplican una prueba estandarizada que mide razo-
namiento matemático en estudiantes de décimo año. Los re-
sultados, al ser analizados, muestran una clara concentración 
alrededor de 70 puntos sobre 100, con simetría ligera y pocas 
notas extremadamente ba jas o altas.

El equipo académico decide entonces modelar la distribu-
ción de los punta jes mediante una distribución normal con 
media aproximadaμ=70  y desviación estándarσ=8.

Según De Veaux, Velleman y Bock (2019), este tipo de pa-
trón es típico en muchos fenómenos educativos, porque el 
rendimiento surge de múltiples factores que actúan de manera 
acumulativa y cuyo promedio tiende naturalmente a formar la 
conocida “curva de campana”. Montgomery y Runger (2018) 
destacan que esta regularidad está amparada por el Teorema 
Central del Límite, que explica por qué la normal aparece in-
cluso cuando las variables individuales no siguen una distri-
bución normal.

Preguntas que los docentes desean responder
•	¿Qué porcenta je de estudiantes podría esperarse dentro 

del rango “esperado” entre 62 y 78 puntos?
•	¿Cuántos estudiantes podrían considerarse con desem-

peño inusualmente alto (percentil 95 o superior)?
•	¿Qué tan extremo es un punta je de 50? ¿Debe interpre-

tarse como un caso aislado o como señal de dificultades 
sistemáticas?

La Figura 17 muestra la distribución simulada de los pun-
ta jes de 120 estudiantes en una prueba estandarizada de ra-
zonamiento matemático. La forma general del histograma, 
acompañada de la curva normal teórica N(70, 8), permite 
aproximarnos a las tres inquietudes que el equipo docente 
desea resolver. La concentración de barras alrededor de 70, 
con disminución progresiva hacia ambos extremos, sugiere que 
la mayor parte del grupo se ubica en un rango de desempe-
ño típico, mientras que solo unos pocos estudiantes alcanzan 
resultados particularmente altos o muy ba jos.
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Figura 17.
Distribución simulada de puntajes en una prueba estandarizada de 
razonamiento matemático (n = 120).

 

Nota. La figura muestra una simulación basada en un modelo de distribución 
normal con media 70 y desviación estándar 8, que representa el comporta-
miento esperado de los puntajes en una prueba estandarizada.

1.	¿Qué porcentaje de estudiantes podría esperarse dentro 
del rango entre 62 y 78 puntos?

Visualmente, la mayor densidad de barras se concentra jus-
tamente entre 62 y 78 puntos, lo que coincide con el tramo cen-
tral de la curva de distribución. Este intervalo abarca el sector 
donde la campana alcanza su forma más ancha, lo que indica 
una probabilidad elevada de que los puntajes se ubiquen en ese 
rango. La simulación confirma esta lectura: aproximadamente 
dos tercios del grupo se sitúan en ese intervalo, dato que armo-
niza con la regla empírica de la normal, según la cual alrededor 
del 68 % de los valores se encuentran dentro de una desviación 
estándar de la media.

2.	¿Cuántos estudiantes presentan un desempeño inusual-
mente alto (percentil 95 o superior)?

En el extremo derecho de la distribución se observa una pre-
sencia escasa de barras, lo que señala que solo una proporción 
muy pequeña de estudiantes alcanza puntajes superiores a 83, 
valor que corresponde al percentil 95 del modelo teórico. La simu-
lación sugiere que, en un grupo de 120 estudiantes, es esperable 
encontrar entre 5 y 6 casos con un rendimiento excepcionalmente 
alto. La poca densidad en ese sector del histograma confirma 
que se trata de resultados estadísticamente raros y pedagógica-
mente significativos, útiles para identificar logros sobresalientes.
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3.	¿Qué tan extremo es un puntaje de 50? ¿Corresponde a un 
caso aislado o advierte problemas más profundos?

Al observar el extremo izquierdo de la figura, se nota que los 
puntajes muy bajos (cercanos a 50) prácticamente no aparecen. 
Esa escasez se corresponde con la probabilidad teórica: menos 
del 1 % de los estudiantes debería obtener un punta je igual o 
inferior a 50. En consecuencia, un puntaje de esa magnitud se 
interpreta como un valor atípico, es decir, una observación aislada 
que se aleja del patrón general del grupo. Por sí solo, un resultado 
tan extremo no implica necesariamente un problema sistémico, 
pero sí invita a analizar de manera individual las condiciones del 
estudiante, la pertinencia de las tareas evaluadas o la presencia 
de factores que hayan afectado su desempeño.

En resumen, la simulación permite a los docentes visualizar 
el patrón esperado de rendimiento y, al mismo tiempo, situar 
cada pregunta en un contexto estadístico claro. El rango 62–78 
funciona como referencia de normalidad, los valores superiores 
al percentil 95 identifican desempeños particularmente eleva-
dos, y un puntaje de 50 constituye un caso inusual que merece 
atención individualizada. Estas interpretaciones respaldan deci-
siones pedagógicas informadas y ayudan a comprender mejor 
la variabilidad natural del aprendizaje en contextos reales.

Los resultados obtenidos en la simulación permiten abrir una 
discusión pedagógica sobre cómo comprender la variabilidad 
del rendimiento estudiantil y cómo traducir estas evidencias en 
decisiones más justas y pertinentes al interior del aula. La forma 
de la distribución, dominada por una concentración amplia al-
rededor del promedio y una presencia muy reducida de casos 
extremos, nos recuerda que el rendimiento académico rara vez 
puede explicarse desde un único factor. Más bien, emerge de una 
combinación compleja de condiciones individuales, experiencias 
previas, formas de enseñanza, intereses, y apoyos disponibles. 
Este reconocimiento no solo es estadístico sino profundamente 
pedagógico, porque invita a mirar al grupo como un conjunto 
diverso, en el que las diferencias no deben ser leídas como fallas, 
sino como puntos de partida distintos.

El hecho de que la mayoría de los estudiantes se concentre 
entre 62 y 78 puntos sugiere que, para ellos, los contenidos y 
exigencias de la prueba se encuentran dentro de un rango de 
desafío razonable. Esta franja central, que reúne aproximada-
mente a dos tercios del grupo, sirve como una referencia valiosa 
para a justar la enseñanza: indica qué habilidades están siendo 
alcanzadas de manera generalizada y cuáles podrían requerir 
ampliación, profundización o un trabajo más contextualizado. En 
este sentido, los puntajes “esperados” no deben asumirse como
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una meta cerrada, sino como un punto de equilibrio desde 
donde impulsar procesos de mejora sin desatender la heteroge-
neidad de trayectorias.

Por otro lado, los estudiantes ubicados en el percentil 95 o 
superior representan un segmento cuya presencia es estadísti-
camente pequeña, pero pedagógicamente relevante. Su rendi-
miento sobresaliente no debe verse solo como un indicador de 
excelencia individual, sino como una señal para la institución: 
la necesidad de ofrecer retos adicionales, fortalecer itinerarios 
diferenciados, promover proyectos de profundización y, sobre 
todo, evitar que estos estudiantes queden desatendidos bajo la 
idea errónea de que “ya dominan” todo lo necesario. La educa-
ción inclusiva también se expresa en la capacidad de ampliar los 
límites para quienes avanzan a ritmos más acelerados, sin que 
ello implique desatender al resto del grupo.

Finalmente, la rareza de un puntaje de 50 abre una reflexión 
importante sobre las dificultades extremas. La estadística mues-
tra que estos casos son poco frecuentes, pero su existencia de-
manda atención cuidadosa. Un punta je muy ba jo puede res-
ponder a múltiples causas: una comprensión insuficiente de los 
contenidos, ansiedad frente a la evaluación, experiencias previas 
de frustración, o incluso barreras externas vinculadas al contex-
to familiar o social. Por ello, más que etiquetar o atribuir déficit, 
resulta necesario adoptar una mirada diagnóstica que considere 
dimensiones emocionales, cognitivas y pedagógicas. Cada caso 
de este tipo constituye una invitación a revisar no solo la trayec-
toria del estudiante, sino también la claridad de las instrucciones, 
la adecuación del instrumento evaluativo y la disponibilidad de 
apoyos adicionales.

La distribución exponencial: tiempos de espera y falta de 
memoria
La distribución exponencial pertenece a la familia de las distribu-
ciones de tiempos de espera. Modela la duración entre eventos 
sucesivos que ocurren de forma aleatoria e independiente, ca-
racterística propia de sistemas que no poseen “historial”.
Su parámetro es la tasa λ 

Su densidad es:      � �

La función de supervivencia es:     �
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Wasserman (2010) subraya que la principal característica de 
la exponencial es su propiedad de falta de memoria:

                     
Esto significa que la probabilidad de esperar un tiempo adi-

cional no depende del tiempo ya transcurrido.
Ejemplos aplicados
1.	 Centros de soporte y sistemas de colas
Los tiempos entre llamadas en una mesa de ayuda suelen mo-

delarse mediante distribuciones exponenciales, especialmente 
cuando el flujo es irregular e impredecible.

2.	 Ingeniería electrónica
El tiempo entre fallas de componentes electrónicos o sensores 

puede aproximarse por una exponencial, especialmente cuando 
se supone una tasa de falla constante.

3.	 Educación digital
En plataformas educativas masivas, los intervalos entre ac-

cesos de estudiantes pueden a justarse a distribuciones de tipo 
exponencial, lo que permite planificar capacidad del servidor o 
predecir picos de demanda.

Caso de estudio: Tiempos de espera entre llamadas en un 
centro de soporte universitario

Un centro de soporte tecnológico de una universidad recibe 
diariamente decenas de solicitudes de ayuda sobre platafor-
mas académicas, contraseñas, fallos de conectividad y uso de 
software. Al analizar los tiempos entre llamadas consecutivas, el 
equipo observa que los intervalos son variables, pero tienden a 
ser cortos cuando hay mayor demanda.

Tras un análisis exploratorio, detectan que los tiempos entre 
llamadas se a justan razonablemente a una distribución expo-
nencial con parámetro λ=0.2, lo que indica un promedio de cinco 
minutos entre solicitudes.

Wasserman (2010) destaca que la distribución exponencial 
es la herramienta natural para modelar tiempos entre eventos 
independientes en sistemas sin memoria, donde el tiempo ya 
transcurrido no afecta la probabilidad del siguiente evento. 

Preguntas que el área de soporte desea responder
•	 	¿Cuál es la probabilidad de esperar más de 10 minutos entre 

una llamada y otra?
•	¿Qué tan probable es recibir dos solicitudes con diferencia 

de menos de un minuto cuando hay alta demanda?
•	¿Cuál es la distribución esperada de tiempos en horas pico 

y qué implicaciones tiene para el número de operadores 
necesarios?
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La Figura 18 representa la simulación de 300 intervalos entre 
llamadas en un centro de soporte universitario, modelados me-
diante una distribución exponencial con parámetro λ = 0.2. La 
forma característica del histograma con barras altas cerca del 
cero y una disminución progresiva hacia la derecha, evidencia 
que los tiempos de espera cortos son mucho más frecuentes que 
los intervalos largos. La curva teórica superpuesta refuerza esta 
lectura: a medida que transcurren más minutos desde la última 
llamada, la probabilidad de que llegue una nueva disminuye 
rápidamente.

Figura 18. 
Simulación de tiempos entre llamadas en un centro de soporte univer-
sitario (n = 300).

Nota. El histograma muestra 300 intervalos simulados entre llamadas según 
una distribución exponencial con parámetro λ  = 0.2, equivalente a un tiempo 
medio de cinco minutos entre solicitudes.

Al responder las preguntas se puede concluir:
1.	 Probabilidad de esperar más de 10 minutos entre una lla-

mada y otra
La caída pronunciada de la curva y la escasez de barras más 

allá de los 10 minutos indican que los intervalos largos son poco 
comunes. El cálculo teórico arroja una probabilidad aproximada 
del 13 %, lo que coincide visualmente con la figura: existe la po-
sibilidad de que se presenten tiempos de espera prolongados, 
pero no constituyen el comportamiento usual. Para el equipo de 
soporte, esto significa que depender de estos lapsos tranquilos 
para organizar el trabajo podría resultar arriesgado, pues ocu-
rren de manera esporádica.
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2.	 Probabilidad de recibir dos solicitudes con diferencia de 
menos de un minuto

En el extremo izquierdo de la figura se observa una concen-
tración notable de barras, todas agrupadas muy cerca del cero. 
Este patrón refleja que los tiempos muy cortos (intervalos me-
nores de un minuto) son relativamente frecuentes. El cálculo de 
la simulación confirma esta tendencia: alrededor del 18 % de los 
intervalos entre llamadas ocurre en menos de un minuto. Desde 
una perspectiva operativa, esto implica que el sistema puede ex-
perimentar “picos súbitos” de solicitudes que exigen una reacción 
inmediata. Para un centro de soporte, esta realidad hace evidente 
la necesidad de contar con suficiente. personal en momentos 
de alta demanda o, en su defecto, mecanismos alternativos que 
ayuden a absorber las solicitudes acumuladas.

3.	Distribución esperada en horas pico y su relación con el 
número de operadores

La simulación permite proyectar cuántas llamadas podrían 
recibirse en períodos de mayor actividad. Con una tasa λ= 0.2 
por minuto, el modelo predice un promedio de 12 llamadas por 
hora, aunque con variaciones. La gráfica, al mostrar que la pro-
babilidad de intervalos cortos es alta, sugiere que en franjas 
específicas podrían acumularse varios requerimientos en poco 
tiempo. Además, la probabilidad de superar las 15 llamadas por 
hora es cercana al 13 %, lo cual no es despreciable.

En términos prácticos, estos resultados implican que un solo 
operador tendría dificultades para mantener un flujo eficiente du-
rante las horas pico. La combinación de muchos intervalos cortos 
y la posibilidad de recibir múltiples llamadas en rápida sucesión 
justifica la presencia de al menos dos operadores para garantizar 
tiempos de respuesta adecuados y evitar congestiones.

En su resumen, la figura y los resultados analíticos revelan un 
sistema donde predominan los intervalos breves, ocasionalmente 
interrumpidos por lapsos más largos. Este comportamiento, típico 
de la distribución exponencial, ayuda a comprender la natura-
leza irregular de la demanda: aunque los promedios son útiles, 
la gestión operativa requiere anticipar escenarios de presión 
inmediata. La simulación se convierte así en una herramienta 
valiosa para dimensionar el equipo, planificar turnos y diseñar 
estrategias de respuesta que mantengan la calidad del servicio 
incluso en momentos de alta demanda.

  Apoyo didáctico: El recorrido por las distribuciones continua 
uniforme, normal y exponencial permite comprender que cada 
una de ellas ofrece una forma distinta de interpretar fenómenos 
reales donde los valores posibles no son discretos, sino parte de 
un intervalo continuo. Desde una perspectiva didáctica, reconocer
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las diferencias conceptuales entre estos modelos ayuda a que 
los estudiantes desarrollen un pensamiento probabilístico más 
flexible y a justado a la variedad de situaciones que pueden en-
contrarse en contextos académicos, científicos y profesionales.

La distribución uniforme introduce la idea de equidad: todos 
los resultados dentro del intervalo tienen la misma probabilidad. 
Su sencillez favorece que los estudiantes transiten de situaciones 
discretas a continuas sin perder de vista la noción fundamental 
de probabilidad. Es un punto de partida ideal para explorar cómo 
se comportan los valores cuando no existe preferencia por ningún 
resultado específico y cómo se distribuyen de manera homogé-
nea en un rango determinado.

La distribución normal, por su parte, incorpora la noción de 
concentración alrededor de un valor central. Su forma de “cam-
pana” no solo aparece en los libros de estadística, sino que se 
manifiesta en una gran cantidad de fenómenos cotidianos: apren-
dizajes, mediciones biológicas, desempeño académico, variacio-
nes naturales, entre otros. Desde la enseñanza, la normal permite 
discutir ideas clave como el comportamiento de la variabilidad, 
el papel del promedio y la importancia de los desvíos respecto 
a ese centro. Más aún, invita a los estudiantes a leer datos desde 
una mirada integral, entendiendo que la mayoría de valores se 
agrupan alrededor del centro y que los casos extremos, aunque 
posibles, ocurren con menor frecuencia.

Finalmente, la distribución exponencial aporta un modelo ade-
cuado para fenómenos en los que se espera que los eventos ocu-
rran de manera repentina y sin memoria. Su carácter asimétrico 
ayuda a los estudiantes a diferenciar situaciones donde el tiempo 
entre eventos tiene un comportamiento decreciente: muchos 
intervalos cortos y muy pocos intervalos largos. Este enfoque es 
especialmente útil para interpretar procesos dinámicos, como 
tiempos de espera, flujos de llamadas o llegadas a un sistema, 
en los que la incertidumbre se expresa de forma distinta a la 
simetría de la normal.

En conjunto, el estudio de estas tres distribuciones no solo 
amplía el repertorio de modelos disponibles, sino que permite 
comparar estructuras, formas, niveles de concentración y signi-
ficados probabilísticos. A nivel didáctico, este contraste favorece 
una comprensión más profunda de la probabilidad continua, 
pues permite que los estudiantes reconozcan que cada modelo 
responde a una lógica particular y se a justa mejor a ciertos tipos 
de fenómenos. Más aún, invita a pensar la estadística como un 
lenguaje que describe comportamientos diversos, y no como un 
conjunto rígido de fórmulas.
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Síntesis conceptual y didáctica: hacia una comprensión pro-
funda de las distribuciones y la modelación estadística

El estudio de las variables aleatorias, sus distribuciones y los mo-
delos que permiten describir fenómenos reales constituye un eje 
fundamental dentro de la educación estadística contemporánea. 
A lo largo de este capítulo se han presentado distintos tipos de 
distribuciones cada una con sus propiedades particulares, pero 
todas relacionadas por la necesidad de comprender la variabi-
lidad inherente a los datos y la manera en que los modelos per-
miten interpretarla y anticiparla. Este epígrafe final tiene como 
propósito integrar los conceptos estudiados, ofrecer una lectura 
pedagógica articulada y mostrar cómo la modelación sirve como 
puente entre la teoría y los problemas reales que docentes y 
estudiantes enfrentan en el aula.

Tal como señalan Bakker (2004) y Batanero (2001), aprender 
estadística no consiste simplemente en manipular fórmulas o 
memorizar definiciones, sino en desarrollar un pensamiento que 
permita comprender patrones, incertidumbres y relaciones dentro 
de los datos. Desde esta perspectiva, las distribuciones continuas 
no se presentan como objetos estáticos, sino como herramientas 
que ayudan a interpretar fenómenos que se expresan en térmi-
nos de densidad, probabilidad acumulada y comportamiento 
global. Comprender su forma, sus parámetros y su utilidad en 
contextos prácticos permite al estudiante construir un sentido 
estadístico que se fortalece mediante la experiencia, la discusión 
y la simulación.

Uno de los aportes más relevantes en educación estadísti-
ca proviene del traba jo de Wild y Pfannkuch (1999), quienes 
sostienen que el pensamiento estadístico implica reconocer la 
necesidad de los datos, transitar entre modelos y realidad, y 
comprender que toda inferencia lleva implícita una dosis de in-
certidumbre. En ese marco, la integración de las distribuciones 
continúa siendo un pilar formativo, pues obliga a los estudiantes 
a observar la forma de los datos, analizar su dispersión, describir 
su comportamiento típico y explicar los casos excepcionales. 
La enseñanza de las distribuciones es, en este sentido, una en-
señanza sobre cómo pensar la variabilidad, cómo razonarla y 
cómo comunicarla.

Asimismo, autores como Borovcnik (2016) han señalado que 
el desarrollo de la alfabetización probabilística requiere no solo 
comprender modelos teóricos, sino también interpretar qué sig-
nifican en contextos donde la información incompleta y la incer-
tidumbre son parte del problema.
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Este enfoque permite que la estadística deje de percibirse 
como una disciplina rígida para convertirse en un terreno de ex-
ploración conceptual donde modelos como la distribución normal 
o la exponencial se interpretan como aproximaciones útiles, pero 
no exactas, de fenómenos que observamos en el mundo real.

La incorporación de simulaciones en este capítulo responde 
precisamente a esta visión contemporánea de la enseñanza es-
tadística: utilizar herramientas tecnológicas no solo para calcular, 
sino para experimentar y visualizar comportamientos. Ben-Zvi 
(2000) destaca que el uso de software, gráficos dinámicos y 
herramientas de simulación amplía la capacidad del estudiante 
para comprender fenómenos que, de otro modo, resultan abs-
tractos o difíciles de representar mentalmente.

En consonancia con este enfoque, el objetivo de este epígrafe 
es reunir los elementos fundamentales que permiten comprender 
las distribuciones continuas desde una perspectiva conceptual y 
pedagógica. Esto incluye analizar el papel de los parámetros y 
los momentos, reconocer la importancia de la variabilidad en la 
modelación de situaciones reales, y reflexionar sobre cómo estas 
ideas contribuyen al desarrollo del pensamiento estadístico y la 
alfabetización necesaria para enfrentar problemas del mundo 
contemporáneo, tal como subrayan Moore (2010), Watson (2006) 
y Pfannkuch (2019).

Parámetros, momentos y significado pedagógico de la forma 
de una distribución
Comprender una distribución de probabilidad implica, ante todo, 
leer su forma. Esa forma simétrica, sesgada, aplanada, concen-
trada o dispersa, no es solo una característica visual, sino una 
expresión de cómo se comportan los datos, qué valores tienden 
a aparecer con mayor frecuencia y cuáles son menos proba-
bles. En educación estadística, enseñar a interpretar la forma de 
una distribución representa uno de los desafíos más relevantes, 
tal como destacan Batanero (2001), Borovcnik (2016) y Watson 
(2006), porque exige que el estudiante transite de observar da-
tos puntuales a comprender patrones agregados que resumen 
un fenómeno.

Desde un punto de vista formal, la descripción de una distribu-
ción se basa en sus parámetros y momentos. Los parámetros,co-
mo la media, la varianza, la desviación estándar o los percentiles; 
permiten identificar el comportamiento central y la medida de 
dispersión. Los momentos aportan información adicional sobre 
la forma: si la distribución es simétrica o está inclinada hacia un 
lado, si presenta colas ligeras o pesadas, o si concentra la mayoría 
de valores alrededor de la media.
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Sin embargo, reducir la enseñanza a la simple definición de 
estos conceptos sería insuficiente. Como señalan Bakker (2004) y 
Wild y Pfannkuch (1999), el desafío pedagógico radica en ayudar 
a los estudiantes a comprender lo que estas medidas significan 
en los datos, y no solo cómo se calculan. Por ejemplo, entender 
que una desviación estándar pequeña implica que la mayoría 
de los valores están cerca del promedio, mientras que una des-
viación grande revela heterogeneidad, diversidad o variabilidad 
significativa. 

Esta comprensión se vuelve especialmente importante cuando 
se comparan distribuciones. La comparación no consiste úni-
camente en determinar cuál media es mayor, sino en analizar 
cómo cambia la forma global y qué implicaciones tiene para in-
terpretar el fenómeno. Tal como explican Moore (2010) y Stewart 
(2013), aprender estadística implica moverse constantemente 
entre representaciones: de los datos individuales al histograma, 
del histograma a los parámetros, y de estos a una interpretación 
contextualizada.

a) La media y la mediana como indicadores del comporta-
miento central

El primer momento de una distribución es su media. Desde 
una perspectiva estadística, representa el punto de equilibrio 
del conjunto de datos, aquello que resume de forma sintética 
el comportamiento típico. Sin embargo, desde la educación 
estadística y siguiendo a Watson (2006), es crucial enseñar 
que la media no es necesariamente el valor más frecuente, ni 
siempre el más representativo. Los estudiantes suelen con-
fundir “promedio” con “valor típico”, lo que exige actividades 
donde la media se compare con la moda, con la mediana o 
con el rango intercuartílico.

La mediana, por su parte, aporta un elemento de interpre-
tación muy valioso cuando la distribución es asimétrica. En la 
distribución normal media y mediana coinciden, pero en la 
distribución exponencial la mediana es siempre menor que la 
media debido a la presencia de colas largas hacia la derecha. 
Esta diferencia es una oportunidad didáctica para discutir con 
los estudiantes la importancia de la forma en la interpretación 
de los parámetros.

Los trabajos de Biehler (2018) subrayan que enseñar variabi-
lidad implica enseñar a interpretar el “típico” no como un valor 
único, sino como un rango razonable de resultados. De ahí que 
la media cobre verdadero sentido cuando se acompaña de una 
medida de dispersión, como la desviación estándar.
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b) La varianza y la desviación estándar como medidas de 
variabilidad

El segundo momento de una distribución describe su disper-
sión. La varianza y la desviación estándar permiten comprender 
qué tan concentrados o dispersos están los valores con respecto 
a la media. Ahora bien, desde la didáctica, explicar la varianza 
puede ser una tarea compleja, pues el estudiante tiene dificul-
tades para interpretar el uso del cuadrado en su cálculo y para 
visualizar qué significa en términos de datos reales.

En cambio, la desviación estándar al estar en las mismas uni-
dades que la variable original se vuelve una herramienta mucho 
más intuitiva. Moore (2010) insiste en que su enseñanza debe 
apoyarse en ejemplos visuales, gráficos y simulaciones que per-
mitan observar cómo aumenta o disminuye la dispersión en el 
histograma cuando la desviación cambia. Una actividad didác-
tica habitual consiste en tomar una muestra y generar nuevas 
simulaciones con diferentes grados de variabilidad, de modo que 
los estudiantes puedan ver cómo cambia la forma de la distribu-
ción en función de la dispersión.

En el caso de la distribución normal, la relación entre la des-
viación estándar y las áreas bajo la curva constituye un recurso 
pedagógico muy potente. Permite comprender por qué valores 
como 62 o 78 puntos en el caso de los resultados de la prueba 
simulada representan desempeños comunes, mientras que pun-
ta jes como 83 o 50 son menos frecuentes o incluso excepciona-
les. Esto conecta directamente la medida de dispersión con la 
interpretación contextual: la estadística deja de ser un número 
y se convierte en un argumento.

argumento.

c) Asimetría, colas y significado contextual
La asimetría es quizá uno de los elementos menos abordados 

en los cursos iniciales, a pesar de su importancia para la inter-
pretación de muchas distribuciones reales. Tal como recuerda 
Borovcnik (2016), la mayor parte de los fenómenos aleatorios 
no presentan simetría perfecta, sino que muestran sesgos más o 
menos pronunciados. En la práctica, fenómenos como tiempos de 
espera, rendimiento en tareas complejas o ingresos económicos 
tienden a presentar colas largas hacia la derecha, como ocurre 
con la distribución exponencial que se utilizó en la simulación 
de llamadas.

d) Curtosis y concentración
La curtosis analiza si una distribución presenta colas más pe-

sadas o más ligeras que la normal. Aunque puede parecer un 
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concepto avanzado, resulta útil en situaciones donde se necesita 
identificar fenómenos con alta presencia de valores extremos. 
En contextos educativos, este parámetro permite discutir sobre 
dispersiones irregulares, situaciones de riesgo o variabilidad muy 
alta, elementos que Watson (2006) considera fundamentales 
para que el estudiante comprenda la incertidumbre inherente a 
los datos reales.

Caso de estudio: Interpretación de parámetros, momentos y 
forma en los resultados de una prueba diagnóstica

Contexto general
Una institución educativa ha iniciado un programa de refuerzo 

en Matemática para estudiantes de primer curso de bachillerato. 
Como punto de partida, se aplicó una prueba diagnóstica de 40 
ítems (cada uno vale 1 punto) a 150 estudiantes. El puntaje total de 
cada estudiante puede variar entre 0 y 40 puntos y se almacena 
en una base de datos junto con un identificador de estudiante.

Los docentes no quieren limitarse a obtener un promedio ge-
neral. Su objetivo es:

•	 Describir cómo se distribuyen los puntajes en el grupo (ten-
dencia central y dispersión).

•	 Analizar qué tan homogénea es la cohorte (variabilidad de 
los resultados).

•	 Identificar si la distribución presenta asimetría (más estu-
diantes con puntajes bajos o altos).

•	 Explorar niveles de desempeño (ba jo, medio, alto) para 
orientar mejor el plan de refuerzo.

•	 Extraer implicaciones didácticas: ¿necesitan trabajar habi-
lidades básicas, resolución de problemas, comprensión de 
funciones, etc.?

La distribución presentada en la Figura 19 permite observar 
con bastante claridad cómo se comportarían los puntajes de un 
grupo de estudiantes si enfrentaran una prueba diagnóstica de 
40 preguntas bajo condiciones promedio. 

El histograma muestra una forma aproximadamente simétrica, 
con una mayor concentración de estudiantes alrededor de los 
22 puntos, valor que coincide con la media calculada mediante 
la simulación.

Este comportamiento sugiere que la mayoría del grupo presen-
ta un nivel de dominio intermedio sobre los contenidos evaluados. 
Es decir, una buena parte de los estudiantes logra responder 
correctamente un poco más de la mitad de los ítems, mientras 
que solo unos pocos alcanzan valores muy altos o muy bajos. La 
presencia de una ligera dispersión hacia la derecha indica que 
existen estudiantes que obtienen puntuaciones más elevadas, 
aunque representan un porcentaje reducido.
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Figura 19. 
Distribución de puntajes simulados en la prueba diagnóstica de 
Matemática

 

Nota. La figura muestra la distribución de los puntajes simulados de 150 
estudiantes en una prueba diagnóstica de 40 ítems. Los datos se generaron 
mediante una distribución binomial con parámetros n=40 y p=0,55.

El análisis también muestra que los puntajes extremos tanto muy 
bajos como muy altos, son relativamente poco frecuentes. Esto es un 
indicio de que, en general, el grupo no se encuentra polarizado, sino 
que comparte un nivel de desempeño relativamente homogéneo. 

Desde una perspectiva pedagógica, este tipo de distribución 
resulta útil porque permite anticipar el nivel de apoyo que será 
necesario brindar al inicio del curso: un promedio moderado, 
variabilidad controlada y pocos valores atípicos suelen asociarse 
con grupos que requieren refuerzo puntual, pero no necesaria-
mente intervenciones intensivas.

Modelación de fenómenos reales: variabilidad, patrones y predicción
La estadística se vuelve verdaderamente significativa cuando per-
mite comprender fenómenos reales. En el aula, esto implica ayudar 
a los estudiantes a interpretar variabilidad, identificar patrones y 
utilizar modelos para anticipar comportamientos posibles. 

En coherencia con este enfoque, Biehler (2018) sostiene que 
la modelación estadística representa un pilar para el desarrollo 
del pensamiento estadístico porque permite que los estudiantes 
pasen de describir datos a razonar con ellos y a tomar decisiones 
fundamentadas en la incertidumbre.
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Este subepígrafe busca mostrar cómo las distribuciones continuas 
funcionan cómo los parámetros permiten realizar inferencias y predic-
ciones razonables. A través de los casos simulados trabajados previa-
mente, se demuestra que modelar no consiste en replicar la realidad 
de manera exacta, sino en construir una representación que ilumine 
relaciones relevantes y ayude a responder preguntas pertinentes.

a) De los datos al modelo: interpretar la variabilidad como 
rasgo del fenómeno

En educación estadística, uno de los desafíos más complejos 
es lograr que los estudiantes no interpreten la variabilidad como 
“error” o “ruido”, sino como una característica natural del fenó-
meno que se estudia. Watson (2006) y Pfannkuch (2019) enfati-
zan que desarrollar una mirada estadística implica reconocer que 
los datos reales rara vez siguen un patrón perfecto y que esta 
imperfección es justamente lo que hace necesaria la modelación.

El caso de los punta jes en la prueba estandarizada es un 
ejemplo claro. La variabilidad entre estudiantes no es un pro-
blema a corregir: es un rasgo esperado, producto de múltiples 
factores cognitivos, emocionales, socioculturales y pedagó-
gicos. Tal como explica DeVeaux, Velleman y Bock (2019), los 
rendimientos suelen agruparse alrededor de un nivel promedio, 
generando una forma aproximadamente simétrica que se ase-
meja a la curva normal. Esto no significa que la población esté 
“perfectamente normalizada”, sino que la normal es un modelo 
adecuado para representar tendencias globales cuando los 
factores que influyen son variados e independientes.

Al construir la simulación en R y en Jamovi y observar la 
curva superpuesta, los estudiantes pueden comprender vi-
sualmente cómo el modelo refleja patrones reales: concentra-
ción alrededor del promedio, dispersión moderada, presencia 
ocasional de punta jes altos y ba ja probabilidad de valores 
extremos. En términos pedagógicos, esta vinculación entre 
contexto, datos y modelo es lo que permite que la estadística 
deje de ser un conjunto de cálculos y se convierta en una forma 
de interpretar fenómenos.

b) Distribuciones para fenómenos distintos: normalidad, uni-
formidad y tiempos exponenciales
Cada distribución continua describe una estructura interna dis-
tinta. Enseñar esta diferencia tiene implicaciones directas tanto 
en la comprensión conceptual como en la capacidad de aplicar 
el modelo adecuado a cada caso. Cada distribución continua 
describe una estructura interna distinta. Enseñar esta diferencia 
tiene implicaciones directas tanto en la comprensión conceptual 
como en la capacidad de aplicar el modelo adecuado a cada caso.
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La distribución normal: concentración, simetría y comporta-
miento típico

La distribución normal aparece en procesos donde intervienen 
múltiples factores pequeños que actúan de manera acumulativa. 
Montgomery y Runger (2018) explican que esta regularidad está 
respaldada por el Teorema Central del Límite, lo que convierte a 
la normal en un modelo robusto para describir fenómenos como 
calificaciones, mediciones biológicas, errores instrumentales y 
desempeños humanos. La simulación de los 120 puntajes muestra 
precisamente esta estructura: valores concentrados entre 62 y 
78, simetría ligera y casos extremos poco frecuentes.

La enseñanza debe poner énfasis en que la normal no es un 
“molde perfecto”, sino una herramienta para describir tendencias. 
Como sugiere Moore (2010), los estudiantes deben aprender a 
identificar cuándo la forma observada se acerca a una normal y 
cuándo no, para decidir si es un modelo pertinente.

La distribución uniforme: equidad y ausencia de concentración
La distribución uniforme permite modelar fenómenos donde 

todos los valores dentro de un intervalo son igualmente probables. 
Aunque menos frecuente en aplicaciones reales, es fundamental 
desde una perspectiva didáctica porque ayuda a introducir la 
idea de densidad constante y a contrastarla con distribuciones 
más complejas. Stewart (2013) sostiene que su valor pedagógico 
radica en mostrar una forma ideal que raramente se observa en 
la práctica, pero que permite comprender principios fundamen-
tales sobre intervalos, continuidad y probabilidad.

Casos reales como la selección de números pseudoaleato-
rios, la simulación de ubicaciones geográficas o la asignación 
de horarios pueden ilustrar este comportamiento. Cuando se 
simulan datos uniformes en R o Jamovi, la ausencia de picos o 
concentraciones facilita la discusión sobre qué significa “igual 
probabilidad” en contextos continuos.

La distribución exponencial: tiempos de espera y eventos 
sin memoria

El caso de los intervalos entre llamadas en un centro de sopor-
te universitario es un ejemplo excelente de cómo la distribución 
exponencial describe fenómenos donde predominan los inter-
valos cortos, pero existen probabilidades no despreciables de 
esperas más largas. Wasserman (2010) resalta que la exponencial 
se utiliza para modelar tiempos entre eventos independientes 
en sistemas sin memoria, fenómeno que no puede ser descrito 
adecuadamente con una distribución normal.

La simulación realizada en R revela una caída pronunciada en 
los primeros minutos y una cola larga hacia la derecha, lo que 
permite responder preguntas como:
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•	¿Cuál es la probabilidad de esperar más de 10 minutos entre 
llamadas?

•	¿Qué tan probable es que dos llamadas lleguen con menos 
de 1 minuto de diferencia?

•	¿Cómo impacta esta variabilidad en el número de opera-
dores necesarios?

Este tipo de análisis es clave para mostrar que la estadística 
no solo describe, sino que ayuda a tomar decisiones en escena-
rios reales.

c) Predicción razonada: del modelo a la toma de decisiones
La estadística no predice valores exactos; predice comporta-

mientos probables. James (2017) insiste en que la enseñanza de 
la incertidumbre debe incluir la idea de “predicción razonada”: el 
modelo no garantiza lo que sucederá, pero orienta lo que puede 
esperarse.

En el caso de la distribución normal de puntajes, el modelo 
permite estimar la proporción de estudiantes que probablemente 
se ubiquen en el rango esperado (62–78) y detectar casos atí-
picos que requieren atención pedagógica. Esto es crucial para 
la toma de decisiones educativas: identificar brechas, planifi-
car refuerzos, valorar desempeños atípicos o reconocer logros 
excepcionales.

En el caso de la distribución exponencial, la predicción per-
mite anticipar picos de demanda y a justar recursos: número de 
operadores, distribución de turnos, tiempos de respuesta. Efron 
y Tibshirani (1993) han contribuido significativamente a este 
enfoque a través del bootstrapping y la simulación como méto-
dos para generar intervalos de confianza en situaciones donde 
la teoría tradicional resulta insuficiente. Integrar estas técnicas 
ayuda a los estudiantes a comprender que los modelos estadís-
ticos no solo describen, sino que también permiten anticipar lo 
que podría ocurrir bajo distintas condiciones.

Autores como Hastie et al. (2009) y James et al. (2021) desta-
can que la predicción estadística se fortalece cuando se combi-
na la teoría con herramientas computacionales. En el aula, esto 
implica promover experiencias donde los estudiantes simulen, 
modifiquen parámetros y observen cómo los modelos responden, 
permitiendo un aprendizaje más profundo y significativo.

Caso de estudio: Predicción de la demanda de energía eléc-
trica en un campus universitario

Contexto general
Un campus universitario de tamaño medio ha comenzado a 

experimentar aumentos inesperados en su consumo diario de 
energía eléctrica. Estos cambios dificultan la gestión operativa
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el área administrativa debe anticipar gastos, programar man-
tenimientos, prevenir sobrecargas en los edificios y garantizar 
que la infraestructura responda adecuadamente a la demanda 
del estudiantado y del personal docente.

Para comprender mejor el comportamiento del consumo, la 
institución implementa un sistema de monitoreo que registra me-
diciones horarias durante un trimestre completo. Con esta informa-
ción, el equipo técnico busca identificar patrones, reconocer fuen-
tes de variabilidad y construir modelos predictivos que permitan 
tomar decisiones más eficientes y anticipar situaciones críticas.

El propósito central del estudio es modelar el comportamiento 
del consumo energético, explicar sus fluctuaciones y generar 
pronósticos confiables para su gestión institucional.

Datos disponibles
Se recopilaron mediciones horarias durante 90 días consecu-

tivos. Las variables registradas fueron:
•	 Hora del día (0–23)
•	 Consumo eléctrico (kWh) por edificio
•	 	Condiciones climáticas (temperatura y nubosidad)
•	 Tipo de jornada (laboral, fin de semana o feriado)
•	 Eventos especiales (seminarios, congresos, actividades 

masivas)
Preguntas que el equipo desea responder
El análisis se orienta a resolver interrogantes clave que permi-

tan comprender y anticipar el comportamiento energético del 
campus. Entre las principales preguntas se encuentran:

1.	¿Cómo varía el consumo de energía a lo largo del día y qué 
tan estable es este comportamiento?

2.	¿Existen diferencias significativas entre el consumo regis-
trado en días laborales y en fines de semana?

3.	¿En qué medida la temperatura contribuye al incremento 
o disminución del consumo diario?

4.	¿Cuáles son los patrones horarios o semanales más caracte-
rísticos y cuáles representan los picos de mayor demanda?

5.	¿Qué escenarios de consumo pueden anticiparse ante cam-
bios en la temperatura o ante la realización de eventos 
institucionales?

6.	¿Qué decisiones operativas o presupuestarias pueden to-
marse a partir de las predicciones obtenidas?

La figura 20 evidencia que el consumo energético del campus 
universitario no se mantiene constante a lo largo del día, sino 
que sigue un patrón claramente diferenciado según el nivel de 
actividad institucional. Durante la madrugada y las primeras ho-
ras de la mañana, el consumo promedio se mantiene en valores 
cercanos a 40–43 kWh, lo que coincide con periodos de baja 
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ocupación y uso limitado de instalaciones. A partir de las 8:00, 
se observa un ascenso pronunciado que alcanza niveles entre 
58 y 60 kWh, representando el inicio de la jornada académica y 
el encendido de equipos, oficinas y laboratorios.

Figura 20.
Patrón diario del consumo energético promedio en el campus 
universitario

 

Nota. La figura muestra la variación del consumo medio de energía eléctrica 
(kWh) a lo largo de las 24 horas del día, calculado a partir del registro hora-
rio de un trimestre académico.

El consumo llega a su punto más alto entre las 11:00 y las 15:00, 
donde se registran valores cercanos a 65 kWh, momento que 
coincide con el mayor flujo de estudiantes y actividades opera-
tivas. Hacia las 17:00 el consumo desciende gradualmente hasta 
situarse nuevamente en torno a los 40 kWh por la noche. 

La figura 21 muestra de manera clara que el consumo energé-
tico diario presenta comportamientos distintos entre días labo-
rales y fines de semana. En los días laborales, los valores oscilan 
aproximadamente entre 30 y 100 kWh, con una mediana cercana 
a los 55–60 kWh, lo que indica una demanda sostenidamente 
alta durante la actividad académica regular. La amplitud del 
rango y la presencia de consumos elevados sugiere una mayor 
variabilidad vinculada al uso intensivo de aulas, oficinas, equipos 
eléctricos y circulación constante de personas. 

En los fines de semana, en cambio, el consumo se reduce de 
forma notable: los valores se concentran entre 15 y 70 kWh, con 
una mediana alrededor de los 35–40 kWh, reflejando una activi-
dad institucional más baja y homogénea. La aparición de algu-
nos puntos atípicos sobre los 70–80 kWh sugiere la realización 
ocasional de eventos o actividades extraordinarias que elevan 
temporalmente la demanda
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Figura 21.
Consumo energético en días laborales y fines de semana

Nota. La figura compara la distribución del consumo diario de energía 
(kWh) entre días laborales y fines de semana.

La figura 21 evidencia que, aunque el consumo energético 
horario presenta una amplia dispersión, existe una tendencia 
general al incremento conforme la temperatura ambiente au-
menta. Para temperaturas entre 15 y 20 °C, los consumos ob-
servados suelen situarse entre 20 y 60 kWh, con varios puntos 
que descienden incluso por deba jo de los 20 kWh. A medida 
que la temperatura alcanza valores intermedios, entre 22 y 28 
°C, la nube de puntos se vuelve más densa y los consumos se 
concentran principalmente entre 40 y 80 kWh, lo que sugiere 
una mayor demanda de equipos de ventilación, climatización 
o incremento de la actividad en el campus.

Figura 22.
Relación entre la temperatura y el consumo energético en el 
campus

Nota. La figura muestra la relación entre la temperatura ambiente (°C) y 
el consumo energético horario (kWh).
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En el rango más alto, por encima de 30 °C, se observan consu-
mos que superan con facilidad los 80 kWh, llegando en algunos 
casos a valores cercanos a los 100 kWh. La línea de tendencia 
ascendente confirma que la relación entre temperatura y consu-
mo, aunque moderada, es positiva: temperaturas más elevadas 
tienden a vincularse con mayores niveles de gasto energético. 
Este patrón cuantitativo permite inferir que el clima puede con-
vertirse en un factor relevante para planificar la gestión de la 
demanda, especialmente en jornadas de calor intenso.

La figura 22 revela que el consumo energético promedio va-
ría de manera notable a lo largo de la semana, lo que sugiere 
la presencia de patrones asociados al ritmo de actividad del 
campus. Los valores más bajos se registran los domingos y los 
sábados, con promedios cercanos a 38 kWh, lo que coincide con 
la reducción natural de actividades académicas y administrativas 
durante el fin de semana. 

Figura 23.
Consumo medio de energía por día de la semana en el campus 
universitario
 

Nota. La figura muestra el consumo promedio de energía (kWh) registrado 
para cada día de la semana durante el período de observación.

En contraste, los días laborables muestran consumos signifi-
cativamente superiores. Entre ellos, lunes, martes, miércoles y 
jueves presentan valores muy similares, rondando los 55 kWh, 
lo que evidencia un comportamiento estable y elevado de la 
demanda en la primera parte de la semana. El viernes, aunque 
mantiene un promedio elevado (aproximadamente 58 kWh), se 
ubica como uno de los días con mayor consumo, posiblemente 
debido al cierre de actividades semanales, el uso intensivo de 
laboratorios o la concentración de eventos institucionales.
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La figura 23 muestra un comportamiento horario del consumo 
energético caracterizado por una marcada variabilidad, con os-
cilaciones frecuentes entre valores bajos cercanos a los 20–30 
kWh y picos que superan los 90 kWh en distintos momentos del 
periodo observado.

Figura 24.
Serie temporal del consumo horario de energía en el campus 
universitario

 

Nota. La figura presenta la evolución del consumo de energía (kWh) registra-
da hora a hora durante el periodo analizado.

Este patrón refleja la dinámica propia de un campus univer-
sitario, en el que la demanda eléctrica se incrementa en franjas 
asociadas a actividades académicas, uso de laboratorios, encen-
dido de sistemas de climatización o eventos puntuales, mientras 
disminuye en horarios de menor ocupación. Aunque no se aprecia 
una tendencia clara al alza o a la baja durante el periodo anali-
zado, sí se observan ciclos recurrentes de aumento y disminución 
que sugieren comportamientos diarios relativamente estables, 
influenciados por rutinas institucionales. 

Desarrollo del pensamiento estadístico y lectura crítica de la 
incertidumbre

La enseñanza de la estadística no puede reducirse a la transmi-
sión de fórmulas, métodos o procedimientos. Implica, ante todo, 
desarrollar en los estudiantes una forma particular de pensar: 
un pensamiento estadístico capaz de interpretar la incertidum-
bre, cuestionar patrones aparentes, reconocer la variabilidad 
como un elemento inherente a los fenómenos reales y utilizar 
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modelos probabilísticos de manera crítica y contextualizada. Wild 
y Pfannkuch (1999) fueron pioneros en describir este enfoque, 
afirmando que el pensamiento estadístico se basa en cuatro com-
ponentes esenciales: la necesidad de los datos, el entendimiento 
de la variabilidad, la construcción de modelos y la integración 
de estos modelos en el razonamiento empírico.

estos modelos en el razonamiento empírico.
En coherencia con esta visión, este subepígrafe se centra en 

cómo el estudio de las distribuciones continuas contribuye al desa-
rrollo de una alfabetización estadística profunda, crítica y orienta-
da a la toma de decisiones. La meta no es solo que los estudiantes 
sean capaces de identificar la forma de una distribución, sino 
que puedan interpretar su significado, evaluar su pertinencia y 
emplearla para explicar y comprender fenómenos reales.

a) La importancia de la incertidumbre como objeto de 
enseñanza

En la mayoría de los contextos educativos, los estudiantes 
se familiarizan con la noción de error, pero no con la noción de 
variabilidad. Mientras que el error se percibe como algo que 
debe evitarse o corregirse, la variabilidad debe ser comprendida 
como una propiedad inherente de los fenómenos y un insumo 
clave para el análisis estadístico. Autores como Borovcnik (2016) 
y Pfannkuch (2019) han destacado que la incertidumbre no debe 
abordarse desde una perspectiva puramente matemática, sino 
también desde una perspectiva epistemológica y didáctica: ¿qué 
implica que un fenómeno sea incierto?, ¿por qué no podemos 
predecir un valor exacto?, ¿qué significa hablar de probabilidades 
en lugar de certezas?

Cuando los estudiantes trabajan con simulaciones como las 
realizadas en este capítulo comienzan a observar que, incluso 
bajo un mismo modelo, los resultados pueden variar notablemen-
te entre repeticiones. Esta experiencia es crucial para romper la 
idea de que la estadística proporciona respuestas deterministas. 
Simular 300 tiempos entre llamadas con una distribución ex-
ponencial produce siempre un patrón reconocible, pero nunca 
idéntico. Esta irregularidad dentro de una regularidad general es 
una puerta de entrada privilegiada al pensamiento estadístico.

Bakker (2004) sostiene que este tipo de experiencias prácticas 
permite que los estudiantes desarrollen una sensibilidad hacia 
la estructura del fenómeno: comprenden qué aspectos son más 
estables (como la forma general de la curva) y cuáles son más 
fluctuantes (como los valores puntuales de cada simulación). 
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Esta capacidad de distinguir tendencias de ruido es una de las 
competencias centrales de la alfabetización estadística.

b) La simulación como herramienta para visualizar patrones 
y consolidar conceptos

El uso de simulaciones ocupa un lugar cada vez más central 
en la educación estadística contemporánea. Ben-Zvi (2000) ha 
mostrado que las herramientas tecnológicas permiten a los es-
tudiantes visualizar patrones que de otro modo permanecen 
ocultos, manipular parámetros en tiempo real y observar cómo 
se altera la forma de la distribución cuando cambia la media, la 
desviación estándar o el parámetro λ . Esta interactividad trans-
forma la relación con la estadística: de una actividad abstracta 
basada en procedimientos, a una actividad exploratoria que 
promueve la indagación y el descubrimiento.

En este capítulo, las simulaciones generadas en Jamovi y R 
permitieron recrear:

•	 Una distribución normal de puntajes, donde los estudian-
tes pudieron identificar un comportamiento concentrado 
alrededor del promedio, observar la simetría y reconocer 
la baja probabilidad de casos extremos;

•	 	una distribución exponencial de tiempos de espera, donde 
se evidenció la presencia de muchos intervalos cortos y 
pocos intervalos largos, reforzando el concepto de “falta 
de memoria” del modelo;

•	 una distribución uniforme, útil para explicar estructuras sin 
concentración, como la selección aleatoria en un intervalo 
continuo.

Estas experiencias no solo fortalecen la comprensión con-
ceptual, sino que promueven en los estudiantes una actitud in-
terrogativa: ¿por qué la curva tiene esa forma?, ¿qué sucede si 
cambio el parámetro?, ¿cómo interpretar las colas largas?, ¿qué 
implican los casos raros para la toma de decisiones? Esta actitud 
inquisitiva es un componente clave del pensamiento estadístico, 
como señalan James (2017) y Watson (2006).

c) Competencias de lectura crítica: interpretar modelos sin 
idolatrarlos

Un desafío importante en la enseñanza consiste en evitar que 
los estudiantes atribuyan a los modelos un estatus absoluto. La 
estadística trabaja con aproximaciones, no con certezas. Efron 
y Tibshirani (1993) recuerdan que todo modelo es una represen-
tación parcial del fenómeno, no su réplica exacta. 
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Por ello es esencial que los estudiantes desarrollen una lectura crí-
tica que les permita preguntarse si un modelo es adecuado, si los su-
puestos se cumplen y si los resultados se interpretan correctamente.

El caso de los puntajes simulados con una distribución normal 
ilustra esta necesidad. Aunque la distribución normal fue un mo-
delo adecuado, no implica que todos los fenómenos educativos 
presenten simetría o concentración alrededor de un promedio. 
Del mismo modo, la distribución exponencial permitió modelar 
razonablemente los tiempos entre llamadas, pero sería inapropia-
do utilizarla para describir fenómenos donde existe dependencia 
temporal o donde los eventos no son aleatorios.

La lectura crítica también implica comprender las consecuen-
cias prácticas del modelo. En el caso exponencial, por ejemplo, 
la probabilidad de intervalos menores de un minuto tiene im-
plicaciones directas para la gestión de personal: es necesario 
considerar momentos de alta carga y evitar decisiones basadas 
únicamente en promedios. Tal como advierten James et al. (2021), 
la estadística aplicada requiere interpretar los modelos en su 
contexto, reconociendo sus límites y alcances.

d) La alfabetización estadística como competencia para el 
siglo XXI

La alfabetización estadística es considerada hoy una compe-
tencia esencial. Watson (2006) y Pfannkuch (2019) destacan que 
esta competencia no se reduce al dominio técnico, sino que incluye 
elementos éticos, comunicativos y epistemológicos: saber qué 
afirmaciones son legítimas, qué incertidumbres deben explicitar-
se, cómo comunicar resultados sin inducir a error y cómo tomar 
decisiones públicas o institucionales fundamentadas en evidencia.

Este capítulo contribuye a esa alfabetización mostrando que:
•	 los modelos estadísticos permiten comprender fenómenos 

complejos de manera más clara y manejable;
•	 la variabilidad no es un problema, sino una fuente de 

información;
•	 los parámetros y la forma de una distribución cuentan his-

torias sobre el fenómeno;
•	 las simulaciones son herramientas pedagógicas poderosas 

para explorar, cuestionar y consolidar ideas;
•	 la lectura crítica es indispensable para evitar conclusiones 

simplistas o modelos inapropiados.
El recorrido realizado a lo largo de este epígrafe permitió arti-

cular de manera integrada tres dimensiones fundamentales de la 
educación estadística contemporánea: (a) la comprensión de los 
parámetros y momentos como expresiones del comportamiento
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global de una distribución; (b) la modelación de fenómenos 
reales a través de distribuciones continuas como la uniforme, la 
normal y la exponencial; y (c) el desarrollo de un pensamiento 
estadístico orientado a la interpretación crítica de la incertidum-
bre y la variabilidad.

Esta integración es indispensable para formar ciudadanos 
capaces de comprender datos, evaluar riesgos, interpretar ten-
dencias y tomar decisiones fundamentadas, tal como señalan 
Watson (2006) y Pfannkuch (2019). Una enseñanza que se limite 
a presentar fórmulas pierde de vista la riqueza conceptual que 
caracteriza a la estadística como disciplina y como práctica 
social. Por ello, autores como Bakker (2004), Batanero (2001) y 
Moore (2010) insisten en que la variabilidad debe convertirse en 
el eje central del currículo: no como un elemento accesorio, sino 
como la clave para entender por qué necesitamos modelos pro-
babilísticos y cómo estos nos permiten pensar fenómenos reales.

Conclusiones 

El Capítulo 3 mostró que comprender variables aleatorias y dis-
tribuciones continuas es esencial para interpretar la variabilidad 
inherente a los fenómenos reales, donde se enfatiza en que la 
estadística no debe enseñarse como un conjunto de fórmulas 
aisladas, sino como una forma de pensar que permite identificar 
patrones, reconocer incertidumbres y analizar datos desde una 
perspectiva crítica. 

Las distribuciones uniforme, normal y exponencial no se pre-
sentan como objetos abstractos, sino como modelos que ayudan 
a describir distintos comportamientos: equidad en la uniforme, 
concentración y simetría en la normal, y tiempos de espera asi-
métricos en la exponencial.

A través de simulaciones desarrolladas en R y Jamovi, el capí-
tulo mostró el valor educativo de visualizar patrones y contras-
tar lo esperado con lo observado. Este enfoque, ayuda al estu-
diantado a comprender que la estadística opera en escenarios 
donde la certeza es imposible, pero donde sí es posible razonar 
de manera informada. Las simulaciones permiten experimentar, 
a justar parámetros y explorar cómo cambia la forma de una 
distribución, fortaleciendo la comprensión conceptual y el pen-
samiento estadístico. 
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Capítulo IV

Pensamiento inferencial: del dato a 
la argumentación

Introducción

Cuando traba jamos con datos en el aula o en la investiga-
ción social, tarde o temprano aparece una pregunta que no 
puede responderse solo mirando una tabla o un gráfico: ¿po-
demos extender lo que vemos en esta muestra a un grupo 
más amplio? Este capítulo parte justamente de ese punto. 
La estadística inferencial nos permite dar el salto entre lo 
conocido y lo posible, entre la información que ya tenemos 
y las conclusiones que buscamos construir. No se trata de 
“adivinar” ni de confiar ciegamente en los números, sino de 
aprender a razonar con incertidumbre y a tomar decisiones 
informadas a partir de evidencias que nunca son perfectas, 
pero sí pueden ser suficientemente sólidas.

A lo largo de estas páginas exploraremos cómo conceptos 
como población, muestra, sesgo, error estándar o pruebas de 
hipótesis se enlazan para formar una estructura de pensamien-
to que nos ayuda a interpretar situaciones reales. Veremos que 
detrás de cada estimación hay elecciones que deben hacerse 
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con cuidado: a quién incluir, cómo medir, qué instrumento usar, 
cuánta variabilidad aceptar y qué tipo de pregunta se desea 
responder. Cuando estas decisiones se vuelven conscientes, el 
análisis deja de ser un procedimiento mecánico y se transforma 
en una forma de lectura crítica de la realidad.

Este capítulo invita a mirar los datos con una actitud reflexiva. 
Estimar un parámetro, construir un intervalo de confianza o con-
trastar una hipótesis no tiene sentido si se realiza sin interpretar 
el contexto que les da origen. Por eso, además de presentar las 
herramientas inferenciales más comunes, se propone una lectura 
que conecte los resultados con escenarios educativos, sociales 
y cotidianos. La intención es que el lector descubra que la infe-
rencia estadística no consiste en aplicar pruebas, sino en argu-
mentar con evidencias, reconocer límites, entender la variabilidad 
y, sobre todo, aprender a justificar con claridad aquello que los 
datos realmente permiten afirmar.

 Población, muestra y sesgo: decisiones de muestreo en la 
práctica
Comprender cómo se define una población y cómo se selecciona 
una muestra es un paso decisivo para desarrollar un pensamiento 
inferencial sólido. La población nunca es solo un número o una 
lista: es una construcción conceptual que orienta la mirada sobre 
el fenómeno y define el alcance de la indagación. Como explica 
Batanero (2001), los estudiantes suelen tener dificultades para 
distinguir entre “lo que se quiere estudiar” y “los datos que efecti-
vamente se tienen”, por lo que enseñar a delimitar una población 
implica enseñar a pensar el fenómeno desde su origen.

Construyendo significado: hacia una comprensión crítica de la 
muestra

Desde esta perspectiva, la muestra adquiere un sentido más 
amplio que el de un simple subconjunto, una muestra representa 
una ventana hacia algo más grande; no pretende replicar la po-
blación de manera exacta, sino proporcionar una base razona-
ble para realizar inferencias. Esto significa que seleccionar una 
muestra requiere preguntarse quiénes están incluidos, quiénes 
quedan fuera y por qué. Estos interrogantes, que pueden parecer 
menores, son imprescindibles para desarrollar una actitud crítica 
frente a los datos.
Ejemplo 1: La encuesta sobre hábitos de lectura
Supongamos que una institución quiere conocer los hábitos de 
lectura de los estudiantes de bachillerato.
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•	 Población: todos los estudiantes de bachillerato de la 
institución.

•	 Muestra no probabilística: únicamente quienes asisten a la 
biblioteca en la hora del recreo.

Aunque puede parecer práctico, este tipo de muestra introduce 
un sesgo de selección, porque quienes frecuentan la biblioteca 
suelen tener mayor afinidad por la lectura. Este tipo de decisio-
nes afecta de manera directa la validez del estudio, ya que se 
genera una imagen distorsionada del fenómeno.

En la práctica educativa también resulta útil distinguir entre 
métodos probabilísticos y no probabilísticos. Los primeros buscan 
garantizar que todos los individuos de la población tengan algu-
na posibilidad conocida de ser seleccionados, mientras que los 
segundos suelen basarse en la accesibilidad y la disponibilidad. 

Ejemplo 2: Muestreo aleatorio simple en una clase
Un docente desea conocer el nivel de satisfacción de sus es-

tudiantes con el traba jo en proyectos. En lugar de encuestar 
solo a quienes llegaron temprano o levantaron la mano (muestra 
sesgada), decide:

1.	 Numerar a todos los estudiantes del curso.
2.	 Usar una aplicación para seleccionar 10 números al azar.
Este procedimiento reduce la influencia de preferencias per-

sonales, tiempos de llegada o motivaciones individuales. Horton 
(2015) señala que mostrar estos pasos a los estudiantes com-
plementa la enseñanza del muestreo con una dimensión ética y 
metodológica.

Imaginemos ahora que se quiere estudiar la percepción sobre 
el uso de tecnología en el aula en un colegio con una proporción 
desigual entre hombres y mujeres. Si se toma una muestra alea-
toria simple, pueden quedar sobre o subrepresentados ciertos 
grupos, lo que afectaría la posibilidad de comparar experiencias 
o actitudes entre géneros. El muestreo estratificado permite or-
ganizar la población por género y seleccionar al azar dentro 
de cada estrato, de manera que las voces de todos los grupos 
aparezcan en la proporción que les corresponde.

El concepto de sesgo también juega un papel central en este 
epígrafe. No se trata de un error accidental, sino de una deforma-
ción estructural que compromete la inferencia y puede conducir 
a conclusiones equivocadas sobre el comportamiento de una 
población. Para Biehler (2018), visibilizar el sesgo fortalece la 
transparencia metodológica, favorece posturas críticas y ayuda a 
comprender que la producción de datos no es neutral. En investi-
gaciones educativas, reconocer posibles fuentes de sesgo no solo 
mejora la validez del estudio, sino que forma a los estudiantes 
en una mirada más ética y reflexiva sobre el análisis de datos.
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El sesgo de no respuesta aparece con frecuencia en estudios 
educativos que utilizan formularios digitales o encuestas en línea. 
Imaginemos a un profesor que desea conocer la calidad de acceso 
a internet en los hogares de sus estudiantes. Aunque el formulario 
se envía a toda la clase, tienden a responder quienes tienen buena 
conectividad, mientras que aquellos con acceso limitado no logran 
completarlo o directamente no pueden abrirlo. Este tipo de sesgo 
es especialmente problemático porque excluye precisamente a 
quienes enfrentan las mayores dificultades, generando un pano-
rama distorsionado sobre la brecha digital. Así, lo que aparenta 
ser un problema de “baja participación” se transforma en una 
amenaza real para la validez de las conclusiones.

Durante los últimos años, Gelman (2021) ha subrayado que la 
selección de muestras debe entenderse dentro de un ecosistema 
más amplio de inferencia. No basta con pensar en cuántos estu-
diantes responden; es necesario comprender cómo cada decisión 
metodológica influye en la calidad del análisis estadístico. Trabajar 
con múltiples muestras, compararlas y examinar sus diferencias no 
es un error metodológico, sino una oportunidad pedagógica para 
mostrar que la variación entre muestras es inherente al proceso 
de recolección de datos. Cuando los estudiantes analizan estos 
contrastes, desarrollan una comprensión más profunda de por qué 
las conclusiones no siempre coinciden incluso cuando se estudia 
la misma población.

La comparación de dos muestras distintas permite ilustrar con 
claridad cómo el sesgo afecta las inferencias. Supongamos que 
dos grupos de trabajo desean estudiar el tiempo que los estu-
diantes dedican a estudiar matemáticas. El primero selecciona 
una muestra completamente al azar, mientras que la segunda 
encuesta únicamente a quienes suelen entregar tareas puntual-
mente. Aunque ambos grupos investigan a la misma población, sus 
conclusiones inevitablemente divergen: el segundo grupo encon-
trará tiempos de estudio más altos debido a la selección sesgada. 

Caso de estudio: Acceso digital, tiempo de estudio y sesgos de 
muestreo
El análisis conjunto del acceso digital, el tiempo de estudio y los 
distintos sesgos de muestreo ofrece un escenario ideal para que 
los estudiantes comprendan cómo la calidad de los datos influye 
en la validez de las conclusiones estadísticas. En este caso de 
estudio partimos de una situación cercana a la realidad educa-
tiva: no todos los estudiantes tienen las mismas condiciones de 
conectividad ni las mismas oportunidades de participar en una 
encuesta, y estas diferencias pueden sesgar los resultados sin que 
el investigador lo advierta. 
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A través de la simulación y el contraste entre distintos tipos 
de muestra, el epígrafe permite observar cómo se modifican las 
distribuciones, las tendencias y las relaciones entre variables 
cuando el muestreo no se diseña cuidadosamente. Esta mirada 
integradora ayuda a reconocer que la estadística no solo descri-
be datos sino que evalúa los procesos que los originan, invitando 
a desarrollar una actitud crítica y reflexiva frente a la información 
que usamos para argumentar en contextos educativos.

Una universidad quiere analizar cómo se relacionan el acceso 
a internet en el hogar, el tiempo semanal dedicado a estudiar 
matemáticas y la percepción sobre el uso de tecnología en clase. 
La cohorte está formada por 300 estudiantes de primer año: 60 
por ciento mujeres y 40 por ciento hombres. Los responsables 
del estudio deciden:

1.	 Definir la población y estratos
•	 Población: los 300 estudiantes matriculados en Matemáticas 
•	 Estratos: género (mujer, hombre).
•	 Variables principales:

	° genero (Mujer/Hombre)
	° acceso (bueno/limitado)
	° tiempo_estudio (horas de estudio de matemáticas por semana)
	° uso_tecnologia (escala 1–5 de acuerdo con el uso de 

recursos digitales en clase).
2.	 Plan de muestreo estratificado por género
•	 Se selecciona una muestra de 120 estudiantes manteniendo 

la proporción de la población: 72 mujeres y 48 hombres.
•	 Dentro de cada estrato, la selección es aleatoria simple.
•	 Objetivo: estimar el promedio de horas de estudio y la me-

dia de uso_tecnologia para cada género, comparando sus 
intervalos de confianza.

3.	 Introducción del sesgo de no respuesta
•	 El cuestionario se aplica en línea. Responden con mayor 

probabilidad quienes tienen buen acceso y con menor pro-
babilidad quienes tienen acceso limitado.

•	 En la simulación se puede modelar, por ejemplo, que:
a.	Estudiantes con acceso bueno responden con proba    bi-

lidad 0.85.
b.	Estudiantes con acceso limitado responden con probabili-

dad 0.40.
•	 	Esto generará una muestra “realmente observada” donde 

los estudiantes con dificultades de conectividad quedan 
subrepresentados, lo que afectará la estimación de tiem-
po_estudio y uso tecnología.
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4.	Comparación de dos muestras distintas sobre la misma 
población

•	  	Grupo A (muestra cuidadosamente diseñada): usa el plan 
estratificado anterior y controla el sesgo de no respuesta 
(por ejemplo, llamando por teléfono a quienes no contestan).

•	  	Grupo B (muestra sesgada): difunde el enlace del cues-
tionario solo por el aula virtual y toma como muestra “a 
quienes respondan”, sin control adicional.

•	  	Ambos grupos calculan medias, desviaciones estándar e 
intervalos de confianza de tiempo_estudio y uso_tecnolo-
gia. Posteriormente comparan resultados y discuten cómo 
el diseño muestral y el sesgo de no respuesta han influido 
en las conclusiones.

La Figura 1 muestra que, en términos generales, los dos tipos 
de muestra producen distribuciones de tiempo de estudio muy 
parecidas, pero con matices que vale la pena mirar con lupa. En 
la primera fila, correspondiente a la muestra estratificada ob-
servada, la media (6.77 horas) y la mediana (7.16 horas) indican 
que la mayoría de estudiantes se sitúa alrededor de las 7 horas 
semanales de estudio, con un 50 por ciento de los valores entre 
aproximadamente 5.09 y 8.49 horas.

Figura 1.
Estadísticos descriptivos del tiempo de estudio en dos tipos de 
muestra.

Nota. La primera fila corresponde a la muestra estratificada observada, 
afectada por el sesgo de no respuesta según las probabilidades definidas en 
la simulación. La segunda fila representa la muestra espontánea, recolectada 
únicamente entre quienes respondieron voluntariamente.

En la segunda fila, que representa la muestra espontánea re-
colectada solo entre quienes respondieron voluntariamente, la 
media (6.70) y la mediana (6.78) son ligeramente menores y el 
rango intercuartílico va de 5.11 a 8.43 horas. Es decir, los valores 
centralesson cercanos, pero la muestra estratificada tiende a 
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concentrar un poco más el tiempo de estudio en torno a valores 
algo superiores, mientras que la muestra espontánea se “despla-
za” levemente hacia abajo. Estas pequeñas diferencias, aunque 
numéricamente modestas, son importantes desde el punto de 
vista metodológico. La muestra estratificada intenta respetar la 
estructura de la población y controlar el sesgo de no respuesta, 
por lo que ofrece una imagen más equilibrada del tiempo real 
que el conjunto del estudiantado dedica a matemáticas. 

La muestra espontánea, en cambio, depende de quién decide 
contestar el cuestionario, de modo que ciertos perfiles, por ejem-
plo: estudiantes con menos tiempo o con dificultades de acceso, 
pueden quedar infrarrepresentados o sobrerrepresentados. El 
resultado es que dos estudios que “miden lo mismo” y analizan 
la misma población terminan con resúmenes descriptivos simi-
lares, pero no idénticos, recordándonos que la forma en que se 
selecciona a los participantes condiciona las conclusiones que 
podemos sacar de los datos.

El gráfico (Figura 2) revela que ambas muestras presentan una 
distribución similar en torno al tiempo de estudio, aunque con 
matices que reflejan el impacto del diseño muestral. 

Figura 2. 
Distribución del tiempo de estudio según el tipo de muestra

 

Nota. La figura compara la variación del tiempo semanal dedicado al estudio 
entre dos estrategias de muestreo.

En la muestra estratificada se aprecia una mayor estabilidad 
alrededor de los valores centrales, lo que sugiere que esta es-
trategia logra capturar mejor la diversidad real de la población. 
La muestra espontánea, en cambio, tiende a mostrar mayor dis-
persión y una ligera caída en los valores centrales, lo que se 
relaciona con la subrepresentación de estudiantes con menor 
acceso tecnológico y tiempos de estudio más bajos. 
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Los histogramas (Figura 3) permiten apreciar diferencias cla-
ras en la forma de las distribuciones entre las dos muestras. En 
el panel correspondiente a la muestra estratificada se observa 
una distribución más equilibrada, con varios picos moderados 
que reflejan la diversidad real de hábitos de estudio dentro de 
la población original.

En contraste, la muestra espontánea muestra una mayor acu-
mulación de estudiantes en los valores centrales, lo que indica 
una tendencia hacia la homogeneización causada por el sesgo 
de respuesta: quienes estudian más horas o tienen mejor conec-
tividad tienden a participar en mayor proporción. 

Este contraste evidencia cómo dos muestras que provienen de 
la misma población pueden ofrecer retratos distintos del fenóme-
no cuando la selección de participantes no garantiza igualdad 
de oportunidades para responder. 

Figura 3.
Histogramas del tiempo de estudio en las dos muestras

 

Nota. La figura presenta la distribución del tiempo semanal dedicado al es-
tudio en dos estrategias de muestreo: una muestra estratificada observada y 
una muestra espontánea recolectada sin control de no respuesta. 

La figura 4 evidencia una relación positiva, aunque moderada, 
entre la percepción del uso de tecnología en el aula y el tiempo 
dedicado al estudio: a mayor valoración del uso tecnológico, los 
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estudiantes tienden a reportar más horas de trabajo académico 
semanal. Sin embargo, la pendiente ligeramente más pronuncia-
da en la muestra espontánea sugiere que la ausencia de control 
sobre la no respuesta puede magnificar la relación observada, 
posiblemente porque los estudiantes más motivados o con me-
jor conectividad participan en mayor proporción en ese tipo de 
muestreo. En la muestra estratificada, la línea de tendencia es 
más suave, reflejando un patrón más equilibrado y representativo 
de la población original.

Figura 4.
Relación entre uso de tecnología y tiempo de estudio

 

Nota. La figura muestra la relación entre la percepción del uso de tecnología 
en clase (escala de 1 a 5) y el tiempo semanal dedicado al estudio, diferen-
ciada por tipo de muestra.

La experiencia con estas simulaciones ofrece al docente un 
punto de partida poderoso para que los estudiantes compren-
dan que el análisis de datos no es un ejercicio mecánico, sino un 
proceso que exige decisiones razonadas sobre la forma en que 
se recolecta la información. 

Al comparar muestras estratificadas, espontáneas y afectadas 
por distintos tipos de sesgo, el profesorado puede mostrar que 
los resultados numéricos dependen de cómo se selecciona a los 
participantes. Esta constatación ayuda a que los estudiantes 
entiendan que la estadística no solo describe datos, sino que 
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también evalúa la calidad de esos datos, y que instrumentos 
como los diagramas de caja, histogramas y gráficos de disper-
sión son herramientas para interpretar críticamente el proceso 
de muestreo.

Apoyo didáctico: Desde una perspectiva didáctica, trabajar 
estos contenidos en el aula permite fomentar la reflexión sobre 
la validez de las conclusiones y el carácter ético de la produc-
ción de información. El docente puede guiar actividades en las 
que los estudiantes diseñen sus propias encuestas, identifiquen 
posibles fuentes de sesgo y analicen cómo estos influyen en los 
resultados. Esto no solo desarrolla habilidades técnicas en el uso 
de software como Jamovi, sino que fortalece el pensamiento 
inferencial: la capacidad de cuestionar, argumentar y justificar 
decisiones metodológicas. En definitiva, el abordaje de estos con-
tenidos contribuye a formar estudiantes más críticos, conscientes 
de la importancia de la representatividad y capaces de tomar 
decisiones informadas en contextos reales de análisis de datos.

Estimación puntual y por intervalos: comprensión del error y 
la precisión
En el análisis de datos educativos, es habitual que docentes e 
investigadores trabajen con muestras y no con la totalidad de la 
población. Esto implica tomar decisiones a partir de información 
parcial, reconociendo que cada estadístico que calculamos es una 
aproximación y no un valor definitivo. Tal como explica Batanero 
y Ben-Zvi (2013), razonar estadísticamente exige comprender que 
el dato muestral no es una copia del dato poblacional, sino una 
expresión condicionada por la variabilidad inherente al muestreo. 
Garfield y delMas (2008) señalan que muchos errores concep-
tuales surgen cuando los estudiantes interpretan la media o la 
proporción muestral como si fueran verdades exactas, sin consi-
derar cuánto podrían variar esos valores si se repitiera el estudio.

Por ello, este epígrafe desarrolla la estimación puntual, el 
error estándar y los intervalos de confianza como herramientas 
complementarias para razonar con incertidumbre. A partir de 
ejemplos concretos y del aporte de investigadores en educación 
estadística. El propósito es que el docente pueda explicar por 
qué un intervalo de confianza no es un “decorado”, sino un ins-
trumento esencial para comunicar precisión, reconocer límites 
y tomar decisiones fundamentadas.

Estimación puntual de medias y proporciones: la primera apro-
ximación al parámetro
La estimación puntual consiste en utilizar un valor único, por lo 
general la media o la proporción muestral, para aproximar un 
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parámetro poblacional. En la práctica educativa, este procedi-
miento suele presentarse como un primer acercamiento al ra-
zonamiento inferencial, porque permite visualizar cómo un dato 
resumen puede representar, de manera tentativa, a un conjunto 
mucho más amplio. Sin embargo, esta misma simplicidad es la 
que suele provocar malentendidos iniciales: muchas y muchos 
estudiantes interpretan ese valor puntual como si fuera la “ver-
dadera” realidad de la población, sin considerar la inevitable 
variabilidad asociada al muestreo.
Según Batanero y Ben-Zvi (2013), es justamente en esta etapa 
donde emergen las primeras confusiones en el aula. El estudian-
tado, especialmente cuando no ha trabajado con muestras múl-
tiples, tiende a asumir que la media o proporción obtenida es un 
reflejo exacto de la población, como si el proceso de muestreo no 
introdujera ninguna variación. Esta percepción es comprensible, 
pues el pensamiento intuitivo suele preferir certezas, y la idea de 
que diferentes muestras puedan producir resultados distintos se 
percibe, al inicio, como una especie de “error” o inconsistencia 
del procedimiento estadístico.
Garfield y delMas (2008) enfatizan que antes de avanzar hacia 
los intervalos de confianza o hacia técnicas inferenciales más 
complejas, es indispensable que el estudiantado experimente la 
variabilidad muestral de manera concreta. Observar cómo dos o 
más muestras extraídas de la misma población generan estima-
ciones puntuales diferentes ayuda a comprender que estas no 
son verdades absolutas, sino aproximaciones sujetas al azar. Este 
paso pedagógico, aunque sencillo, es crucial: constituye la base 
para entender por qué una estimación siempre debe ir acom-
pañada de una medida de incertidumbre y por qué la inferencia 
estadística, más que ofrecer certezas, nos permite razonar con 
niveles de precisión y confianza.
Ejemplo 3. Estimación puntual de una media y una proporción
Una docente encuesta a 12 estudiantes sobre su tiempo semanal 
de estudio y si poseen acceso estable a internet.

•	 	Horas de estudio: 4, 5, 6, 5, 7, 8, 6, 5, 6, 7, 4, 6
•	 Acceso estable (1 = sí, 0 = no): 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1

Media muestral:  

Proporción muestral: 

Estos valores representan estimaciones puntuales del tiempo 
medio de estudio y de la proporción de estudiantes con acceso 
estable en la población. Aunque son útiles como una primera 
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aproximación, no deben interpretarse como descripciones de-
finitivas de la realidad poblacional. En esencia, funcionan como 
una fotografía tomada desde un ángulo particular: ofrecen infor-
mación, pero no capturan la totalidad del fenómeno.

Sin embargo, como advierte Bakker (2004), una segunda 
muestra, seleccionada bajo los mismos criterios y con el mismo 
procedimiento, podría arrojar valores distintos. Esta variabilidad 
no implica un error en el cálculo ni una falla metodológica, sino 
una característica natural del trabajo con datos muestrales. Cada 
muestra recoge una porción diferente de la población y, por tanto, 
refleja matices propios de su composición.

Ese diferencial recibe el nombre de error muestral, una conse-
cuencia inevitable de todo proceso de selección y un recordatorio 
de que nuestras inferencias siempre llevan consigo un margen de 
incertidumbre. Comprenderlo es fundamental en el aula: ayuda 
a que el estudiantado no se quede únicamente con el valor pun-
tual, sino que reconozca que toda estimación es, en realidad, una 
aproximación sujeta al azar y que solo adquiere sentido cuando 
se analiza junto con la variabilidad que la acompaña.

Ejemplo 4. Comparando dos cursos para comprender la esti-
mación puntual

Una institución educativa quiere explorar si existen diferencias 
iniciales entre dos cursos paralelos de primer año respecto a su 
dedicación académica y a las condiciones tecnológicas con las 
que estudian. Para ello, una docente decide tomar una muestra 
piloto de 10 estudiantes por curso, con el fin de realizar una pri-
mera aproximación a los parámetros poblacionales. La intención 
no es llegar a conclusiones definitivas, sino construir una mirada 
preliminar que oriente futuras decisiones pedagógicas.

Datos recolectados
Curso A
Horas semanales de estudio: 6, 5, 7, 4, 5, 6, 8, 7, 5, 6
Acceso estable a internet (1 = sí, 0 = no): 1, 1, 1, 0, 1, 1, 1, 1, 0, 1
Curso B
Horas semanales de estudio: 3, 4, 5, 4, 3, 5, 4, 3, 4, 5
Acceso estable a internet (1 = sí, 0 = no): 0, 1, 0, 0, 1, 0, 1, 0, 0, 1

1.	 Cálculo de la media muestral en cada curso
Para cada curso se calcula la media de horas de estudio:  
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Estas medias sugieren que, en promedio, el Curso A dedica 
más tiempo al estudio que el Curso B. Sin embargo, siguiendo 
las advertencias de Batanero y Ben-Zvi (2013), estas cifras no 
deben asumirse como descripciones definitivas de la población. 
Una nueva muestra podría mostrar valores diferentes o incluso 
invertir el patrón. Se trata de un primer vistazo a la posible rea-
lidad de ambos grupos.

2.	 Cálculo de la proporción muestral de acceso estable
Como la variable de acceso toma valores 0 y 1, la proporción 

de estudiantes con acceso estable en cada curso se calcula di-
vidiendo el número de estudiantes con valor 1 para esa variable 
para el total de estudiantes del curso.

En el Curso A, de los 10 estudiantes, 8 declaran tener acceso 
estable:

 
En el Curso B, solo 4 de los 10 estudiantes tienen acceso estable:

 
 
La interpretación inicial es que la proporción de estudiantes 

con acceso estable a internet en el Curso A es aproximada-
mente el doble que en el Curso B. De nuevo, se trata de esti-
maciones puntuales que dependen de la muestra seleccionada 
y que podrían variar si se repitiera el muestreo con otro grupo 
de estudiantes.

La resolución del ejercicio en R (Figura 5) confirma de ma-
nera precisa los valores obtenidos mediante el cálculo manual. 
Al agrupar los datos se obtiene que la media de horas de 
estudio es de 5.9 horas en el Curso A y 4.0 horas en el Curso 
B, reproduciendo exactamente las fracciones 59/1059/1059/10 
y 40/1040/1040/10 derivadas previamente. Del mismo modo, 
el tratamiento de la variable acceso como binaria (0 = no, 1 = 
sí) permite calcular la proporción de acceso estable a internet 
como la media de dicha variable, dando como resultado 0.80 
para el Curso A y 0.40 para el Curso B.

Estas salidas muestran cómo R facilita el procesamiento de 
datos y valida los procedimientos estadísticos fundamentales: la 
estimación puntual de una media y de una proporción. Además, el 
uso de dplyr permite generar una tabla resumen más completa, 
desde la cual se aprecia que la estructura de los datos coincide 
con la teoría presentada y que las estimaciones puntuales pue-
den reproducirse y verificarse con herramientas computaciona-
les que favorecen la comprensión del proceso inferencial desde 
una perspectiva más aplicada. 
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Figura 5.
Relación entre uso de tecnología y tiempo de estudio

Nota. La figura muestra las estimaciones puntuales obtenidas a partir de una 
muestra de 10 estudiantes por curso.

Error estándar e intervalos de confianza: comunicar la 
incertidumbre
Una vez obtenidos los valores puntuales, la pregunta relevante 
es: ¿qué tan estables son estas estimaciones? En otras palabras, 
¿podemos confiar en que la media o la proporción obtenida 
reflejan, al menos de manera aproximada, lo que ocurre en la 
población? El error estándar ofrece una primera pista para res-
ponder a esa inquietud, porque indica cuánto podrían fluctuar 
las estimaciones si repitiéramos el muestreo una y otra vez bajo 
las mismas condiciones. 

A partir de esta idea surge una herramienta clave para el 
razonamiento inferencial: los intervalos de confianza. Más que 
presentar un único valor como si fuera definitivo, estos inter-
valos ofrecen un rango plausible donde podría encontrarse el 
parámetro poblacional. Para el estudiantado, comprender esta 
transición del valor puntual al intervalo, es crucial para desa-
rrollar pensamiento estadístico maduro. Ya no se trata solo de 
“calcular una media”, sino de reconocer que toda estimación es 
parte de un proceso sujeto al azar y que la incertidumbre no es 
un defecto del método, sino una característica inherente de la 
realidad cuando trabajamos con datos muestrales.

Ejemplo 5: una muestra de 25 estudiantes registra un promedio 
de 6,2 horas de estudio semanal, con una desviación estándar 
de 1,5 horas, lo que refleja una variabilidad moderada entre los 
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tiempos reportados. Con este tamaño muestral, la estimación de 
la media se vuelve razonablemente estable, permitiendo cons-
truir un intervalo de confianza que no solo ofrece un valor central, 
sino también un rango plausible donde podría encontrarse la 
media poblacional real. Este tipo de análisis resulta especial-
mente útil en contextos educativos, porque ayuda a interpretar 
la información más allá de un único número y a comprender 
hasta qué punto el promedio observado puede generalizarse a 
un grupo más amplio.

	
•	 Error estándar: 
	
•	 Margen de error: 

•	 	Intervalo de confianza (95 %): [5,58; 6,82]

Siguiendo la explicación de Gelman y Hill (2014), vale la pena 
insistir en que un intervalo de confianza no debe tomarse como 
si asegurara que “la media verdadera está ahí dentro”. Lo fun-
damental no es ese intervalo en sí, sino el proceso con el que se 
construye. Si tuviéramos la posibilidad de repetir el estudio una 
y otra vez, recogiendo nuevas muestras y calculando un nuevo 
intervalo cada vez, descubriríamos que aproximadamente el 95 
% de ellos sí terminaría conteniendo el valor real del parámetro. 
Ese es el sentido de hablar de “confianza”: no es que este inter-
valo particular tenga una probabilidad del 95 % de ser correcto, 
sino que el método funciona bien en el largo plazo. Entenderlo 
así nos ayuda a evitar lecturas exageradas y a ver el intervalo 
como lo que realmente es: una expresión de la estabilidad del 
procedimiento frente a la variabilidad natural de los datos.

Ejemplo 6. Una docente desea comprender cuán estable es 
la estimación del tiempo que sus estudiantes dedican al estudio 
semanal. Para ello, toma una muestra de 30 estudiantes y obtiene 
una media de 6,8 horas con una desviación estándar de 1,9 horas. 
A partir de estos valores, calcula el error estándar, dividiendo la 
desviación estándar entre la raíz cuadrada del tamaño muestral:

 
 
Este valor indica que, si el docente repitiera el muestreo bajo 

las mismas condiciones, la media muestral podría oscilar apro-
ximadamente 0,35 horas alrededor del valor observado. Con 
esta información, construye un intervalo de confianza del 95 %, 
utilizando la fórmula habitual 1.96×EE . El resultado es:

6,8 1.96(0,35)=[6,1 horas, 7,5 horas].
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Estos resultados se pueden comprobar en R tal como muestra 
la gráfica (Figura 5) que ilustra la idea central del intervalo de 
confianza desde una perspectiva geométrica. El punto ubicado en 
el centro corresponde a la media muestral de 6,8 horas, obtenida 
a partir de la muestra. A su izquierda y derecha se muestran los 
límites inferiores (6,12) y superior (7,48), conectados mediante 
un segmento horizontal que representa el intervalo de confianza 
del 95 %. 

Figura 6.
Representación geométrica de la media muestral y su intervalo de 
confianza del 95 %

Nota. La figura muestra la media muestral de 6,8 horas ubicada en el centro 
de la recta, acompañada del intervalo de confianza del 95 %, cuyos límites in-
feriores y superiores son aproximadamente 6,12 y 7,48 horas, respectivamente.

Esta visualización permite comprender que la media mues-
tral no debe interpretarse como un valor exacto o definitivo, 
sino como el punto más representativo dentro de un rango más 
amplio de posibles valores. El intervalo funciona, así como una 
“zona plausible” donde, considerando la variabilidad propia del 
muestreo, es razonable suponer que se encuentra la media po-
blacional. Cuanto más corto sea este segmento, mayor será la 
precisión de la estimación; en cambio, un intervalo más exten-
so indicaría mayor incertidumbre. Esta representación gráfica 
facilita que estudiantes y docentes visualicen la incertidumbre 
estadística como una distancia sobre la recta numérica, haciendo 
más accesible el concepto de error de estimación.
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La gráfica (Figura 6) representa la distribución de 1000 me-
dias muestrales obtenidas mediante simulación, lo que permite 
visualizar cómo varían las medias cuando se repite el proceso 
de muestreo muchas veces bajo las mismas condiciones. El his-
tograma muestra que la mayoría de las medias simuladas se 
concentran alrededor del valor central de 6,8 (indicado por la 
línea azul punteada), lo cual refleja el principio de que el prome-
dio de las medias muestrales tiende a aproximarse a la media 
poblacional verdadera. Las líneas rojas delimitan el intervalo de 
confianza del 95 % construido a partir de una sola muestra, y es 
posible observar que gran parte de las medias simuladas cae 
dentro de ese rango. 

Figura 7.
Distribución simulada de medias muestrales y ubicación del intervalo 
de confianza del 95 %

 

Nota. La figura muestra la distribución de 1000 medias muestrales obtenidas 
mediante simulación bajo una población teórica con media 6,8 y desviación 
estándar 1,9, utilizando un tamaño de muestra de 30.

Esta correspondencia visual evidencia que, si bien cada me-
dia puede fluctuar debido al azar del muestreo, el intervalo de 
confianza suele capturar con alta probabilidad el valor real del 
parámetro. 
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En conjunto, la figura ilustra que el intervalo no es un dato 
aislado, sino una representación geométrica de la incertidumbre, 
basada en cómo se comportarían muchas posibles muestras 
tomadas de la misma población.

En síntesis, el estudio del error estándar y de los intervalos 
de confianza permite que el estudiantado comprenda que toda 
estimación basada en una muestra está inevitablemente sujeta a 
variación. Más que ofrecer resultados exactos, estas herramientas 
ayudan a valorar la estabilidad de los cálculos y a reconocer que 
el promedio observado no es un punto fijo, sino una aproximación 
influida por el azar del muestreo. Visualizar esta incertidumbre 
ya sea a través de rectas numéricas o de simulaciones con múl-
tiples muestras, facilita que las y los estudiantes desarrollen un 
sentido más profundo de la inferencia estadística. De este modo, 
la enseñanza no se limita al cálculo mecánico, sino que invita a 
interpretar los resultados con cautela, a estimar rangos plausi-
bles y a fundamentar afirmaciones basadas en evidencia más 
sólida y reflexiva.

Variabilidad, tamaño muestral y precisión: comprender qué 
significa “estimar bien”
La amplitud de un intervalo de confianza depende directamente 
de la variabilidad de los datos y del tamaño muestral, dos ele-
mentos que determinan cuánta información aportan realmente 
la muestra sobre la población. Horton (2015) recuerda que una 
estimación más precisa no implica necesariamente que sea co-
rrecta, sino que refleja una menor dispersión alrededor del valor 
observado. En otras palabras, la precisión habla de estabilidad, 
no de veracidad absoluta. 

Esta distinción es clave en la enseñanza, porque permite al 
estudiantado comprender que incluso un intervalo muy estrecho 
sigue siendo una aproximación influida por el azar. En la misma 
línea, Biehler (2018) recomiendan trabajar con representaciones 
visuales de intervalos superpuestos, de modo que el estudian-
tado pueda observar de manera intuitiva cómo los intervalos 
se vuelven más cortos a medida que aumenta el tamaño de 
la muestra. Este enfoque visual ayuda a entender por qué una 
muestra grande no garantiza una estimación perfecta, pero sí 
una mayor consistencia entre muestras sucesivas, fortaleciendo 
así la interpretación crítica de la incertidumbre estadística.

Ejemplo 7: Un ejemplo sencillo permite apreciar esta idea. 
Supongamos que una docente mide el tiempo de lectura diaria 
de dos grupos diferentes. En el primer caso, toma una muestra 
pequeña de 10 estudiantes y obtiene una media de 25 minutos 
con un intervalo de confianza del 95 % entre 18 y 32 minutos. 
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En el segundo caso, repite el estudio con una muestra mucho 
mayor, de 80 estudiantes, y obtiene una media muy similar, de 24 
minutos, pero con un intervalo más estrecho: de 22 a 26 minutos. 

Aunque ambas muestras proporcionan valores cercanos, los 
intervalos muestran historias distintas. El primero es amplio y 
refleja gran incertidumbre: la media poblacional podría estar bas-
tante por encima o por debajo del valor observado. El segundo, 
en cambio, ofrece un rango mucho más preciso, mostrando que 
con más datos la estimación se vuelve más estable y confiable. 
Para el estudiantado, visualizar y comparar estos dos intervalos 
facilita comprender por qué el tamaño muestral influye tanto en 
la precisión y por qué no basta con un solo valor puntual para 
interpretar un fenómeno con rigor estadístico.

La figura 7 permite ver cómo cambia la precisión de una es-
timación cuando se trabaja con muestras de distinto tamaño. 
En el primer caso, con solo diez estudiantes, el error estándar 
es bastante alto y el intervalo de confianza termina siendo muy 
ancho, lo que deja claro que la media obtenida puede alejarse 
bastante del valor real en la población. En cambio, cuando se 
amplía la muestra a ochenta estudiantes, la situación mejora 
de forma notable: el error estándar disminuye y el intervalo se 
estrecha, lo que indica que la media calculada es mucho más 
estable y confiable. 

Figura 8.
Comparación del error estándar, desviación estándar e intervalos de 
confianza en muestras pequeñas y grandes.

	  

Nota. La figura muestra los valores de error estándar, desviación estándar 
e intervalos de confianza reconstruidos para dos escenarios hipotéticos: un 
primer caso con una muestra pequeña de 10 estudiantes y un segundo caso 
con una muestra grande de 80 estudiantes.

Esta comparación ayuda a entender un punto esencial en 
estadística: no basta con obtener una media, sino que es im-
portante reconocer cuánta incertidumbre la acompaña y cómo 
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esa incertidumbre se reduce a medida que se cuenta con más 
información. El desarrollo de este epígrafe permite comprender 
que la estimación puntual y la estimación por intervalos son dos 
caras complementarias de un mismo proceso: aproximarnos 
al conocimiento de una población asumiendo con claridad la 
incertidumbre que implica trabajar con muestras. La media, la 
proporción u otros estadísticos muestrales constituyen un primer 
acercamiento al parámetro, pero solo adquieren sentido pleno 
cuando se analizan junto con el error estándar y los intervalos de 
confianza, que cuantifican la variabilidad inherente al muestreo 
y nos ofrecen un rango plausible para interpretar los resultados. 
Los ejemplos desarrollados muestran de forma concreta cómo 
la precisión aumenta al incrementar el tamaño muestral, pero 
también evidencian que la exactitud de una estimación depende 
tanto de la variabilidad como de la calidad del diseño de mues-
treo. De este modo, “estimar bien” no consiste únicamente en 
aplicar fórmulas, sino en valorar críticamente los supuestos, las 
condiciones y los límites del procedimiento utilizado.

Desde una perspectiva didáctica, el epígrafe subraya la im-
portancia de enseñar la inferencia estadística como un proceso 
argumentativo y no como un conjunto de cálculos mecánicos. 
Hacer visible la incertidumbre, comparar muestras, construir 
intervalos y discutir su interpretación ayuda al estudiantado a 
reconocer que la estadística es una herramienta para razonar 
con evidencia, no para producir verdades absolutas. Finalmente, 
comprender el papel de la variabilidad, la precisión y la incerti-
dumbre fortalece una alfabetización estadística crítica, capaz 
de guiar decisiones educativas informadas y coherentes con los 
retos contemporáneos de análisis de datos.

Pruebas de hipótesis: sentido, pasos y lectura crítica
En el ámbito educativo es frecuente encontrarse con pregun-
tas que requieren más que una simple descripción de datos. El 
docente quiere saber si una intervención realmente mejoró el 
rendimiento de su grupo, si dos metodologías producen efectos 
distintos sobre el aprendizaje, o si un programa de formación 
genera cambios significativos en las actitudes del estudiantado. 
En cada uno de estos casos, observar diferencias en los datos no 
es suficiente: se necesita un modo de evaluar si dichas diferen-
cias pueden atribuirse a la intervención y no al azar propio del 
muestreo. Este es el papel que cumplen las pruebas de hipótesis, 
un tipo de razonamiento inferencial que nos permite valorar la 
evidencia y tomar decisiones fundamentadas.

Las pruebas de hipótesis son uno de los contenidos más difíci-
les para el estudiantado, no porque las fórmulas sean complejas, 
sino porque exigen comprender ideas abstractas como azar, 
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variabilidad, evidencia y razonamiento condicional. Por ello, el 
reto del docente es presentar este tema de manera cercana, 
conceptual y gradual, mostrando que el contraste de hipótesis 
no es un algoritmo, sino una forma de pensar con datos.

El propósito inferencial: por qué contrastamos hipótesis en 
educación
La finalidad de una prueba de hipótesis no es “probar que algo 
es verdad”, sino evaluar si la evidencia empírica es suficiente-
mente fuerte como para cuestionar una afirmación inicial. Esa 
afirmación inicial se denomina hipótesis nula (H₀) y representa 
un punto de referencia técnico: igualdad de medias, ausencia 
de cambio o estabilidad de proporciones. No es una postura 
personal ni una creencia, sino un marco que permite ordenar el 
análisis y comparar lo que observamos con lo que esperaríamos 
si nada hubiera cambiado.

Como explica Ben-Zvi y Garfield (2004), el valor pedagógico 
de enseñar pruebas de hipótesis radica en desarrollar un pensa-
miento crítico que permita leer resultados de manera contextua-
lizada. En educación, contrastar hipótesis es útil para determinar 
si una metodología es realmente mejor que otra, si un programa 
tuvo un impacto apreciable, o si los grupos estudiados muestran 
diferencias que merecen atención. Trabajar con hipótesis ayuda 
además a que el estudiantado comprenda que las conclusiones 
estadísticas no son absolutas: dependen del tamaño de la mues-
tra, de la variabilidad de los datos y del nivel de evidencia que 
estemos dispuestos a aceptar. Este enfoque evita interpretacio-
nes simplistas y fomenta una mirada más cuidadosa, donde cada 
resultado se analiza en función del contexto, las limitaciones y 
las decisiones que se pretenden fundamentar.

Ejemplo 8: un docente implementa un programa de tutorías 
para mejorar los hábitos de estudio de su grupo. Para evaluar si 
el programa tiene efecto, registra las horas de estudio semanal 
de 10 estudiantes antes y después de la intervención.

Los datos (en horas) se muestran en la siguiente tabla 1:
Pregunta clave: ¿Es razonable atribuir este aumento de 0,7 

horas al programa de tutorías, o podría deberse simplemente 
al azar?

Comparación Pretest vs. Postest en horas de estudio
La prueba t para muestras pareadas mostró una diferencia 

estadísticamente significativa entre las horas de estudio antes 
y después del programa de tutorías. 

Los resultados de la prueba t para muestras pareadas (Tabla 
2) indican que existe una diferencia estadísticamente significati-
va entre las horas de estudio antes y después de la intervención
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docente, t(9) = –4.58, p = .001. La diferencia media observada 
fue de 0.70 horas, lo que revela un incremento en el tiempo que 
los estudiantes dedicaron al estudio semanal tras participar en el 
programa de tutorías. El intervalo de confianza del 95 por ciento 
[–1.05, –0.354] confirma que este aumento es consistente y no 
atribuible al azar. En conjunto, estos resultados sugieren que la 
intervención tuvo un efecto positivo y significativo en los hábitos 
de estudio del grupo evaluado.

Tabla 1.
Horas de estudio registradas antes y después de la intervención en el 
programa de tutorías

Estudiante
Pretest 
(antes)

Postest (después)

1 4 5

2 5 6

3 5 6

4 6 7

5 6 7

6 7 7

7 5 6

8 7 7

9 6 7

10 7 7
Nota. Los datos corresponden a las horas de estudio semanal reportadas por 
los estudiantes en dos momentos: antes del programa de tutorías (pretest) y 
después de su aplicación (postest).

Los resultados descriptivos muestran un patrón bastante cla-
ro (Tabla 3): después de la intervención, las y los estudiantes 
estudian más y de forma más homogénea. La media de horas 
de estudio pasa de 5.80 en el pretest a 6.50 en el postest, y la 
mediana aumenta de 6 a 7 horas. Es decir, no solo sube el pro-
medio, sino que también el valor “típico” se desplaza hacia un 
mayor número de horas, lo que sugiere que el cambio no se debe 
a uno o dos casos extremos, sino a un a juste general del grupo.

Además, la desviación estándar disminuye de 1.033 a 0.707 
y el error estándar también se reduce, lo que indica que, tras 
la intervención, las respuestas se concentran más alrededor de 
la media. En términos sencillos, antes del programa había más 
dispersión en los hábitos de estudio; después, el grupo no solo 
estudia un poco más, sino que sus comportamientos son más 
parecidos entre sí. Todo esto respalda la idea de que la interven-
ción de tutorías contribuyó a mejorar y estabilizar las horas de 
estudio semanal del grupo.
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Tabla 2.
Resultados de la prueba t para muestras pareadas en horas de estu-
dio antes y después de la intervención

Estadístico Valor

t –4.58

gl 9

p 0.001

Diferencia 
media 

(post – pre)

–0.700

Error están-
dar (EE)

0.153

IC 95% [–1.05 ; 
–0.354]

Nota. La prueba t pareada compara las puntuaciones del pretest y postest 
de las horas de estudio.

Tabla 3.
Estadísticos descriptivos de las horas de estudio antes y después de la 
intervención

Variable N Media Mediana DE EE

pre 10 5.80 6.00 1.033 0.327

post 10 6.50 7.00 0.707 0.224

Nota. a tabla presenta los estadísticos descriptivos correspondientes 
a las horas de estudio registradas en el pretest y el postest.

El análisis de situaciones donde una misma muestra es eva-
luada en dos momentos o condiciones distintas como ocurre 
en los estudios pre–post, antes–después o en comparaciones 
repetidas en el tiempo; constituye una oportunidad privilegiada 
para desarrollar razonamiento estadístico profundo en el aula. La 
literatura ha mostrado que este tipo de tareas permite trabajar 
simultáneamente la variabilidad, el significado del cambio y la 
capacidad de argumentar con datos, tres dimensiones que son 
esenciales en la alfabetización estadística moderna (Batanero, 
2001; Garfield & Ben-Zvi, 2008).

Además, analizar diferencias dentro del mismo grupo facilita que 
los estudiantes comprendan cómo evoluciona cada individuo y no 
solo los promedios, reforzando la idea de que la estadística es una 
herramienta para interpretar fenómenos reales más que un con-
junto de algoritmos aislados (Bakker, 2004). Desde un enfoque más 
amplio del pensamiento estadístico, diversos autores destacan que 
estas actividades fortalecen la capacidad de conectar información, 
interpretar evidencia y justificar conclusiones de manera crítica.
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Se presenta a continuación un procedimiento general, aplica-
ble a cualquier situación donde se comparan dos mediciones en 
una misma muestra, estructurado para favorecer una compren-
sión conceptual, interpretativa y contextualizada.

Procedimiento didáctico para resolver problemas con com-
paraciones de medidas pareadas

1.	 Comprender el propósito de la comparación
El proceso comienza con la lectura cuidadosa del con-

texto: qué se midió, por qué se midió dos veces y qué se 
espera responder con los datos. Esta fase inicial es clave 
porque evita que el análisis se limite a ejecutar una prueba, 
permitiendo que el estudiantado construya una pregunta 
de investigación con sentido . En este punto se aclara qué 
representa cada medición y cómo enca ja dentro del fenó-
meno estudiado.

2.	 Identificar que los datos son pareados
El siguiente paso consiste en reconocer que las dos mediciones 

provienen de las mismas personas, grupos o unidades de análisis. 
Esto diferencia claramente esta situación de los problemas con 
muestras independientes y justifica el uso de procedimientos que 
trabajan con diferencias individuales. 

Explorar descriptivamente las dos mediciones
Antes de realizar cualquier contraste formal, es necesario re-

visar medias, medianas, dispersión y patrones de cambio. Esta 
exploración permite que los estudiantes generen expectativas 
razonables acerca del resultado inferencial como un componente 
esencial del aprendizaje estadístico significativo. La intención es 
comprender la “historia” de los datos antes de pasar al modelo 
(Batanero, 2001)

3.	Calcular y analizar las diferencias individuales
En este paso se construye una nueva variable: la diferencia en-

tre la segunda y la primera medición. Este tipo de reformulación 
del problema ayuda a centrar el análisis en la unidad fundamental 
del cambio y favorece el desarrollo del pensamiento estadístico. 
Se revisa cuántas diferencias son positivas, negativas o nulas, 
y qué magnitud tienen. Esto convierte un problema potencial-
mente abstracto en una lectura simple: ¿hay evidencia de que 
la mayoría de las personas cambió?

4.	Formular hipótesis estadísticas comprensibles
Aquí se presenta la estructura formal de la inferencia: la hipóte-

sis nula establece que la diferencia media en la población es cero, 
mientras que la alternativa plantea la existencia de un cambio.  

5.	 Aplicar la prueba estadística adecuada
Una vez construida la variable diferencia, se selecciona la 

prueba apropiada: t pareada si se asume normalidad, o Wilcoxon 
si el patrón de diferencias no es normal. Se recomiendan usar 
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software como Jamovi o R para que el estudiantado dedique 
más tiempo a interpretar y menos a ejecutar cálculos mecánicos                                                
(Garfield & delMas ,2008). 

6.	 Interpretar los resultados en el contexto del problema
La interpretación combina varios elementos: el valor p, el in-

tervalo de confianza, la dirección y magnitud del cambio y el 
tamaño del efecto. 

7.	 Elaborar conclusiones fundamentadas y reflexivas
Finalmente, se redacta una conclusión que responda directamente la 

pregunta inicial, resuma el cambio observado y considere limitaciones 
y posibles implicaciones. Esta etapa es donde se evidencia el pensa-
miento estadístico maduro: no se trata de “ganar” una prueba, sino de 
interpretar datos para comprender y mejorar una situación concreta.

Hipótesis nula y alternativa: del lenguaje cotidiano al lenguaje 
académico
Antes de aplicar cualquier contraste, es necesario formular con 
claridad la hipótesis nula (H₀) y la alternativa (H₁). Garfield y 
delMas (2008) señalan que esta formulación constituye una de 
las principales barreras conceptuales para el estudiantado: con 
frecuencia confunden las hipótesis con sus expectativas, creen-
cias personales o con el resultado que desean obtener. Desde 
esta perspectiva, la dificultad no reside únicamente en la notación 
estadística, sino en comprender que las hipótesis funcionan como 
“puntos de partida” para evaluar evidencia y no como afirma-
ciones que deban defenderse o demostrar de manera absoluta.

Desde la educación estadística con enfoque constructivista, 
autores como Batanero y Díaz (2011) destacan que el aprendi-
zaje de las pruebas de hipótesis requiere que el estudiantado 
reconstruya el significado de conceptos como variabilidad, in-
certidumbre y evidencia. Sin este andamia je conceptual, las 
hipótesis tienden a interpretarse como etiquetas rígidas en lugar 
de ser entendidas como herramientas para razonar con datos. 

Por ejemplo:
Lenguaje cotidiano: “Creo que el grupo que usa la plataforma 

estudia más que el grupo que no la usa.”
Formulación estadística:

μ μ            μ μ
Esta traducción facilita que el estudiantado establezca cone-

xiones entre sus ideas previas y los conceptos formales.
Ejemplo 9: En un curso de estadística, el docente decide probar 

una plataforma digital de estudio. La mitad del grupo trabaja con 
la plataforma durante un mes; la otra mitad sigue estudiando solo 
con el material impreso habitual. Al final del periodo, el docente 
les pide que registren cuántas horas a la semana dedicaron al 
estudio de la asignatura.
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Los resultados (resumidos) son los siguientes:
Grupo 1: con plataforma 
•	 	Media de horas de estudio: 
•	 	Desviación estándar: 
Grupo 2: sin plataforma 
•	 	Media de horas de estudio: 
•	 	Desviación estándar: 
La pregunta del docente es muy simple en lenguaje cotidiano:
“¿Realmente la plataforma ayuda a que el estudiantado estu-

die más, o esta diferencia se podría explicar solo por el azar?”
A partir de aquí entramos al terreno formal.
Hipótesis en lenguaje cotidiano y en lenguaje estadístico
Primero recogemos la intuición:
	 Lenguaje cotidiano: “Creo que el grupo que usa la plata-

forma estudia más horas que el grupo que no la usa.”
Eso lo traducimos a notación estadística: 
•	 	μ : media poblacional de horas de estudio de quienes usan 

la plataforma.
•	 	μ : media poblacional de horas de estudio de quienes no la 

usan.
Entonces:
•	 	Hipótesis nula ( ): la plataforma no cambia el tiempo me-

dio de estudio.
                             � �
•	 	Hipótesis alternativa ( ): la plataforma aumenta el tiempo 

medio de estudio.
                             � �
Tomamos un nivel de significación habitual: α=0,05, prueba 

unilateral (solo nos interesa si aumenta).
1.	 Tipo de prueba
Tenemos dos grupos distintos de estudiantes, sin empareja-

miento, con medias y desviaciones estándar conocidas. Lo más 
natural es usar una prueba t para muestras independientes (ver-
sión de Welch, que no supone varianzas iguales).

En términos más pedagógicos: vamos a comparar “media con 
plataforma” frente a “media sin plataforma”, teniendo en cuenta 
la variabilidad de cada grupo y el tamaño muestral.

2.	 Diferencia observada entre las medias
C a l c ul a m o s  p r i m ero  l a  d i fere n c i a  s i m pl e : 

Es decir, en promedio, el grupo con plataforma declara estu-
diar 0,8 horas más por semana. La pregunta es:

¿0,8 horas es una diferencia suficientemente grande como 
para no atribuirla al azar?
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3.	Cálculo del error estándar de la diferencia
La diferencia entre medias no se interpreta en el vacío; hay 

que considerar cuánta dispersión hay en cada grupo y cuántos 
estudiantes participaron. Para eso usamos el error estándar de 
la diferencia:

Elevamos al cuadrado las desviaciones estándar:

 Dividimos cada varianza entre su tamaño muestral:
 

 
Sumamos esos dos valores:

 
 
Hacemos la raíz cuadrada:

 
 
Ese 0,33 es el error estándar de la diferencia de medias: una 

medida de cuánto esperaríamos que se mueva la diferencia entre 
grupos solo por el azar del muestreo.

4.	Estadístico t
Ahora comparamos la diferencia observada con el tamaño de 

ese error estándar:

Mientras más grande es t en valor positivo, más lejos está nues-
tra diferencia de “cero diferencias” en unidades de error estándar.

5.	 Grados de libertad y p-valor (idea general)
Con la versión de Welch, los grados de libertad son aproxi-

madamente 56. No hace falta que el estudiantado memorice la 
fórmula exacta; lo importante es saber que se usan para buscar 
el valor crítico o el p-valor en la distribución t.

Para unos 56 grados de libertad y una prueba unilateral: un 
valor t cercano a 2,44 da un p-valor alrededor de 0,01.

Eso significa que, si en realidad no hubiera diferencia entre 
los grupos (si  fuera cierta), la probabilidad de obtener una 
diferencia tan grande como 0,8 horas, o incluso mayor, solo por 
azar, sería de alrededor del 1 %. Es decir, bastante baja.
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8.	Decisión estadística
Como el p-valor es ≈ 0,01 y nuestro nivel de significación era 

α=0,05:
•	 	p <α
•	 Rechazamos .
Los datos que hemos observado no encajan bien con la idea de 

que la plataforma no produce ninguna diferencia. Hay evidencia 
suficiente para pensar que sí tiene efecto.

9.	 Interpretación en lenguaje humano
Una forma de comunicar el resultado, sin tecnicismos innece-

sarios, podría ser:
Con la información recogida, la diferencia de 0,8 horas se-

manales de estudio entre el grupo que usó la plataforma y el 
que no la usó es demasiado grande como para atribuirla solo al 
azar. Los análisis estadísticos sugieren que la plataforma digital 
sí está asociada con un mayor tiempo de estudio, al menos en 
este contexto y con este grupo de estudiantes.

•	 Desde un enfoque frecuentista, hablas de probabilidad de 
observar esos datos si la hipótesis nula fuera cierta.

•	 Desde una mirada didáctica y constructivista, enfatizas 
el proceso: partir de una conjetura en lenguaje cotidiano, 
traducirla a hipótesis formales, analizar la variabilidad y, 
finalmente, volver a un lenguaje comprensible para tomar 
decisiones educativas.

La figura 8 permite comparar de forma precisa el comporta-
miento de ambos grupos a partir de sus valores estimados. 

El grupo que trabajó con la plataforma obtuvo una media de 
6,3 horas de estudio por semana, con un intervalo de confianza 
del 95 % entre 5,84 y 6,77 horas. En contraste, el grupo sin pla-
taforma registró una media menor, 5,5 horas, cuyo intervalo de 
confianza se ubica entre 5,02 y 5,99 horas.

Cuando se observan juntos, estos intervalos revelan un patrón 
interesante: aunque existe una ligera superposición entre ambos 
rangos, la mayor parte del intervalo del grupo con plataforma 
queda por encima del intervalo correspondiente al grupo sin 
plataforma. Esto, junto con la diferencia en las medias, sugiere 
una ventaja consistente a favor del uso de la plataforma digital. 
Además, el error estándar es menor en ambos casos (0,2268 y 
0,2373), lo cual indica que las estimaciones son razonablemente 
estables para tamaños muestrales de 28 y 30 estudiantes.

Comprender la diferencia entre la hipótesis nula y la hipótesis 
alternativa es un paso esencial para que el estudiantado pueda 
interpretar con sentido cualquier contraste estadístico. Cuando 
los estudiantes logran traducir sus intuiciones y preguntas co-
tidianas al lenguaje formal de la estadística, dejan de ver las 
hipótesis como frases abstractas y empiezan a reconocerlas 
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como herramientas que permiten organizar el razonamiento y 
dar estructura a la investigación.

Esta transición del lenguaje común al académico no solo cla-
rifica qué se quiere evaluar, sino que también ayuda a evitar 
malentendidos frecuentes, como creer que la hipótesis nula ex-
presa una opinión personal o un deseo de resultado. En realidad, 
la hipótesis nula funciona como un punto de referencia que per-
mite valorar la evidencia, mientras que la alternativa expresa la 
dirección o el tipo de cambio que interesa analizar. Cuando el 
docente acompaña este proceso con ejemplos cercanos y ex-
plicaciones sencillas, la formulación de hipótesis deja de ser un 
trámite técnico y se convierte en un ejercicio de reflexión que 
fortalece la capacidad de pensar con rigor y claridad.

Figura 9. 
Comparación de las medias de horas de estudio entre los grupos con 
y sin plataforma, con intervalos de confianza del 95 %

 

Nota. La figura muestra las medias semanales de estudio para los dos gru-
pos: uno que trabajó con la plataforma digital y otro que utilizó únicamente 
material impreso.

Pruebas Z y t de Student: criterios para decidir
La elección entre una prueba Z y una prueba t de Student no es 
un asunto meramente técnico; constituye una decisión clave para 
garantizar que las inferencias realizadas reflejen adecuadamente 
la incertidumbre presente en los datos. En términos generales, 
esta decisión depende de dos elementos fundamentales: 
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el tamaño de la nuestra y la disponibilidad de la desviación 
estándar poblacional. Sin embargo, diversos autores han mos-
trado que este criterio básico debe matizarse para evitar inter-
pretaciones erróneas o conclusiones precipitadas.

Gelman y Hill (2014) advierten que aplicar la prueba Z sin 
considerar el origen de la desviación estándar suele conducir 
a un exceso de confianza en las conclusiones, porque ignora la 
variabilidad adicional asociada a la estimación muestral. Este 
planteamiento coincide con la perspectiva clásica de Student 
(1908), quien desarrolló su distribución precisamente para corre-
gir el sesgo que se introducía al trabajar con muestras pequeñas.

Desde un enfoque más didáctico, Batanero y Díaz (2011) seña-
lan que muchos estudiantes creen que ambas pruebas son equi-
valentes o intercambiables, lo que genera errores conceptuales 
frecuentes. Por ello, recomiendan enfatizar en la enseñanza que la 
prueba Z se justifica únicamente cuando σ es conocida o cuando 
los tamaños muestrales son lo suficientemente grandes como 
para que la estimación de la desviación estándar sea estable. 

En la literatura reciente, autores como Cumming (2014) des-
taca que la prueba t incorpora explícitamente la incertidumbre 
del error estándar, lo que la vuelve más adecuada para investi-
gaciones en ciencias sociales y educativas, donde los tamaños 
de muestra tienden a ser moderados o reducidos.

En resumen, aunque la regla general indica que la prueba Z 
se utiliza cuando σ es conocida o , y la prueba t cuando σ 
es desconocida o la muestra es pequeña, los autores coinciden 
en que la prueba t ofrece una representación más fiel de la in-
certidumbre en la mayoría de contextos educativos. Su uso no 
solo a justa de manera más adecuada el error estándar, sino que 
promueve una comprensión más crítica del proceso inferencial. 

Ejemplo 10. Situación cercana a una prueba Z: σ conocida y 
muestra grande

Imagina que el Ministerio aplica cada año una prueba estan-
darizada de matemáticas a todo el país. A partir de muchos años 
de aplicación, se sabe que los puntajes se distribuyen aproxima-
damente con media poblacional μ  puntos y desviación 
estándar poblacional σ  puntos.

Este año, una provincia que ha implementado un nuevo pro-
grama de apoyo reporta una muestra de 100 estudiantes con 
una media de  puntos. La pregunta es:

¿Se puede concluir que el programa está asociado con un au-
mento real en los puntajes, o esa diferencia de 30 puntos podría 
deberse solo al azar?

Los resultados del análisis (Tabla 4) indican que la media ob-
servada de los puntajes (530 puntos) se encuentra tres errores 
estándar por encima de la media poblacional histórica de 500 
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puntos. El estadístico Z = 3 y su p-valor bilateral (p = .0027) mues-
tran que esta diferencia de 30 puntos es muy poco probable que 
se deba únicamente al azar. El intervalo de confianza del 95 % 
(510.4 a 549.6) tampoco incluye el valor de la media poblacional, 
reforzando esta conclusión.

Tabla 4,
 Resultados de la prueba Z para evaluar el efecto del programa en los 
puntajes

Estadístico Valor

Media 
muestral

530

Media pobla-
cional (H₀)

500

Error están-
dar (SE)

10

Estadístico Z 3.00

p (bilateral) 0.0027

IC 95 % [510.4 ; 549.6]

Nota. La tabla resume los resultados de una prueba Z aplicada para com-
parar la media observada de una muestra de 100 estudiantes con la media 
poblacional histórica de 500 puntos.

En términos prácticos, hay evidencia estadística sólida para 
afirmar que el programa implementado está asociado con una 
mejora real en el rendimiento académico de los estudiantes en 
la prueba estandarizada.

Ejemplo 11. Situación típica de prueba t:  σ desconocida y mues-
tra pequeña

Ahora pensemos en un escenario mucho más habitual en edu-
cación: un docente en un solo curso quiere saber si su estrategia 
de evaluación formativa ha incrementado el tiempo de estudio 
semanal de su grupo. Para ello recoge datos de 12 estudiantes 
y obtiene:

•	 	Media muestral: 
•	 	Desviación estándar muestral: 
•	 	Hipótesis de referencia: antes de la intervención, el grupo 

estudiaba en torno a 6 horas.
Los resultados de la prueba t de una muestra (Figura 9) indican 

que el grupo estudia, en promedio, 6,18 horas semanales, muy 
cerca de las 6 horas que se tomaron como valor de referencia. 
La desviación estándar es 0,753, y con 12 estudiantes esto se 
traduce en un error estándar de 0,217.
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Los resultados de la prueba t de una muestra (Figura 9) indican 
que el grupo estudia, en promedio, 6,18 horas semanales, muy 
cerca de las 6 horas que se tomaron como valor de referencia. 
La desviación estándar es 0,753, y con 12 estudiantes esto se 
traduce en un error estándar de 0,217.

Figura 10. 
Resultados de la prueba t de una muestra para el tiempo de estudio 
semanal

 

Nota. La figura presenta los resultados de una prueba t de una muestra apli-
cada a 12 estudiantes, con el fin de comparar la media observada de horas 
de estudio semanal (6,18 horas) con el valor de referencia de 6 horas.

Al comparar la media observada con el valor de 6 horas, 
Jamovi calcula un estadístico t(11) = 0,843 con un p = 0,417. Este 
p-valor es mucho mayor que 0,05, de modo que no hay evidencia 
estadística para rechazar la hipótesis de que la media real sea 6 
horas; la diferencia de 0,18 horas puede explicarse perfectamente 
por la variabilidad normal entre estudiantes.

El tamaño del efecto de Cohen (d = 0,243) también refuerza 
esta lectura: se trata de un efecto pequeño, lo que sugiere que, 
aun si existiera algún cambio real, su magnitud sería modesta. 
En resumen, con estos datos no podemos afirmar que la estra-
tegia de evaluación haya modificado de forma clara el tiempo 
de estudio del grupo; más bien, los resultados son coherentes 
con la idea de que el alumnado sigue estudiando alrededor de 
6 horas por semana.

Apoyo didáctico: Trabajar con pruebas de hipótesis en el aula 
no debería convertirse en un ejercicio mecánico de “aplicar fór-
mulas”, sino en una oportunidad para que el estudiantado com-
prenda qué significa realmente comparar evidencia con una afir-
mación inicial. En el ejemplo analizado, los resultados muestran 
que la media observada no es estadísticamente distinta del valor 
de referencia, lo que invita a pensar que los datos, por sí solos, 
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no sostienen la idea de un cambio relevante en el tiempo de es-
tudio. Desde una perspectiva formativa, esto permite conversar 
con los estudiantes sobre la importancia de mirar más allá de la 
diferencia numérica y atender a la variabilidad, al tamaño de la 
muestra y al contexto en el que se recogen los datos.

Este tipo de análisis también ayuda a desmontar la expectativa 
frecuente de que toda intervención debe producir un aumento 
inmediato y visible. Entender que la ausencia de diferencias sig-
nificativas no es un “fracaso”, sino un resultado posible y valioso, 
fomenta en el aula una postura más crítica y honesta frente a la 
evidencia. A la vez, abre la puerta para que los estudiantes re-
flexionen sobre qué otros factores podrían estar influyendo, qué 
ajustes metodológicos serían necesarios o qué tipo de evidencias 
complementarias podrían recabarse. 

Errores tipo I y tipo II en el razonamiento estadístico
En el corazón de toda prueba de hipótesis existe una tensión 

entre dos riesgos inevitables: equivocarse por exceso de con-
fianza o equivocarse por exceso de cautela. Estos riesgos se 
formalizan en la estadística inferencial como error tipo I y error 
tipo II, conceptos centrales para comprender que toda decisión 
basada en datos está sujeta a incertidumbre y que nunca traba-
jamos con conclusiones absolutas, sino con grados de evidencia.

El error tipo I (α) ocurre cuando se rechaza la hipótesis nula 
siendo esta verdadera. Es, en términos prácticos, declarar que 
“hay un efecto” donde realmente no lo hay. En educación, este 
error puede llevar a pensar que una intervención didáctica pro-
dujo mejoras cuando, en realidad, los resultados observados po-
drían explicarse por el azar o la variabilidad natural de los grupos. 
Su importancia radica en que, si no se controla, se corre el riesgo 
de implementar estrategias o programas ineficaces, generando 
expectativas infundadas, uso inadecuado de recursos o conclu-
siones pedagógicas equivocadas.

Por otro lado, el error tipo II (β) aparece cuando no se rechaza 
la hipótesis nula siendo esta falsa. En este caso, el peligro consiste 
en pasar por alto un efecto real: creer que una intervención “no 
funciona” cuando en verdad sí produce un impacto. Este tipo de 
error tiene consecuencias relevantes en entornos educativos, 
porque puede llevar a descartar prácticas valiosas, no dar con-
tinuidad a estrategias prometedoras o desestimar cambios que 
requieren más tiempo o condiciones más estables para hacerse 
visibles. Su probabilidad está asociada al tamaño de la muestra, 
la variabilidad de los datos y la magnitud del efecto: cuanto más 
pequeños sean los grupos o más dispersa sea la información, 
mayor es el riesgo de no detectar diferencias que sí existen.
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Comprender ambos errores es fundamental para la toma de 
decisiones informada. En la práctica, no se trata simplemente de 
memorizar definiciones, sino de entender que toda inferencia 
estadística implica un equilibrio: minimizar el error tipo I redu-
ce la probabilidad de falsas alarmas, pero aumenta el riesgo de 
cometer un error tipo II, es decir, de dejar pasar efectos reales. 
De la misma manera, aumentar la sensibilidad para detectar 
cambios puede elevar el riesgo de concluir que un resultado es 
significativo cuando en realidad no lo es. Este juego de compen-
saciones obliga a reflexionar sobre el contexto de investigación, 
las implicaciones pedagógicas y los costos de equivocarse en 
uno u otro sentido.

Ejemplos que el docente puede desarrollar:
Ejemplo 12. Evaluación de un nuevo método de enseñanza
Una institución introduce un método innovador de enseñanza 

de matemáticas y quiere comprobar si esta mejora el rendimiento 
respecto al enfoque tradicional. Se comparan las calificaciones 
de ambos grupos mediante una prueba estadística.

Error tipo I (falso positivo)
El análisis indica que el nuevo método mejora el rendimiento, 

por lo que la escuela decide implementarlo. Sin embargo, en 
realidad no existe una mejora real; la diferencia observada se 
debe al azar o a factores externos (motivación inicial, afinidad 
del docente, clima del aula).

La consecuencia es que la institución adopta una estrategia 
que solo parece eficaz, invirtiendo tiempo, recursos y expecta-
tivas en algo que no produce los resultados prometidos.

Error tipo II (falso negativo)
El análisis no encuentra diferencias significativas y se concluye 

que el método no aporta beneficios. Sin embargo, el método sí 
mejora el rendimiento, pero el estudio no fue capaz de detectarlo 
(por ejemplo, por usar una muestra demasiado pequeña).

El resultado es que la escuela descarta una herramienta 
realmente útil que podría haber apoyado el aprendiza je del 
estudiantado.

Ejemplo 13. Programa de tutorías para mejorar hábitos de 
estudio

Una docente aplica un programa de tutorías para fortalecer 
la organización del tiempo en un grupo de estudiantes y evalúa 
si aumentan sus horas de estudio semanales.

Error tipo I
Se concluye que las tutorías aumentaron las horas de estudio, 

pero en realidad los cambios se deben a un examen cercano que 
motivó al grupo a estudiar más.

El riesgo es atribuirle al programa un efecto que no proviene 
del programa, generando una falsa sensación de éxito.



183

Saquinaula Brito José Luis

Error tipo II
Los análisis no detectan un aumento significativo, por lo que 

se piensa que las tutorías no funcionan. Pero el programa sí ge-
neró cambios, solo que estos fueron pequeños o requieren más 
tiempo para consolidarse.

El riesgo es abandonar una intervención que sí aportaba me-
joras, aunque de forma progresiva.

Ejemplo 14. Detección temprana de dificultades de aprendizaje
Se utiliza una prueba diagnóstica para identificar a estudian-

tes con riesgo de dificultades lectoras.
Error tipo I
La prueba señala que un niño tiene riesgo cuando en realidad 

no lo tiene.
En la práctica, esto puede llevar a intervenciones innecesarias, 

ansiedad para la familia o desvío de recursos educativos.
Error tipo II
La prueba no detecta a una niña que realmente sí necesita 

apoyo.
Como consecuencia, la estudiante no recibe la ayuda oportuna 

y sus dificultades podrían profundizarse con el tiempo.
Desde un enfoque formativo, enseñar los errores tipo I y tipo II 

permite desarrollar en el estudiantado una mirada crítica sobre 
las afirmaciones basadas en datos. Los ayuda a reconocer que 
la estadística no busca certezas absolutas, sino decisiones razo-
nables apoyadas en evidencia. También favorece el desarrollo de 
un pensamiento más matizado: no todo resultado “significativo” 
implica un cambio real, ni toda ausencia de significación indica 
falta de impacto. Al integrar estos conceptos en el análisis edu-
cativo, se promueve una comprensión más profunda del carácter 
provisional y contextual de las conclusiones estadísticas, forta-
leciendo la capacidad de interpretar datos de manera reflexiva 
y responsable.

Contrastes más comunes en contextos educativos (proporcio-
nes, medias, diferencias)
Comprender los contrastes más habituales en investigación edu-
cativa implica mucho más que aplicar procedimientos estadísti-
cos; supone, como argumentan Batanero y Díaz (2011), reconocer 
la incertidumbre inherente a los datos y leerla de forma crítica 
para tomar decisiones informadas. Garfield y delMas (2008) aña-
den que la fortaleza de estos contrastes radica en su capacidad 
para articular preguntas educativas reales con herramientas 
cuantitativas transparentes. 
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Desde esta mirada, los contrastes se presentan en dos grandes 
grupos: los que se aplican a proporciones y variables categóri-
cas, y los que se aplican a medias y diferencias entre grupos. La 
diferenciación no es meramente técnica.

Contrastes para proporciones y variables categóricas
En educación, una gran parte de la información que se recoge 

no es numérica continua sino categórica: aprobar o no aprobar, 
asistir o no asistir, alto o bajo desempeño, riesgo o no riesgo, 
logro o no logro. Estas variables permiten describir situaciones 
relevantes, pero exigen métodos específicos para poder con-
trastar hipótesis o estudiar asociaciones entre grupos. Como 
plantean Batanero y Díaz (2011), comprender cómo se analizan 
las proporciones es fundamental para desarrollar un pensamiento 
estadístico auténtico, pues la interpretación de estos contrastes 
se vincula directamente con decisiones educativas reales: asig-
nación de recursos, intervenciones focalizadas o evaluación de 
programas.

Los contrastes para proporciones permiten responder pre-
guntas como:

•	¿La proporción de estudiantes con logro mejora luego de 
una intervención?

•	¿Dos grupos muestran patrones similares de aprobación?
•	¿Existe relación entre la participación y el nivel de 

desempeño?
Garfield y delMas (2008) subrayan que estos contrastes son 

especialmente pedagógicos porque ayudan al estudiantado a 
pasar de la observación de frecuencias “a simple vista” a una 
interpretación rigurosa basada en evidencia y variabilidad.

A continuación, se desarrollan los contrastes más habituales.

a) Comparación de proporciones: prueba Z para una o dos 
proporciones

La prueba Z es uno de los contrastes más utilizados para com-
parar proporciones cuando el tamaño de la muestra es lo sufi-
cientemente grande como para justificar la aproximación normal. 
Su fundamento radica en que, al incrementarse el número de 
observaciones, la distribución muestral de la proporción tiende a 
adoptar una forma aproximadamente normal, lo que permite cal-
cular errores estándar y realizar inferencias con mayor precisión. 

Este comportamiento se explica por el principio general de las 
aproximaciones asintóticas, ampliamente discutido por Gelman y 
Hill (2014), quienes señalan que muchos procedimientos inferen-
ciales ganan estabilidad conforme aumenta la información dispo-
nible en los datos. En ese sentido, la prueba Z no solo se apoya 
en un criterio técnico, sino en una lógica estadística que busca 
garantizar conclusiones más fiables a partir de la variabilidad 
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muestral y del comportamiento esperado de la distribución bajo 
condiciones de gran tamaño de muestra.

Se utiliza cuando: 
1.	 	La variable es dicotómica (sí/no).
2.	 El tamaño muestral garantiza la aproximación normal:
3.	 .
4.	Se comparan proporciones con un valor de referencia (una 

proporción) o entre grupos (dos proporciones).
5.	 El objetivo es evaluar si la diferencia observada refleja un 

cambio real o solo fluctuaciones aleatorias.
Como advierte Gelman y Hill (2014), la clave pedagógica no es 

solo calcular la prueba, sino interpretar el resultado en términos 
de incertidumbre y tamaño del efecto.

Ejemplo 15. Prueba Z para una proporción
Una institución desea saber si al menos el 70 % de estudiantes 

alcanza el nivel esperado en comprensión lectora.
Datos:
45 de 60 estudiantes lograron el nivel  
Hipótesis:
•	 : p = 0.70
•	 : p > 0.70
Interpretación:
La diferencia entre 0.70 y 0.75 puede parecer relevante, pero 

la prueba Z ayuda a evaluar si este incremento podría aparecer 
por azar. Un valor p pequeño sugiere que la proporción real en 
la población podría estar por encima de 0.70.

Cumming (2014) recomienda acompañar siempre esta prueba 
con un intervalo de confianza del 95 %, porque permite comunicar 
con claridad la incertidumbre alrededor de la proporción observada.

Ejemplo 15. Prueba Z para dos proporciones
Situación:
Una docente implementa un módulo digital y desea saber si 

aumentó la proporción de estudiantes aprobados.
•	 Antes: 18/30 aprueban entonces 0.60
•	 Después: 24/30 aprueban entonces 0.80
Se usa Z para dos proporciones porque:
•	 Se comparan dos momentos distintos.
•	 Ambas proporciones provienen de muestras independientes.
•	 Las frecuencias cumplen los supuestos de normalidad 

aproximada.
Interpretación: La diferencia de 0.20 es notable, pero la pre-

gunta clave es:
¿es suficientemente grande como para atribuirla al programa 

y no al azar?
El contraste Z y su intervalo de confianza aportan evidencia 

más robusta que una simple comparación descriptiva.
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b) Prueba χ  (chi cuadrado) de independencia
La prueba χ ²es uno de los contrastes más utilizados para 

determinar si dos variables categóricas están asociadas o si sus 
distribuciones son independientes. En el ámbito educativo, su 
utilidad es particularmente relevante porque permite identifi-
car patrones que no siempre se distinguen a simple vista en las 
tablas de frecuencias. Agresti (2018) explica que este contraste 
resulta esencial cuando se investigan relaciones entre atributos 
cualitativos, pues permite evaluar si las diferencias entre valores 
observados y esperados son atribuibles al azar o responden a 
un efecto real. Es adecuada cuando:

•	 Ambas variables son categóricas.
•	 Se desea saber si las categorías de una variable están aso-

ciadas a las categorías de otra.
•	 Las frecuencias esperadas son ≥ 5 (Howell, 2017).
•	 El interés no es casual, sino relacional.
Ejemplo 16. Se quiere saber si el nivel lector se relaciona con 

asistir o no a un programa de apoyo. ( χ de independencia en 
lectura y asistencia)

Tabla 5. 
Asistencia a tutorías según el nivel lector del estudiantado

Nivel lector Asiste No asiste

Adecuado 12 8

Bajo 16 4
Nota. La tabla presenta la distribución conjunta del nivel lector y la asistencia 
a tutorías.

Desde una perspectiva didáctica, Batanero y Díaz (2011) des-
tacan que entender la lógica de este contraste ayuda al alum-
nado a interpretar adecuadamente la variabilidad y desarrollar 
un razonamiento estadístico más crítico y fundamentado. En 
conjunto, estos aportes consolidan a la prueba χ² como una he-
rramienta indispensable para analizar perfiles de riesgo, estra-
tegias de estudio y diversas dinámicas educativas basadas en 
datos categóricos.

c) Pruebas exactas y alternativas no paramétricas
En el análisis de datos educativos, la elección de una prueba 

estadística apropiada depende tanto del tipo de variable como de 
los supuestos que estas cumplen, por lo que comprender la lógica 
detrás de los métodos disponibles es fundamental para realizar 
inferencias sólidas. Agresti (2018) enfatiza que, antes de aplicar 
cualquier contraste, es necesario evaluar si las condiciones teóricas 
se sostienen, ya que de ello depende la validez de los resultados. 
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Del mismo modo, Batanero y Díaz (2011) destacan que muchos 
errores en la interpretación estadística provienen de una com-
prensión insuficiente sobre la naturaleza de las distribuciones y 
la variabilidad, lo que subraya la importancia de enseñar no solo 
técnicas, sino también sus fundamentos conceptuales. Por su 
parte, Batanero y Ben-Zvi (2013) muestran que el razonamiento 
sobre variabilidad es clave para interpretar correctamente las di-
ferencias entre grupos y tomar decisiones basadas en evidencia. 

Cuando los supuestos de χ  no se cumplen, por ejemplo, cuan-
do alguna frecuencia es menor a 5; por tanto, es necesario recu-
rrir a alternativas más robustas, como:

•	 	Prueba exacta de Fisher
•	 Prueba de McNemar (cuando las mediciones son pareadas)
Mayo (2018) subraya que estas pruebas “severas” refuerzan la 

validez del análisis, pues evitan conclusiones erróneas basadas en 
frecuencias insuficientes. Las contribuciones de Bakker (2004) se 
suman a esta perspectiva al señalar que el uso de herramientas 
y métodos adecuados permite representar de manera más pre-
cisa los patrones que emergen de los datos, algo especialmente 
relevante en entornos educativos donde las muestras no siempre 
cumplen los supuestos ideales. 

Ejemplo 17. Fisher exacta con grupos pequeños
Un grupo pequeño de 10 estudiantes participa en un micro 

taller. Se desea saber si el taller se relaciona con completar 
una tarea.

Tabla 6. 
Relación entre asistencia a tutorías y cumplimiento de tareas

Completa tarea Sí No

Asiste 5 1

No asiste 2 2
Nota. La tabla muestra la distribución de estudiantes según su asistencia a 
las tutorías y el cumplimiento de las tareas asignadas.

Las frecuencias son bajas en algunas celdas.
Por ello, χ ²no es recomendable y se utiliza Fisher exacta, que 

calcula la probabilidad exacta de obtener una distribución igual 
o más extrema bajo .

Interpretación:
Si p < 0.05, se concluye que el patrón entre asistencia y comple-

tar la tarea no es aleatorio. Dado el tamaño reducido, esta prueba 
evita sobre interpretar diferencias que podrían ser producto del 
azar. Los contrastes para proporciones y variables categóricas son 
herramientas especialmente útiles para interpretar situaciones edu-
cativas que, a simple vista, pueden parecer triviales o evidentes.
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A través de estos procedimientos es posible reconocer cam-
bios, asociaciones y tendencias que no siempre se muestran de 
forma clara en los datos brutos. 

Lo verdaderamente valioso, desde el punto de vista formativo, 
es que permiten al estudiantado mirar más allá de la intuición 
inicial y preguntarse qué tan probable es que una diferencia 
observada se deba realmente al fenómeno que interesa o, por 
el contrario, sea producto del azar.

El análisis de proporciones invita a pensar en la variabilidad, en 
la forma en que se distribuyen los resultados y en la importancia 
de considerar el tamaño de la muestra antes de sacar conclusio-
nes apresuradas. Esta reflexión es clave en contextos educativos, 
donde las decisiones deben basarse en evidencia confiable.

Contrastes para medias y diferencias entre grupos
Comparar medias es una de las tareas más frecuentes en inves-
tigación educativa: analizar si un grupo estudia más que otro, si 
una intervención mejora puntajes, si dos modalidades de ense-
ñanza producen diferencias en el rendimiento o si los estudian-
tes cambian su desempeño antes y después de un programa. 
Estas comparaciones son habituales porque permiten evaluar 
el impacto de las prácticas pedagógicas, contrastar enfoques 
metodológicos y comprender mejor cómo evolucionan los apren-
dizajes en diferentes contextos.

 Como señalan Kline (2013) y Howell (2017), elegir correcta-
mente un contraste supone atender tres aspectos esenciales: la 
naturaleza de las variables, el cumplimiento de los supuestos 
estadísticos y la forma en que se organiza el diseño del estudio. 
Cuando estas decisiones se toman con criterios sólidos, el análisis 
de medias deja de ser un mero ejercicio aritmético y se convier-
te en una herramienta de interpretación que ayuda a explicar 
por qué ciertos grupos se comportan de manera distinta, qué 
cambios son atribuibles a una intervención y qué variabilidad 
responde más al azar que a efectos reales. 

Como señalan Kline (2013) y Howell (2017), elegir correcta-
mente un contraste requiere considerar tres aspectos esenciales:

1.	 el tamaño de la muestra,
2.	 la forma en que se distribuyen los datos y
3.	 si se conoce o no la desviación estándar poblacional.
De la combinación de estos criterios surgen diferentes pruebas 

para comparar medias. A continuación, se desarrollan las más 
utilizadas en educación, junto con sus fundamentos conceptuales 
y ejemplos explicados paso a paso.

1.	 Prueba Z para una media: σ  conocida y tamaño grande
La prueba Z se utiliza en situaciones donde se conoce la des-

viación estándar poblacional (σ)o cuando el tamaño muestral es 
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lo suficientemente grande para que la distribución de la media 
se aproxime a la normal.

Aunque en educación rara vez se conoce σ, este contraste si-
gue siendo útil para fines didácticos, sobre todo para introducir 
el razonamiento inferencial.

Ejemplo 18: Una institución afirma que, en promedio, sus es-
tudiantes dedican 6 horas semanales al estudio. Una muestra 
grande de n = 80 estudiantes reportan:

Media muestral = 6.4 horas
σ poblacional (conocida por estudios previos) = 1.5 horas
Hipótesis:

: μ = 6  
: μ≠ 6

Interpretación: 
Si el valor Z resulta significativo, indica que el tiempo prome-

dio en esta muestra difiere del valor institucional, lo que sugiere 
que podrían haberse producido cambios reales en los hábitos 
de estudio. Sin embargo, el punto clave como explica Cumming 
(2014), no es el estadístico Z en sí, sino evaluar si la diferencia 
observada es coherente con la variabilidad que razonablemente 
podría esperarse en este tipo de datos. Esta perspectiva enfa-
tiza que la interpretación no debe centrarse únicamente en la 
significación, sino en comprender cuán plausible es el cambio 
a la luz de la variabilidad muestral y del intervalo de confianza 
que la acompaña.

2.	 Prueba t para muestras independientes: comparar dos gru-
pos distintos

Se usa cuando se desea comparar las medias de dos grupos 
independientes, como:

•	 estudiantes de dos cursos,
•	 dos metodologías diferentes,
•	 grupos con y sin intervención,
•	 condiciones de aprendizaje presenciales y virtuales.
Howell (2017) subraya que las condiciones clave para esta 

prueba son:
•	 Independencia entre los grupos
•	 Aproximada normalidad en cada conjunto
•	 Homogeneidad de varianzas (cuando se usa la versión 

clásica)
Cuando no se cumple la homogeneidad, se utiliza la corrección 

de Welch, más robusta.
Ejemplo 20
Una docente quiere saber si un módulo digital mejora el des-

empeño. Compara:
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Tabla 7. 
Estadísticos descriptivos de los puntajes según participación en la 
plataforma virtual

Grupo n Media DE

Con 
plataforma

30 6.3 1.2

Sin 
plataforma

30 5.5 1.3

Nota. La tabla presenta los estadísticos descriptivos de los puntajes obteni-
dos por los estudiantes que trabajaron con la plataforma virtual y aquellos 
que no la utilizaron.

Hipótesis:
•	 μ μ

•	 μ μ
•	 Interpretación:
Si el valor p es menor que 0.05, los datos sugieren que quienes 

utilizaron la plataforma estudiaron más. No obstante, este resul-
tado solo indica que la diferencia difícilmente se deba al azar; no 
dice nada sobre cuán grande o importante es. Por eso, el tamaño 
del efecto —como el d de Cohen— es indispensable para valorar 
si la diferencia observada es realmente significativa en términos 
educativos. Mientras el p refleja la evidencia estadística, el ta-
maño del efecto permite comprender la magnitud del cambio y 
si este tiene un impacto que pueda considerarse relevante para 
la práctica docente o para la toma de decisiones institucionales.

3.	 Prueba t para muestras pareadas: antes y después
La prueba t para muestras pareadas resulta especialmente 

útil cuando se quiere evaluar un cambio real en un mismo grupo 
de personas tras una intervención, actividad o experiencia edu-
cativa. A diferencia de los análisis que comparan grupos distin-
tos, aquí cada participante se convierte en su propio punto de 
referencia: se observa cómo estaba antes y cómo se encuentra 
después. 

Este enfoque permite aislar de mejor manera el efecto de la 
intervención, porque elimina la variabilidad que existe entre indi-
viduos. En contextos educativos, esta prueba ayuda a responder 
preguntas muy habituales, como si un programa de tutorías me-
jora el rendimiento, si una estrategia didáctica incrementa la mo-
tivación, o si una herramienta tecnológica facilita el aprendizaje. 

Se usa cuando las mediciones proceden del mismo grupo en 
dos momentos:

•	 pretest y postest,
•	 antes y después de una intervención,
•	 dos tareas realizadas por los mismos estudiantes.
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Ejemplo 21
Una docente aplica tutorías durante cuatro semanas. Antes y 

después, registra las horas de estudio:
•	 Pretest: media = 5.8
•	 Postest: media = 6.5
•	 Diferencia media = 0.7 horas
Hipótesis:
•	  μ

•	 μ
Interpretación:
Si la diferencia promedio resulta estadísticamente significati-

va, puede interpretarse que el aumento en las horas de estudio 
está asociado al programa. Sin embargo, como destaca Cumming 
(2014), la significación por sí sola no basta para comprender el 
alcance real del cambio. El intervalo de confianza de la diferencia 
proporciona información esencial sobre cuánta mejora es razo-
nable esperar y cuánta incertidumbre existe alrededor de esa 
estimación. De este modo, no solo se identifica que el programa 
produce un efecto, sino también la magnitud y la precisión con 
que puede describirse dicho efecto, lo que permite tomar deci-
siones más informadas y realistas en el ámbito educativo.

4.	ANOVA de un factor: tres o más medias
Howell (2017) explica que el ANOVA contrasta la variabilidad 

entre grupos con la variabilidad dentro de ellos. Cuando la varia-
ción entre las medias grupales es mucho mayor que la dispersión 
que existe dentro de cada grupo, resulta poco probable que esa 
diferencia sea producto de fluctuaciones aleatorias. En ese caso 
se concluye que existe evidencia de diferencias significativas en-
tre los grupos. Esta lógica convierte al ANOVA en una herramienta 
especialmente valiosa para estudiar fenómenos educativos en los 
que se desea comparar varios métodos, intervenciones o niveles 
de desempeño sin perder rigor estadístico.

Ejemplo 22. Tres modalidades de estudio (A, B y C) producen 
los siguientes resultados:

Interpretación:
Un ANOVA significativo indica que al menos una de las me-

dias difiere del resto, pero no especifica entre qué grupos se 
encuentran esas diferencias. Esta información es crucial en la 
interpretación, ya que el análisis global solo señala la existencia 
de una variación sistemática, sin precisar su origen. Por ello, una 
vez obtenida una F significativa, es necesario complementar el 
análisis con comparaciones post hoc, que permiten identificar 
con precisión qué pares de medias presentan diferencias esta-
dísticamente relevantes. 
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Estas pruebas controlan el error asociado a realizar múltiples 
comparaciones y ofrecen una visión más detallada del efecto, 
facilitando conclusiones válidas sobre las modalidades que real-
mente se distinguen entre sí.

En síntesis, los contrastes para medias constituyen una herra-
mienta esencial para comprender cómo varían los aprendiza jes 
y las prácticas educativas en distintos grupos y contextos. Más 
allá de las fórmulas, su verdadero valor radica en ayudar a in-
terpretar si las diferencias observadas reflejan cambios reales 
o simplemente variabilidad propia del muestreo. Elegir entre 
una prueba t, una prueba Z o un ANOVA implica considerar con 
cuidado el diseño del estudio, el tamaño de la muestra y el tipo 
de datos disponibles; pero, sobre todo, exige una lectura crítica 
que no se limite al valor p, sino que incorpore los intervalos de 
confianza y el tamaño del efecto como parte del argumento pe-
dagógico. Cuando se enseñan y aplican desde esta perspectiva, 
estos contrastes se transforman en un medio para fortalecer la 
toma de decisiones informada, fomentar la reflexión sobre la 
evidencia y promover una comprensión más profunda de los 
procesos educativos que se busca analizar.

Tabla 8. 
Estadísticos descriptivos de los puntajes según modalidad de estudio

Grupo Media DE n

A 6.1 1.1 25

B 5.6 1.3 25

C 6.8 1.0 25

Nota. Los datos presentan las medias, desviaciones estándar y tamaños 
muestrales de tres modalidades de estudio (A, B y C).

Conclusiones

El capítulo 4 mostró que la inferencia estadística es, ante todo, 
una forma de pensar con datos y no solo un conjunto de fórmulas. 
Trabajar con población, muestra y sesgo permitió comprender 
que toda conclusión se apoya en decisiones de muestreo que 
pueden acercarnos o alejarnos de la realidad que queremos es-
tudiar. La idea de que “los datos no hablan solos” atraviesa todo 
el capítulo: es necesario preguntarse quiénes participaron, cómo 
se recogió la información y qué tipo de preguntas se pretende 
responder para que el análisis tenga sentido.

Al abordar la estimación puntual y por intervalos, así como el 
tamaño muestral y la precisión, el capítulo insistió en que toda
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estimación va acompañada de incertidumbre. Lejos de ser un 
error, esa incertidumbre es una característica propia del trabajo 
con muestras y debe aprender a interpretarse con herramientas 
como el error estándar, los intervalos de confianza y el análisis 
de la variabilidad. En esa misma lógica, las pruebas de hipótesis 
se presentaron como un puente entre el lenguaje cotidiano y el 
lenguaje académico: formular  y , elegir la prueba adecua-
da y analizar el valor p y el tamaño del efecto solo tiene sentido 
si se vincula con una pregunta real sobre cambios, diferencias o 
relaciones entre grupos.

Finalmente, el capítulo resaltó la importancia de formar una 
actitud crítica frente a los resultados estadísticos. La inferen-
cia no entrega verdades absolutas, sino evidencias que deben 
leerse con prudencia, reconociendo sus límites y el contexto 
en que se producen. Cuando el estudiantado aprende a jus-
tificar sus conclusiones, a discutir la calidad de los datos y a 
reconocer qué puede y qué no puede afirmarse a partir de un 
análisis, la estadística deja de ser una lista de procedimientos 
para convertirse en una herramienta de argumentación. 
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