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Prologo

Hay libros que llegan para ensefar, y otros que llegan para
acompafar. Este pertenece a ambos. Acompafia al lector en un
viaje que comienza mucho antes de abrir sus pdginas, en ese
momento intimo en el que alguien se pregunta qué es realmente
la geometria, por qué la trigonometria aparece en tantos cami-
nos del conocimiento, o coémo es posible que ideas tan antiguas
sigan siendo esenciales en la vida contempordnea.

Desde civilizaciones que midieron la tierra para sobrevivir
hasta las teorias que hoy describen el espacio curvo del univer-
so, la geometria y la trigonometria han sido formas de ordenar
el mundo y de pensar con claridad. No son solo disciplinas ma-
tematicas; son maneras de mirar. Este libro recupera esa mirada
con una voz que une historia, rigor y diddctica, sin perder la
sensibilidad que hace de la matematica una creacién humana
antes que un conjunto de reglas.

A'lo largo de estas pdginas, el lector descubrird que un pun-
to no es solo una marca, que una recta no es solo un trazo, y
que un dngulo no es Unicamente una medida. Cada concepto
se revela como una estructura de pensamiento con raices pro-
fundas, capaz de dialogar con la experiencia cotidiana y con
las abstracciones mdas elevadas. El libro no exige memorizar;
invita a comprender. No pide repetir procedimientos; propone
reconstruirlos desde la intuicion y el razonamiento.

Quien ensefie encontrard aqui un recurso que respeta la
complejidad del aprendizaje geométrico y que ofrece explica-
ciones claras, conectadas con las necesidades reales del aula.
Quien estudie reconocerd un texto que no se limita a mostrar
resultados, sino que acompafa el proceso de pensar: observar,
conjeturar, justificar, refutar y volver a empezar. Quien sim-
plemente tenga curiosidad hallard una lectura que combina
historia, ideas y ejemplos con una narrativa que busca acercar
la matematica a la vida.

Este libro es, en esencia, un puente: entre la geometria
clasica y la contempordnea, entre la formalidad del razona-
miento y la intuicion sensible, entre la ensefianza tradicional
y las posibilidades que hoy ofrecen las herramientas digitales.
Detenerse en sus pdginas es reencontrarse con una matema-
tica que sigue viva, que sigue interrogdndonos y que sigue
ensefidndonos a ver.



Evaluacion para el aprendizaje

Con ese espiritu nace este prélogo: como unainvitacion abier-
ta arecorrer, sin prisay con asombro, un territorio que ha acom-
pafado a la humanidad desde sus primeros trazos hasta sus
mds recientes descubrimientos. Que cada lector haga de este
vidje una experiencia propia, porque la geometria, al final, no
se aprende Unicamente con los ojos: se aprende con la mente
despierta y con la curiosidad en movimiento.






Evaluacion para el aprendizaje

Contenido

Capitulo | 18

Introduccion a la geometria, la trigonometria y conceptos
fundamentales

Introduccion

La geometria como ciencia del espacio: origen y evolucién
historica

Sistemas axiomdaticos: Euclides, Hilbert y las geometrias no
euclidianas

Conceptos fundamentales: punto, recta, plano y posicion relativa
Razonamiento deductivo e inductivo en la construccion
geomeétrica.

Conclusiones

Referencias

Capitulo Il 52

Poligonos, dreas, circunferencia y circulo

Introduccion

Clasificacién de poligonos: regulares e irregulares
Propiedades de tridngulos y cuadrilateros

Cdlculo de perimetros y dreas de figuras planas
La circunferencia y el circulo

Conclusiones

Referencias

10



Capitulo Il 87

Relaciones métricas en tridngulos, poliedros, cuerpos de
revolucion y modelo de Van Hiele

Introduccion

Relaciones métricas en tridngulos rectangulos y oblicudngulos
Semejanza de tridngulos y razén de proporcionalidad
Poliedros y cuerpos de revolucion: clasificacion y propiedades
Volumenes y dreas de cuerpos geométricos

Modelo de Van Hiele: niveles de razonamiento geométrico
Conclusiones

Referencias

Capitulo IV 18

Razones e identidades trigonomeétricas y resolucion de
triangulos

Introduccion

Razones trigonométricas en el triGngulo rectdngulo

Relaciones fundamentales y circulo trigonométrico

Identidades trigonométricas bdsicas

Algunas aplicaciones de la trigonometria en la vida cotidiana y
las ciencias

Conclusiones

Referencias

11



Evaluacion para el aprendizaje

indice de tabla y figuras

Capitulo |

indice de figuras
Figura 1. Representacion grafica de los postulados euclidianos
sobre rectas, circulos y dngulos rectos
Figura 2. Representaciéon del quinto postulado de Euclides y la
condicion de paralelismo
Figura 3. Representacion geomeétrica de un plano y la relaciéon
de incidencia entre puntos, rectas y superficies
Figura 4. Representacion del axioma de orden y la relaciéon “entre”
en una linea recta
Figura 5. Representacion del principio de congruencia mediante
la traslacion de un trigngulo en el plano
Figura 6. Representacion axiomatica del paralelismo en el siste-
ma de Hilbert
Figura 7. Representacion de la continuidad geométrica mediante
puntos intermedios entre Ay B
Figura 8. Visualizacion del postulado hiperbdlico en el disco
de Poincaré: generacién de infinitas paralelas desde un punto
exterior
Figura 9. Representacion de puntos como elementos primitivos
en la geometria hilbertiana
Figura 10. Visualizacién del acto perceptivo en la geometria: el
punto como mirada encarnada
Figura 11. La recta como continuidad ideal en la geometria clésica
y moderna
Figura 12. La recta como soporte de la medida y referencia nu-
mérica en el sistema cartesiano
Figura 13. La recta como trayectoria minima y soporte de signi-
ficado en la accién matematica
Figura 14. El plano como extension bidimensional para la repre-
sentacion de puntos, rectas y figuras geométricas

12



Figura 15. Transformaciones rigidas y conservacion de propieda-
des invariantes en un tridngulo euclidiano

Figura 16. Conservacion de la paralelidad en una transformacion
afin de un cuadrilédtero

Figura 17. Proyeccion central de una figura: vista 2D y vista 3D
del proceso de transformaciéon proyectiva

Figura 18. Interseccion, paralelismo y perpendicularidad como
relaciones fundamentales entre rectas en geometria euclidiana
Figura 19. Construccién de arcos geodésicos y puntos notables
en el modelo del disco de Poincaré

Figura 20. Visualizacién dindmica del paralelismo mediante el
control de pendiente y posicion en GeoGebra

Figura 21. Exploracion dindmica de un trigngulo isdsceles y con-
servacion de los dngulos en la base

Figura 22. Exploracién dindmica de un tridngulo isdsceles y con-
servacion de los dngulos en la base

Figura 23. Tridngulos inscritos con didmetro comun: visualizacién
interactiva del teorema de Thales

Capitulo Il

indice de tablas
Tabla 1. Formulas fundamentales de perimetro y drea en figuras
planas
Tabla 2. Ejercicios introductorios de perimetro y area en figuras
planas
Tabla 3. Ejercicios de composicién y descomposicion de dreas
para el desarrollo del razonamiento geométrico
Tabla 4. Ejercicios de homotecia, perimetro y variacion de dreas
en figuras planas
Tabla 5. Problemas avanzados de generalizacién y representacion
funcional en geometria plana
Tabla 6. Problemas aplicados de geometria en contextos reales
y de estimacion cuantitativa
Tabla 7. Tareas demostrativas para el desarrollo del razonamiento
geomeétrico avanzado

indice de figuras
Figura 1. Poligonos como estructuras espaciales: relaciones entre
puntos, segmentos y angulos
Figura 2. Comparacién de poligonos regulares segun forma, nu-
mero de lados y disposicién espacial
Figura 3. Propiedades angulares de un poligono regular:igualdad
de lados, dngulos interiores y dngulos exteriores

13



Evaluacion para el aprendizaje

Figura 4. Hexdgono regular: bisectrices interiores y relacién con
la circunferencia inscrita y circunscrita

Figura 5. Pentadgono regular: bisectrices interiores y centro de la
circunferencia inscrita

Figura 6. Modelacion geométrica de un poligono inscrito y cir-
cunscrito como aproximaciones a la realidad fisica

Figura 7. Exploracion de relaciones angulares y estructurales
mediante la construccién dindmica de poligonos

Figura 8. Contraste entre figura irregular y figura regular: reco-
nocimiento de relaciones internas en geometria

Figura 9. Variacion de dngulos y perimetros al modificar un vér-
tice de un trigngulo construido en GeoGebra

Figura 10. Relaciéon jerdrquica entre cuadrado y rectangulo me-
diante comparacion de propiedades geométricas

Figura 1. Comparacion de cuadrilateros para analizar limites
conceptuales entre clases de figuras

Figura 12. Representacion tridimensional de un tridngulo para
analizar su estructura geométrica basica

Figura 13. Tridngulo con medicién de dngulos para promover el
razonamiento deductivo

Figura 14. Construcciones articuladas para explorar la rigidez
estructural en geometria

Figura 15. Trigdngulos congruentes mediante el criterio Lado-
Angulo-Lado (Lal)

Figura 16. Trigngulo rectangulo y aplicacion del teorema de
Pitagoras

Figura 17. Paralelogramos: cuadrado, rectdngulo, rombo y
romboide

Figura 18. Transformacion de un trapecio en un paralelogramo
mediante el ajuste de vértices

Figura 19. Ejemplo de cuadrilatero no paralelogramo con andlisis
de sus lados

Figura 20. Perimetro de un hexdgono regular y representacion
de la suma de sus lados

Figura 21. Aproximacion poligonal al perimetro curvilineo en fi-
guras circulares

Figura 22.Descomposicion y transformacién de un poligono para
justificar el cdalculo de darea

Figura 23. Representacion de la circunferencia como lugar
geométrico de puntos equidistantes del centro

Figura 24. Diferencia conceptual entre circunferencia y circulo
como limite y superficie

Figura 25. Relacion entre la longitud de la circunferencia y el
didgmetro en la definicibn geométrica de &

Figura 26. Representacion simbodlica del drea del circulo

14



Figura 27. Aproximacién de la longitud de un arco mediante el
uso de cuerdas

Figura 28. Relaciones entre arco, cuerda y angulo central como
base para la abstraccién progresiva

Figura 29. Descomposicion del circulo en sector y segmento
circular para introducir la idea de integracion

Figura 30. Representacién del segmento circular como combi-
nacion del sector y el trigngulo isdsceles

Capitulo Il

indice de tablas
Tabla 1. Cdélculos de longitudes y dreas en hexdgonos semejantes
con factor de escala k=1.5k.
Tabla 2.Cdlculos del radio, areas y costos en una plaza circular
ampliada con factor de escala k=1.2.
Tabla 3. Formulas fundamentales de dreas y volUmenes en cuer-
pOSs geométricos
Tabla 4. Cdlculo del volumen y dreas asociadas a un tanque
cilindrico
Tabla 5.Cdélculo comparativo de altura, generatriz y area lateral
en dos envases conicos con igual volumen
Tabla 6. Calculo del volumen interno y del drea superficial externa
de un domo hemisférico

indice de figuras
Figura 1. Descomposicion métrica del tridngulo rectdngulo me-
diante la altura.
Figura 2. Representacion geométrica de la escalera como hipo-
tenusa del trigngulo rectangulo.
Figura 3. Representacion geométrica de la Ley del Seno en un
tringulo inscrito en una circunferencia.
Figura 4. Aplicaciéon de la Ley del Coseno para determinar la
distancia entre dos puntos remotos.
Figura 5. Representacion geométrica de la Ley del Coseno en un
triGngulo oblicudngulo.
Figura 6. Variacién del lado opuesto en funcidon de la apertura
del dngulo seqgun la Ley del Coseno.
Figura 7. TriGdngulos homotéticos que conservan la estructura
proporcional bajo un mismo factor de escala.
Figura &. Relacion de proporcionalidad entre lados homdlogos
como fundamento de la semejanza de triangulos.
Figura 9. Proporcionalidad de alturas y elementos métricos de-
rivados en tridngulos semejantes.

15



Evaluacion para el aprendizaje

Figura 10. Relacién cuadrdética de las dreas en tridngulos seme-
jantes con factor de escala k.

Figura 11. Ampliacién de una region plana y crecimiento cuadra-
tico de su drea.

Figura 12. Ampliacion homotética de una plaza hexagonal con
factor de escala k=1.5.

Figura 13. Plaza circular y su version homotética con factor de
escala k=1.2.

Figura 14. Representacion tridimensional de un prisma con bases
congruentes y caras laterales paralelogramicas.

Figura 15. Representacion tridimensional de una pirdmide con
base poligonal y un vértice comun o dpice.

Figura 16. Modelo tridimensional de un poliedro regular construido
a partir de caras congruentes.

Figura 17. Representacion tridimensional de un cubo como ejem-
plo de sélido platénico.

Figura 18. Representacion tridimensional del cilindro y su super-
ficie lateral para el calculo del area.

Figura 19. Comparacion visual entre el cilindro y el cono para
analizar la razon volumétrica 1:3.

Figura 20. Relacidon entre la esfera y el cilindro circunscrito para
visualizar area y volumen.

Figura 21. Representacion del tanque cilindrico para el calculo de
volumen y drea de construccion.

Figura 22. Comparacion geométrica de dos envases coénicos
conigual volumen y radios distintos para analizar el drea lateral
requerida.

Figura 23. Representacién geométrica de un domo hemisférico
de radio 5 metros para el andlisis de volumen y superficie.

Capitulo IV

indice de tablas
Tabla 1. Identidades trigonométricas fundamentales y su inter-
pretacién geométrica.
Tabla 2. Propuesta de ejercicios para ensefiar identidades trigo-
nometricas desde la comprension

indice de figuras
Figura 1. Representacion comparativa de las funciones seno y
coseno en el intervalo 0< z < 2r.
Figura 2. Invariancia del seno de un dngulo en tridngulos rectan-
gulos semejantes.

16



Figura 3. Semejanza de tridngulos y conservaciéon de las razones
trigonométricas.

Figura 4. Ejemplos de triGngulos en posiciones no convenciona-
les para fortalecer la identificacion conceptual de las razones
trigonométricas.

Figura 5. Representacién trigonométrica de un poste y su sombra
para analizar la razén tangente.

Figura 6. Variacion dindmica de un trigngulo rectangulo para
observar la constancia de las razones trigonométricas.

Figura 7. Representacion grdafica de la funcidn seno para eviden-
ciar su comportamiento continuo y periédico.

Figura 8. Relacion dindmica entre el movimiento circular y la
funcion seno para visualizar la periodicidad y continuidad
trigonométrica.

Figura 9. Comparacién grafica de f(x)=sen(x) y g(x)=sen(x+2m)
para ilustrar la periodicidad del seno.

Figura 10. Representacién grdafica de las simetrias del seno y del
coseno para ilustrar su cardcter impar y par, respectivamente.
Figura 11. Representacion del punto P(cost, send) en la circunferencia
unitaria para visualizar el significado geométrico de las razones
trigonométricas.

Figura 12. Representacion geométrica de la tangente en la circun-
ferencia unitaria como pendiente de la recta que une el origen
con P(cos#, senf) y como interseccion con la linea tangente en (1,0).
Figura 13. Representacién del movimiento angular continuo en el
circulo unitario y su relacién con la extension de dngulos, coor-
denadas y periodicidad.

Figura 14. Representacion geométrica de la identidad fundamen-
tal sen?(a) +cos?(a) en la circunferencia unitaria.

Figura 15. Representacién geométrica del problema de mediciéon
de la altura del asta utilizando dngulos de elevacion de 45°y30°.
Figura 16. Representacion grdafica de la funcion m(t) para analizar
el flujo periddico de estudiantes en el stand matematico.
Figura 17. Visualizacién de la interferencia entre dos ondas sono-
ras de frecuencias cercanas y su resultante modulada.

Figura 18. Representacion temporal del voltaje aplicado en el
circuito RL para analizar la impedancia y el desfase.

Figura 19. Modelacién senoidal del ritmo cardiaco a partir de la
frecuencia de 75 latidos por minuto.

Figura 20. Funcién cosenoidal que modela la variacién diaria de
la temperatura en una ciudad costera.

17



CarituLo I

Introduccion a la geometria,
la trigonometria y conceptos
fundamentales

Introduccion

Hablar de geometria y trigonometria es hablar de la historia
del pensamiento humano. Desde las civilizaciones antiguas
que midieron la tierra, trazaron templos o calcularon la po-
sicion de los astros, el ser humano ha buscado entender el
espacio que habita y las relaciones que lo sostienen. La geo-
metria nacié del asombro ante las formas, de la necesidad de
medir y ordenar; la trigonometria, del deseo de comprender
los movimientos del cielo y transformar la observacidon en
cdlculo. Ambas conforman un lenguaje de comprension del
mundo: la geometria describe la estabilidad de las formas
y la trigonometria traduce el movimiento en medida. En su
conjunto, constituyen una manera de pensar que une la ex-
perienciay larazon, laintuicion y la demostracion, la mirada
sensible y la abstraccion légica.

ISBN 978-9942-596-46-8 | 2025
https://editorial.risei.org
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A lo largo de los siglos, la geometria y la trigonometria han
evolucionado desde lo empirico hacia lo conceptual, conservan-
do, sin embargo, un rasgo comun: su capacidad para ensefiar a
razonar. Desde los postulados de Euclides hasta las formulaciones
axiomaticas de Hilbert, y desde las concepciones de espacio de
Piaget hasta las representaciones digitales actuales, ambas dis-
ciplinas han sido un espejo de la mente humana en su bUsqueda
de coherencia. Comprender un punto, una recta, un plano o una
razon trigonométrica es mucho mas que memorizar definiciones:
implica descubrir como la mente organiza el espacio, cdémo lo
interpreta y cémo lo transforma. En ese proceso, el estudiante
no solo aprende a calcular, sino a pensar estructuradamente, a
deducir, justificar y comunicar ideas con precision.

Enla actualidad, la ensefianza de la geometria y la trigonometria
demanda integrar la tradicion del razonamiento con las oportunida-
des que ofrecen los entornos digitales. Las herramientas interactivas
como GeoGebra, Desmos permiten que el estudiante experimente
con figuras, observe patrones y visualice relaciones que antes solo
podian imaginarse. Esta interaccién inmediata entre la idea y su
representacion contribuye a que la comprension deje de ser estdtica
para volverse dindmica. La figura se mueve, los dngulos cambian, los
valores se ajustan, pero las relaciones se mantienen: el estudiante
comprende entonces que la verdad geométrica no depende del
dibujo, sino del razonamiento que lo explica.

El propdsito de este capitulo es invitar a redescubrir la geo-
metria y la trigonometria como formas vivas de pensamiento,
no solo como contenidos matemdticos. A través de un recorrido
histérico, conceptual y diddactico, se busca comprender cémo
ambas disciplinas han evolucionado desde la observacion em-
pirica hasta la abstraccion formal, sin perder su raiz humana:
la necesidad de comprender el espacio y el cambio. El capitulo
propone mirar la ensefianza de estas dreas como una experiencia
intelectual y creativa, donde el estudiante observa, construye,
argumenta y representa, integrando la intuicion con la légica y
la exploracién con la demostracion. En un mundo en permanente
transformacién, comprender la estructura y el movimiento del
espacio se convierte en una oportunidad para aprender a pensar
con claridad, profundidad y sentido.

La geometria como ciencia del espacio: origen y evolucidn
histdrica
La historia de la geometria es la historia de como las culturas han
aprendido a ver el espacio con rigor. Empieza con la necesidad de
medir y termina con lenguajes abstractos que describen la cur-
vatura del universo o la estructura de los datos digitales. Ese arco
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evolutivo no discurre en linea recta. Alterna momentos de invenciéon
practica, formalizacion l6gica, cambio de puntos de vista y sintesis
unificadoras. Seguir ese hilo ayuda a comprender por qué ensefiar
geometria no es repetir formulas, sino entrenar la mirada para de-
tectar invariantes, justificar relaciones y modelar situaciones.

Las primeras manifestaciones del pensamiento geométrico
surgen mucho antes de la existencia de una teoria formal. Nacen
del trabajo y de la necesidad, de la relacién del ser humano con
el espacio que habitay transforma. En las civilizaciones mesopo-
tdmica y egipcia, la geometria aparece como un saber practico
y empirico, orientado a resolver problemas concretos de agri-
mensura, construccion y calculo de dreas o volUmenes.

En Mesopotamia, las tablillas de arcilla como la Plimpton 322
(siglo XVIll a. C.) muestran el desarrollo de relaciones numéricas
gue anticipan la teoria pitagodrica. Estas tablas, escritas en cunei-
forme, registran ternas que corresponden a tringulos rectéangulos
y evidencian un pensamiento matemdtico operativo, basado en
la observacion y la proporcion (Boyer & Merzbach, 2019; Katz,
2009). Aunque no existia un lenguaje deductivo, se percibe ya
una logica subyacente en el uso de reglas empiricas, capaces de
resolver problemas de campo, reparto o construccion.

En Egipto, el conocimiento geométrico también tuvo un ca-
racter funcional. Los harpedonaptas, o “tensadores de cuerdas”,
utilizaban cuerdas con nudos espaciados 3-4-5 para trazar an-
gulos rectos y replantear terrenos después de las crecidas del
Nilo. Los papiros de Rhind y MoscU (aprox. 1800 a. C.) recopilan
procedimientos para calcular dreas de poligonos, volUmenes de
pirdmides truncadas o cilindros, y estimaciones del nUmero @
con un grado de precisidon sorprendente. Sin embargo, se trataba
de un conocimiento intuitivo y algoritmico, carente aun de los
principios de demostracidn o generalizacion propios de la mate-
matica griega posterior (Boyer & Merzbach, 2019; Stillwell, 2010).

En este contexto, la geometria fue una tecnologia del orden, una
herramienta para domesticar el espacio. Su propdsito no era la
verdad universal, sino la eficacia. Pero ese mismo saber empirico
sentd las bases del pensamiento geométrico: la necesidad de me-
dir, comparar, representar y conservar la proporcion. La semilla de
la abstraccion se encontraba ya en la accidon del agrimensor que,
sin saberlo, reproducia los principios de la razén espacial.

El giro decisivo en la historia de la geometria fue metodoldgico.
Los griegos transformaron un conjunto disperso de procedimien-
tos en un sistema de conocimiento racional, articulado mediante
definiciones, axiomas y teoremas. Este paso de la receta empirica
a la demostraciéon l6gica marca el nacimiento del pensamiento
matematico en sentido estricto.
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Euclides, en su monumental obra Los Elementos (siglo Il a.
C.), consolidé esta revolucion intelectual. Su método se basaba
en partir de unas pocas nociones primitivas: punto, linea, plano,
establecer postulados simples y deducir de ellos una red co-
herente de proposiciones. Cada afirmacién debia ser probada
mediante razonamiento, no mediante observacion. La geometria
dej6 asi de ser un saber empirico y se convirtié en una ciencia
del pensamiento puro (Euclides, 2002; Boyer & Merzbach, 2019).

El espiritu demostrativo alcanzé su culminacion en figuras como
Arquimedes, quien aplicd procedimientos que hoy reconocemos
como precursores del cdlculo integral. Mediante el método de ex-
hauscion, Arquimedes determinaba dreas y voliUmenes por aproxi-
maciones sucesivas, anticipando el concepto de limite. Por su parte,
Apolonio de Perga llevd la abstraccion aun mds lejos, al estudiar
las secciones conicas desde una perspectiva analitica y rigurosa
(Stillwell, 2010; Katz, 2009). Con ellos, la geometria dejo de describir el
espacio sensible y comenzd a crear un universo intelectual autonomo.

El modelo griego de conocimiento establecié una relacion
nueva entre razén y realidad: el saber geomeétrico ya no depen-
dia de la experiencia, sino de la deduccion. Esta independencia
dio lugar a una matemdatica de estructura, donde la coherencia
interna se volvié mds importante que la utilidad practica. Sin
embargo, esta abstraccion, que es la raiz de la ciencia moderna,
también generd una distancia entre el conocimiento y la vida co-
tidiana. Como sefiala Netz (2004), la geometria griega nacié en
un contexto social de élites, donde la demostracion era un acto
intelectual y no una necesidad del trabajo manual.

Apoyo diddctico: desde una mirada contempordnea, este legado
plantea un desafio didactico: icdmo recuperar en la escuela el equi-
librio entre la exactitud racional y la inteligencia practica? Ensefiar
geometria hoy implica rescatar la claridad del método griego, pero
también devolverle su conexidon con la experiencia. El estudiante
debe comprender que cada axioma tiene un origen humano, que
la demostracion no es un ritual vacio, sino una manera de justificar
por qué el mundo puede ser pensado de forma coherente.

Con Grecia, la geometria se convierte en lenguaje universal
del pensamiento. La nocidn de demostracién inaugura un ideal
de certeza que marcard toda la historia de la ciencia. Pero, al
mismo tiempo, recuerda que la claridad conceptual nace del
asombro, de la necesidad de explicar lo que se ve. Como escribid
Arquimedes, “Dadme un punto de apoyo y moveré el mundo™:
una metdfora precisa de la geometria misma, que sigue siendo
ese punto firme desde el cual el pensamiento humano mueve los
limites de su comprension.
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La transmisiéon y reelaboraciéon de la herencia griega despliega
nuevas preguntas y técnicas. En India, los Sulba Sitras y mas tarde
Aryabhata y Bhaskara Il trabajan con configuraciones geométricas
vinculadas a la astronomia y al calendario. En China, Los nueve capi-
tulos sobre el arte matemdatico con el comentario de Liu Hui exploran
algoritmos para areas y volumenes, asi como descomposiciones inge-
niosas que expresan intuiciones geométricas en términos operativos.

La perspectiva artistica descubre la proyeccion central como
estructura matematica. Desargues y Poncelet fundan la geome-
tria proyectiva, que no conserva longitudes ni angulos, pero si
alineaciones e incidencias. Este cambio de foco muestra que la
geometria puede organizarse alrededor de lo que permanece
invariante bajo ciertas transformaciones. A la vez, Monge y la
escuela francesa sistematizan la geometria descriptiva como
lenguaje de la ingenieria y la arquitectura, consolidando el vin-
culo entre dibujo técnico y razonamiento espacial (Gray, 2018).

Con La Géométrie de Descartes se establece una traduccidn
entre figuras y ecuaciones. El plano cartesiano permite resolver
problemas geométricos con herramientas algebraicas y, reci-
procamente, visualizar soluciones de ecuaciones como curvas.
Junto al cdlculo de Newton y Leibniz y la posterior formalizacion
de Cauchy y Weierstrass, nace un didlogo incesante entre andlisis
y geometria que alimenta la fisica matemdtica y la modelacion
de fendmenos continuos (Stillwell, 2010).

La crisis de las paralelas y la pluralidad de espacios: Durante si-
glos se intent6 deducir el quinto postulado de Euclides a partir de
los otros. El fracaso de ese proyecto resultd fecundo. Lobachevski
y Bolyai muestran que al negar el postulado emergen geometrias
coherentes, especialmente la hiperbdlica. Beltrami y luego Klein
proporcionan modelos que aseguran su consistencia relativa. De
pronto la pregunta ya no es si el espacio euclidiano es verdadero,
sino qué hipdtesis adoptamos y qué invariantes estudiamos en
cada familia de transformaciones. La eliptica completa el tri-
dente no euclidiano, y la intuicién comuin debe reeducarse para
aceptar sumas de angulos distintas de 180 grados o rectas que
se comportan de forma contraintuitiva (Gray, 2018).

En este sentido, Klein propone en 1872 una visién unificadora
que sigue vigente:una geometria se define por su grupo de trans-
formaciones y por las propiedades que permanecen invariantes
bajo ese grupo. Euclidea se centra en isometrias, proyectiva en
proyecciones centrales, afin en transformaciones afines. Este
marco organiza el mapa de las geometrias y educa la mirada
para buscar invariantes mds que listas de propiedades aisladas.
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La idea transforma la enseflianza misma, porque invita a re-
solver problemas analizando qué cambia y qué no cuando se
actUa sobre las figuras (Klein, 2004; Gray, 2018).

Por su parte, Gauss introduce la curvatura intrinseca y Riemann
generaliza la nocién a variedades de dimensidon arbitraria. Se
puede medir curvatura desde dentro, sin referencia al espacio
ambiente. Ese lenguaje se convierte en la gramatica natural de
la relatividad general y de la teoria de campos, y abre caminos
a objetos como geodésicas, tensores y formas diferenciales que
hoy pueblan tanto la matematica pura como la fisica tedrica
(Stillwell, 2010).

El cambio de horizonte que inaugura el siglo XX no es solo
técnico: es filosofico. Hilbert propone una reconstrucciéon de la
geometria euclidiana basada en sistemas axiomdticos explicitos,
donde los términos primitivos (“punto”, “recta”, “plano”) carecen
de contenido previo y obtienen significado Unicamente por las
relaciones que los axiomas establecen. Esta “limpieza” concep-
tual permite discutir con precision independencia, consistencia y
completitud relativas, y convierte a la geometria en un laboratorio
del pensamiento l6gico (Hilbert, 1971). La mirada deja de centrar-
se en las figuras para enfocarse en la estructura: lo importante
no es como luce un tridngulo, sino qué condiciones formales lo
constituyen.

El proyecto hilbertiano se nutre de los avances en lédgica ma-
temdtica y da pie a programas paralelos. El sistema sintético
de Tarski reformula la geometria elemental con un vocabulario
minimo (congruencia y betweenness) dentro de la teoria de mo-
delos, abriendo la puerta a demostrar resultados de decidibilidad
y completitud para fragmentos significativos de la geometria
euclidiana (Tarski & Givant, 1999). A la par, el impacto de los
teoremas de Gddel obliga a matizar las expectativas fundaciona-
les: no todo sistema suficientemente expresivo puede probar su
propia consistencia. Lejos de clausurar el programa, esta consta-
tacion refuerza el valor formativo de la axiomatizacién: razonar
geomeétricamente es razonar sobre supuestos y consecuencias
(Stillwell, 2010).

Este desplazamiento, del objeto al sistema, tiene un eco pe-
dagodgico claro. En el aula, trabajar con definiciones operativas,
contraejemplos y dependencias axiomaticas ayuda a que el es-
tudiantado entienda que las propiedades no “caen del cielo”: se
postulan y se derivan. Disefiar secuencias donde se compare,
por ejemplo, la geometria euclidiana con una versién “euclidiana
sin paralela” (reemplazando el quinto postulado) muestra que
cambiar un axioma cambia el mundo.
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Finalmente, la axiomatizacion del siglo XX revela que la geome-
tria es tanto episteme como método: una forma de producir verdad
dentro de sistemas explicitos. Ese énfasis en la forma, lejos de em-
pobrecer la disciplina, la libera para dialogar con ldgicas no clasicas,
teoria de modelos y fundamentos computacionales, ampliando su
alcance a dominios donde lo geométrico es, ante todo, estructura.

Desde este cimiento, la geometria se despliega en direcciones
multiples y a menudo inesperadas. La topologia estudia pro-
piedades invariantes por deformaciones continuas y formaliza
herramientas como la homologia y la cohomologia para distin-
guir espacios “por dentro”. Problemas clasicos (clasificacion de
superficies, nudos, variedades) se abordan ahora con un arsenal
algebraico y analitico de gran profundidad (Stillwell, 2010).

La geometria diferencial moderna bebe de Riemann y crece
con Cartan: variedades suaves, conexiones y curvatura permiten
estudiar como se “dobla” el espacio. Este lenguaje se vuelve el
alfabeto de la fisica tedrica (relatividad general) y de la me-
cdnica de medios continuos. Resultados como el teorema del
indice de Atiyah-Singer enlazan andlisis, topologia y geometria,
mostrando que cruzar fronteras conceptuales es el modo natural
de avanzar (Stillwell, 2010). En paralelo, los grupos de Lie y sus
representaciones proveen la sintaxis de las simetrias: cada ley
de invariancia admite una lectura geométrica.

La geometria algebraica renace con la topologia de Zariski y
alcanza una nueva madurez con el programa de Grothendieck. Al
introducir esquemas y funtores, la disciplina reinterpreta curvas
y superficies definidas por ecuaciones polindmicas como objetos
que viven simultGneamente en lo aritmético y lo geométrico.

En otra frontera, la geometria discreta y computacional se
convierte en gramdatica del mundo digital. Diagramas de Voronoi,
triangulaciones de Delaunay y estructuras de proximidad mode-
lan teselaciones, empaquetamientos y problemas de visibilidad;
algoritmos para poligonos, poliedros y nubes de puntos sostie-
nen graficos por computador, vision artificial, robdtica, GIS y
bioinformatica (Aurenhammer, 1991; de Berg et al,, 2008). Las
nociones cldsicas: convexidad, distancia, proyeccién, adquieren
una dimensidn algoritmica: ya no basta con existir, hay que com-
putar eficientemente.

La expansion contempordnea también cruza con andlisis ar-
monico y procesamiento de sefiales: del circulo unitario a las se-
ries de Fourier y a bases onduladas capaces de capturar patrones
en datos complejos. En aprendizaje automatico, métodos de ma-
nifold learning suponen que los datos viven cerca de variedades
de baja dimension; medir geodésicas y curvaturas vuelve a ser
crucial, ahora en espacios de alta dimensién. La geometria, lejos
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de un museo de figuras, se confirma como ciencia de estructuras
que organiza lo continuo, lo discreto y lo computacional bajo un
mismo horizonte conceptual.

Al integrar estos hilos, la tesis central se hace visible: la geo-
metria ya no es solo medicion ni solo demostracién; es el estudio
de estructuras, modelos y representaciones que dialogan con la
l6gica, el dlgebra, el andlisis y la computacién. Ese didlogo, sos-
tenido en el tiempo, explica por qué la geometria sigue siendo
un lenguaje privilegiado para pensar el espacio...y para pensar
con el espacio.

Mirar la geometria con perspectiva histérica permite articular
tres ideas diddcticas. Primero, que los conceptos nacen de proble-
mas significativos y cambian cuando cambian las herramientas.
Segundo, que el corazdn de la disciplina es la justificaciéon, no
el dibujo bonito. Tercero, que aprender geometria es aprender
a ver con estructura, lo que en educacién se concreta en pro-
gresiones de razonamiento espacial y niveles de comprension
de lo visual y lo formal. La investigacion didactica lo susten-
ta con marcos como el enfoque onto-semidtico y los niveles
de razonamiento geométrico propuestos por Van Hiele, Utiles
para planificar secuencias que avancen desde la percepcién a
la deduccion con tareas ricas y representaciones coordinadas
(Godino, Batanero y Font, 2007; van Hiele, 1986).

Sistemas axiomadticos: Euclides, Hilbert y las geometrias no
euclidianas
Un sistema axiomdtico es un pacto explicito: acordamos térmi-
nos primitivos que no se definen, postulados que aceptamos sin
pruebay reglas de inferencia para deducir teoremas. Su potencia
no estd en “decir verdades” sino en hacer visibles los supuestos
que usamos al razonar. La historia de la geometria puede leerse
como el paso desde un edificio elegante, pero con premisas im-
plicitas, a uno con cimientos declarados y ensayados en modelos
diversos. Ese viaje va de Los Elementos de Euclides a la axioma-
tizacion fina de Hilbert y a la pluralidad de espacios coherentes
gue inauguran Lobachevski, Bolyai y Riemann (Euclides, 2002;
Hilbert, 1971; Greenberg, 201; Gray, 2018).

Euclides. el orden de las razones
La grandeza de Los Elementos de Euclides no reside Unicamente
en los resultados que contiene, sino en la forma de pensar que in-
augura. A partir de un pequefio conjunto de principios bdasicos, el
autor de Alejandria construye un sistema que, durante mas de dos
milenios, fue considerado el modelo de la razdn demostrativa. La
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novedad euclidiana no es el descubrimiento de nuevos teoremas,
sino la organizacion de los conocimientos geométricos existentes
bajo una légica rigurosa y coherente, donde cada proposicion se
justifica a partir de definiciones, postulados y nociones comunes.
Los cinco postulados que Euclides propone en el Libro | cons-
tituyen el armazén del pensamiento geométrico cldsico. En for-
mulacién moderna, pueden expresarse de la siguiente manera:
1. Entre dos puntos cualesquiera puede trazarse una recta.
2. Toda recta puede prolongarse indefinidamente en la misma
direccion.
3. Con cualquier centro y radio se puede describir un circulo.

. Todos los dngulos rectos son iguales entre si.

5. Si una recta al cortar a otras dos formas dngulos interiores
del mismo lado cuya suma es menor que dos rectos, esas
dos rectas, prolongadas indefinidamente, se encontrardan
en el lado en que la suma de los angulos sea menor que
dos rectos.

N

Los cuatro primeros postulados como muestra la figura 1(a), de-
finen un espacio gobernado por la intuicion de lo recto, lo continuo
y lo equidistante. El quinto, en cambio (figura 1 (b)), introduce una
relaciéon mas profunda entre las lineas y el infinito: el principio de pa-
ralelismo. En su forma clasica, este postulado establece la unicidad de
la paralela que pasa por un punto exterior a una recta dada. Durante
siglos, este enunciado inquietd a los matemdaticos, pues parecia mas
complicado que los otros y su veracidad no era tan evidente.

Figura 1.
Representacion grdfica de los postulados euclidianos sobre rectas,
circulos y angulos rectos

Nota: Elaboraciéon propia.

Euclides (2002) lo acepta sin discusion, pero deja entrever
una tensidn que recorrerd toda la historia de la geometria. En su
sistema, la suma de los dngulos de un tridngulo equivale a 180°,
los poligonos semejantes conservan sus proporciones y las rectas
paralelas nunca se encuentran.
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Figura 2.
Representacién del quinto postulado de Euclides y la condicion de
paralelismo

Nota: Elaboracién propia.

No obstante, esa dependencia invisible del quinto postulado
hizo sospechar que su eliminacion o modificacién podia alterar
la estructura entera del espacio.

Autores posteriores, como Saccherien el siglo XVl y Lobachevsky
y Bolyai en el XIX, exploraron precisamente esa posibilidad. Al
sustituir el postulado por versiones alternativas: una recta que
admite mas de una paralela, o ninguna, descubrieron universos
geométricos igualmente coherentes, aunque distintos del euclidia-
no (Bonola, 1955; Katz, 2009). De esa revolucion intelectual nacid
la geometria no euclidiana, una de las transformaciones mdas pro-
fundas del pensamiento cientifico, pues demostré que el espacio
no era un dato de la experiencia, sino una construccion logica.

El paso de Euclides a Lobachevsky representa un cambio de
paradigma: de la geometria como descripcion del mundo visible
a la geometria como modelo del pensamiento. Como sostiene
Hartshorne (2000), el sistema de Los Elementos no pretende des-
cribir la realidad fisica, sino exhibir un orden de razonamiento. Cada
definicion y cada demostracion no dependen de la intuicién visual,
sino de la validez interna de los argumentos. Este modo de proceder
influyd profundamente en la filosofia, la fisica y la l6gica, convirtien-
do a la geometria en una escuela de pensamiento riguroso.

El método euclidiano: definir, suponer y deducir establecié
la arquitectura del razonamiento cientifico. Los Elementos en-
sefia que el conocimiento no surge del azar ni de la observa-
cion empirica, sino de la articulacién ordenada de principios.
En su estructura late una pedagogia de la claridad: el diagra-
ma orienta la mirada, pero la verdad pertenece al argumento.
Como recuerda Stillwell (2010), el impacto de esta obra es
tan profundo que “toda demostracién matematica, aun la
mdas moderna, sigue siendo en el fondo un eco de Euclides”.
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Desde la mirada contempordnea, los postulados no son solo
afirmaciones geométricas: son condiciones de posibilidad del
pensamiento l6gico. Cada uno invita a reflexionar sobre la natu-
raleza de la evidencia y la necesidad del orden. Asi, el primero
ensefia la nocién de conexién; el seqgundo, la idea de extension;
el tercero, la medida como invariancia; el cuarto, la igualdad
como simetria; y el quinto, la tension entre lo local y lo infinito.

Apoyo diddctico: el docente propone a los estudiantes
reconstruir los postulados a partir de experiencias mani-
pulativas. Utilizan hilo y alfileres para representar lineas y
puntos sobre una cartulina; luego comparan los resultados
con construcciones en GeoGebra. El aula se transforma en un
laboratorio epistemoldgico donde los alumnos comprenden
que el postulado no es una verdad eterna, sino una decision
sobre el tipo de espacio que se quiere pensar.

Hilbert: hacer explicito lo implicito

Hilbert redefinié los conceptos fundamentales: punto, linea y plano,
no como entidades intuitivas derivadas de la percepcion espacial,
sino como objetos abstractos relacionados entre si por medio de
axiomas. Esta vision formalista implicd que los términos basicos
carecian de significado empirico y se definian Unicamente por las
relaciones que establecian dentro del sistema (Corry, 2004). Asi,
la geometria pasd de ser una descripcion del espacio fisico a un
sistema deductivo cerrado, donde la validez de una proposiciéon
dependia exclusivamente de su consistencia interna y no de su
correspondencia con la realidad sensible (Torretti, 2000).

Estructura del sistema axiomatico de Hilbert
1. Incidencia: Regula la relacién entre puntos, rectas y planos.
Por ejemplo, establece que por dos puntos distintos pasa
una sola recta, y que por tres puntos no colineales pasa un
plano Unico. Este grupo de axiomas garantiza la existencia
y unicidad de los elementos geométricos fundamentales.

Figura 3.

Representacion geométrica de un plano y la relacion de incidencia
entre puntos, rectas y superficies

o, i g oy v

Nota: Elaboracion Propia.
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2. Orden:Define la relacion “entre” los puntos de una lineq, in-
troduciendo la posibilidad de ordenar los puntos. Establece
propiedades como la transitividad y la existencia de puntos
intermedios.

Figura 4.
Representacion del axioma de orden y la relacion “entre” en una linea recta

L e

Nota: Elaboracion propia.

* Relacion “Entre”: Permite establecer cudndo un punto B esta
localizado entre otros dos puntos (Ay C), lo cual es la base
para la medicion y la direccion en una dimension.

* Transitividad: Asegura una secuencia l6gica y consistente.
Si B estadentre (Ay C)y C estdentre (By D), la secuencia
es coherentemente A, B, C, D.

+ Existencia de puntosintermedios: El sistema garantiza que
entre dos puntos distintos cualesquiera en una lineq, siempre
hay un tercer punto, lo que sienta las bases para el concepto
de continuidad y la estructura densa de la linea recta.

3. Congruencia: Reqgula la igualdad de segmentos y dngulos,
asegurando que los cuerpos geométricos puedan trasla-
darse o superponerse sin alterar su medida. Este principio
permite el desarrollo de la nocién de igualdad geométrica
sin depender de una interpretacion fisica del movimiento.

Figura 5.
Representacion del principio de congruencia mediante la traslacion
de un triangulo en el plano

i -

Nota: Elaboraciéon propia.
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La imagen muestra dos trigngulos, E’F’G y E’F’G, que son
exactamente iguales en forma y tamafo, aunque estén ubi-
cados en distintas posiciones del plano. El segundo triangulo
se obtiene al trasladar el primero mediante un vector, sin mo-
dificar sus medidas ni sus dngulos. Esta representacion ejem-
plifica el principio de congruencia propuesto en el sistema
axiomdatico de Hilbert, segin el cual la igualdad geométrica
no depende de mover fisicamente las figuras, sino de una
relacion l6gica que asegura que sus elementos correspon-
dientes conservan la misma magnitud dentro del marco de
la geometria formal.

4. Paralelismo: Formaliza el postulado de las paralelas de
Euclides, pero lo integra dentro de una estructura légica
mas general: por un punto exterior a una recta pasa una sola
paralela a ella. Su tratamiento formal permitio estudiar los
sistemas alternativos, como las geometrias no euclidianas,
desde una base axiomdtica comun (Gray, 2018).

En el sistema de Hilbert, el paralelismo se entiende como una
relacion estrictamente ldgica entre puntos y rectas, no como una
observacion visual. Su axioma establece que, por un punto exte-
rior a una recta, solo puede trazarse una Unica recta paralela a
la dada, es decir, una que nunca la interseque. Este principio da
estructura a la geometria euclidiana y permite deducir propieda-
des esenciales, como la igualdad de los dngulos alternos internos
o la suma de 180° en los trigngulos. Hilbert reformulé este postu-
lado con un lenguaje mas preciso para eliminar ambigUedades
y garantizar la coherencia del sistema, de modo que la idea de
“paralelismo” no dependa de la intuicidon del dibujo, sino de una
definicion exacta dentro del razonamiento geométrico.

Figura 6.
Representacion axiomdtica del paralelismo en el sistema de Hilbert

w .‘.\..

Nota: Elaboraciéon propia.
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5. Continuidad y completitud:Introduce axiomas que garantizan
la continuidad de la linea recta y la completitud del sistema.
Hilbert utilizd ideas inspiradas en la teoria de los nUmeros
reales para asegurar que no existieran “lagunas” en el espacio
geomeétrico, reforzando la idea de un sistema sin contradic-
ciones ni indeterminaciones (Hilbert, 1699/1971; Torretti, 2000).

Figura 7.
Representacion de la continuidad geométrica mediante puntos inter-
medios entre Ay B

£ =
L,' .-..HHH.H- _— ® —

Nota: Elaboraciéon propia.

Sielegimos dos puntos, por ejemplo, AenellyBen el 5, siempre
podremos encontrar otros puntos entre ellos, como el 2, el 3 o incluso
el25yel2.75,sin llegar nunca a un limite de division. Esto significa
gue el espacio geométrico estalleno y no tiene “huecos”, del mismo
modo que los nUmeros reales forman una secuencia continua. En
el aula, se puede mostrar esta idea con GeoGebra, trazando una
rectay generando puntos entre Ay B para que los estudiantes com-
prendan que la recta puede subdividirse infinitamente, reflejando
la continuidad del pensamiento geométrico que Hilbert

El aporte de Hilbert representd un cambio epistemoldgico
radical: la geometria dejoé de ser un conocimiento derivado de
la intuicidon espacial, como en Euclides o Kant, para convertirse
en un sistema formal independiente del contenido empirico.

En palabras de Torretti (2000), la geometria hilbertiana no des-
cribe el espacio fisico, sino que constituye un modelo abstracto
donde la verdad se define en términos de coherencia interna. Esta
vision influyd decisivamente en el desarrollo de la matemdatica mo-
derna, la l6gica formaly la teoria de modelos, siendo un precedente
directo del pensamiento estructuralista del siglo XX (Corry, 2004).

Geometrias no euclidianas. negar el postulado sin caer en el absurdo
Durante siglos se intentd demostrar el postulado de las paralelas a par-
tir de los otros. El punto de inflexidn llega cuando Lobachevski y Bolyai
muestran que negar esa afirmacion produce una teoria coherente.
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En la geometria hiperbodlica, por un punto exterior a una recta pa-
san infinitas paralelas y los triGngulos tienen suma de dngulos menor
que 180 grados. Beltrami construye los primeros modelos internos que
certifican su consistencia relativa; mas tarde, el disco de Poincaré y
el modelo de Klein permiten hacer cuentas explicitas con geodésicas
gue se ven como arcos de circunferencia o cuerdas del disco.

La secuencia de imdgenes siguientes muestra, dentro del disco de
Poincaré, codmo por un punto exterior P a la recta AB (en azul) pueden
trazarse infinitas rectas hiperbolicas paralelas. En la figura (a), el punto
E define una primera geodésica roja que pasa por P sin cortar a AB; en
la (b), al variar el dngulo el punto E se desplaza por la frontera del dis-
co, generando nuevas circunferencias ortogonales que también pasan
por P;y en la (c), al continuar moviendo E, se obtiene un abanico de
infinitas geodésicas que no intersecan la recta azul. Esta representacion
visualiza el postulado hiperbdlico: por un punto exterior a una recta
pasan infinitas paralelas, negando asi el quinto postulado de Euclides
y evidenciando la naturaleza divergente del espacio hiperbdlico.

Figura 8.
Visualizacion del postulado hiperbdlico en el disco de Poincaré. gene-
racion de infinitas paralelas desde un punto exterior

&

Nota: Elaboracion propia.

Riemann describe otra alternativa, la eliptica, donde no existen
paralelas y las geodésicas se comportan como grandes circu-
los en la esfera con identificacion de antipodales (Bonola, 1955;
Greenberg, 2011; Gray, 2018).

El impacto conceptual es doble. Por un lado, “espacio” deja de
ser una intuicion Unica. Por otro, se instala la idea moderna de que
lo geométrico se define por sus invariantes bajo transformaciones
aceptadas, linea que Klein formula con claridad en el Programa de
Erlangeny que organiza la disciplina por grupos de simetrias mdas que
por listas de propiedades (Klein, 2004; Gray, 2018). Aqui el método
axiomdtico muestra toda su fuerza: no obliga a una Unica geometria,
describe familias de mundos posibles y nos ensefia a compararlos.

Apoyo diddctico: Traer este arco histérico al aula ayuda a
formar pensamiento matematico con sentido. Tres preguntas
vertebran una secuencia didactica:
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a) ¢¢Qué aceptamos sin prueba? Identificar axiomas en un texto
escolar y reescribir un teorema simple marcando exactamente dénde
se usan. Objetivo: pasar del dibujo persuasivo alargumento sustentado.

b) ¢Qué pasa si cambiamos un axioma? Construir en un sof-
tware dindmico un triangulo en el disco de Poincaré y medir la
suma de dngulos. Objetivo: comprender independencia e impli-
caciones del axioma de las paralelas.

c) ¢Qué permanece invariante? Clasificar problemas por el
tipo de transformaciones que conservan su soluciéon (isometrias,
proyecciones, afinidades). Objetivo: adoptar la mirada estructural
de Klein en problemas accesibles.

Estas tareas no buscan “contar historia”, sino usar la historia
para pensar mejor: explicitar supuestos, argumentar con claridad
y reconocer estructuras.

Conceptos fundamentales: punto, recta, plano y posicion
relativa
La geometria no solo es un campo de estudio matematico, sino
un modo de organizar el pensamiento humano sobre el espacio.
En su origen, fue una ciencia empirica nacida de la necesidad
de medir, delimitar y representar el entorno. Pero a lo largo de la
historia la geometria se ha convertido en un lenguaje formal que
busca expresar las relaciones universales de forma, direccién y
extension (Heath, 1956; Hilbert, 1971).

Hoy, sin embargo, ensefar geometria no puede reducirse a
reproducir axiomas o algoritmos: implica también comprender
las ideas que sustentan el razonamiento espacial. Como afirma
Freudenthal (1973), “la geometria debe ser redescubierta por los
estudiantes como una actividad humana significativa, no como
un conjunto de verdades ya acabadas”.

En este marco, los conceptos de punto, recta, plano y posicion
relativa no son meros elementos definitorios, sino estructuras de
pensamiento que permiten conceptualizar el espacio desde una
l6gica de relaciones, movimientos y transformaciones.

El punto. entre la abstraccion y la intuicion perceptiva
El punto ha sido, desde los albores de la geometria, una de las
nociones mds enigmaticas y fascinantes. A primera vista, parece
ser lo mds simple: un pequefio trazo sobre una superficie, una
marca o un instante de atencion. Sin embargo, bajo esa apa-
rente simplicidad se oculta una de las ideas mas profundas del
pensamiento matematico. Euclides lo definié como “aquello que
no tiene partes”, una entidad sin extension ni anchura, pero con
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presencia intelectual, un lugar donde el espacio comienza a ad-
quirir significado (Heath, 1956). Esa definicion, que ha perdurado
mds de dos mil afios, muestra una tension entre lo visible y lo
invisible, entre lo que el ojo percibe y lo que la mente comprende.

Desde una mirada moderna, Hilbert (1971) retoma el punto
como uno de los términos primitivos del sistema axiomdatico. No
lo describe, simplemente lo postula. Para él, el punto no se define
por lo que “es”, sino por las relaciones que mantiene con otros
elementos: la recta, el plano, la distancia. En su concepcion, el
significado del punto no depende de la experiencia sensorial, sino
del papel que cumple dentro de una estructura l6gica coherente.
De este modo, la geometria se emancipa de la intuicién empirica
para convertirse en un lenguaje formal de relaciones abstractas.

Figura 9.
Representacion de puntos como elementos primitivos en la geometria
hilbertiana

)

Nota: Elaboracion propia.

No obstante, reducir el punto a un simbolo I6gico puede empobrecer
su riqueza cognitiva y fenomenoldgica. En el pensamiento humano, la
nociéon de punto no nace de la abstraccion pura, sino del contacto directo
con el entorno. Piaget e Inhelder (1971) demostraron que la representa-
cién del espacio se forma progresivamente: el nifio primero actta y se
orienta en el espacio fisico, identifica lugares, direcciones y distancias,
y solo después logra comprender el punto como posicion sin exten-
sién. En este sentido, el punto no es una entidad preexistente, sino una
construccion mental que sintetiza la experiencia de situarse y ubicarse.

Esta perspectiva encuentra resonancia en la fenomenologia del espa-
cio de Merleau-Ponty (1945), quien sostiene que el cuerpo es la condicion
de posibilidad de toda percepcion. El punto, desde esta 6ptica, no es
una abstraccion vacia, sino la expresiéon de una mirada encarnada: se-
Aalar, detenerse, mirar, marcar un lugar. Todo acto de “colocar un punto”
es una forma de afirmar la presencia del sujeto en el mundo. Ensefiar
geometria, entonces, implica ensefiar a mirar, a localizar, a descubrir
el espacio como experiencia corporal antes que como sistema légico.
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Figura 10.
Visualizacion del acto perceptivo en la geometria’ el punto como mira-
da encarnada

-

Jpn

Nota: Elaboraciéon propia.

La psicologia del aprendizaje geométrico aporta ademas una
dimension formativa. Segun Duval (1998), comprender el punto
exige coordinar distintos registros semidticos: el grafico, el sim-
bolico, el verbal y el algebraico. Un estudiante puede reconocer
un punto en una figura, pero no necesariomente comprender su
papel en una ecuacion o en un sistema de coordenadas. La en-
sefianza debe propiciar ese transito entre lo visible y lo concep-
tual, entre el dibujo y la formulacién. El punto no es solo un signo
en el papel: es un objeto semidtico que adquiere sentido al ser
movilizado en diferentes contextos (Godino & Batanero, 2007).

Apoyo diddctico: El punto, en su aparente insignificancia,
condensa toda una epistemologia del conocimiento geomé-
trico. Es el lugar donde se cruzan el pensamiento sensible y el
pensamiento l6gico. En el aula, ensefiar el punto sin reconocer
su raiz perceptiva equivale a pedirle al estudiante que com-
prenda un signo sin sentido. Pero ensefiar el punto solo desde
la intuicion, sin conectarlo con su funcidn estructural, seria
limitarlo a una experiencia sin abstracciéon. La ensefianza ver-
daderamente formadora es aquella que integra ambas dimen-
siones:la vivencia del espacio y la formalizacién del pensamiento.

En palabras de Hilbert, el punto no necesita definirse, porque
“su verdad se mide en la coherencia del sistema que lo contiene”
(Hilbert,1971). En términos pedagdgicos, esa coherencia se constru-
ye cuando el aprendizaje logra unir la accion, la intuicion y la razén.

La recta: estructura del orden y la direccion.
La recta constituye uno de los pilares conceptuales de la geo-
metria. Si el punto representa la posicién, la recta introduce la
nocién de direccion, de continuidad y de orden. Desde Euclides
hasta la geometria moderna, la recta ha simbolizado la idea
de lo inmutable dentro del cambio, el hilo invisible que orga-
niza el espacio. En Los Elementos, Euclides la definid como
“una longitud sin anchura”, y afadié que “estd dispuesta uni-
formemente respecto a los puntos que la componen” (Heath,
1956). Esa descripcion, aparentemente sencilla, encierra una
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concepcion profunda: la recta es una continuidad ideal, un
objeto que la experiencia humana solo puede aproximar, pero
nunca reproducir por completo.

En el pensamiento clésico, la recta era la imagen de la perfeccion
geomeétrica. Hilbert (1971) reformuld su sentido dentro del sistema
axiomdatico moderno:ya no como un trazo visible, sino como un ente
primitivo definido Unicamente por su relacion con los puntos y los
planos. En este marco, la recta es una entidad ldgica que cumple
funciones de alineaciéon y orden dentro de un espacio abstracto. Su
significado ya no depende de la percepcion, sino de la consistencia
interna del sistema. Sin embargo, esta concepcién, necesaria para
la formalizacion matemdtica, puede volverse opaca para el aprendi-
zaje sino se conecta con la experiencia perceptiva que le da origen.

Figura 11.
La recta como continvidad ideal en la geometria clasica y moderna

Nota: Elaboracion propia.

Apoyo diddctico: Desde el punto de vista cognitivo, Piaget e
Inhelder (1971) observaron que la nocién de recta surge de la
experiencia de desplazamiento y orientaciéon. El nifio concibe
primero trayectorias, caminos y bordes; solo mas tarde logra
representar la recta como una prolongaciéon indefinida sin grosor.
En términos fenomenoldgicos, la recta es una abstraccion de la
accién, una huella idealizada del movimiento humano. Por eso,
ensefiar la recta no consiste en mostrar una figura perfecta, sino
en guiar la transiciéon desde la experiencia corporal del recorrido
hasta la comprension de una direccidn infinita.

Duval (1998) enfatiza que la comprensidon de la recta exige
coordinar varios registros semidticos: el perceptivo (ver una linea
trazada), el operacional (prolongarla o construir su perpendicu-
lar), y el discursivo (expresarla mediante ecuaciones o relacio-
nes). En este sentido, la recta es un ejemplo paradigmatico de
cdmo la geometria articula vision y razonamiento.

Para Tall (2014), la recta permite al estudiante pasar del pen-
samiento visual a la representacion simboélica del cambio: enten-
der la pendiente, la direcciéon y la relacién entre variables es, en
Ultima instancia, un modo de pensar la continuidad.
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La recta como idea de orden y medida

En el sistema euclidiano, las rectas no solo conectan puntos, sino
gue establecen la posibilidad de comparar, medir y deducir. La
alineacion es la primera forma de establecer relaciones entre
posiciones. Descartes llevo esta idea al terreno del andlisis al
asociar la recta con el eje de coordenadas, transformdandola en
soporte de la medida y fundamento del dlgebra geométrica.
Gracias a él, la recta dejé de ser solo una figura y se convirtid
en una referencia numérica, un espacio donde el pensamiento
geomeétrico y el algebraico se encuentran.

Figura 12.
La recta como soporte de la medida y referencia numérica en el siste-
ma cartesiano

Nota: Elaaboracién propia.

Como advierte Lakatos (1976), los conceptos matematicos
no son verdades inmutables, sino estructuras en evolucién que
surgen del didlogo entre conjeturas y refutaciones. Aplicado a la
geometria, esto significa que la nocién de recta se construye en
lainteraccidon entre intuicién, error y justificacion. Permitir que los
estudiantes discutan qué es “recto” o cudndo dos puntos estan
“alineados” no debilita el rigor, sino que lo fortalece, porque lo
hace consciente.

Cuando el alumno comprende que una recta puede prolongar-
se mas alld del papely que su existencia depende de la mente que
la concibe, se acerca al corazdén mismo de la geometria. Como
escribio Hilbert (1971), “la recta no es una linea trazada, sino la
expresion de una relacién entre puntos dentro de un sistema
coherente”. En ella se encuentra, silenciosa pero firme, la leccién
mds profunda de la matematica: que el pensamiento humano
puede crear continuidad a partir de la nada.

Apoyo diddctico: Utilizar GeoGebra para representar una recta
mediante su ecuacion y = mx +b permite al estudiante observar
coémo una variacion en la pendiente m transforma su inclinacion.
Asi, lo algebraico y lo visual se integran en una sola estructura
significativa.
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El docente puede invitar a los estudiantes a trazar el recorrido
mas corto entre dos puntos en el aula o el patio, vinculando la
recta con la idea de trayectoria minima. Esta vivencia corporal,
como sostienen Radford (2018), reactiva la conexidn entre la cog-
nicion y la accion en la construccidon del significado matemdtico.

Figura 13.

La recta como trayectoria minima y soporte de significado en la ac-
cion matemdatica

Nota: Elaboraciéon propia.

El plano. del espacio visible al espacio conceptual
Elplano constituye una de las ideas mas ricas y dificiles de la geometria.
Es el escenario donde se despliega todo el pensamiento geométrico:
contiene puntos, rectas, figuras y movimientos. Desde la antigUedad,
el plano fue concebido como una extension infinita y bidimensional, un
espacio sin espesor que sirve de soporte a la construccidn de figuras.

El plano: del espacio visible al espacio conceptual
Elplano constituye una de las ideas mds ricas y dificiles de la geometria.
Es el escenario donde se despliega todo el pensamiento geométrico:
contiene puntos, rectas, figuras y movimientos. Desde la antigiedad,
el plano fue concebido como una extension infinita y bidimensional, un
espacio sin espesor que sirve de soporte a la construcciéon de figuras.

En Los Elementos, Euclides lo definid implicitamente como la
superficie sobre la que reposan los objetos geométricos, pero su
descripcion sequia ligada a la experiencia visual del artesano y
delagrimensor (Heath,1956). El plano era entonces el lugar don-
de se media y se trazaba, donde la geometria se hacia visible.

Figura 14.
El plano como extension bidimensional para la representacion de pun-
tos, rectas y figuras geométricas

Nota: Elaboraciéon propia.
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Con el desarrollo del pensamiento abstracto, el plano dejé de ser
solo un soporte para convertirse en un espacio conceptual. En la mo-
dernidad, Hilbert (1971) lo integré como un término primitivo dentro
del sistema axiomdtico, al igual que el punto y la recta. Ya no era una
superficie que se “ve”, sino una entidad que se postula: una estructura
donde las relaciones son mds importantes que las apariencias. Asi, el
plano pasod de ser un objeto de la mirada a ser un objeto del pensamien-
to, unaidea que organiza la coherencia interna del espacio geomeétrico.

Ejemplo: Si tomamos un tridngulo y lo rotamos 90° o lo trasla-
damos 5 unidades hacia la derecha, sigue teniendo los mismos
lados, dngulos y drea.

Figura 15.
Transformaciones rigidas y conservacion de propiedades invariantes

en un triangulo euclidiano <

Nota: Elaboracién propia.

Las propiedades invariantes son la distancia entre puntos y
los dngulos.

Esto define la geometria euclidiana clasica, donde se estudian
figuras congruentes y la métrica del espacio.
Ejemplo: Si aplicamos una dilatacion a un rectdngulo, este puede
convertirse en un paralelogramo, pero las rectas paralelas siguen
siendo paralelas.

Figura 16.
Conservacion de la paralelidad en una transformacion afin de un cuadrildtero

&

Nota: Elaboraciéon propia.

La invariante aqui es la paralelidad, aunque se pierde la me-
dida de los dngulos y las distancias.

Esto corresponde a la geometria afin, donde el foco estden la
estructura de la forma y no en su tamano.
Ejemplo:Enla vista 2D se aprecia la figura original con sus lineas de
proyeccién, mientras que en la vista 3D se observa el proceso de
transformacion espacial: los rayos que parten de P interceptan el
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plano inclinado y generan la imagen proyectada. Aunque la forma
cambia, la concurrencia y la alineacién de los puntos se conservan,
ilustrando de manera clara los principios de la geometria proyectiva
y su relacion con la perspectiva visual y la representacion espacial.

Figura 17.
Proyeccion central de una figura: vista 2D y vista 3D del proceso de
transformacion proyectiva

Nota: Elaboracion propia.

Esta evolucién epistemoldgica alcanza un punto decisivo con
la teoria de los grupos de transformaciones de Felix Klein (2004).
Para Klein, la esencia de la geometria no reside en las figuras en si,
sino en las transformaciones que preservan sus propiedades. Desde
esta perspectiva, el plano no es un escenario pasivo, sino un campo
dindmico donde se estudian las invariantes: aquellas relaciones que
permanecen constantes bajo desplazamientos, rotaciones, simetrias
o dilataciones. Pensar geométricamente significa, entonces, com-
prender lo que permanece dentro de lo que cambia.

Apoyo diddctico: Freudenthal (1973) retomd esta idea desde
una mirada diddactica y la proyectd hacia el aprendizaje escolar.
Para él, el plano debe ser entendido como un modelo del espacio
vivido, un puente entre la experiencia del estudiante y la abstrac-
cion matematica. El aprendizaje geométrico comienza cuando
el alumno logra reconocer en el plano una representacion de
su propio entorno: la pizarra, el suelo, una hoja o la pantalla del
computador. Desde ahi se puede transitar hacia la comprension
del plano como un espacio conceptual de relaciones.

Duval (1998) profundizd esta perspectiva al afirmar que el pensa-
miento geométrico depende de la capacidad de cambiar de registro
de representacion. En el plano, las figuras no son fines en si mismas,
sino medios para expresar relaciones: paralelismo, perpendiculari-
dad, simetria o equivalencia. Aprender geometria implica, por tanto,
aprender a pensar en invariantes y no solo en formas estdticas. El
plano es el lugar donde la mente ensaya esas transformaciones,
donde se descubren patrones de cambio y de conservacion.

Desde el punto de vista cognitivo, Piaget e Inhelder (1971)
demostraron que la comprension del plano surge a partir de la
coordinacién de dos experiencias fundamentales: la percepcion
del espacio y la accion motriz. El nifio, al desplazarse o dibujar,
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experimenta que los objetos se ubican sobre una superficie que
puede extenderse mds alld de lo visible. A partir de esa vivencia,
el plano se convierte en unaidea reguladora, una estructura que
organiza la posicién y el movimiento.

Apoyo diddctico: En la ensefianza de la geometria, el plano
cumple una funcion integradora: articula los conceptos de punto
y recta, pero también anticipa la nocion de coordenadas, dreas y
funciones. Desde un punto de vista diddactico, Godino y Batanero
(2003) sostienen que el aprendizaje de los objetos matemdaticos
debe incluir tanto su dimensién fenomenoldgica (codmo se expe-
rimentan) como su dimensién semidtica (cdmo se representan).
El plano permite esta doble mediacién: puede tocarse y verse,
pero también imaginarse y simbolizarse.

Posicion relativa: encuentros, paralelismos y perpendicularidad
La nociéon de posicidn relativa entre puntos, rectas y planos es una
de las mdas antiguas y esenciales de la geometria. Desde los primeros
trazos en la arena hasta los diagramas dindmicos de los entornos
digitales actuales, el ser humano ha intentado comprender coémo
los objetos se relacionan en el espacio: cudndo se cruzan, cudndo
se alejan y cudndo se mantienen equidistantes. Estas relaciones no
solo configuran la estructura del espacio geométrico, sino también
la forma en que pensamos la proximidad, el limite y la direccion.

En la tradicion clasica, Euclides (2002) establecio las bases de es-
tas relaciones a través de sus postulados y teoremas. En su sistema,
dos rectas pueden interceptarse en un punto, ser paralelas si no se
cortan, o ser perpendiculares si forman dngulos rectos. A partir de
esas tres condiciones, se edifico todo el edificio de la geometria plana.
Sin embargo, como recuerda Heath (1956), estas definiciones no son
empiricas, sino conceptuales: no describen cémo se ven las rectas en
elmundo, sino cémo deben comportarse dentro de un sistema ideal.

Figura 18.
Interseccion, paralelismo y perpendicularidad como relaciones funda-
mentales entre rectas en geometria euclidiana

Nota: Elaboraciéon propia.

La posiciéon relativa no es solo un tema técnico, sino tam-
bién una experiencia cognitiva. Segun Piaget e Inhelder (1971),
el niflo primero percibe las posiciones en términos de contacto
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0 separacion: los objetos “se tocan” o “no se tocan”. Luego, me-
diante la accion, descubre la alineacion y la interseccién, hasta
que logra comprender las relaciones abstractas de paralelismo
y perpendicularidad. Estas nociones surgen, entonces, como una
coordinacién progresiva de la accién y la percepciéon, gue mas
tarde se interioriza en el pensamiento.

Interseccion: el encuentro como fundamento

La interseccion es la forma mas bdsica de relacion entre dos
rectas. Representa el punto donde dos trayectorias se encuen-
tran, el instante en que dos direcciones se reconocen. Desde el
punto de vista l6gico, la interseccidn expresa la coexistencia de
condiciones: el punto pertenece a ambas rectas, lo que implica
una relacién de inclusion compartida. Pero mas alld del simbo-
lissmo matematico, el encuentro entre dos rectas tiene un sentido
profundo: introduce la nocién de convergencia, la idea de que
distintas direcciones pueden llegar a un mismo lugar.

Figura 19.
Construccion de arcos geodésicos y puntos notables en el modelo del
disco de Poincaré

Nota: Elaboraciéon propia.

El paralelismo ha sido histéricamente una fuente de fas-
cinacion y controversia. Para Euclides, dos rectas son para-
lelas si estdn en el mismo plano y no se cortan, por mds que
se prolonguen indefinidamente. Detras de esta definicidon
se esconde el famoso quinto postulado, cuya naturaleza no
evidente inspird siglos de reflexion. Lobachevsky y Bolyai, al
cuestionarlo, dieron origen a las geometrias no euclidianas,
demostrando que el espacio puede concebirse de otros mo-
dos (Bonola, 1955).

En el dmbito diddactico, el paralelismo ensefia una idea de
invariancia en el cambio: aunque las rectas se extiendan o se
desplacen, su distancia mutua permanece constante.
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Apoyo diddctico: Este concepto puede explorarse a través de
construcciones con regla y compds, pero también con software
como GeoGebra, donde los estudiantes pueden mover rectas
paralelas y observar que, sin importar la inclinacién o la posicién,
nunca se cruzan. Duval (1998) sefiala que la visualizacién dina-
mica permite al alumno pasar del registro perceptivo al registro
tedrico, favoreciendo la comprension de relaciones que no de-
penden del dibujo, sino de las propiedades lbgicas del espacio.

Figura 20.
Visualizacion dindmica del paralelismo mediante el control de pen-
diente y posicién en GeoGebra

Nota: Elaboraciéon propia.

Perpendicularidad: el equilibrio de los contrarios

Si el paralelismo expresa armonia y estabilidad, la perpendicu-
laridad representa equilibrio y oposicion. Dos rectas son perpen-
diculares cuando se cortan formando dngulos de 90 grados. Esta
relacién introduce el concepto de ortogonalidad, que serd funda-
mental para el dlgebra lineal, la trigonometria y el andlisis vectorial.
Pero mas alld de su utilidad formal, la perpendicularidad ofrece
una poderosa intuicion visual: el orden que nace de la simetria.

En el aula, este concepto puede abordarse con actividades
concretas. Los estudiantes pueden construir perpendiculares uti-
lizando una escuadra, verificando visualmente los dngulos rectos,
y luego trasladar esa experiencia al plano digital. En GeoGebra,
la herramienta de “recta perpendicular” permite explorar coémo
la posicion depende de la direccién original. Al mover el punto
de corte, se observa que la nueva recta cambia, pero el dngulo
recto se conserva, reforzando la nocién de invariante geométrica.

Tall (2014) explica que estas experiencias de manipulaciéon
visual favorecen el paso del pensamiento “encarnado” al pen-
samiento “formal”. Cuando el estudiante comprende que la per-
pendicularidad no depende del dibujo, sino de una condicién
relacional (dos rectas que forman angulos iguales), ha dado un
salto conceptual hacia el razonamiento matematico.

Las nociones de interseccion, paralelismo y perpendiculari-
dad constituyen mucho mas que capitulos de la geometria: son
modos de pensar la relacion entre lo distinto. Interceptarse es
compartir un punto; ser paralelas es coexistir sin tocarse; ser
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perpendiculares es equilibrar opuestos. Estas relaciones, que na-
cieron como descripciones del espacio fisico, se han convertido
en estructuras universales del razonamiento humano.

Apoyo diddctico: Cuando el estudiante comprende que la posicion re-
lativa no depende del dibujo, sino de una l6gica que puede generalizarse
a cualquier contexto, haalcanzado la verdadera comprension geomeétrica.

En palabras de Hilbert (1971), “la geometria no trata del espacio,
sino de la forma del pensamiento”.

Razonamiento deductivo e inductivo en la construccion

geométrica.
El razonamiento geométrico constituye una de las expresiones mas
refinadas del pensamiento matematico. En él se encuentran dos
movimientos esenciales del conocer:la induccién, que permite des-
cubrir reqularidades y formular hipoétesis a partir de la observacion,
y la deduccidn, que organiza el conocimiento mediante la argumen-
tacién logica. Desde Euclides hasta la didactica contemporanea, la
tensiéon entre ambos modos de pensar ha modelado la forma en
que la humanidad concibe el espacio, la forma y la medida.

Pero este debate no es solo tedrico; tiene consecuencias directas
en la forma en que ensefiamos y aprendemos. El aula, en cualquier
nivel educativo, se convierte en un laboratorio donde la mente oscila
entre mirar y demostrar, entre imaginar y justificar. Hoy, con la media-
cion de herramientas digitales como GeoGebra, Desmos, ese labo-
ratorio adquiere una nueva dimensién: los estudiantes pueden ver el
razonamiento en acciéon, experimentar los teoremas como procesos
dindmicos y explorar las relaciones entre intuicion y formalizacion.

La induccion: el valor del descubrimiento en la era digital
Historicamente, la induccién ha sido el punto de partida del co-
nocimiento geométrico. En las culturas antiguas el conocimiento
geomeétrico era esencialmente empirico: se derivaba de la obser-
vacion y la repeticion de patrones (Katz, 2009). En el pensamiento
moderno, Polya (1954) consolidé esta visién al sefialar que todo ra-
zonamiento matematico comienza con una intuicion descubridora,
donde el estudiante “ve” una regularidad antes de poder explicarla.

Freudenthal (1973) profundiza esta idea al afirmar que el co-
nocimiento matematico debe construirse como una reinvenciéon
guiada: el estudiante no recibe la verdad geométrica como un
dogma, sino que la redescubre a través de la experiencia. De
este modo, lainduccion se convierte en una estrategia cognitiva
y diddctica que otorga sentido al aprendizaje.

Sin embargo, autores como Hilbert (1971) y Brousseau (1986)
advierten que la induccién por si sola no garantiza la validez
del conocimiento. Hilbert argumenta que la geometria, para
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ser ciencia, necesita independencia de la percepcién y debe
sustentarse en un sistema axiomatico coherente. Brousseau
agrega que el aprendizaje por experimentacion sin guia puede
conducir a “errores estabilizados”, es decir, a intuiciones falsas
que se consolidan como creencias.

En este sentido, la introduccion de recursos digitales ofrece una
posibilidad intermedia: la induccién visual no se queda en lo sensorial,
sino que permite observar patrones bajo condiciones controladas, por
ejemplo, un docente puede pedir a los estudiantes que construyan va-
rios tridngulos en GeoGebray midan la suma de sus dngulos interiores.

Al mover un vértice, los estudiantes observan coémo cambian
los valores individuales pero la suma total se mantiene en 180°.

Esta observaciéon repetida genera una conjetura inductiva va-
lidada por la experiencia digital: “La suma de los dngulos de un
tringulo siempre es 180°".

Lo que antes era una simple observacion manual se convierte
ahora en unainduccién visual interactiva, donde el alumno puede
manipular infinitas configuraciones en pocos segundos, compro-
bando la estabilidad de la relacion. Asi, la tecnologia refuerza
la generalizacion sin reemplazar el pensamiento. En palabras
de Duval (1998), la visualizacién digital no es solo una ayuda
perceptiva, sino un modo de representacidon que transforma la
naturaleza del razonamiento mismo.

Figura 21.
Exploracion dinamica de un triangulo isésceles y conservacion de los
angulos en la base

14 aufey =180

Nota: Elaboraciéon propia.

La deduccion. de la certeza logica a la comprension conceptual
Si la induccion descubre, la deduccidén explica. En el méto-
do euclidiano, la deduccidn constituye el corazédn del pen-
samiento geométrico: a partir de postulados, se derivan
teoremas mediante inferencias l6gicas. Euclides (2002) or-
ganiz6é Los Elementos como un edificio intelectual donde
cada proposicion se apoya en otra anterior, estableciendo
un modelo de pensamiento riguroso que ha perdurado por
mds de dos milenios.
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Sin embargo, varios autores han cuestionado la tendencia
a ensefar la deduccién como un fin en si mismo. Freudenthal
(1973) sefala que la demostracion formal pierde sentido cuan-
do el estudiante no comprende su origen intuitivo. Del mismo
modo, Godino y Batanero (2007) sostienen que ensefiar a
demostrar requiere partir de la necesidad del alumno por
justificar una observacién, no de la obligacién de repetir un
formato légico.

Por ejemplo, los estudiantes pueden usar GeoGebra para
construir un trigngulo isdsceles, trazar sus alturas y observar
como los dngulos en la base se mantienen iguales al mover
los vértices. Luego, con la guia del docente, pueden demostrar
formalmente que esto se debe al principio de congruencia de
triangulos. En este proceso, la tecnologia actia como mediado-
ra entre lo perceptivo y lo l6gico, fortaleciendo la comprensiéon
de la demostracién como un proceso racionaly no meramente
formal (Figura 22).

Hilbert (1971) defendia la deduccidon como el mas alto nivel de
pensamiento matematico, en la medida en que no depende de
la observaciéon sino de la coherencia interna. Sin embargo, Tall
(2014) propone una ampliacion: la deduccion no debe entender-
se como ruptura con la intuicion, sino como una extension de
ella hacia el mundo formal. El pensamiento matemdtico, afirma
Tall, transita entre tres mundos: el encarnado, el simbdlico y el
formal, y la ensefianza debe ayudar a los estudiantes a moverse
entre ellos con naturalidad.

Figura 22.
Exploracion dinamica de un triangulo isésceles y conservacion de los
angulos en la base
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Nota: Elaboraciéon propia.

En la prdactica, esto implica que el estudiante no solo aprenda
a probar teoremas, sino a construir argumentos visuales y ver-
bales. La deduccidon deja de ser un ritual [6gico para convertirse
en una experiencia de comprension.
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Didalogo critico entre las dos formas de razonamiento
Las posturas de los autores muestran una tension fecunda
entre la experiencia y la formalizaciéon. Hilbert exige rigor;
Freudenthal pide significado; Piaget observa desarrollo cogni-
tivo; Duval enfatiza la mediacion representacional; Tall destaca
la conexién entre visualizaciéon y abstraccién. Cada enfoque
revela un aspecto del aprendizaje geométrico, pero ninguno
agota su complejidad.

Desde la perspectiva piagetiana, la induccion y la deduccion
son fases complementarias de una misma construccidon mental.
El pensamiento inductivo aparece primero, ligado a la accién y la
percepcion, mientras que el deductivo emerge mas tarde, cuando
el nifio puede operar sobre relaciones y no solo sobre objetos
(Piaget & Inhelder, 1971). En cambio, desde la epistemologia de
Hilbert, la deduccidn no es un estadio, sino una exigencia univer-
sal del pensamiento matematico. Para él, la intuicién no basta
para garantizar la verdad; es necesario el sistema.

Duval (1998) introduce un matiz clave: la comprensién
geométrica no depende solo del tipo de razonamiento, sino
de la capacidad de cambiar de registro semidtico. Es decir,
el estudiante debe aprender a pasar de la figura al lenguaje,
del lenguaje al simbolo y del simbolo al argumento. Por tanto,
la ensefianza debe integrar lo visual, lo verbal y lo l6gico, y
la tecnologia puede facilitar esa integracion al permitir ver y
explicar simultdneamente.

Freudenthal (1973) se distancia del formalismo hilbertiano, cri-
ticando la ensefianza que reduce la deduccion a un ejercicio de
autoridad. Para él, “demostrar” no significa aplicar reglas, sino
comprender la necesidad de que algo sea como es. Esta idea coin-
cide con la vision de Tall (2014), quien considera que la deduccién
debe presentarse como una extension natural del pensamiento
visual, no como su negacion.

La mediacion tecnoldogica como nuevo terreno epistemologico
En la actualidad, la incorporacién de recursos digitales no
solo modifica la didactica, sino también la epistemologia del
aprendizaje geométrico. La posibilidad de manipular objetos
matematicos dindmicos cambia la forma en que el estudiante
razona y valida el conocimiento. Lo digital se convierte en
un “espacio intermedio” entre el mundo empirico y el formal:
permite experimentar la deduccién en movimiento.

Por ejemplo, al explorar el teorema de Thales en GeoGebra,
el alumno puede trazar una circunferencia y observar que to-
dos los trigngulos inscritos en ella con un didmetro comun son
rectangulos.
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Figura 23.
Triangulos inscritos con diadmetro comun. visualizacién interactiva del
feorema de Thales

Nota: Elaboraciéon propia.

Esta comprobacion visual inmediata genera confianza, pero
también plantea preguntas: ipor qué ocurre esto? Esa curiosidad
conduce a la deduccidon formal. Asi, la herramienta digital actta
como un dispositivo epistémico que estimula la transicion entre
ver, conjeturar y demostrar.

En el contexto ecuatoriano, esta mediaciéon tecnolégica se
vuelve especialmente relevante, ya que muchos estudiantes
enfrentan dificultades para visualizar conceptos espaciales de
forma abstracta. La geometria digital ofrece una oportunidad
de inclusion cognitiva, permitiendo que quienes aprenden con
estilos visuales o kinestésicos puedan acceder al razonamiento
formal a través de la manipulacion.

La historia del pensamiento geométrico puede leerse como
una oscilaciédn constante entre el descubrimiento y la de-
mostracién, entre la observacion y el argumento. Lo que los
autores nos ensefian es que no hay verdadera deduccidn sin
induccion significativa, ni induccién valiosa sin deduccidon que
la estructure. Ensefiar geometria, por tanto, no consiste en
elegir entre ver o razonar, sino en ensefiar a ver razonando
y a razonar viendo.

El desafio contempordneo consiste en equilibrar el rigor l6gico
con la comprension intuitiva, incorporando la tecnologia no como
fin, sino como mediadora del pensamiento. Las herramientas di-
gitales no sustituyen la argumentacién, pero si la enriquecen, al
permitir experimentar la l6gica del espacio de manera dindmica
y colaborativa.

Como afirmo Tall (2014), “la mente matematica madura cuan-
do el ojo, la mano y la palabra se unen en un mismo acto de
comprension”. La geometria, en su didlogo eterno entre inducciéon
y deduccidén, nos ensefia precisamente eso: a unir la mirada, el
gesto y el pensamiento en una forma de conocimiento que es a
la vez racional, estética y humana.
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Conclusiones

El recorrido desarrollado en este capitulo permite comprender
gue la geometria no es Unicamente una rama de las matema-
ticas dedicada al estudio del espacio, sino una forma de pen-
samiento que el ser humano ha construido para comprender,
representar y transformar su entorno. A lo largo de su historia,
esta disciplina ha unido la experiencia sensorial con la abstrac-
cion racional, ofreciendo una mirada que busca en lo visible
el orden y en lo pensado la coherencia. Desde las mediciones
empiricas de las civilizaciones antiguas hasta las representa-
ciones dindmicas que hoy posibilitan los entornos digitales, la
geometria ha conservado un mismo propdsito: explicar la forma
del mundo a través de la razén, la medida y la belleza.

En la actualidad, la ensefianza de la geometria se ha revita-
lizado gracias a la incorporacién de recursos tecnolégicos que
amplian las posibilidades de explorar, visualizar y demostrar.
Las herramientas digitales permiten que el estudiante observe,
manipule y comprenda los objetos geométricos en movimiento,
descubriendo reqularidades y justificando sus conclusiones con
una légica propia. De esta manera, la demostracion deja de ser
un acto mecdnico para convertirse en una experiencia viva de
razonamiento, en la que se integran la intuicion, la observacion
y la argumentaciéon. La tecnologia, bien utilizada, no sustituye
el pensamiento matematico, sino que lo amplifica y le devuelve
su dimension creativa y reflexiva.

Asi entendida, la geometria continUa siendo una escuela del
pensamiento, una forma de mirar y comprender el mundo con
precision, equilibrio y profundidad. Ensefarla hoy significa fo-
mentar la capacidad de descubrir relaciones, de razonar con
claridad y de encontrar sentido en las estructuras del espacio y
del cambio. Cada punto, cada linea y cada figura se convierten
entonces en una expresion de la inteligencia humana, en una
invitacion a pensar el orden del universo y a reconocer en ese
orden la armonia entre la percepcion y la idea.
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CarituLo II

Poligonos, areas, circunferenciay
circulo

Introduccion

Hablar de dngulos y trigngulos es adentrarse en el corazédn de la
geometria. Si en el capitulo anterior las figuras planas y el circulo
revelaban la estructura del espacio y la medida de la curvatura,
ahora el foco se desplaza hacia la relacion entre lineas, inclinaciones
y proporciones, es decir, hacia la comprension del cambio dentro
de la forma. Los angulos y los trigngulos son, en muchos sentidos,
la gramdtica fundamental del lenguaje geométrico: con ellos se
explica como las figuras se abren, como se orientan en el plano y
como se conectan unas con otras a través de relaciones constantes.

Desde los primeros trazos de la humanidad sobre arena o
piedra, los triangulos han sido herramientas de medicién y cono-
cimiento. Egipcios y babilonios los utilizaron para dividir terrenos
y construir pirdmides; los griegos, para fundamentar las prime-
ras nociones de razén y proporciéon. En esa herencia histérica
se encuentra el origen de la trigonometria, disciplina que, siglos
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después, permitié calcular distancias celestes, orientar la nave-
gacién y comprender los ciclos de la naturaleza. Stewart (2016)
recuerda que, sin la trigonometria, la fisica moderna y la astro-
nomia habrian carecido del lenguaje necesario para describir el
movimiento periddico y el equilibrio de las fuerzas.

Sin embargo, mas alld de su utilidad técnica, el estudio de
los tridngulos y los dngulos posee un profundo valor formativo.
Apostol (1991) subraya que las relaciones trigonométricas son
una puerta al pensamiento funcional: expresan cdémo una mag-
nitud depende de otra, como el cambio en un dngulo produce
una variacién en una razon. En la ensefianza, esta comprension
trasciende lo numeérico: invita al estudiante a pensar en relacio-
nes, no solo en valores.

En el plano cognitivo, Duval (2017) advierte que los dngulos
introducen un tipo de visualizacién particular: no basta con ob-
servar la figura, hay que imaginar el movimiento de los lados,
el giro, la apertura. Este acto mental vincula la percepcidn con
el razonamiento, y explica por qué el dngulo es, al mismo tiem-
po, una medida y un simbolo del dinamismo del espacio. Tall
(2014) agrega que en este transito entre la experiencia visual y
la formalizacion simbélica se desarrolla la base del pensamiento
trigonométrico: una forma de razonar sobre lo continuo a partir
de relaciones discretas.

Desde el punto de vista didactico, el tridngulo se convierte
en un laboratorio privilegiado de la argumentaciéon. Brousseau
(2002) sostiene que las situaciones en torno a sus propiedades
fomentan en el estudiante la bUsqueda de justificaciones y la ela-
boracién de conjeturas. En la practica, medir un dngulo, comparar
lodos o demostrar la invariancia de las razones en tridngulos se-
mejantes son experiencias que transforman el aprendizaje en una
actividad de descubrimiento y no en una repeticion mecdnica.

Por otra parte, Van Hiele (1986) sefiala que el desarrollo del
pensamiento trigonométrico exige transitar por distintos niveles
de comprension. El estudiante comienza reconociendo figuras
y medidas (nivel visual), luego identifica relaciones y patrones
(nivel analitico) y, finalmente, construye un sistema formal que le
permite generalizar (nivel deductivo). La ensefianza, por tanto,
debe acompafiar ese proceso con tareas que integren manipu-
lacion, observacién y razonamiento simboélico.

En el mundo actual, donde la tecnologia convierte el movimien-
to en datos y los dngulos en coordenadas, la trigonometria vuelve
a adquirir un papel protagoénico. Desde la ingenieria civil hasta la
inteligencia artificial, sus principios sustentan los algoritmos que
modelan trayectorias, reconstruyen imdgenes o simulan entornos
virtuales. Moreno-Armella y Sriraman (2005) destacan que esta
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continuidad entre geometria clésica y tecnologia moderna es una
oportunidad pedagdgica: permite mostrar que las matemdticas
son una forma viva de pensar, no un saber del pasado.

En el aula, el estudio de los tridngulos y los dngulos puede
convertirse en un espacio de integracién entre la légica y la
creatividad. Al resolver problemas de construccion, el estudiante
aprende a decidir, ajustificar, a estimar. Al analizar funciones tri-
gonomeétricas, descubre que detrds de las formulas hay un ritmo,
una periodicidad, una forma de describir lo que cambia y vuelve
a repetirse. Presmeg (2020) resalta que este sentido estético
del conocimiento a saber de la capacidad de ver armonia en las
relaciones, es tan importante como la precisiéon formal.

Por ello, este capitulo no se limitard a presentar las definicio-
nes y teoremas tradicionales, sino que propondrd una lectura
conceptual, visual y diddactica del trigngulo y de las relaciones
trigonométricas. Se abordardn los siguientes ejes:

* La nocidén de dngulo como medida del giro y expresion del

movimiento en el plano.

* Lostridngulos como estructuras de razonamiento y modelos

de proporcionalidad.

* Lasrazonestrigonométricas como herramientas para rela-

cionar magnitudes y modelar fendémenos.

* Las funciones trigonométricas como extensién analitica del

pensamiento geomeétrico.

* Laensefianza y evaluacion del pensamiento trigonométrico,

desde un enfoque constructivista y semidtico.

El propdsito general serd mostrar que la trigonometria no es
un conjunto de reglas abstractas, sino una forma de pensar el
cambio a partir de la geometria. Cada dngulo, cada trigngulo y
cada razon representan una relacion entre lo estdatico y lo dina-
mico, entre la forma y la medida.

Asi, al finalizar este capitulo, se espera que el lector comprenda
que ensefar y aprender trigonometria es ensefiar y aprender a
razonar con el espacio, a traducir lo visible en estructura,y a des-
cubrir en cada figura una huella del orden que habita el mundo.

Clasificacion de poligonos: regulares e irregulares
La nocién de poligono constituye una de las primeras formas de
organizacion del pensamiento geométrico. A simple vista, un po-
ligono es una figura cerrada delimitada por segmentos de recta,
pero en el plano conceptual representa un modelo de estructura
espacial, un modo de ordenar el mundo a partir de relaciones
entre puntos, lineas y dngulos.
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Figura 1.
Poligonos como estructuras espaciales’ relaciones entre puntos, seg-
mentos y angulos

Nota: Elaboraciéon propia.

Apostol (1991) lo considera una “representacion del limite entre
la medida discreta y la continuidad del espacio”, una idea que
permite enlazar la geometria con la aritmética y el dlgebra en
el proceso de aprendizaje.

En la historia del pensamiento matemdtico, los poligonos regulares
fueron considerados simbolos de armonia y proporcion. Los pitagori-
cos y Euclides les atribuyeron un valor filoséfico: la regularidad como
expresion de perfeccion. Sin embargo, la geometria moderna y la edu-
cacion contemporanea los reinterpretan como modelos culturales de
organizacién visual, més que como objetos absolutos. Presmeg (2020)
sostiene que la geometria no puede reducirse a una descripcion estati-
ca del espacio, sino que debe entenderse como una mediacion cultural
que refleja formas histéricas de ver, construir y representar el mundo.

Desde una perspectiva cognitiva, Duval (1999) advierte que
el pensamiento geométrico se distingue por su capacidad de
articular reqgistros de representacion: el grafico (la figura), el
simbolico (las formulas) y el verbal (la descripcién). Comprender
un poligono no se limita a reconocerlo visualmente, sino a identi-
ficar qué propiedades permanecen invariantes cuando su forma
cambia. Esta mirada permite superar la ensefianza memoristica
y avanzar hacia una comprension relacional, donde los poligonos
son sistemas de relaciones mas que dibujos cerrados.

Figura 2.
Comparacion de poligonos regulares seqgun forma, numero de lados y
disposicion espacial
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Nota: Elaboraciéon propia.
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El poligono regular (aquel cuyos lados y angulos son con-
gruentes) encarna el ideal de simetria y equilibrio; en cambio,
el irreqular desafia esa idea, mostrando que el conocimiento
geomeétrico también surge de la diferencia y la variacion.

Stewart (2016) enfatiza que en la ensefianza de la geometria
es tan importante estudiar las formas perfectas como las imper-
fectas, porque solo en la comparaciéon el estudiante descubre las
propiedades que las definen.

Consideremos la figura siguiente para describir las propieda-
des de los poligonos regulares

Figura 3.
Propiedades angulares de un poligono regular. igualdad de lados, an-
gulos interiores y angulos exteriores

Nota: Elaboraciéon propia.

Lados y vértices:El nUmero de lados n coincide con el nUmero
de vértices y dngulos. Cada lado tiene la misma longitud.

Angulos interiores: Los angulos interiores de un poligono re-
gular son iguales entre si, y su medida se calcula con la formula:

Angulo interior = (n—2)180°
n
Angulos exteriores: Los dngulos exteriores también son igua-
les,y susuma siempre es 360°, sin importar el nUmero de lados:

Angulo exterior - &I?(’
Simetria: Los poligonos regulares poseen:
1. Ejes de simetria que pasan por los vértices y los puntos
medios de los lados.
2. Simetria rotacional, ya que al rotarse un dngulo de
figura coincide consigo misma.

360° g
n

Circunferencia circunscrita e inscrita: Todo poligono regular puede:
1. Inscribirse en una circunferencia (todos sus vértices per-
tenecen a ella).
2. Circunscribir una circunferencia (todos sus lados son tan-
gentes a ella).
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El centro de ambas coincide con el centro de simetria del poligono.

Apotemay drea: La apotema OT) es el segmento perpendicular
trazado desde el centro del poligono hasta el punto medio de un lado.
El drea de un poligono regular puede calcularse como: A= %

donde: P = perimetro del poligono y a = apotema.

Relacion entre radio, lado y apotema: En un poligono regular, los
radios, lados y apotema forman tridngulos isésceles congruentes.

Si el radio es Ry el nUmero de lados n, el lado se puede ex-
presar como:

_ 180°
l— 2RS€II(T)
y la apotema como:

a—= Rcos(%oo)

Apoyo diddctico: El aprendizaje de las propiedades geométri-
cas de los poligonos regulares y sus relaciones con las circunfe-
rencias requiere disefiar actividades que combinen la manipu-
lacion visual, el razonamiento geométrico y la argumentacion
matematica. De acuerdo con Duval (2017), la comprension de las
figuras geométricas depende de la coordinacidn entre los distin-
tos registros semiodticos de representacion (figural, simbdlico y
discursivo). Por ello, los ejercicios deben permitir al estudiante
pasar del dibujo al cdlculo, y del cdlculo a la explicacion tedrica.

Ejercicios de exploracion visual y construccion: Los primeros
ejercicios deben centrarse en reconocer y construir poligonos
regulares utilizando herramientas como GeoGebra o materiales
manipulativos. Por ejemplo, se puede pedir al estudiante cons-
truir un pentdgono regular y trazar su circunferencia circunscrita,
analizando cémo varia el radio cuando cambia la longitud del
lado. Segun Arzarello et al. (2014), la experimentacion dindmi-
ca en entornos digitales facilita la visualizacién de invariantes
geomeétricos y promueve la formulacién de conjeturas.

Figura 4.
Hexagono regular: bisectrices interiores y relacion con la circunferen-
cia inscrita y circunscrita

Nota: Elaboracion propia.
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Ejemplo 1: “Construye un hexdgono regular en GeoGebra. Dibuja
las bisectrices de los dngulos interiores y observa su punto de inter-
seccion. ;Qué relacion guarda este punto con las circunferencias
inscrita y circunscrita?”. Estos ejercicios deben concluir con una dis-
cusion colectiva, en la que los estudiantes verbalicen las propiedades
observadas y contrasten sus conjeturas con definiciones formales.

Ejercicios de razonamiento y justificacion: Una segunda etapa
debe enfocarse en el razonamiento geométrico y lajustificacion
de propiedades, como la igualdad de los &dngulos o la constancia
del radio circunscrito. Brousseau (2002) plantea que las situa-
ciones didacticas de validacion favorecen la construccion del
conocimiento matemdatico cuando el estudiante se enfrenta a la
necesidad de justificar sus observaciones empiricas mediante
argumentaciones deductivas.

Figura 5.
Pentagono regular. bisectrices interiores y centro de la circunferencia
inscrita

Nota: Elaboracion propia.

Ejemplo 2: “Demuestra que los dngulos interiores de un pentdgono
regular miden 108°. Luego, explica por qué el punto de interseccion
de las bisectrices coincide con el centro de la circunferencia inscrita.”

Este tipo de ejercicios ayuda a transitar del nivel de visualiza-
cion al de andlisis y deduccion, siguiendo los niveles de razona-
miento geométrico propuestos por Van Hiele (1986).

Ejercicios de aplicacion y resolucion de problemas:
Posteriormente, conviene incorporar ejercicios que involucren
cdlculos métricos y contextos aplicados. Tall (2014) sostiene que
la comprensién profunda de los conceptos matematicos surge
cuando los estudiantes logran vincular las imdgenes concep-
tuales con las definiciones formales. En este sentido, calcular
areas, perimetros, diagonales o radios mediante formulas debe
integrarse con la interpretacién geométrica de cada magnitud.
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Figura 6.
Modelacion geométrica de un poligono inscrito y circunscrito como
aproximaciones a la realidad fisica

Nota: Elaboraciéon propia.

Ejemplo 3:“Disefia un jardin con forma de hexdgono regular de
8 m de lado. Calcula la longitud del cerco necesario y la cantidad
de césped que se debe cubrir. Representa las circunferencias
inscrita y circunscrita e interpreta sus significados en el disefio.”

Estos ejercicios contextualizados desarrollan competencias
de modelacién matemdtica, ya que conectan la geometria con
la realidad fisica y la resolucién de problemas practicos.

Ejercicios de comparacion y generalizacion: Finalmente, se
recomienda plantear tareas que promuevan la generalizaciéon
de propiedades a distintos tipos de poligonos. Segun De Villiers
(2010), la exploracion de patrones y relaciones numéricas permite
que los estudiantes descubran regularidades estructurales, como
la relacién entre el nUmero de lados y los dngulos interiores o la
tendencia de los radios inscritos y circunscritos.

Ejemplo 4: “Completa una tabla donde relaciones el nUmero de
lados n con los angulos interiores, los radios r y R, y el cociente
r/R. Analiza qué sucede cuando n tiende a infinito. “Este tipo de
actividad estimula el pensamiento algebraico y variacional, acer-
cando al estudiante a la idea del limite geométrico del poligono
regular, que se aproxima al circulo.

Dimensién cognitiva y didactica de la regularidad
El estudio de los poligonos regulares e irregulares posee un enor-
me potencial didactico, ya que permite observar el paso del pen-
samiento perceptivo al analitico. Van Hiele (1986) explicd que el
desarrollo del razonamiento geométrico se produce en niveles: el
primero es visual, basado en la apariencia; el segundo, analitico,
centrado en las propiedades; y el tercero, relacional, donde se
construyen jerarquias entre las figuras.

En este proceso, la regularidad cumple una funcién clave: es
el patron que permite reconocer lo comun entre las diferencias.
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Mariotti y Bussi (1998) destacan que ensefiar geometria hoy
implica reconstruir la figura como un objeto de pensamiento y no
como un simple dibujo. La construccion de un poligono, sea con
reglay compds o con herramientas digitales, es una accion reflexi-
va:al trazar, el estudiante explora relaciones y genera significados.

Moreno-Armella y Sriraman (2005) argumentan que las he-
rramientas tecnoldgicas no sustituyen la abstraccion, sino que
la amplifican, al permitir que el alumno visualice la variacién
continua de las figuras y observe como ciertas propiedades tales
como la congruencia de lados o dngulos permanecen invariantes.

Figura 7.
Exploracion de relaciones angulares y estructurales mediante la cons-
truccion dinadmica de poligonos

Nota: Elaboraciéon propia.

Cuando un estudiante modifica un vértice de un poligono regu-
lar y observa cémo se conserva la suma de los dngulos interiores,
esta participando en un proceso de razonamiento dindmico, base
de la comprension formal.

Esta vision dialogica del aprendizaje geométrico transforma la
ensefanza: la reqularidad deja de ser una categoria cerrada y se
convierte en un principio heuristico.

En lugar de preguntar “;qué figura es esta?”, el docente puede
promover preguntas como “squé condiciones hacen que una figura
sea reqular?” o “squé sucede si alteramos una de esas condicio-
nes?”. Este cambio fomenta la curiosidad, la argumentacién y la
autonomia cognitiva, que segun Duval (2017) son los verdaderos
indicadores de comprensiéon matemdtica.

La irregularidad como desafio cognitivo y estético.
En el mbito educativo, los poligonos irregulares suelen re-
cibir menos atencién, aunque su estudio resulta igualmente
fundamental. Lejos de representar el “error” o la “falla” del
modelo regular, la irreqgularidad constituye un espacio privi-
legiado para el razonamiento analitico.

Presmeg (2020) propone revalorizar la irregularidad como
una forma legitima de pensamiento geométrico, donde el estu-
diante aprende a buscar orden dentro del desorden aparente.
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Figura 8.
Contraste entre figura irregular y figura regular. reconocimiento de
relaciones internas en geometria
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-

Nota: Elaboraciéon propia.

Desde una mirada cognitiva, Duval (1999) sefiala que el reco-
nocimiento de una figura irregular requiere superar la percepcion
global y centrarse en las relaciones internas.

Es decir, un alumno comprende mejor una figura cuando pue-
de analizar cémo se relacionan sus lados y dngulos, incluso si no
son congruentes.

Este andlisis de lo no simétrico desarrolla la flexibilidad mental
y la capacidad de abstraer propiedades esenciales, habilidades
clave en la formacién matematica superior.

La irregularidad también tiene un valor estético y cultural.
En arte, arquitectura y naturaleza, las formas irregulares son
omnipresentes: desde los cristales hasta los patrones fractales.

Introducir esta perspectiva en el aula contribuye a vincular
la matematica con el mundo visual y artistico. Godino, Batanero
y Font (2007) afirman que el conocimiento matemdtico cobra
sentido cuando el estudiante puede relacionarlo con contextos
significativos, y la irreqularidad ofrece precisamente esa conexiéon
entre la teoria y la experiencia.

Una prdactica formativa efectiva consiste en invitar a los es-
tudiantes a construir poligonos regulares con GeoGebra y luego
alterar uno de sus vértices. Observar (figura 9 a ,9b) coémo cam-
bian los dngulos y el perimetro, y discutir qué propiedades se
mantienen, permite descubrir que la geometria es un sistema de
relaciones mas que de figuras perfectas.

Figura 9.
Variacion de dngulos y perimetros al modificar un vértice de un trian-
gulo construido en GeoGebra
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Nota: Elaboracion propia.
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En esta experiencia, el error se convierte en recurso cogniti-
vo, una idea desarrollada por Brousseau (2002), quien plantea
que el aprendizaje surge de los conflictos entre las represen-
taciones previas y las nuevas experiencias.

La clasificacion como razonamiento relacional
Clasificar poligonos implica mucho mas que nombrar figuras o
agruparlas por su nUmero de lados. Supone establecer relaciones
l6bgicas, reconocer invariantes y construir redes de propiedades
gue revelan la estructura del conocimiento geométrico. Desde
esta perspectiva, la clasificacién deja de ser un ejercicio de me-
morizacion para convertirse en una forma de razonamiento que
conecta la observacion con la deduccion.

De acuerdo con De Villiers (2010), clasificar figuras requiere
desarrollar la capacidad de argumentar sobre las relaciones en-
tre conceptos, mas que limitarse a repetir definiciones. Cuando
un estudiante comprende que “todo cuadrado es un rectangulo,
pero no todo rectadngulo es un cuadrado”, estd elaborando una
jerarquia conceptual, identificando condiciones necesarias y
suficientes que permiten distinguir y generalizar. Este tipo de
razonamiento no solo amplia la comprensién geométrica, sino
que fortalece la estructura del pensamiento ldgico.

Figura 10.
Relacion jerarquica entre cuadrado y rectangulo mediante compara-
cion de propiedades geométricas

aT "

L L] = o

& & = o

Nota: Elaboraciéon propia.

En la escuela, esta comprensién suele enfrentarse a una en-
seflanza que privilegia la descripcion visual por encima de la
argumentacion. Sin embargo, como sefiala Duval (2017), el pensa-
miento geométrico no se reduce a ver, sino a coordinar diferentes
registros semioticos: el grdafico, el verbal y el simbdlico.

Apoyo diddctico: El aula, entonces, debe transformarse en un
espacio donde clasificar signifique pensar, comparar, conjeturar y
justificar. Brousseau (2002) considera que las situaciones de clasi-
ficacién constituyen un tipo de “situacion didactica fundamental”,
porque permiten al alumno enfrentarse a la necesidad de explicar
sus propias decisiones. En esta dindmica, el docente deja de ser quien
impone categorias y pasa a ser un mediador del razonamiento.
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Figura 11.
Comparacion de cuadrilateros para analizar limites conceptuales entre
clases de figuras .

Nota: Elaboraciéon propia.

Una secuencia diddctica puede iniciar con la comparacion de
figuras que comparten propiedades y continuar con la discusion
sobre los limites entre una clase y otra. En este proceso, el estu-
diante aprende a revisar sus propias clasificaciones, a redefinir
criterios y a argumentar desde la estructura y no desde la apa-
riencia. Segun Van Hiele (1986), este transito constituye el paso del
pensamiento visual al pensamiento relacional, una de las etapas
esenciales en la formacién geométrica.

En el contexto de la diddactica contempordanea, Duval (2017) denomina
a este proceso “pensamiento deductivo visual”: la capacidad de razonar
a partir de las propiedades estructurales de una figura, interpretando
la imagen como soporte del razonamiento l6gico. De este modo, la cla-
sificacion deja de ser un procedimiento estdtico y se convierte en una
actividad cognitiva dindmica que promueve la generalizacion.

A'su vez, Mariottiy Bussi (1998) sostienen que las tareas de cla-
sificacion son un escenario ideal para la mediacion semiodtica. A
través del lenguaje, el gesto, el dibujo o el software de geometria
dindmica, los estudiantes construyen significados compartidos
sobre las propiedades de las figuras.

Presmeg (2020) afiade que la clasificacién también puede abor-
darse desde una dimension estética y cultural. La manera en que
el estudiante agrupa figuras, reconoce simetrias o establece rela-
ciones de semejanza responde a una sensibilidad hacia el orden
y la armonia. En este sentido, clasificar es también una forma de
apreciar la geometria como lenguaje de la belleza, en la que la
razdn y la emocién se complementan.

Propiedades de tridngulos y cuadrildteros
Eltridngulo constituye la figura geométrica fundamental a partir de
la cual se derivan las propiedades del plano. En su aparente sencillez
se sintetizan conceptos esenciales como la congruencia, la semejan-
za, la estabilidad y la proporcionalidad. Apostol (1991) explica que el
triangulo es “la minima configuracion cerrada que permite definir un
plano”, pues con tres puntos no colineales se determina un espacio
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bidimensional. Esta caracteristica le otorga un papel estructural en
toda la geometria: cualquier poligono puede descomponerse en
triangulos, y toda figura plana puede reconstruirse a partir de ellos.

Figura 12.
Representacion tridimensional de un triangulo para analizar su estruc-
tura geométrica basica
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Nota: Elaboraciéon propia.

Desde el punto de vista epistemolédgico, el tridngulo también
representa la puerta de entrada al razonamiento deductivo.
Brousseau (2002) sostiene que, en el proceso de aprendizaje
geomeétrico, las figuras no deben presentarse como objetos aca-
bados, sino como situaciones problematicas que el estudiante
explora para descubrir reqularidades. Cuando un alumno compa-
ra tridngulos, mide sus dngulos, o intenta determinar la igualdad
de sus lados, no solo aprende propiedades; desarrolla una forma
de pensar en la que la observacion se transforma en deduccion.

Figura 13.
Triangulo con medicion de angulos para promover el razonamiento
deductivo

Nota: Elaboraciéon propia.

Duval (2017) aporta una vision complementaria al analizar los
registros semiodticos implicados en la comprensidn geométrica.
Para este autor, la figura dibujada no es la geometria misma, sino
un medio de representacion que el sujeto debe interpretar. En el
caso del triangulo, entender sus propiedades implica coordinar
registros visuales, simbolicos y verbales: ver la forma, expresarla
mediante letras y formulas, y describirla con argumentos logicos.

Asimismo, Van Hiele (1986) identificd distintos niveles de ra-
zonamiento geométrico que resultan esenciales en la ensefianza
del triangulo. En el nivel visual, el estudiante reconoce figuras por
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su apariencia; en el analitico, distingue sus partes y propiedades;
y en elinformal, establece relaciones entre figuras. El paso de un
nivel a otro requiere mediacién docente, experiencias manipula-
tivas y un lenguaje cada vez mas formal.

La nocion de rigidez del trigngulo constituye otra de sus pro-
piedades centrales. Stewart (2016) sefala que, a diferencia de
otras figuras poligonales, un trigngulo con lados fijos no puede
deformarse sin alterar sus medidas.

Figura 14.
Construcciones articuladas para explorar la rigidez estructural en
geometria d J

Nota: Elaboraciéon propia.

Este principio, que se aplica en ingenieria, arquitectura y ro-
botica, puede explorarse en el aula mediante construcciones con
varillas o entornos digitales como GeoGebra.

A través de la experiencia, los estudiantes comprueban que
tres lados determinan una figura Unica, comprendiendo empiri-
camente el fundamento de la congruencia.

Relaciones de congruencia, semejanza y proporcionalidad
Las propiedades de los triGngulos no se reducen a la suma de
sus dngulos interiores o a la igualdad de sus lados; su verdadero
valor didactico reside en las relaciones que permiten establecer
entre figuras. De Villiers (2010) argumenta que la congruencia y la
semejanza no son simples criterios de comparacion, sino medios
para introducir a los estudiantes en el razonamiento logico.

Figura 15. ]
Triangulos congruentes mediante el criterio Lado-Angulo-Lado (Lal)
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Nota: Elaboraciéon propia.
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La congruencia (Figura 15) se basa en la igualdad exacta
de lados y, mientras que la semejanza exige comprender la
proporcionalidad entre dimensiones, anticipando la nocidon
de funcién.

Mariottiy Bussi (1998) destacan la importancia de la mediacidon
semiodtica en la ensefianza de estas propiedades. La tecnologia,
al ofrecer representaciones dindmicas, facilita que el estudiante
observe cémo varian las figuras y reconozca qué elementos
permanecen invariantes.

Por ejemplo, al modificar un tridngulo en un entorno digital y
conservar los dngulos, los alumnos descubren que las propor-
ciones entre los lados se mantienen. Este tipo de tareas, segin
Moreno-Armella y Sriraman (2005), convierte la abstraccidon ma-
temdtica en una experiencia perceptible y manipulable.

Godino, Batanero y Font (2007) proponen interpretar estas
relaciones dentro de un enfoque onto-semidtico, que entiende
la actividad matematica como una practica cultural en la que
interactuan objetos, significados y argumentos.

Desde esta perspectiva, el estudio de la congruencia o semejanza
no consiste solo en aplicar formulas, sino en analizar los significados
que los estudiantes atribuyen a los objetos geométricos. Asi, un trian-
gulo deja de ser una figura estdtica y se convierte en un sistema de
relaciones que cobra sentido en la resolucidon de problemas reales.

Apoyo diddctico: En términos pedagodgicos, el tratamiento
de la semejanza puede orientarse hacia la resolucion de situa-
ciones de proporcionalidad. Por ejemplo, cuando los estudiantes
miden la altura de un arbol mediante su sombra, aplican intui-
tivamente la igualdad de razones. Tall (2014) sugiere que este
tipo de experiencias vincula los “tres mundos del pensamiento
matematico”: el corporal (la accidon y la percepcion), el simboli-
co (las operaciones y el lenguaje) y el formal (las definiciones y
demostraciones). Esta integracion es la que permite comprender
la matemdtica como una construccién coherente y no como un
conjunto de reglas aisladas.

El triGngulo rectangulo, en particular, representa una sintesis de
todas estas relaciones. En él se aplican los teoremas de Pitagoras
y de las razones trigonométricas, que expresan vinculos invarian-
tes entre lados y angulos.

Su estudio introduce al alumno en la idea de funcidon trigo-
nométrica, donde la variacién de un dngulo produce una razén
constante entre lados, un concepto que anticipa la comprension
de la continuidad y el cambio en el cdlculo diferencial (Apostol,
1991; Stewart, 2016).
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Figura 16.
Triangulo rectangulo y aplicacion del teorema de Pitagoras
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Nota: Elaboraciéon propia.

La diversidad estructural de los cuadrilateros
El estudio de los cuadrilateros constituye un punto de inflexién en
la comprensién geométrica, porque exige superar la percepcion
visual de las formas y centrarse en las relaciones estructurales
gue las definen. A diferencia de los tringulos, en los cuadrilate-
ros intervienen simultdneamente propiedades de paralelismo,
igualdad, perpendicularidad y simetria, lo que requiere una coor-
dinacién entre registros graficos, numéricos y verbales.

Desde una clasificaciéon geométrica elemental, los cuadrilate-
ros pueden dividirse en dos grandes grupos: paralelogramos y
no paralelogramos. Los primeros se caracterizan por tener pa-
res de lados opuestos paralelos, lo que les otorga propiedades
especificas de simetria y congruencia.

Dentro de ellos se distinguen el cuadrado, el rectdngulo, el
rombo y el romboide.

Figura 17.
Paralelogramos. cuadrado, rectangulo, rombo y romboide

-
Cusdrlargros - Pasalelogeamos

Nota: Elaboraciéon propia.

El cuadrado posee cuatro lados iguales y angulos rectos, repre-
sentando la maxima regularidad dentro del grupo. El rectadngulo
mantiene los dngulos rectos, pero con lados opuestos iguales,
mientras que el rombo conserva la igualdad de lados, aunque sin
perpendicularidad entre ellos. Por su parte, el romboide presenta
solo el paralelismo y la igualdad de lados opuestos, sin dngulos
rectos ni diagonales iguales.

67



Poligonos, areas, circunferencia y circulo

Apoyo diddctico: Una experiencia formativa puede comenzar
con la construccion de un romboide en GeoGebra, para analizar
las relaciones entre sus diagonales. El docente plantea el reto:
“¢Se cortan las diagonales del romboide en su punto medio?”.
Los estudiantes dibujan el cuadrilatero, trazan las diagonales y
observan la interseccion. Al medir los segmentos resultantes, des-
cubren que las diagonales si se bisecan, aunque no son iguales
ni perpendiculares. Este hallazgo los conduce a reflexionar sobre
la estructura del paralelogramo y a reconocer que el paralelismo
de los lados es la propiedad que garantiza la biseccién, no la
igualdad de los lados ni los dngulos.

Otro estudio significativo consiste en explorar los limites entre
las clases de cuadrilateros. En GeoGebra, los estudiantes constru-
yen un trapecio ABCD y analizan qué ocurre cuando el segundo
par de lados se aproxima al paralelismo.

Figura 18.
Transformacion de un trapecio en un paralelogramo mediante el ajuste
de vértices

Nota: Elaboracion propia.

Al modificar los vértices, observan que la figura se transforma
gradualmente en un paralelogramo, es decir, pasa de tener un
solo par de lados paralelos a tener dos.

Esta actividad les permite comprender que el paralelismo no
depende de la apariencia visual, sino de una relacién geométrica
precisa entre rectas, que puede verificarse mediante la igualdad
de pendientes o la no interseccién. La experiencia concreta, apo-
yada en herramientas dindmicas, facilita lo que Duval (2017) llama
coordinacion de registros: el estudiante pasa de la percepcion
visual (ver rectas “casi paralelas™) al razonamiento simbdlico
(verificar pendientes iguales).

Al finalizar, el docente invita a comparar las propiedades del
trapecio con las del romboide, preguntando: “;Qué cambia y
qué se conserva cuando una figura pasa de ser trapecio a ser
paralelogramo?”

Este tipo de preguntas promueve el razonamiento relacional
y ayuda al estudiante a reconocer que las figuras geométricas
no son entidades aisladas, sino expresiones de un sistema de
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relaciones l6gicas. Tal como afirma Van Hiele (1986), esta capa-
cidad de deducir propiedades unas a partir de otras constitu-
yen una de las etapas esenciales del pensamiento geométrico
avanzado.

Los no paralelogramos, en cambio, no presentan ambos pares
de lados paralelos. El trapecio constituye el caso mdas representa-
tivo, pues tiene solo un par de lados paralelos; puede ser isdsceles
si los lados no paralelos son iguales, rectdngulo si posee un dngulo
de 90°, o escaleno si todos sus lados y dngulos son diferentes.

Finalmente, el trapezoide carece totalmente de paralelismo,
siendo el tipo mas generaly menos regular dentro de la categoria.

Esta clasificacion, mas que una lista de rasgos, debe concebir-
se como una red jerdrquica de relaciones, ya que un cuadrado
es simultaneamente rectdngulo y rombo, y ambos son subcasos
de un paralelogramo.

Figura 19.
Ejemplo de cuadrilater #1dlisis de sus lados

Nota: Elaboraciéon propia.

De esta forma, la ensefianza debe guiar al estudiante a descubrir
vinculos entre propiedades y no solo a reconocer formas, favore-
ciendo el trénsito hacia un pensamiento relacional (Van Hiele, 1986).

Cadlculo de perimetros y dreas de figuras planas
El concepto de medida constituye uno de los pilares del pensa-
miento matematico y una de las ideas mas antiguas que la huma-
nidad desarrolld para comprender y transformar el mundo. Desde
las primeras civilizaciones, medir fue una necesidad practica y
simbodlica: los egipcios median la tierra tras las crecidas del Nilo,
los babilonios dividian el circulo en 360 grados, y los griegos
construyeron un sistema deductivo a partir de esas practicas.
Para Apostol (1991), el calculo geomeétrico no es solo una técnica,
sino una forma de razonar sobre las relaciones que existen entre
la magnitud, la forma y la proporcion.

El perimetro y el Grea emergen como expresiones distintas de
una misma idea: la cuantificacién del espacio.

El perimetro remite a la longitud de un contorno, una magni-
tud unidimensional que recorre los limites de la figura; el dreaq,
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en cambio, cuantifica la extensidon bidimensional que esa fron-
tera encierra. Aunque suelen ensefiarse como nociones bdsicas,
su comprension profunda implica reconocer la diferencia entre
medir un objeto y comprender su estructura. Brousseau (2002)
advierte que la ensefianza tradicional de la medida ha tendido
a privilegiar el cdlculo sobre el significado, dejando al estudiante
sin una comprension conceptual de lo que se mide.

El perimetro. entre la longitud y la forma
El concepto de perimetro parece simple, pero encierra una notable ri-
queza conceptual. Definirlo como “la suma de los lados” es insuficien-
te, pues reduce su sentido geométrico a una operaciéon aritmeética.

Figura 20.

Perimetro de un hexagorn reniilar i ranracantacion de la suma de sus
o

lados

Nota: Elaboracion propia.

En realidad, el perimetro expresa la idea de recorrido, de borde,
de limite. En un hexdgono regular de lado a, decir que su perime-
tro es 6a significa que, si desplegdramos sus lados en una lineq,
esa longitud equivaldria al contorno total de la figura.

Van Hiele (1986) explica que en los niveles iniciales del razo-
namiento geométrico, los estudiantes suelen confundir perimetro
con drea porque ambos se asocian a la “grandeza” de la figura.
No es raro que crean que una figura mds grande tiene nece-
sariamente mayor perimetro. Superar esa confusién requiere
experiencias que permitan distinguir longitud de extension.

Apoyo didactico: Brousseau (2002) propone disefiar situacio-
nes diddcticas que permitan al estudiante construir el concepto de
perimetro a partir de la accion. Medir con una cuerda el contorno
de un jardin, rodear figuras con un hilo o calcular el recorrido de
una pista son ejemplos de tareas que articulan la experiencia cor-
poral con la abstraccion simbdlica. El aprendizaje de la medida del
perimetro no se limita a obtener un nUmero; implica comprender
la relacién entre el objeto y su representaciéon métrica.

Duval (1999) affiade que el perimetro puede entenderse como
una forma de representacién discursiva del espacio: al medirlo,
se estd traduciendo una figura visual a un conjunto de simbolos
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lineales.

Figura 21. T - =
Aproximacion polig [l 1 ¥ . guras circulares

Nota: Elaboracion propia.

Este proceso requiere interiorizar la idea de continuidad, pues
el perimetro de una curva se define mediante una suma infinita
de segmentos infinitesimales. Aqui se insinUa ya la conexidn con
el cdlculo diferencial, donde la longitud de una curva se deter-
mina mediante una integral. Apostol (1991) subraya que esta
transiciéon historica del perimetro rectilineo al curvilineo marco
el nacimiento del andlisis matematico moderno.

En la ensefianza, la comprensién del perimetro se fortalece
cuando se integra con la geometria dindmica. Moreno-Armella
y Sriraman (2005) muestran que el uso de programas como
GeoGebra permite a los estudiantes modificar figuras y observar
coémo varia su perimetro. Al mover un vértice de un poligono y
ver como el valor del perimetro cambia, el alumno comprende
que la medida no es un numero fijo, sino una propiedad depen-
diente de la forma.

El area. de la intuicion al razonamiento formal
El concepto de drea representa un salto cognitivo mayor que
el de perimetro. Medir un contorno es recorrer; medir un darea
es comparar una extensidon bidimensional con una unidad
de referencia. Duval (2017) afirma que esta transicién exige
un cambio de registro: el estudiante debe pasar del dominio
lineal al superficial, del pensamiento unidimensional al bidi-
mensional. Sin ese cambio cognitivo, el drea se convierte en
una simple multiplicacién de nUmeros sin sentido.

Historicamente, la nocién de drea se construyd a partir
de la equivalencia y la descomposicion. Los griegos, segun
Stewart (2016), definieron el drea de un paralelogramo me-
diante la equivalencia con un rectdngulo, y la del triangulo
como la mitad de la del paralelogramo de igual base y altura.
Estas definiciones expresan una idea profunda: medir una
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superficie es transformarla en otra equivalente cuya medida
se conoce.

Figura 22.
Descomposicién y trans
cdlculo de drea

yno para justificar el

Nota: Elaboraciéon propia.

Godino, Batanero y Font (2007) destacan que el drea no es
solo una cantidad fisica, sino un objeto de significado. Desde el
enfoque onto-semidtico, su comprension depende de las prdacti-
cas institucionales en las que se usa: medir, calcular, representar
o justificar. Por eso, el area de un trigngulo o un circulo no debe
ensefiarse como una férmula aislada, sino como el resultado de
una serie de prdacticas que tienen sentido en contextos culturales
(arquitectura, agrimensura, disefio, arte).

Presmeg (2020) propone considerar también la dimensién se-
miodtica y cultural de las figuras. Medir un drea implica reconocer
la figura como un simbolo de orden y armonia, no solo como un
espacio fisico. En este sentido, ensefiar el drea puede vincularse
con la estética, con laidea de que el nUmero y la forma expresan
proporciones que el ser humano percibe como belleza.

El cdlculo de dreas de figuras planas se fundamenta en tres
ideas: la equivalencia, la composicién-descomposicion y la trans-
formacioéon. El area de un tridngulo puede deducirse a partir del
rectadngulo; la de un poligono regular, a partir del tribngulo isés-
celes central; y la del circulo, mediante la aproximacion poligonal.

Comprender el drea y el perimetro implica reconocer que me-
dir es una forma de abstraer. En el nivel empirico, se mide con
una regla o una cuadricula; en el nivel analitico, se mide con una
ecuacion o una integral. Apostol (1991) y Tall (2014) coinciden en
que esta evolucion refleja la historia misma de la matematica: del
numero concreto al numero continuo, de la suma de longitudes
a la nocion de limite.

La circunferencia y el circulo
Desde la antigledad, medir el circulo fue un desafio. Los egipcios
y los babilonios conocian aproximaciones empiricas para calcular
su perimetro; los griegos, en cambio, buscaron una explicacion
racional. Arquimedes fue el primero en demostrar que el drea de
un circulo esigual a la de un tridngulo rectdngulo cuyo cateto base
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es la longitud de su circunferencia y cuya altura es el radio. Esta
deduccidén, segun Stewart (2016), anticipa el concepto moderno
de integral: una suma infinita de elementos infinitesimales.

El circulo, como figura perfecta, desafid a los matemdticos por-
que su medida exigia la introduccién de un nUmero irracional: Tt.
Apostol (1991) explica que T no es solo una constante geométrica,
sino un nUmero que encarna la idea de limite, pues surge de la
relacién entre la longitud de una curva y su didmetro. En este
sentido, el circulo se convierte en el punto de encuentro entre la
geometria y el andlisis, entre la intuicion visual y la abstraccion
simbdlica.

Tall (2014) sostiene que el circulo es una figura privilegiada para
explorar los tres mundos del pensamiento matematico. En el mundo
corporal, el estudiante lo percibe como un objeto perfecto; en el
simbélico, lo representa mediante ecuaciones como x% 4+ y? = r?;
y en el formal, razona sobre sus propiedades y deduce teoremas.
Este transito entre mundos no es lineal: requiere mediacion, re-
flexion y multiples experiencias sensoriales y conceptuales.

La circunferencia. frontera y medida
La circunferencia puede definirse como el conjunto de puntos
del plano que equidistan de un punto fijo llamado centro. Esta
definicion algebraica encierra una profundidad geométrica y
filosofica. Es la figura que expresa el equilibrio entre constancia
y cambio: todos sus puntos son distintos, pero guardan una re-
lacion invariable con el centro.

Figura 23. v 7 "-.H
Representacion de la circ f ar geométrico de puntos
equidistantes del centro

Nota: Elaboraciéon propia.

Van Hiele (1986) sefala que este tipo de invariancia es fun-
damental en el desarrollo del pensamiento geométrico, pues
permite comprender que una figura puede transformarse sin
perder su esencia.

Desde el punto de vista de la medida, la longitud de la cir-
cunferencia representa uno de los primeros casos donde la in-
tuicion choca con la exactitud matematica. No puede medirse
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con regla ni con compds; requiere una aproximacion progresiva
mediante poligonos inscritos o circunscritos, tal como demostré
Arquimedes. Brousseau (2002) interpreta este proceso como
una situacién de aprendizaje por reconstruccion, en la que el
alumno experimenta la necesidad de un nuevo tipo de nUmero y
de método para medir lo que no puede contarse directamente.

Moreno-Armellay Sriraman (2005) destacan que los entornos digi-
tales han abierto nuevas posibilidades para explorar la circunferencia
como objeto dindmico. En programas como GeoGebra, el estudiante
puede variar el radio y observar en tiempo real cobmo cambia el
perimetro, comprendiendo de manera empirica la proporcionalidad
directa entre ambos. El circulo: interior, superficie y continuidad.

El circulo representa, a diferencia de la circunferencia, la totali-
dad de los puntos que se encuentran dentro de un radio fijo desde
el centro. Es, por tanto, una figura de extensién, no de borde. La
circunferencia es la linea cerrada que delimita al circulo, mientras
que el circulo es la region que dicha linea encierra.

-
o =AY =

Figura 24.
Diferencia conceptual entr: lo como limite y superficie

Nota: Elaboracion propia.

Sin embargo, en la experiencia escolar, los estudiantes tienden
a confundir ambas figuras. Duval (1999) sefiala que esta confusion
se debe a una falta de diferenciacion entre el registro percepti-
vo y el conceptual: se “ve” la circunferencia, pero se “piensa” el
circulo. Ensefiar a distinguir ambas requiere experiencias en las
que el estudiante manipule objetos fisicos y observe la diferencia
entre recorrer un limite y cubrir una superficie.

El drea del circulo se relaciona con su perimetro de una ma-
nera que fascina tanto a la mente como a la vista. La formula
A = nr? expresa la proporcionalidad cuadratica entre el radio y
la superficie, y su deduccion implica la idea de limite.

Figura 25. ol ¥,

Relacion entre la longitud I-'f % ncia y el diametro en la
definicion geométrica de |
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Nota: Elaboraciéon propia.

ElnUmero w es quizd la constante mas emblemdtica de la ma-
tematica. Su aparicion en la medida del circulo revela el vinculo
entre lo geométrico y lo analitico.

Apostol (1991) lo define como la razén entre la longitud de la cir-
cunferencia y su didmetro, una relacidn que permanece constante sin
importar el tamafo del circulo. Sin embargo, su valor exacto no puede
expresarse mediante una fraccion: es irracional, infinito y no periddico.

Stewart (2016) subraya que @ simboliza el paso de la medida
empirica al razonamiento abstracto. Para medir un circulo no
basta con trazarlo; hay que representarlo simbdélicamente. De alli
que @ se convierta en un punto de encuentro entre la geometria
y la filosofia: mide lo que no puede medirse directamente, y en
esa paradoja reside su poder formativo.

Cuando se calcula el drea de un circulo mediante la férmula
A= nr2, se estd aplicando una idea que supera la percepcion di-
recta. El estudiante no puede medir fisicamente esa superficie, pero
puede representarla simbdlicamente. Este salto del mundo visual
al simbdlico es el nucleo del pensamiento matematico superior.
Stewart (2016) subraya que el cdlculo integral generaliza la idea

de drea al considerar superficies delimitadas por curvas arbitrarias.
| pod i -

Figura 26.
Representacion simbdlica

Nota: Elaboraciéon propia.

Asi, el drea deja de ser solo una magnitud geométrica para
convertirse en un modelo del cambio continuo. Comprender esta
transicién ayuda al estudiante a concebir la geometria y el cal-
culo no como disciplinas separadas, sino como dimensiones de
un mismo razonamiento.

Desde el punto de vista cognitivo, el circulo es una figura ideal
para ensefar la nocion de continuidad. Tall (2014) argumenta
que la transicion del circulo tangible al circulo analitico, es decir,
de la figura dibujada a la ecuacién x2 + y2 = rz, ilustra el paso
del pensamiento geométrico concreto al abstracto. Cuando el
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estudiante comprende que todos los puntos que satisfacen esa
ecuacion forman una misma figura, su razonamiento alcanza un
nivel formal de generalizacion.

Presmeg (2020) afade una dimension semidtica y cultural al
estudio del circulo. En muchas culturas, el circulo simboliza el ciclo
de la vida, el tiempo o la totalidad. Integrar estas interpretaciones
en la ensefianza no significa abandonar el rigor matematico, sino
reconocer la dimensién humana del conocimiento geométrico. La
forma perfecta no solo se calcula: también se interpreta y se siente.

Propiedades métricas delcirculo. arcos, cuerdas, sectores y segmentos
El estudio del circulo trasciende la simple contemplacion de una
forma perfecta. Suriqueza geométrica reside en la red de relacio-
nes métricas que lo habitan: los arcos, las cuerdas, los sectores y
los segmentos. Cada uno de estos elementos revela una manera
distinta de medir y comprender el espacio curvo. Apostol (1991)
sefiala que el paso del razonamiento sobre rectas y tringulos a la
medida de curvas y dareas circulares marcd un punto de inflexion
en la historia de la matemdatica: obligd a pensar la medida como
una sucesion infinita de aproximaciones.

En la geometria escolar, estos elementos constituyen un puen-
te entre el pensamiento euclidiano y el pensamiento analitico.
Mientras el estudiante mide longitudes y dngulos, se enfrenta a
la necesidad de cuantificar lo que no es lineal. En este sentido,
los arcos y las cuerdas introducen el problema de la curvatura,
y los sectores y segmentos, el de la subdivision del area.

El circulo, con su estructura simétrica, permite abordar la
geometria como un sistema de relaciones armoénicas. Van Hiele
(1986) sostiene que la madurez geométrica se alcanza cuando el
estudiante puede reconocer las propiedades invariantes de las
figuras y deducir unas a partir de otras. En el caso del circulo, esa
invariancia se manifiesta en la relacion constante entre el radio
y la longitud de cualquier arco, o en la proporcionalidad entre
el angulo central y el drea del sector. Estas conexiones, mds que
formulas, son expresiones de un pensamiento relacional.

El arco de circunferencia representa la porcién del borde cir-
cular comprendida entre dos puntos, mientras que la cuerda es el
segmento que los une directamente. Aunque ambos comparten
los mismos extremos, su naturaleza métrica es distinta: el arco
pertenece al mundo curvo, la cuerda al mundo rectilineo.

Figura 27. g &Y
Aproximacion de la longituc |

:diante el uso de cuerdas
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Nota: Elaboraciéon propia.

Stewart (2016) explica que comprender la relacidon entre am-
bas es clave para desarrollar una visién analitica del circulo, pues
en esa relacién se condensa la idea de aproximacion.

Sielarco se hace cada vez mas pequefio, su longitud tiende a la
de la cuerda. Este fendmeno introduce intuitivamente el concepto
de limite. Apostol (1991) lo utiliza para explicar como la longitud
de una curva puede definirse como el limite de las longitudes de
los segmentos que la aproximan. Asi, el estudio de los arcos y las
cuerdas prepara el terreno para el razonamiento infinitesimal.

Apoyo diddctico: Desde el punto de vista didactico, Brousseau
(2002) recomienda disefiar situaciones donde el estudiante des-
cubra por si mismo las relaciones entre dngulos, arcos y cuerdas.
Por ejemplo, al explorar con compdas y regla, puede observar que
los arcos subtendidos por un mismo dngulo central son congruen-
tes, o que la cuerda es mayor cuanto mds préximo se encuen-
tra su arco al didmetro. Estas experiencias empiricas activan el
proceso de abstraccion progresiva que Van Hiele describe como
esencial para avanzar hacia el razonamiento formal.

L.

. -
Figura 28. - .
Relaciones entre arco, cue 4+ " 'lcomo base para la abs-
. , ¥ !
traccion progresiva
t B T

Nota: Elaboracion propia.

Duval (2017) advierte, sin embargo, que el razonamiento sobre
curvas exige una conversién semiotica compleja: el estudiante debe
traducir lo que ve (la forma curvada) a un discurso simbdlico (una
relacion trigonométrica). En este sentido, los entornos digitales se
convierten en aliados poderosos. Moreno-Armella y Sriraman (2005)
demostraron que, al manipular arcos y cuerdas en GeoGebra, los
alumnos pueden observar visualmente cdmo varia la longitud del
arco en funciéon del dngulo central, interiorizando la proporcionali-
dad L = r6 cuando el dngulo se mide en radianes. La visualizacion
deja de ser un apoyo y se transforma en una forma de pensamiento.

El circulo también puede descomponerse en partes delimita-
das por radios y cuerdas. El sector circular es la regidn compren-
dida entre dos radios y el arco que los une; el sesgmento circular, la
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comprendida entre una cuerda y el arco correspondiente. Ambos
permiten abordar el drea del circulo no como una totalidad, sino

comounasumadepart . . u>laideadeintegracion.
.-":.-
) ry
Figura 29. S "
Descomposicion del circe | 4 \ 2nto circular para intro-

ducir la idea de integraci et

Nota: Elaboracion propia.

Apostol (1991) muestra que el area del sector circular es pro-
porcional al dngulo central, y puede expresarse como:

A= (%)nﬂ = r%e si el angulo se mide en radianes.

Esta relacion, aparentemente simple, encierra una com-
prension profunda: la idea de que toda medida es una com-
paracién entre una parte y el todo. Stewart (2016) sugiere
que esta proporcionalidad ofrece un ejemplo accesible del
pensamiento funcional, pues el drea del sector depende li-
nealmente del dngulo, mientras que la del circulo completo
constituye el caso maximo.

El segmento circular, por su parte, representa una regién mas
compleja, cuyo cdlculo combina el drea del sector con la del

tridngulo is6sceles forn A *sy la cuerda.
.-"'.. .\."‘
Figura 30.
. | . L
Representacion del segm t -l | :ombinacion del sector y

el triangulo isdsceles \

Nota: Elaboraciéon propia.

Este tipo de problemas exige al estudiante integrar diferentes
conocimientos geométricos, como la trigonometria y la descom-
posicion de figuras.

Duval (1999) afirma que el aprendizaje significativo se logra
cuando el alumno no solo aplica formulas, sino que comprende
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codmo los distintos registros se relacionan para describir un mis-
mo fenédmeno.

Aplicaciones de cadlculo de areas y perimetros
El cdlculo de dreas y perimetros trasciende su cardacter instru-
mental para convertirse en una herramienta de comprension del
espacio, de andlisis estructural y de razonamiento matematico.
Lejos de constituir un conjunto de férmulas que el estudian-
te debe memorizar, representa un campo de aplicaciéon donde
confluyen la medida, la proporcionalidad y la modelacion. Esta
dimensiéon aplicada, cuando se ensefia de forma critica, fomenta
la capacidad de transferir el conocimiento matematico a con-
textos sociales, cientificos y tecnolégicos, cumpliendo asi una
funcion formativa integral.

Desde la perspectiva de Duval (2017), comprender una medi-
da implica coordinar registros de representacién que van desde
lo perceptivo hasta lo simbdlico. Por ello, al calcular el area de
una superficie o el perimetro de un contorno, el estudiante no
solo realiza operaciones numéricas, sino que también interpre-
ta graficamente, compara magnitudes y comunica relaciones.
El cdlculo geométrico se transforma entonces en una prdctica
de pensamiento: un proceso de modelacion en el que el sujeto
construye significado y no simplemente ejecuta reglas.

En este sentido, el docente debe proporcionar tanto herra-
mientas tedricas como ejercicios practicos que promuevan
el razonamiento, la modelacién y la resolucion de problemas
contextualizados.

El desarrollo del pensamiento geométrico no depende solo
del conocimiento de férmulas, sino de la calidad y diversidad
de las tareas que el estudiante enfrenta. Cada tipo de ejerci-
cio sobre dreas y perimetros refleja una concepcién particular
del aprendizaje matemadtico: algunos se centran en la memo-
rizacion de reglas, otros en la exploracion, la argumentacion
o la modelacién. Segun Brousseau (2002), las situaciones di-
dacticas deben organizarse de modo que el conocimiento
emerja del conflicto cognitivo y no de la repeticién mecanica.
De igual manera, Duval (2017) recuerda que comprender la
geometria implica articular distintos registros de represen-
tacion tales como: figural, simbdlico, numérico y verbal para
generar sentido.

La tipologia que se presenta a continuacion amplia la vision
tradicional de los ejercicios, fundamentando cada tipo desde di-
versas perspectivas tedéricas y mostrando ejemplos que reflejan
su potencial formativo.
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Tabla 1.
Formulas fundamentales de perimetro y area en figuras planas

Comentario

Figura Perimetro (P) Area (A)
conceptual

Cuadrado P =4a A=a? El lado es la uni-
dad generadora
de toda la figura;
su drea expresa la
nocion de “magni-
tud cuadrada”.

Rectangulo P=2(a+Db) A=axb |Expresalarela-

cién producto en-
tre dos dimensio-
nes ortogonales.

Triangulo P=a+b+c A = bxh Permite visualizar
la mitad de un pa-
ralelogramo como
modelo.

Rombo P =4a A= xd Las diagonales
son ejes de sime-
tria que determi-
nan el drea.

Paralelogramo | P =2 (a+ b) A=bxh |Equivalenteen
area al rectangulo
de igual base y
altura.

Trapecio P=a+b+c+d|A— Bbh |fl4rea resulta del
promedio de las
bases multiplica-
do por la altura.

Poligono P=nxa A= @ La formula gene-
regular (n raliza la estructu-
lados) ra de los poligo-

nos simétricos.

Circulo P =2ar A = nr? Representa el
limite de los poli-
gonos regulares al
tender (N — OQ).
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i nro r2o .
Sector circular | P = 2r + &% A= Mide la propor-

cion del circulo
delimitada por un

dngulo central.

Nota. La tabla sintetiza relaciones métricas esenciales en figuras geométri-
cas bdsicas, destacando como cada expresion revela una estructura concep-
tual distinta del espacio y de la medida. Elaboracion propia.

1. Ejercicios de aplicacion directa de formulas
Estos ejercicios constituyen el punto de partida para el dominio
instrumental. Buscan que el estudiante reconozca las dimensiones
relevantes y aplique correctamente las expresiones algebraicas.
Aunque son de naturaleza reproductiva, tienen un valor introduc-
torio cuando se acompafian de explicaciones grdficas y justifica-
ciones verbales.

Segun Brousseau (2002), las tareas directas deben enmarcarse
en situaciones diddcticas intencionadas que no se reduzcan a la
mecanizacion, sino que permitan comprender la relacién entre la
figura, la medida y la formula. Tall (2014) afade que en este nivel
los estudiantes transitan del mundo encarnado (visual) al mundo
simbdlico (algebraico), integrando la observacién y la manipulacion
con la simbolizacién matematica.

Tabla 2.
Ejercicios introductorios de perimetro y area en figuras planas

Calcular el érea de un triangulo | A — bxh _ 15x10 _ 75¢m?2
de base 15 cm y altura 10 cm.

2 2

Hallar el perimetro de un circulo | P = 27t = 21 (7) = 43.98cm
de radio 7 cm.

e,
I

Calcular el drea de un parale- 2nr = 2n (7) = 43.98cm
logramo con base & m y altura

5m.

Determinar el drea de untrape- |A = b x h = 8 X 5 = 40m?
cio cuyas bases miden 10 y 6 m,
y su altura 4 m.

Nota. Los ejercicios ilustran cémo la aplicacion directa de formulas se vuelve
significativa cuando el estudiante comprende la relacién entre la representa-

cion geométrica y el modelo algebraico. Elaboracién propia.

2. Ejercicios de descomposicion y recomposicion de figuras
Este tipo de tareas promueve la visualizacion y la capaci-
dad analitica. El estudiante aprende a reconocer que una
figura compleja puede dividirse en poligonos mdas simples o
combinarse con otras para formar nuevas configuraciones
equivalentes.

81



Poligonos, areas, circunferencia y circulo

De Villiers (2010) argumenta que este tipo de ejercicios
activa la funcién descubridora del razonamiento geométrico,
porque el alumno infiere relaciones entre las partes. Duval
(2017) afiade que estas tareas facilitan la conversién entre re-
gistros semioéticos, lo que estimula la abstraccion geométrica.

Finalidad: Fomentar la capacidad de descomponer, abs-
traer y reconstruir, desarrollando la visién estructural de las
figuras geométricas (Godino, Batanero y Font, 2007).

Tabla 3.
Ejercicios de composicion y descomposicion de areas para el desa-

rrollo del razonamiento geométrico

Calcular el drea de una figura for- | A = (10 x 6) + &4 = 60 + 20 = 80m?
mada por un rectangulo de 10 m x
6 my un tridngulo isésceles adya-
cente con base 10 m y altura 4 m.

Determinar el drea sombreada al | A =122 — z(6)* = 144 — 113.1 = 30.9cm?
restar de un cuadrado de 12 cm de
lado un circulo inscrito.

Calcular el darea de una figura A:(6x4)+ﬁ:24+14,14:38,14cm2
compuesta por un semicirculo de
radio 3 cm y un rectdngulo de 6
cm x4 cm.

Dividir un hexdagono regular en | A =6 x @32
seis tridngulos equilateros y hallar

el drea total en funcion del lado.
Nota. Los ejercicios presentados integran la visualizacion geométrica con el
uso de representaciones simbodlicas. Elaboracién propia.

Finalidad: Fomentar la capacidad de descomponer, abstraer
y reconstruir, desarrollando la visién estructural de las figuras
geométricas (Godino, Batanero y Font, 2007).

3. Ejercicios de transformacion y conservacion
En estos ejercicios se analizan los efectos de las transformaciones
geomeétricas (ampliaciones, reducciones, deformaciones) sobre el drea
y el perimetro. El objetivo es comprender las relaciones de proporcio-
nalidad y covariacion.

Moreno-Armellay Sriraman (2005) sostienen que las transformacio-
nes permiten revelar la dialéctica entre forma y medida, favoreciendo
una comprension dindmica del espacio. Stewart (2016) complementa
esta idea al sefialar que los ejercicios de covariacién preparan al es-
tudiante para el razonamiento diferencial y la optimizacion.
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Tabla 4.
Ejercicios de homotecia, perimetro y variacion de areas en figuras

planas

Calcular el drea y el perimetro de | A; = 24m?,P; = 20m

un rectangulo 4 x 6 y luego de uno | Ay = 96m?, Py = 40m

homotético con razoéon 2. El perimetro se duplica y el
area se cuadruplica.

Comparar el drea de dos figuras | Cuadrado de lado 6 m: A = 36m?
con el mismo perimetro: Rectdngulo de lados 9 y 3:

A =27m?

El cuadrado maximiza el drea.

Explorar la variacién del drea del | A = 11:1‘2,A2 = n(zr)z =4A,

circulo al duplicar su radio:

Nota. Estos ejercicios muestran cdémo los cambios de escala modifican el
perimetro y el area, fortaleciendo la comprensién de relaciones geométricas
fundamentales. . Elaboraciéon propia.

Finalidad: Comprender las relaciones entre magnitudes y de-
sarrollar pensamiento variacional (Tall, 2014).

4. Ejercicios de generalizacion algebraica
Estos ejercicios permiten derivar expresiones generales a partir de
casos particulares, lo cualimpulsa la capacidad de abstraer y forma-
lizar. Mariotti y Bussi (1998) afirman que el aprendizaje geométrico
implica la mediacion semiodtica: el estudiante traduce observaciones
visuales en lenguaje algebraico. Duval (2017) explica que esta con-
version simbolica constituye un salto cognitivo hacia la abstraccion.

Tabla 5.
Problemas avanzados de generalizacion y representacion funcional en

geometria plana

Deduzca la férmula del area de un poligono | A = nkR
regular de n lados de longitud k y apotema R.

Expresar el drea de un cuadrado como fun- A= (2)2
cién del perimetro. 4

Mostrar que el drea del circulo puede expre- | A — p?
sarse en funcion del perimetro:

Determinar una relacion general entre el A 1 2sen<2_n>
area y el numero de lados de un poligono n

regular inscrito en un circulo de radio r.
Nota. Los ejercicios integran proporcionalidad, perimetro y funciones trigo-
nométricas para fortalecer la comprension estructural del drea en figuras
regulares y en el circulo. Elaboracién propia.
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Finalidad: Favorecer la formalizaciéon, la simbolizacion y la ca-
pacidad de establecer patrones generales, base del pensamiento
algebraico (Brousseau, 2002).

5. Ejercicios de modelacién contextualizada
Estos ejercicios trasladan los conocimientos geométricos a situa-
ciones del entorno real, fortaleciendo la comprensién funcional
y la conciencia social del aprendizaje.

Presmeg (2020) subraya que la modelacién otorga significado
cultural a la matemdatica; al resolver problemas reales, el estu-
diante desarrolla una comprension situada. Moreno-Armella y
Sriraman (2005) affiaden que el trabajo con contextos auténticos
estimula la autonomia y la reflexién critica.

Tabla 6.
Problemas aplicados de geometria en contextos reales y de estima-
cion cuantitativa

Una pista de atletismo tiene forma de rectangulo con dos semicirculos
de radio 30 m en los extremos. Calcular el perimetro y el drea total.

Calcular el costo de colocar cerédmica en una habitacion de 5 m x 3
m si cada caja cubre 1.5 m y cuesta 12 USD.

Determinar el Grea de un terreno trapezoidal con bases 40 y 25 m, y
altura 20 m, para estimar la cantidad de semillas a sembrar si cada
hectdrea requiere 250 kg.

Disefiar un vitral circular con didmetro de 2 m, calculando la cantidad

de vidrio (en m ) y el perimetro del marco metdlico.

Nota. Las tareas integran modelacion geométrica y razonamiento meétrico
para resolver situaciones auténticas de cdlculo de dreas, perimetros y costos.
Elaboracion propia.

Finalidad: Desarrollar la transferencia del conocimiento y la
conciencia de que la geometria es una herramienta para com-
prender y transformar el entorno (Presmeg, 2020).

6. Ejercicios de argumentacion y demostracion

En este nivel se busca razonar, justificar y probar propiedades
geométricas. Este tipo de tarea promueve la comprension pro-
funda del sistema deductivo y la conexién entre observacion,
inferencia y demostraciéon. De Villiers (2010) define la demos-
tracion como una actividad de descubrimiento y explicacion
que desarrolla la autonomia cognitiva. Tall (2014) y Duval (2017)
coinciden en que la argumentacion geométrica representa la
culminacién del aprendizaje, porque el estudiante logra articular
los tres mundos del pensamiento: visual, simbdlico y formal.
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Tabla 7.
Tareas demostrativas para el desarrollo del razonamiento geométrico

avanzado

Demostrar que el drea del tridngulo es la mitad del drea del rectdngulo
que comparte su base y altura.

Probar que entre todas las figuras con igual perimetro, el circulo en-
cierra el drea maxima.

Justificar que el drea del rombo es igual al semiproducto de sus
diagonales.

Argumentar que la suma de las dreas de los cuadrados construidos
sobre los catetos de un trigngulo rectdngulo equivale al cuadrado

sobre la hipotenusa (teorema de Pitdgoras)
Nota. Las actividades promueven la argumentacion deductiva y la comprension
profunda de propiedades geométricas fundamentales. Elaboracién propia.

Finalidad: Desarrollar el razonamiento l6gico, la capacidad
de explicacion y la metacognicion geométrica (De Villiers, 2010;
Brousseau, 2002).

Conclusiones

El capitulo sobre poligonos, areas, circunferencia y circulo permitié
comprender que la geometria no solo describe las formas del mun-
do, sino que ensefa a pensar con precision, orden y sensibilidad. A
través del estudio de las figuras planas se aprendid que medir es
también comparar, abstraer y razonar; cada perimetro calculado y
cada superficie determinada son el resultado de una construccion
mental que une la observacion con la l6gica. Esta relacion entre
forma y medida invita a concebir la geometria como un lenguaje
del pensamiento y no como una lista de féormulas, pues detrds de
cada cdlculo hay una idea de estructura, equilibrio y armonia.

El andlisis de las propiedades de los poligonos y de las relaciones
entre sus lados y angulos permitid descubrir la coherencia interna
del razonamiento geométrico. Comprender cémo una figura puede
descomponerse, transformarse o conservar sus magnitudes abre al
estudiante la posibilidad de reconocer patrones y regularidades en
la naturaleza. En este proceso, el cdlculo de areas y perimetros deja
de ser un fin para convertirse en un medio que desarrolla capacida-
des mas amplias: visualizar, inferir, conjeturar y argumentar. De este
modo, la ensefianza geométrica se vuelve una experiencia intelectual
que conecta lo tangible con lo abstracto.

Finalmente, el estudio de la circunferencia y el circulo ofrecid una
sintesis entre la razdn y la intuicion, al mostrar cémo la perfeccidon
de las formas redondas traduce la bUsqueda humana de proporciéon
y movimiento. El aprendizaje de estos contenidos, cuando se vincula
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con la practica y la exploracion tecnoldgica, fomenta una compren-
sion viva de la medida, la equivalencia y la variacidn. La geometria
se convierte asi en una escuela del pensamiento, una disciplina que
ensefia a observar con rigor, a expresar con claridad y a descubrir
la belleza que existe en la relacién entre nUmero, espacio y forma.
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Carituro III

Relaciones métricas en triangulos,
poliedros, cuerpos de revoluciony
modelo de Van Hiele

Introduccion

El estudio de la geometria adquiere un lugar fundamental en
la formacion matematica cuando se reconocen las relaciones
internas que estructuran las figuras y los cuerpos del espacio.
Comprender un tridngulo, un poliedro o un sélido de revolu-
cién no se limita a identificarlos visualmente, sino a revelar
las conexiones que existen entre sus elementos, sus medidas
y las transformaciones que los caracterizan. Cada figura con-
serva una légica interna que puede analizarse, compararse
y generalizarse, y es en este proceso donde el razonamiento
geomeétrico encuentra su verdadero sentido formativo.

A lo largo de este capitulo, se aborda la geometria desde
una perspectiva que integra la observacion, la medicion y la
deduccidon como partes de un mismo proceso de construccion
del conocimiento. Las relaciones métricas permiten recono-
cer como se organizan los elementos de las figuras planas y
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espaciales, como se mantienen o se modifican bajo distintas
condiciones, y qué principios gobiernan su estructura. Al mis-
mo tiempo, el estudio de los cuerpos tridimensionales abre
la posibilidad de comprender el espacio en toda su profundi-
dad, desde la interpretacién de sus formas hasta el cdlculo de
areas y volUmenes que aparecen con frecuencia en contextos
reales y aplicados.

Finalmente, el capitulo incorpora un enfoque centrado en el de-
sarrollo progresivo del razonamiento geométrico, reconociendo
que los estudiantes avanzan por etapas diferenciadas que requie-
ren propuestas didacticas cuidadosamente estructuradas. Este
marco permite comprender por qué algunos conceptos resultan
intuitivos mientras otros exigen mayor abstraccion, y orienta la
enseflanza hacia experiencias que favorezcan un pensamiento
mds consciente, reflexivo y articulado. Asi, el capitulo busca no
solo describir propiedades geométricas, sino también mostrar
coémo estas se convierten en herramientas para comprender el
espacio y para formar una manera de pensar matematica mas
profunda y flexible.

Relaciones métricas en tridngulos rectdngulos y oblicudngulos
Hay relaciones matematicas que, mas alld de su formalidad, pare-
cen contener una suerte de verdad intima sobre el modo en que se
organiza el espacio. Entre ellas, las relaciones métricas en los tridn-
gulos rectangulos y oblicudngulos ocupan un lugar privilegiado: no
solo permiten medir, sino que revelan como el espacio se ordena,
se abre, se proyecta y, en cierto sentido, se deja comprender.

Un tridngulo no es solo una figura; es una estructura de pen-
samiento. En él se encuentran la rectitud y la oblicuidad, la cons-
tancia y la variaciéon, el limite y la posibilidad. Por eso, al trabajar
sus relaciones métricas, no ensefamos Unicamente férmulas;
ensefamos a ver. Y ver, en geometria, implica comprender coOmo
los objetos se configuran, qué relaciones preservan, cudles ceden
o se transforman.

A'lo largo de la historia de la matematica, las relaciones me-
tricas han sido el puente entre el pensamiento intuitivo y el pen-
samiento deductivo. Como advierte Tall (2014), la comprensidén
surge cuando el estudiante consigue articular su imagen con-
ceptual como aquello que imagina cuando piensa en un dngulo
que se abre, en un lado que crece, en una altura que cae, con la
definicion formal que captura el comportamiento de esas figuras
bajo reglas precisas.

Pero para llegar ahi, el docente debe guiar un recorrido que
no es solo cognitivo, sino epistemoldgico y didactico. Van Hiele
lo comprendié con claridad: el estudiante no nace sabiendo
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“razonar geométricamente”; necesita pasar por niveles de per-
cepcibén, andlisis, abstraccion y deduccién que deben ser cuida-
dosamente cultivados (Fuys et al,, 1988).

La perpendicularidad como principio generativo: el triangulo
rectangulo como origen
El tribngulo rectangulo es quizd la figura mas potente de la geo-
metria cldsica. No por su simplicidad, sino porque en él convergen
tres elementos que definen la estructura del espacio euclidiano:
la perpendicularidad, la proyeccién y la semejanza.

Cuando Euclides presenta el Teorema de Pitdgoras, no lo hace
como un procedimiento para “hallar un lado”, sino como una equi-
valencia de dreas que explica una forma fundamental de equi-
librio geométrico. Apostol (1991) insiste en este punto: Pitdgoras
no es un truco, sino una revelacién sobre como se distribuye la
extensién en un tringulo recto.

La altura trazada desde el vértice recto, es decir, esa linea
silenciosa que cae con naturalidad hacia la hipotenusa, no es
un adorno técnico.

Es, en si misma, un acto geométrico: al caer, genera dos trian-
gulos nuevos, cada uno semejante al original. La figura se multi-
plica, y con ellg, la estructura métrica se hace visible.

Figura 1.
Descomposicion métrica del tridngulo rectangulo mediante la altura.
*
b
1 ™
*,

Nota: Elaboraciéon propia. .

Desde ahi nace todo: la relacién entre catetos y proyeccio-
nes, la proporcionalidad de los tridngulos semejantes, la equiva-
lencia entre dreas, las razones trigonométricas como cocientes
invariantes.

Asi entendida, la perpendicularidad deja de ser un simple “dato
geomeétrico” disponible en la figura para convertirse en un prin-
cipio generativo que organiza la produccién misma del espacio
matematico. Esta idea, presente en la tradicién euclidiana pero
reinterpretada desde la didactica contempordanea, invita a mirar
la perpendicularidad no como una propiedad aislada sino como
una estructura relacional que permite engendrar significados, de-
finir objetos y establecer jerarquias conceptuales. En palabras de
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Mariottiy Bussi (2020), toda relacién que el estudiante construye
sobre una figura es potencialmente un acto de pensamiento;
y la perpendicularidad, por su potencia operativa, orienta ese
pensamiento hacia la construccion de invariantes y sistemas.

En la geometria clasica, Euclides (Heath, 1956) utiliza la perpen-
dicularidad para fundar nociones como altura, distancia minima
y angulos rectos, que luego sirven para desarrollar teoremas
mas complejos. Desde esta perspectiva, la perpendicularidad
produce matematica: de ella se derivan criterios de congruencia,
definiciones de tangencia y caracterizaciones de simetria. No
es univoca: funciona como nucleo desde el cual se despliega un
sistema coherente de relaciones.

En la diddctica de la geometria, esta idea adquiere un matiz
epistemoldgico relevante. Duval (2017) explica que el sentido
matematico no se encuentra en las figuras sino en el sistema de
operaciones cognitivas que los estudiantes pueden realizar sobre
ellas. La perpendicularidad, en cuanto operacion se convierte en
un motor epistemolégico que tiende puentes entre diferentes
registros: grafico, discursivo y algebraico. Asi, al construir una
altura en un tridngulo, el estudiante no “aplica una definicién”,
sino que genera un dispositivo de lectura de la figura que rede-
fine su estructura interna.

Cuando se define la distancia de un punto a una recta, la
perpendicularidad actUa como criterio de optimizaciéon: selec-
ciona el camino mas corto entre infinitos posibles. En contextos
mds avanzados, la perpendicularidad sostiene la teoria de pro-
yecciones ortogonales, indispensable en dlgebra lineal, andlisis
vectorialy geometria analitica. Como sefiala Stewart (2016), las
proyecciones permiten reescribir problemas geométricos en
términos algebraicos y facilitan transiciones entre espacios de
distinta dimension.

Ejemplo 1:
Imagine una escalera apoyada en un muro. Sabemos que la
parte inferior se desliza hacia afuera. Si quisiéramos modelar la
longitud de la escalera, podriamos caer en la tentacién de aplicar
directamente el teorema de Pitdgoras. Pero, desde esta mirada
conceptual, la formula es solo la consecuencia final de un proceso
mas profundo: la escalera, el muro y el suelo conforman un trian-
gulo rectdngulo donde la perpendicularidad reparte el espacio.

La escalera no “vale” v a2 + b2 :la escalera es la diagonal que
equilibra el drea combinada de dos cuadrados que expresan la
extensién de los catetos.
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Figura 2.
Representacién geométrica de la escalera como hipotenusa del trian-

gulo rectangulo. . .

Bueis
Nota: Elaboraciéon propia.

La oblicuidad como expansion del pensamiento: tridngulos sin
angulos rectos
Una vez que el estudiante ha comprendido la estructura meétrica
del triangulo rectangulo, la geometria exige un salto conceptual:
iqué ocurre cuando ningun dngulo es recto?

Aqui surge la necesidad de las leyes del seno y del coseno.
No como herramientas de cdlculo, sino como puentes concep-
tuales entre la rectitud y la oblicuidad. Freudenthal (1973) diria
que, cuando el dngulo deja de ser recto, el fendmeno cambia: la
perpendicularidad ya no estructura el espacio.

El docente debe ofrecer nuevas maneras de experimentar la
figura. Esto puede hacerse desde dos intuiciones:

* La vision angular: la Ley del Seno nace cuando interpreta-
mos que un lado no crece solo por su longitud, sino por la
apertura del dngulo que lo sostiene.

* La tension lateral del triangulo: la ley del coseno nace cuando
reconocemos que el lado opuesto estdinfluenciado no solo por
los otros dos, sino por el “empuje” que genera el dngulo entre ellos.

Los trigngulos oblicudngulos pueden inscribirse en circunfe-
rencias. Ese hecho aparentemente simple cambia todo: cada
lado es una cuerda, y la apertura angular determina su longitud.

Figura 3.
Representacion geométrica de la Ley del Seno en un triangulo inscrito
en una circunferencia. -

Nota: Elaboraciéon propia.
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Asi, la Ley del Seno afirma a__—_b___c¢c__ 2R, donde

sen A sen B sen C
R es el radio de la circunferencia circunscrita al tridngulo. Ruiz y
Alvarez (2008) muestran que muchos estudiantes aplican la Ley
del Seno sin entender que sus raices estdn en esa configuracion:
el tringulo inscrito en un circulo.

Ejemplo: En el Parque Nacional Cotopaxi, un equipo de guar-
daparques necesita medir la distancia entre dos puntos remotos
Ay B para instalar un cable de monitoreo.

Desde un punto de observacion C, que se encuentraa 500 me-
tros de A, se mide el dngulo entre las lineas CA y CB, obteniendo

un angulo en C de 50°.

Figura 4.
Aplicacion de la Ley del Coseno para determinar la distancia entre
dos puntos remotos.

i *

Nota: Elaboraciéon propia.

Ademds, el dngulo en A entre las lineas AB y AC se midié como
70°. Con estos datos:  Cudl es la distancia entre los puntos Ay B?
La distancia se determina directamente aplicando:

AB _ 500 _ ’
sen(50°) o sen(60°) = 442.28m

Ley del Coseno: Pitagoras modificado por el angulo
La Ley del Coseno: a2 = b? + ¢z — be COS(a), suele introducirse
como una simple “extensién” del Teorema de Pitdgoras para
tringulos sin angulo recto.

Figura 5.
Representacion geométrica de la Ley del Coseno en un triangulo
oblicuangulo.

Nota: Elaboracion propia.
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Para muchos autores, esta ley no es Unicamente un resultado
técnico, sino un punto donde convergen distintas concepciones
del espacio: la geométrica clasica heredada de Euclides, la vec-
torial moderna, la fenomenoldgica del movimiento angular, la
cognitiva del razonamiento visual y la didactica de los registros
semiodticos.

Lo que habitualmente aparece como una férmula estdtica es, en
realidad, una expresién condensada de varias maneras de entender
la geometria como ciencia de las relaciones. Este apartado recupera
esas miradas, no para oponerlas, sino para permitir que dialoguen
entre si y restituyan a la Ley del Coseno su densidad conceptual.

Aunque Euclides nunca escribié la Ley del Coseno con las for-
mas algebraicas actuales, si anticipd su estructura conceptual en
los Libros Il y VI de Los Elementos. En la Proposicién 12 del Libro |1,
Euclides muestra como las areas construidas sobre los lados de un
triangulo no rectangulo se relacionan mediante una serie de parale-
logramos y rectangulos cuya inclinacién depende del dngulo interior.

Desde esta lectura:

. El término b2 —I—C2 expresa un equilibrio ideal de dreas

“como si el trigngulo fuera recto”

e El término 2bCCOS(0L) introduce la distorsién angular que

rompe ese equilibrio.

La Ley del Coseno adquiere asi un cardacter casi poético: ex-
presa como la oblicuidad perturba la “armonia pitagoérica” del
espacio. En palabras de Euclides, el tridngulo oblicuo no puede
ser leido sin considerar la inclinacién de sus lados, algo que
la formula moderna captura con precision. Freudenthal (1973),
desde su teoria de la matematizacion, sostiene que la clave estd
en recuperar el fendmeno: iqué pasa realmente con un trigngulo
cuando su dngulo se abre o se cierra? (Figura 6).

Figura 6.
Variacion del lado opuesto en funcion de la apertura del dngulo segun

la Ley del Coseno.
-

Nota: Elaboracion propia.

1. Cuando A =90, el triangulo estd en una forma “estable”
y se cumple Pitagoras.
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2. Cuando A < 90 , los lados se acercan: el triangulo “tira”
hacia dentro, y la correccion angular es negativa.

3. Cuando A > 90 , el trigngulo “se abre” y se vuelve expan-
sivo: la correccién es positiva.

La Ley del Coseno traduce ese comportamiento en una re-
lacion precisa. No describe un fendmeno abstracto: describe el
movimiento. En términos freudenthalianos, es un ejemplo pode-
roso de como un concepto matemdatico captura la estructura de
un fendmeno que podria experimentarse con simples varillas
articuladas.

Duval (2017) argumenta que la dificultad no radica en la com-
plejidad de la férmula, sino en que el estudiante no logra coor-
dinar los registros de representacién:

* Figural: ver como cambia el lado opuesto al dngulo,

* Verbal:describir cobmo la variacion angular altera la figura,
e Simbdlico: comprender la estructura b2 + ¢z —be Cos(a)

* Dindmico:observar la figura en movimiento usando software.

La Ley del Coseno solo se comprende cuando el estudiante
puede pasar de uno a otro registro sin perder coherencia. Desde
esta posicion, ensefiar la férmula sin su traduccién figural y di-
ndmica equivale a quitarle su significado. Mariotti y Bussi (2020)
enfatizan que la comprension geométrica se construye en la
interaccidon discursiva. Desde esta 6ptica, la Ley del Coseno no
se ensefia aplicandola, sino discutiéndola: jpor qué aparece la
correccion angular? ;Por qué el coseno negativo hace crecer el
lado? ;Qué ocurre si el dngulo es obtuso?

En este sentido, la Ley del Coseno es un excelente terreno
didactico:

*+ Permite comparar tridngulos.

* |Invita a argumentar sobre tamafos relativos.

* Revela el papel del dngulo en la forma global de la figura.

Semejanza de tridngulos y razén de proporcionalidad

La nocion de semejanza constituye uno de los pilares concep-
tuales de la geometria euclidiana porque articula la forma, la
medida y la proporcionalidad como un sistema coherente para
describir el espacio. Entendida desde el aula, la semejanza per-
mite al estudiante transitar desde la intuicion visual de “figuras
con la misma forma” hacia una comprensiéon formal que implica
ratios constantes, invariantes geométricos y transformaciones
que preservan la proporcionalidad.
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Como sefiala Hartshorne (2000), la semejanza es un puente
entre la geometria elemental y la teoria de las transformaciones,
y su ensefanza representa una oportunidad privilegiada para
desarrollar pensamiento multiplicativo, razonamiento propor-
cionaly comprensiéon profunda de la estructura del tridngulo, un
objeto central en la matematicidad escolar.

Se aborda la semejanza desde tres perspectivas comple-
mentarias: una geométrica-tedrica, una métrica-aplicada y
una didactica anclada en los niveles del modelo de Van Hiele.
Se busca mostrar que la semejanza no es un concepto aislado
sino un eje generador que permite establecer relaciones métri-
cas en trigngulos, definir razones trigonométricas, comprender
propiedades de poliedros y modelar problemas de escala en
cuerpos de revolucion. A través de esta mirada integradora,
se construye una articulacion entre la teoria clasica (Euclides,
Hilbert), las aproximaciones contempordneas del razonamiento
geométrico (Duval, 2017; Mariotti & Bussi, 2020) y los desafios
actuales de su ensefianza.

Partiendo de la premisa de la centralidad de las actividades
semiodticas, la discusion matematica colectiva desempefia un
papel crucial: durante esta discusion, la accidn intencional del
docente se centra en guiar el proceso de mediacion semidtica
gue conduce a la evolucion esperada de los signos. El papel del
docente en el proceso de enseffianza-aprendizaje basado en el
uso de artefactos y, en particular, en un entorno de geometria
dindmica (Mariotti, 2009).

Idea fundamental de semejanza:’ forma, invariancia y multipli-
cacion escalar
Dos triGngulos son semejantes cuando conservan la forma, aun si
no conservan el tamafo. Este enunciado, aparentemente simple,
esconde una riqueza conceptual profunda: la forma puede ser
entendida como aquello que permanece invariante frente a una
transformacion de escala.

Desde un punto de vista matematico, la semejanza se forma-
liza mediante transformaciones homotéticas que multiplican
todas las distancias por un mismo factor k. Como lo explica
Coxeter (1963), dicha multiplicacion uniforme preserva dngulos y
direcciones, lo que permite mantener la estructura proporcional
interna de la figura.
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Figura 7.
Triangulos homotéticos que conservan la estructura proporcional bajo
un mismo factor de escala.

Nota: Elaboraciéon propia.

Elteorema fundamental establece que dos trigngulos son seme-
jantes si se cumple alguno de los siguientes criterios equivalentes:

* AAA:Igualdad de sus tres Gngulos.

* LAL:Proporcionalidad de dos lados incluidos entre dngulos

iguales.

* LLL:Proporcionalidad de los tres lados.

Estas condiciones, ya presentes en los Elementos de Euclides,
adquieren relevancia moderna al comprenderse como equivalentes
a la existencia de una transformacién homotética entre las figuras
(Hartshorne, 2000). En efecto, cuando el estudiantado comprende
gue no es necesdrio comparar todos los elementos del tridngulo
sino solo una estructura minima de proporcionalidad, se abre paso
a un pensamiento geométrico mas abstracto y relacional.

Figura 8.
Relacion de proporcionalidad entre lados homdlogos como fundamen-
to de la semejanza de tridngulos.

Nota: Elaboracion propia.

En el aula, esta comprensién se fortalece cuando se vinculan
representaciones visuales con expresiones simbodlicas. Por ejem-
plo, al observar que en dos tridngulos semejantes se cumple:
f/g/ = BB}S, = Cclﬁ/ =k, el estudiante empieza aidentificar el factor
de escala como la constante que relaciona ambas figuras. Este
razonamiento multiplicativo es fundamental para comprender
fendmenos reales como mapas, escalas arquitectdnicas, amplia-
ciones fotogrdaficas y modelos tridimensionales.

La razdn de proporcionalidad constituye el corazdn métrico
de la semejanza. Representa el nUmero que permite pasar de
un tridngulo base a un trigngulo ampliado o reducido. Pero mas
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alld de su uso numérico, la razén de proporcionalidad organiza
la estructura interna de la figura: determina cémo se relacionan
sus alturas, sus medianas, sus bisectrices y hasta sus dareas.

Si AABC ~ AA'B'C'’ con factor Kk, entonces:
AB =k-A'B',BC =k-B'C',CA =k-C'A’. Este resultado,
aparentemente evidente, permite comprender fendmenos meé-
tricos mas complejos. Por ejemplo, las alturas también guardan
proporcionalidad: h, =k - h;, y lo mismo ocurre con radios ins-
critos y circunscritos, lo que muestra la potencia de la semejanza
para unificar multiples relaciones métricas.

Figura 9.
Proporcionalidad de alturas y elementos métricos derivados en trian-
gulos semejantes. ¥ *

Nota: Elaboraciéon propia.

Proporcionalidad cuadrdtica en areas

La proporcionalidad cuadrdatica es uno de los resultados mas be-
llos y a la vez mas dificiles de internalizar para el estudiantado.
La intuicidon opera inicialmente en un plano lineal: duplicar un
lado “parece” que deberia duplicar el drea. Sin embargo, como
explican Pape y Tchoshanov (2001), el desarrollo del pensamien-
to multiplicativo requiere comprender que el drea surge de la
interaccion de dos dimensiones simultdneamente. De alli que la
semejanza no solo escale longitudes: amplifica la figura en dos
direcciones, generando una transformacion cuadratica.

Sidos triangulos AABC ~ AA'B’C’ son semejantes con fac-
tor k, se cumple:

[ABC] = k2 - [A’B'C]

La ecuacion expresa que el drea no crece por adicion sino por
multiplicacion compuesta. Como sefiala Tall (2014), este salto
cognitivo implica pasar de un razonamiento “uno-a-uno” a un
razonamiento “multivariable”: la escala afecta ancho y altura, lo
cual es dificil de asimilar sin representaciones visuales dindmi-
cas. Aqui, los softwares geométricos como GeoGebra resultan
cruciales para observar cémo, al arrastrar un punto, el drea se
transforma a una tasa cuadrdatica.
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Figura 10.
Relacién cuadrdtica de las areas en triangulos semejantes con factor
de escala k. ) #

Nota: Elaboraciéon propia.

Desde una perspectiva aplicada, comprender esta ley es in-
dispensable en arquitectura, disefio de modelos, fabricacién de
piezas y representacion proporcional en planos. Una maqueta
construida a escala 1:51:51:5 no requiere cinco veces menos ma-
terial, sino veinticinco veces menos. Ignorar este principio tiene
implicaciones econémicas reales. Jones y Tzekaki (2016) sos-
tienen que el fracaso en comprender el crecimiento cuadratico
explica errores frecuentes en el aprendizaje de geometria y en
la resolucion de problemas aplicados.

Pero la proporcionalidad cuadrdtica no opera solo en trigngu-
los: se generaliza a cualquier regién plana.

Figura 11.
Ampliacion de una region plana y crecimiento cuadratico de su area.

Nota: Elaboraciéon propia.

Asi, si un cuadrado con lado s se transforma mediante un
factor de escala k, su area serd: A = (ks)2 =k2s%. Lo mis-
mo aplica para poligonos requlares, trapecios, figuras curvas
aproximadas y regiones construidas por descomposiciéon. Por
ello, el razonamiento cuadrdatico no es un contenido aislado,
sino un principio generador que atraviesa toda la geometria
métrica y analitica.

Ejemplo: Una ciudad tiene una plazoleta central con forma
de hexdgono reqgular. Cada lado del hexdgono interior mide
20 m. En un proyecto de renovacion urbana se decide ampliar
la plazoleta manteniendo la forma, de modo que el contorno
exterior sea un hexdgono regular semejante, con todas las lon-
gitudes multiplicadas por un factor de escala K = 15. Es decir,
el hexdgono exterior es una “version agrandada” del interior,
como en tu construccion de GeoGebra.
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Figura 12.
Ampliacién homotética de una plaza hexagonal con factor de escala k=1.5.

| [N
\,J

Nota: Elaboraciéon propia.

Calcular la longitud del lado del hexdgono exterior.
. Calcular el area de la plazoleta original (hexdgono interior).
. Calcular el area total delimitada por el hexdgono exterior.
. Calcular el drea del anillo pavimentado nuevo, es decir, la
regién entre ambos hexdgonos.
5. Verificar que el Grea se ha multiplicado por k2.

N WwWwN

Tabla 1.

Cdlculos de longitudes y dareas en hexagonos semejantes con factor de
escala k=1.5k.

Longitud del lado del hexd- |si=k-s =1,5-20 = 30m.
gono exterior

Area de la plazoleta original Ay = 2862 = 38(20)? = 33 . 400 ~ 1039,2 m?
(hexdagono interior).

Area total delimitada por el | A = 383 (s")? = 3¥2(30)? = 343 . 900.
hexdgono exterior.

Ao ~ 1350 - 1,732 ~ 2338,2 m?

Area del anillo pavimentado | Ao = Aext — At = 13504/3 — 6004/3
nuevo, es decir, la region en- (1350 _ 600)\/§

= 7504/3 m? &~ 1299 m?

tre ambos hexdgonos.

Verificar que el drea se ha |[k=1,5 = k? = (1,5)> = 2,25
multiplicado por k2

Aere _ 135043 _ 1350 _ 135 21 _ 9 _ 995
At 600v/3 ~ 600 — 60 T 12 T 4 T

Nota. La tabla presenta el proceso de cdlculo de las dreas asociadas a un
hexdgono regular y a su imagen homotética con razdn 1.5, verificando la re-
lacién cuadrdtica entre dreas y la escala de semejanza. Elaboracién propia.

Ejemplo: Una plaza circular tiene radio 10 m. El municipio quie-
re construir una nueva plaza semejante, con todas sus dimensio-
nes multiplicadas por k =1,2.
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Figura 13.

Plaza circular y su versibn homotética con factor de escala k=1.2.

Nota: Elaboracion propia.

1. ;Cudl serd el radio de la nueva plaza?
2. Usa la formula A = nir? para encontrar el drea de ambas

plazas.

3. Verifica que el area se ha multiplicado por k2.
4. Si el césped cuesta 6USD/m?., ;cuanto aumenta el costo
total de césped?

Tabla 2.

Cdlculos del radio, areas y costos en una plaza circular ampliada con

factor de escala k=1.2.

Radio de
plaza

la nueva

r'=k-r=1,2-10 = 12m.

Radio de la nueva plaza: /= 12m.

Area de ambas plazas

Agy = 11?2 = 2(10)* = 100x m? ~ 314,16 m?
A = n(r')? = 2(12)? = 144nm? ~ 452, 39m>

Verifica que el darea

se ha multiplicado
por k2.

A = T, =100 = b4
k? = (1,2)* = 1,44

Ay
Ay

=k%=1,44,

queda comprobado que el drea se ha multi-
plicado por kz, tal como indica la teoria de
semejanza: al escalar las longitudes por k, las
dareas se escalan por k2.

Si el césped cuesta
6USD/m2, icudnto
aumenta el costo to-
tal de césped?

Cint = 6 - Ajpt = 6 - 100 = 600xUSD ~ 1884,96USD
Cext =6+ Aeyy = 6- 144 = 864 USD = 2710, 66 USD

Aumento del Costo:
AC = Cexp — Ciny = 864n — 600 = 264nUSD =~ 825,70 USD

El costo total del césped aumenta aproxima-
damente en 825,70 USD.

Nota. La tabla muestra el proceso de cdlculo del radio homotético, las dreas de am-
bas plazas y la verificacion de la relacion cuadrética entre dreas y el factor de escala,
asi como la variacion del costo del césped en funcion del érea. Elaboracién propia.
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Apoyo diddctico: El estudiantado no debe ver las férmulas de
aGrea como recetas aisladas, sino como modelos para comprender
relaciones de proporcionalidad. Se propone partir de la intuicion
y la experiencia: anticipar como cambia el area y el costo al mo-
dificar el radio, dibujar, discutir y luego formalizar la idea de que
un aumento lineal del radio genera un aumento cuadratico del
area. El logro de la competencia y comprension por parte de los
estudiantes de los distintos componentes de un saber matematico
requiere el disefio y la implementacion de procesos de instruccion
que tengan en cuenta dichos componentes (Godino, 2005).

El uso de GeoGebra o Desmos permite explorar dindmica-
mente las diferentes relaciones, completar tablas y comparar
radios, dreas y costos, favoreciendo el paso entre registros de
representacion (verbal, grafico y simbdlico) que Duval (2017) con-
sidera esencial para construir significado matemdatico. Ademads,
se sugiere comparar distintos procedimientos de resolucion (con
y sin uso directo del factor de semejanza k™2, para promover la
argumentacién y la toma de decisiones matemdticas conscien-
tes, en coherencia con la teoria de situaciones didacticas de
Brousseau (2002).

Poliedros y cuerpos de revolucidon: clasificacion y propiedades
Comprender los poliedros y los cuerpos de revolucién supone
asumir que la geometria del espacio no es solo un conjunto de
formulas para calcular dreas y volimenes, sino una forma de
pensamiento que articula estructura, simetria y movimiento. En
el espacio tridimensional, las figuras dejan de ser simples con-
tornos visibles y se convierten en sistemas organizados. Como
sefialan Hilbert y Cohn-Vossen (1952), una figura geométrica es
siempre el resultado de idealizar una experiencia tridimensio-
nal: no es una copia del mundo, sino un “modelo depurado” de
algunas de sus invariantes esenciales. Los poliedros y los cuer-
pos de revolucién, en este sentido, permiten observar coémo la
matematica abstrae lo que permanece constante en medio de
la diversidad de formas y tamafios. En este epigrafe ampliado
profundizamos en la clasificaciéon de estas figuras, su estructura
interna, sus propiedades métricas y sus significados diddacticos
y epistemoldgicos. Lo hacemos desde una vision integradora,
coherente con el espiritu del libro: comprender el espacio como
experiencia, como estructura y como lenguaje.

Qué entendemos por poliedros y cuerpos de revolucion
Llamamos poliedro a todo sélido limitado por un nUmero finito de
poligonos planos, que se encuentran por sus lados formando aristas
y por sus vértices formando angulos sélidos. Coxeter (1963) define
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el poliedro como una “red de poligonos ensamblados en el espacio”
que constituye una estructura cerrada. Esta idea de ensamblaje es
pedagodgicamente fertil, ya que invita a pensar los sélidos como
construcciones que se pueden desmontar en sus “piezas” planas,
las caras, y volver a montar a través de desarrollos o redes.

Por su parte, un cuerpo de revolucidon se obtiene al girar una
figura plana alrededor de una recta de su plano. El giro produce
un soélido cuyas secciones perpendiculares al eje son congruentes
o al menos relacionadas de forma regular. Hilbert y Cohn-Vossen
(1952) subrayan que esta forma de generar sélidos introduce una
perspectiva dindmica de la geometria: el cuerpo de revoluciéon es “la
huella” de un movimiento, una curva que se desplaza en el espacio.

Ambos tipos de sdlidos permiten trabajar con la idea de volu-
men como ocupacién del espacio, asi como con dreas de super-
ficies que ya no son soélo poligonos planos, sino envolventes que
“rodean” una regiéon tridimensional. Esta ampliacion conceptual
es central para el estudio posterior del cdlculo integral y de la
modelacién geométrica de fendmenos fisicos (Stewart, 2016).

Clasificacion de poliedros: prismas, piramides y sélidos regulares
Prismas y pirdmides

Una primera clasificacion distingue entre prismas y pirdmides.

Un prisma es un poliedro con dos bases congruentes y para-
lelas, unidas por caras laterales que son paralelogramos.

La naturaleza del poligono base (trigngulo, cuadrildtero, pen-
tdgono, etc.) determina el nombre del prisma.

Figura 14.
Representacion tridimensional de un prisma con bases congruentes y
caras laterales paralelogramicas.

Nota: Elaboraciéon propia.

Una pirdmide es un poliedro con una base poligonaly caras late-
rales que son triGngulos que se encuentran en un vértice comun, el
apice.De nuevo, el nombre responde al niUmero de lados de la base:
pirdmide triangular, cuadrangular, pentagonal, y asi sucesivamente.

Esta clasificaciéon tiene una ventaja diddctica evidente. Permite un
didlogo permanente entre plano y espacio. Un prisma puede verse
como “un poligono que se desplaza en linea recta”, mientras que una
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pirdmide puede interpretarse como “un poligono que se contrae hasta
un punto (Godino y Batanero, 2007). Estas imdgenes dindmicas ayudan
alos estudiantes a vincular el volumen con la idea de suma de infinitas
secciones o ldminas, anticipando intuitivamente el uso del cdiculo.

Figura 15.
Representacion tridimensional de una piramide con base poligonal y

un vértice comun o dpice. i

Nota: Elaboraciéon propia.

Una familia particularmente importante es la de los poliedros
regulares, aquellos cuyas caras son poligonos regulares con-
gruentesy en cada vértice concurren el mismo nUmero de caras.

Figura 16.
Modelo tridimensional de un poliedro regular construido a partir de
caras congruentes.

Nota: Elaboracion propia.

Desde la Antigledad se conoce que sblo existen cinco, los lla-
mados solidos platénicos: tetraedro, cubo, octaedro, dodecaedro
e icosaedro (Coxeter, 1963). Estos sélidos ejemplifican la méaxima
simetria posible en el espacio euclideo tridimensional.

Figura 17.
Representacion tridimensional de un cubo como ejemplo de solido

platonico.
i

R T LT

Nota: Elaboracion propia.

103



Relaciones métricas en triangulos, poliedros, cuerpos de revoluciéon y modelo de Van Hiele

A su lado se situan los poliedros semirregulares o sélidos ar-
quimedianos, que admiten mas de un tipo de poligono regular
como cara, pero mantienen una estructura de vértices “uniforme”.

Su estudio introduce de manera natural la nocién de dualidad
y de truncamiento, es decir, operaciones sobre poliedros que
permiten generar nuevas formas a partir de otras, y que pueden
explorarse con modelos fisicos o software de geometria dinédmica
tridimensional (Hilbert y Cohn-Vossen, 1952).

Eltrabajo con prismas, pirdmides y sélidos regulares no se
limita al reconocimiento de figuras; debe promover procesos
de construccién, manipulacién y argumentaciéon. Actividades
como modelar poliedros con software dindmico (GeoGebra
3D), analizar sus redes, comparar sus volUmenes mediante ra-
zonamiento proporcional o investigar la presencia de sélidos
regulares en estructuras naturales favorecen un aprendizaje
significativo en el sentido de Ausubel (2000). Asimismo, la
combinacién de manipulativos fisicos y entornos digitales
permite que el estudiante relacione la estructura tridimensio-
nal con sus representaciones en planos, vistas y diagramas,
logrando asi una comprensiéon mas profunda y flexible.

Volimenes y dreas de cuerpos geométricos
La teoria del area y del volumen ha sido presentada tradicional-
mente como un conjunto de férmulas acabadas, resultado de un
proceso histérico linealy acumulativo. Sin embargo, autores como
Netz (2004), Manders (2008) y Presmeg (2020) han mostrado
gue su desarrollo conceptual no ha estado exento de tensiones
internas, reinterpretaciones y rupturas epistemoldgicas. La idea
de “medir el espacio” se ha construido a partir de disputas entre
aproximacién intuitivay rigor deductivo, entre razonamiento visual
y cdlculo formal, entre experiencia fisica y abstraccion matemdatica.

Por ejemplo, Manders (2008) sostiene que la geometria anti-
gua no se basaba en la nocidn moderna de magnitudes conti-
nuas, sino en sistemas altamente diagramdaticos donde el razona-
miento dependia de inferencias visuales, no de ecuaciones. Esto
cuestiona la idea extendida de que las féormulas actuales sobre
volumen y drea son una “continuidad natural” de descubrimientos
antiguos: mds bien se trata de reconstrucciones modernas sobre
marcos conceptuales muy diferentes.

A nivel pedagdgico, Duval (2017) critica la ensefianza centrada
en férmulas porque produce una “despersonalizacion” del pensa-
miento geométrico: el estudiante aprende a aplicar procedimien-
tos sin comprender los sistemas de relaciones que les dan sentido.
Tall (2014) coincide al sefialar que la transicidon entre el pensa-
miento sensorio-motriz, el pensamiento visual y el pensamiento
formal no ocurre automaticamente; requiere un andamiaje que
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reconstruya el concepto desde multiples representaciones.

Otros autores, como Fischbein (1993), advierten que la nocién
de volumen es particularmente susceptible a errores cognitivos
persistentes, ya que las intuiciones espaciales no siempre coin-
ciden con las propiedades matematicas. Por ejemplo, muchos
estudiantes creen que, si se duplica un radio y se mantiene la
altura, “el volumen también se duplica”, desconociendo las rela-
ciones cUbicas que gobiernan los cuerpos de revolucion.,

Desde estos enfoques criticos, el drea y el volumen no se en-
tienden como un “capitulo técnico”, sino como un terreno donde
convergen epistemologia, psicologia cognitiva, visualizacion,
lenguaje matematicoy razonamiento proporcional. Esta mirada
analitica permite profundizar en las bases del cdlculo geomeé-
trico y comprender por qué algunos conceptos como apotema,
generatriz o seccion transversal contintan siendo dificiles para
estudiantes incluso en niveles avanzados.

Tensiones epistemologicas en la nocion de area y volumen
Heath (1956) resalta que Arquimedes utilizaba métodos heu-
risticos que serian considerados “impropios” dentro del marco
axiomdatico euclidiano. Esta tension historica revela un conflicto
entre dos visiones:

* La geometria como intuicion estructural, que admite razo-

namientos basados en equilibrio, corte y recomposicion.

* La geometria como sistema axiomadtico, donde solo cuentan

las demostraciones formales.

En el aula, la segunda suele imponerse, generando dificulta-
des para estudiantes que alun operan en modos de pensamiento
visual (Duval, 2017).

Autores contempordneos de andlisis, como Ciarlet (2025),
muestran que la definicibn moderna de drea se formula riguro-
samente a partir de la teoria de medida y de las integrales de
Riemann y, sobre todo, de Lebesgue, en contraste con las apro-
ximaciones geomeétrico-discretas con las que suele ensefiarse
este concepto en la educacidén secundaria.

Esto genera una brecha conceptual: la escuela ensefia drea
como suma de superficies “planas”, mientras que la universidad
la redefine como limite de particiones infinitesimales.

Presmeg (2020) advierte que el énfasis tradicional en formu-
las descontextualizadas reduce el razonamiento espacial a un
proceso automatico. Fischbein (1993) muestra que esto genera
“ilusiones cognitivas” dificiles de superar, pues el estudiante me-
moriza sin conectar las férmulas con su origen geométrico.
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Ejemplos criticos que revelan dificultades conceptuales
La investigacion didactica ha documentado que el drea y el vo-
lumen son conceptos “epistémicamente sensibles” pequefos
malentendidos generan errores persistentes (Fischbein, 1993;
Hershkowitz, 2011). Los siguientes ejemplos permiten analizar
estas dificultades desde perspectivas criticas.

Ejemplo 2: Area lateral del cilindro: un pensamiento engafioso

Muchos estudiantes creen que “el cilindro se abre en un cuadra-
do”, cuando en realidad el desarrollo plano de su superficie lateral
es un rectdngulo cuyo ancho corresponde al perimetro de la base,
no al diédmetro. Este error deriva de una intuicién “plana” que no re-
conoce la naturaleza envolvente de la superficie curva (Duval, 2017)

Ejemplo correcto: Cilindro de radio 4 cm y altura 10 cm:
Ay, = 2nrh = 27(4)(10) = 80rcm?

Figura 18.
Representacion tridimensional del cilindro y su superficie lateral para
el cdiculo del drea.

Nota: Elaboraciéon propia.

Esta comprensién requiere coordinar registros: el reqgistro gra-
fico (desarrollo plano), el registro geométrico (perimetro de la
base) y el reqgistro algebraico (formula). La incoordinacion entre
estos explica el error.

Ejemplo 3: Volumen del cono: error clésico de proporcionalidad

Muchos estudiantes piensan que si un cilindro y un cono tienen
la misma base y altura, “el volumen del cono es la mitad”. Esto
contradice la estructura geométrica:

1

2
Veono = g(nr h). Larazon 1:3 no es evidente para la intuicion.

Como sefiala Fischbein (1993), los errores de proporcionalidad
volumétrica se deben a que el pensamiento intuitivo mantiene
asociaciones lineales incluso en contextos exponenciales o cU-
bicos.La reduccion lineal del radio hacia un vértice implica una
contracciéon cUbica del volumen, lo cual exige una comprensiéon
avanzada del espacio tridimensional.
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Figura 19.
Comparacion visual entre el cilindro y el cono para analizar la razén

volumétrica 1.3.
1

Nota: Elaboracién propia.

Ejemplo 4: La esfera como cuerpo “cognitivamente opaco”
Segun McGee (1999), incluso estudiantes universitarios pre-
sentan dificultades para:

Figura 20.
Relacion entre la esfera y el cilindro circunscrito para visualizar area y
volumen.

Nota: Elaboracién propia.

» Comprender que la superficie de la esfera equivale al area del
cilindro circunscrito sin tapas,

* Aceptar que el volumen de la esfera depende del cubo del radio,

* Visualizar cortes no circulares sequn el dngulo del plano secante,

* Entender que la esfera no tiene desarrollo plano exacto.

4
V = ETCI'3
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Formulas fundamentales de dreas y volimenes en cuerpos
geométricos

Tabla 3.
Formulas fundamentales de areas y volumenes en cuerpos

geométricos

Cuerpo Area lateral Area total Volumen
geométrico
Prisma A, =Pph At =Pyh + 244 V=A;h
Piradmide 1 1 1
Ay = =Ppaj|Ar = =Pra;+ A, | V=—=A;h
2 2 3
Cilindro Ap =2rnth  Ap =2zrh+ 2zr® |V =a=r’h
oo A=mg Ar—mgeed v Loy
Esfera Ar = Anr? V= énrg
3
Cubo Ar = 6a2 V =al
Tetraedro Ap = \/532 as
reqular = 6v/2

Nota. La tabla sintetiza las expresiones esenciales para calcular el drea lateral,
el area total y el volumen de diversos cuerpos geométricos que se utilizan con
frecuencia en la resolucion de problemas métricos. Elaboracion propia.

Problemas aplicados y contextualizados
Los siguientes ejercicios aplican los conceptos anteriores en con-
textos realesy formativos. Cada uno estd diseflado para promover
razonamiento espacial, modelacién matemdatica y andlisis critico.

Ejemplo: Disefio de un tanque cilindrico ecolégico

Una comunidad rural desea construir un tanque cilindrico para
almacenar agua lluvia. El diédmetro debe ser 2 metros y la altura
3 metros.

* Determine el volumen total del tanque.

* Calcule el érea total de material necesario para su construccion
(sin tapa).

* Analice si la intuicidn coincide con el resultado obtenido.
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Figura 21.
Representacion del tanque cilindrico para el calculo de volumen y area
de construccion. l

fa
Nota: Elaboracion propia. ]

Tabla 4.

Calculo del volumen y dreas asociadas a un tanque cilindrico
Radio r=1m

Volumen V = nr’h = n(1)2(3) = 3nm?
Area lateral Ap = 2nrth = 22(1)(3) = 6nm?
Area de la base Ay = nr? = mm?

Area total Ap =6n + 1 = Tam?

Nota. La tabla presenta los valores geométricos fundamentales del tanque
cilindrico a partir de sus dimensiones, con el fin de estimar la capacidad de
almacenamiento y el material de construccion requerido. Elaboracién propia.

Intuitivamente, muchos estudiantes predicen un volumen “ma-
yor”, pues asocian “altura grande con volumen grande”, sin con-
siderar la dependencia cuadrdatica del radio (Tall, 2014).

Ejemplo: Optimizacién de envases comerciales.

Una empresa fabrica envases conicos para café. Cada envase debe
tener 350 cm. El departamento de disefio afirma que “a mayor radio,
menor altura”y que esto “no afecta la cantidad de material necesario”.

Determine si esta afirmacién es correcta hallando el drea la-
teral de dos envases distintos:

* Modelo A:radio 4 cm.

* Modelo B: radio 6 cm.

Use la relaciéon del volumen del cono para hallar las alturas.

Figura 22.
Comparacion geométrica de dos envases conicos con igual volumen y
radios distintos para analizar el drea lateral requerida.

Nota: Elaboracion propia.
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1
Solucién: Volumen: V = gnrzh = 350.

Tabla 5.
Cdlculo comparativo de altura, generatriz y area lateral en dos envases
conicos con igual volumen

1
Modelo A 350 — En(lf)-)]a = h =~ 20.9cm
Generatriz g = \/rz + h? = \/42 +20.92 =~ 21.3
Area lateral Ay =2zrh =22(1)(3) = 6rm>
Modelo B:

1
350 = —n(36)h = h ~ 9.3cm

Generatriz g=1v62+9.32x~11.1

Area lateral A = n(ﬁ)(ll. 1) ~ 209cm?

Nota. La tabla presenta el andlisis geométrico de dos modelos de envases
conicos, ambos con volumen fijo de 350 cm , pero con radios diferentes, a fin
de comparar cémo varian la altura, la generatriz y el area lateral requerida
para su fabricacion. Elaboracién propia.

Contrario a la afirmacién del departamento, el drea si cam-
bia significativamente. El modelo con mayor radio usa menos
material, lo que ilustra cémo la geometria puede ser clave en la
eficiencia industrial (Ciarlet, 2025).

Ejemplo: Un domo geodésico para una feria cientifica se cons-
truird como un hemisferio de radio 5 metros.

Figura 23.
Representacion geométrica de un domo hemisférico de radio 5 me-
tros para el andlisis de volumen y superficie.

i

Nota: Elaboracion propia.

* Calcule su volumen interno.
* Estime el drea superficial externa.
* Analice la dificultad cognitiva de este problema.
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Tabla 6.
Calculo del volumen interno y del area superficial externa de un domo
hemisférico

250

. 1.4 2
Volumen interno. V hemisferio = 3 EUr?') = EL(125) =

Area superficial externa | Apemisterio = 2112 = 2m(25) = 50x.

La dificultad surge porque los estudiantes suelen creer que
“la mitad de una esfera tiene la mitad de drea”, lo cual es falso.
Aunque el volumen si es la mitad, el drea no lo es, debido a la
falta de las tapas (McGee, 1999).

Apoyo diddctico: Para fortalecer el aprendizaje significativo de
dreasy voluUmenes, se recomienda un enfoque integrado que combine:

1. Construccion activa y modelacion fisica

Permitir que los estudiantes manipulen redes, construyan po-
liedros, corten modelos y comparen volUmenes mediante reci-
pientes o material manipulativo. Esta experiencia concreta re-
duce la distancia entre percepcion y concepto (Van Hiele, 1986;
Hershkowitz, 2011).

2. Articulacion entre representaciones
Proponer actividades donde se pase deliberadamente de:

* La figura 3D a su desarrollo,

* La férmula al argumento geométrico,

* La vista del sélido a su corte transversal,

* El caso particular al caso general.

Duval (2017) subraya que este transito es indispensable para
una comprension profunda.

3. Resolucion de problemas contextualizados
Incluir problemas que conecten los cuerpos geomeétricos con
situaciones reales: disefio de depdsitos, empaques, domos, reci-
pientes, estructuras arquitectdnicas o modelos fisicos. Presmeg
(2020) destaca que la visualizacion se fortalece cuando los ob-
jetos adquieren funcién y sentido.

4. Debate sobre errores y contraejemplos
Analizar errores comunes: como pensar que un cilindro se abre
en un cuadrado o que un cono tiene la mitad del volumen de un
cilindro, permite reconstruir las intuiciones espaciales desde el
razonamiento l6gico (Fischbein, 1993).

5. Integracion gradual de herramientas digitales
Utilizar software como GeoGebra 3D para explorar dinami-
camente cortes, desarrollos y variaciones paramétricas. Estas
herramientas permiten observar relaciones que de otra forma
serian invisibles, y apoyan el paso del pensamiento icdnico al
pensamiento formal (Tall, 2014).
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Una ensefianza mdas reflexiva y conceptual del drea y el
volumen no solo conduce a mejores resultados académicos,
sino que promueve una forma mas madura de pensar mate-
mdaticamente. Los estudiantes que comprenden el significado
de las férmulas, que reconocen las relaciones internas de
los cuerpos y que logran moverse entre diferentes represen-
taciones desarrollan un pensamiento geométrico sélido y
transferible a la ingenieria, la arquitectura, la fisica y otros
campos del conocimiento. Es esta integracion entre intuicion,
visualizacion, razonamiento y formalizacién, la que convierte
la geometria tridimensional en una verdadera herramienta
para interpretar y modelar el mundo.

Modelo de Van Hiele: niveles de razonamiento geométrico
El estudio del razonamiento geométrico ha sido una preocu-
pacion central para la didactica de la matemdtica, particular-
mente en contextos donde el aprendizaje se concibe como un
proceso de transicion entre formas elementales de intuicion
espacial y modos avanzados de pensamiento formal. Entre
los modelos mds influyentes en la comprensién de este pro-
ceso se encuentra el Modelo de Van Hiele, desarrollado por
Pierre y Dina van Hiele a mediados del siglo XX. Este modelo
describe la evolucion del pensamiento geométrico a través
de niveles jerdrquicos y secuenciales, que explican coémo los
estudiantes pasan del reconocimiento visual de las figuras a
la comprension profunda de sistemas deductivos complejos
(Van Hiele, 1986).

Apoyo diddctico: Una de las contribuciones fundamentales
del modelo radica en asumir que el aprendizaje geométri-
co no depende Unicamente de la maduracién cognitiva, sino
sobre todo de la organizaciéon didactica y del tipo de expe-
riencias que se ofrecen al estudiante. Asi, la ensefanza debe
ser estructurada de modo que los contenidos, el lenguaje, las
tareas y las interacciones pedagdgicas se alineen con el nivel
de razonamiento en el que se encuentra el aprendiz. Duval
(2017) coincide en esta perspectiva al considerar que la com-
prensién geométrica requiere coordinar diferentes registros
semiodticos; los errores comunes provienen precisamente de
exigir razonamientos formales a estudiantes que aun operan
en niveles inferiores.

En lo que sigue, se detalla cada nivel del modelo, integrando
aportes criticos de diversos autores y remarcando su relevancia
para la enseflanza contempordnea.

112



Guerrero Zambrano Marcos Francisco

Nivell: Visualizacion o reconocimiento

En el primer nivel, el estudiante reconoce las figuras por su apa-
riencia global, sin atender a sus propiedades internas. Un cua-
drado es “lo que parece un cuadrado”, un triangulo es “una figura
con punta arriba”, y un cilindro es “una forma parecida a una lata”.

Este reconocimiento se basa eny no en criterios matematicos.

Segun Duval (2017), en este nivel predomina la “aprehensiéon
perceptiva” del objeto, y no su estructura. Por ello, los estudiantes
pueden confundir figuras segun su orientaciéon, tamafo o color,
o considerar que dos figuras son diferentes solo porque se pre-
sentan desde otra perspectiva.

La ensefanza en este nivel requiere actividades manipulativas,
exploracion de figuras, clasificacion intuitiva, comparacion por
semejanza visual y uso del lenguaje cotidiano antes de introducir
definiciones formales.

Nivel 2: Andlisis

El segundo nivel se caracteriza por la identificacion de propieda-
des de las figuras. El estudiante ya no solo reconoce una figura por
suU apdriencia, sino que describe rasgos especificos: “tiene cuatro
lados”, “tiene dngulos rectos”, “sus caras son rectdngulos”, etc.

Sin embargo, estas propiedades todavia se conciben de ma-
nera aislada, sin establecer relaciones entre ellas. Por ejemplo,
una persona en este nivel puede saber que un cuadrado tiene
lados iguales y dngulos rectos, pero no deduce que esto implica
pertenecer también al conjunto de los rectangulos.

Tall (2014) denomina este estadio como un pensamiento donde lo
visual comienza a dialogar con lo verbal, pero aln no se alcanza la
comprension de las interdependencias l0gicas entre las propiedades.

La labor docente debe centrarse en:

* Describir figuras con precisién.

* |dentificar y medir atributos.

« Comparar propiedades.

* Realizar construcciones simples.

Nivel 3: Ordenamiento o clasificacion informal

En este nivel, el estudiante comprende las relaciones entre
propiedades y consigue organizar las figuras en categorias
jerdrquicas.

Por ejemplo: Si una figura tiene cuatro lados y cuatro
angulos rectos, es un rectdngulo; si sus lados son también
iguales, pertenece a la subcategoria de los cuadrados. Este
tipo de razonamiento implica inferencias légicas simples y
la capacidad de establecer inclusiones entre clases de fi-
guras. Segun Hershkowitz (2011), aqui surge el inicio de la
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estructura conceptual geométrica, donde las propiedades ya
no se entienden de manera aislada, sino articuladas en redes
de significados.

Un desafio frecuente es que muchos estudiantes no alcanzan
este nivel porque la ensefianza salta directamente de nombres
visuales a definiciones formales, sin ofrecer actividades de cla-
sificacion, argumentaciéon y razonamiento informal.

Nivel 4. Deduccién formal
El cuarto nivel marca la entrada plena en el pensamiento geomeé-
trico avanzado. En este nivel, los estudiantes comprenden que:

* Las definiciones estdn interconectadas,

* Los teoremas se derivan unos de otros,

* Un sistema geométrico se organiza a partir de axiomas,

* Lademostraciéon garantizala validez universal de las afirmaciones.

Aqui emerge la capacidad de seguir y construir demos-
traciones, justificar propiedades, y entender que una figura
puede definirse de varias formas equivalentes.

Tall (2014) considera este nivel como un trdnsito hacia el “mun-
do formal” de la matemdética, donde los objetos dejan de depen-
der de la percepcién y se transforman en entidades abstractas
definidas por relaciones.

Entérminos pedagdgicos, este nivel exige tareas que involucren:

* Secuencias de deduccion.

* Andlisis de contraejemplos.

* Validacion de conjeturas.

* Ejercicios de demostracién gradual.

Nivel 5 Razonamiento axiomdatico o rigor
Elnivel mds avanzado implica comprender y manejar sistemas axioma-
ticos completos, compararlos, analizarlos y reconstruirlos. El estudiante
puede trabajar con geometrias alternativas, analizar la independencia
de axiomas y construir sistemas equivalentes o contrastantes.
Apoyo diddctico: Este nivel no es propio de la educacion bd-
sica, pero es esencial para la formacion matematica avanzada,
particularmente en carreras cientificas. Autores como Manders
(2008) y Netz (2004) han mostrado que este nivel de andlisis
coincide con el tipo de razonamiento practicado histéricamente
en la geometria griega, donde las figuras se convertian en soporte
para inferencias abstractas.

Implicaciones didacticas
* Laensefianza debe alinearse al nivel donde se encuentra el
estudiante, evitando exigir razonamientos formales cuando
aun no se domina la organizaciéon conceptual previa.
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* Las actividades deben transitar desde la manipulacién y
visualizacion hacia la clasificacion y la deduccion.
* Ellenguaje matematico debe introducirse progresivamente,
en articulacion con registros visuales, verbales y simbodlicos.
* Laevaluaciéon debe considerar no solo los resultados, sino la for-
ma en que el estudiante justifica, organiza y conecta sus ideas.
Como sefiala Duval (2017), “el obstdaculo mayor de la geometria
no estden las figuras en si, sino en los modos de representaciéon
que utilizamos para significarlas”.

Conclusiones

El capitulo muestra que comprender la geometria exige mucho
mas que aplicar formulas o identificar figuras. Alo largo del ana-
lisis se evidencia que el razonamiento geométrico se construye
cuando el estudiante aprende a relacionar distintas formas de
representar el espacio, pasando de una observacién inicial a una
interpretacion mas profunda de las propiedades y estructuras.
Esta perspectiva permite entender por qué ciertos conceptos,
como drea, volumen o perpendicularidad, generan dificultades
persistentes: requieren coordinar ideas que no se desarrollan de
manera espontdnea.

También se sefiala que el progreso en el pensamiento geomé-
trico depende de ofrecer experiencias de aprendizaje bien or-
ganizadas. El avance desde el reconocimiento visual hasta la
deduccién formal demanda actividades que permitan observar,
analizar, clasificar, argumentar y, finalmente, justificar. Para ello
se necesita una enseflanza que acompafe de manera gradual
el desarrollo del razonamiento, respetando los ritmos de com-
prensiony fomentando la exploracidn critica de las figuras y sus
relaciones internas.

En conjunto, el capitulo concluye que la geometria debe en-
sefiarse como un sistema de ideas interconectadas y no solo
como un conjunto de procedimientos aislados. Comprender
el espacio implica integrar intuiciéon, visualizacién, andlisis y
razonamiento formal, de modo que el estudiante pueda desa-
rrollar una mirada mas coherente y creativa sobre las formas
y sus relaciones. Al adoptar una perspectiva mas reflexiva, la
geometria se convierte en una herramienta para interpretar
el mundo y en un medio para fortalecer un pensamiento ma-
temdatico mas solido y significativo.
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CarituLo IV

Razones e identidades
trigonométricas y resolucion de
triangulos

Introduccion

Hablar de trigonometria es hablar de un modo particular de
comprender el espacio: no ya desde la figura estdtica, sino
desde la relacion que emerge al comparar longitudes, dngu-
los y variaciones. Mientras la geometria organiza la forma, la
trigonometria organiza el cambio, la razdén y la periodicidad.
Histéricamente nacié del didlogo entre astronomia, navega-
cion, agrimensura y cdlculo de distancias inaccesibles; hoy,
sin embargo, constituye un lenguaje transversal que articula
modelos fisicos, sefales, oscilaciones, graficos digitales y mo-
vimientos periddicos.

Autores como Maor (1998) recuerdan que la trigonometria es
una de las pocas ramas de las matemdticas cuya historia estd
profundamente entrelazada con la observacion del cielo. Los astro-
nomos griegos y arabes refinaron las razones trigonométricas no
por curiosidad abstracta, sino para predecir trayectorias, calcular
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eclipsesy comprender la posicion de los astros. En Oriente, mate-
maticos como Aryabhatay Bh skara desarrollaron tablas de senos
y senos que influirian siglos después en la obra de Regiomontano.
Con el Renacimiento, la trigonometria dio un salto decisivo: se inde-
pendizd de la astronomia y se consolidé como teoria matemdatica.
Pero, mas alla de la historia, la trigonometria ha enfrentado
dificultades diddacticas persistentes. Tall (2013) y Weber (2006)
advierten que existe un conflicto cognitivo entre la experiencia vi-
sual del dngulo, la razén numérica y la periodicidad. Para muchos
estudiantes, el seno y el coseno son funciones “extrafias” porque
no emergen de su experiencia cotidiana. De ahi que la ensefian-
za deba integrar la comprensiéon geométrica, la representacion
grafica, el uso de simuladores y la interpretacién contextualizada.
Este capitulo aborda la trigonometria desde esa mirada am-
plia: parte del trigngulo rectangulo, se desplaza al circulo unitario,
articula las identidades con su sentido geométrico y culmina con
la resolucion de tridngulos y aplicaciones reales. El enfoque no
se limita al cdlculo: busca reconstruir la arquitectura conceptual
que sostiene la disciplina y mostrar como los entornos digitales
pueden transformar la experiencia de aprender trigonometria.

Razones trigonométricas en el tridngulo rectdngulo

La ensefianza de las razones trigonométricas constituye uno de
los momentos mads significativos de la formacién matemdatica en
el nivel medio y superior. Aunque suele presentarse como un tema
accesible su aparente simplicidad enmascara desafios cognitivos
profundos. Mdés alld de memorizar relaciones, el estudiante debe
comprender que las razones trigonométricas no dependen del ta-
maho del triGngulo, sino del dngulo que las determina, una idea que
para el docente parece evidente, pero que para el aprendiz implica
una ruptura conceptual con su percepciédn intuitiva del espacio.

Figura 1.
Representacion comparativa de las funciones seno y coseno en el
intervalo 0< z < 2r.

Nota: Elaboraciéon propia.
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Freudenthal (1973) sefialaba que las matematicas “solo tienen sen-
tido cuando emergen de la realidad del estudiante”y que conceptos
como el seno o el coseno no deberian ensefiarse como abstracciones
prematuras, sino como relaciones que el estudiante puede experi-
mentar, manipular y verificar. Este enfoque, mds fenomenoldgico y
menos formalista, permite que la trigonometria se construya desde
la accién, la visualizacion y el sentido, antes que desde la técnica.

Con esta premisa, el presente epigrafe desarrolla cuatro di-
mensiones complementarias que permiten comprender el origen,
la funcién y el significado de las razones trigonométricas en el
trigngulo rectangulo:

1. La invariancia como fundamento

2. Los registros semidticos y el problema de la coordinacion

3. El potencial del ejemplo y la visualizacion dindmica

4. Haciauna comprension relacionaly funcional de la trigonometria.

La invariancia como fundamento conceptual
El corazén de lasrazones trigonométricas radica en la invariancia:
para un angulo agudo cualquiera, existe una relacion constante
entre ciertos lados del trigngulo rectdngulo, sin importar su ta-
mafio o su orientacion. Esta idea, que parece sencilla, pone en
tension la percepcidon natural del estudiante, quien suele asociar
magnitudes visuales absolutas con magnitudes relacionales.

El hecho de que un tringulo crezca o se reduzca produce la
impresion de que “todo cambia”, cuando en realidad algo per-
manece idéntico:larazon entre el cateto opuesto y la hipotenusa
(seno), entre el cateto adyacente y la hipotenusa (coseno) o entre
catetos (tangente). Seqgun Weber (2006), uno de los errores mds
persistentes en trigonometria consiste en “operacionalizar” las
razones sin comprender que expresan una propiedad estructural
del trigngulo.

Figura 2.
Invariancia del seno de un dngulo en triangulos rectdngulos semejantes.

Nota: Elaboraciéon propia.

Historicamente, este principio ya estaba presente en las cons-
trucciones geométricas de Hiparco y Menelao, cuyos trabajos
evidenciaban que relaciones entre lados permanecian constantes
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para angulos fijos (Maor, 1998). En esta tradiciéon, la trigonometria
se concibié no como un conjunto de definiciones, sino como un
fendmeno de estabilidad geométrica.

Para el estudiante actual, este fendbmeno rara vez se hace
evidente si no se acompafia de experiencias manipulativas.
Considérese un trigngulo rectangulo con un dngulo de 45°. Si se
duplican todos sus lados, el cateto opuesto y la hipotenusa dupli-
can su longitud, pero la razén permanece invariable. No obstante,
esta idea desafia la percepcién: el tringulo “parece” ser otro.
Freudenthal argumenta que, sin una vivencia explicita de esta
invariancia, el concepto se vuelve verbal, pero no significativo.

Figura 3.
Semejanza de triangulos y conservacion de las razones trigonométricas.

t, &F o

Nota: Elaboraciéon propia.

Aqui, la ensefianza puede apoyarse en tareas basadas en
semejanza: dibujar trigngulos de distintos tamafos, medir los
cocientes, comparar resultados y reflexionar sobre lo que per-
manece y lo que cambia.

En este caso ambos tridngulos son semejantes por tener dos
angulos respectivamente iguales (aa).

La invariancia no es un hecho que se memoriza, sino una ex-
periencia intelectual que se reconoce.

Registros semiodticos y dificultades cognitivas
Duval (1998) sostiene que la comprensién matemdtica profunda
depende de la capacidad del estudiante para coordinar distintos
registros semidéticos:

1. El grafico (la figura),

2. El numérico (las medidas),

3. El simbolico-verbal (la razén expresada como sin 6 = E

Cuando uno de estos registros domina sobre los otros, emer-
gen errores recurrentes. Por ejemplo, algunos estudiantes iden-
tifican el cateto opuesto basdndose en su orientacién vertical,
no en su oposicion frente al dngulo; otros manipulan las medidas
sin interpretar la figura; otros aplican la férmula correcta, pero
en un triangulo distinto al que observan.

Esto se debe a que la escuela suele privilegiar el registro
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simbolico sin entrenar la correspondencia entre representacion
grafica y expresion simbodlica. El estudiante puede saber que
“el seno es opuesto sobre hipotenusa”, pero no saber identificar
cudl es el opuesto cuando el tridngulo estd girado o cuando la
figura es inusual.

Tall (2013) explica que el concepto de angulo, aunque fun-
damental, es perceptivamente inestable: cambia visualmente
segun su orientacion, forma y contexto. De ahi que identificar
los lados relativos al dngulo constituya una de las barreras mas
persistentes en el aprendizaje de la trigonometria.

Figura 4.
Ejemplos de triangulos en posiciones no convencionales para fortale-
cer la identificacién conceptual de las razones trigonométricas.

Nota: Elaboraciéon propia.

Apoyo diddctico: este problema puede abordarse con ejerci-
cios que presenten tridngulos en posiciones no convencionales o
incluso figuras donde el tribngulo no es evidente a primera vista
como rampas inclinadas, estructuras arquitectonicas, escaleras
o planos topogrdaficos para obligar al estudiante a reconstruir la
figura conceptual antes de operar con ella.

Tareas como “marque el cateto opuesto en diez tridngulos
rotados” parecen simples, pero cumplen una funcidn decisiva:
consolidan la relacion entre geometria y lenguaje formal.

El potencial del ejemplo y la visualizacion dinadmica
Los ejemplos contextualizados permiten que la trigonometria se
comprenda como un sistema de relaciones aplicables a varia-
ciones reales, y no como un artificio escolar. Un caso clésico es
el del poste cuya sombra mide 4.6 metros cuando el dngulo de
elevacion del sol es de 41°. La tangente no es aqui un “cociente”,
sino la expresién de una relacion entre la altura del poste y la
distancia proyectada. El estudiante descubre que, detrds de un
fendbmeno cotidiano, subyace una estructura trigonométrica.

Otro ejemplo valioso consiste en explorar tridngulos incom-
pletos. Puede proponerse al estudiante imaginar un tridngulo
rectdngulo donde solo se ve el cateto adyacente y parte de la
hipotenusa. Aunque el tribngulo no sea visible en su totalidad,
las razones siguen siendo aplicables porque no pertenecen a
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la figura dibujada, sino a la estructura conceptual que la figura
representa. Esta experiencia refuerza la idea de que la trigono-
metria es una logica interna de las relaciones angulares y no una
técnica dependiente del dibujo.

Figura 5.
Representacion trigonométrica de un poste y su sombra para analizar
la razédn tangente. I 5

Nota: Elaboraciéon propia.

La visualizacion dindmica amplifica estas experiencias. GeoGebra,
mMas que una herramienta tecnoldgica, actia como un mediador con-
ceptual. Al mover un vértice (figura 6 a, b, c), el estudiante observa
simultdneamente el cambio de los lados y la constancia de las razones.

Alrotar la figura, ve que el cateto opuesto cambia de posicion percep-
tiva, pero no de funcion. La tecnologia hace visible la estructura oculta
que la percepcion distorsiona. Tall (2014) afirma que la exploracion
dindmica favorece la formacién de una “imagen conceptual robusta”,
capaz de integrar variacion, invariancia y representacion simbolica.

Figura 6
Variacion dindmica de un triangulo rectdngulo para observar la cons-
tancia de las razones trigonométricas.

Nota: Elaboraciéon propia.

Incluso es posible animar situaciones reales: un automovil que
asciende una pendiente, una escalera que se desliza sobre una
pared, un dron que cambia su altura manteniendo el dngulo res-
pecto al operador. En todas estas escenas, el triangulo rectangulo
aparece como un modelo implicito, y las razones trigonométricas
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como las herramientas que explican las relaciones entre posicio-
nes, distancias y dngulos.

Hacia una comprension relacionaly funcional de la trigonometria
Un desafio epistemoldgico aparece en el momento en que el
seno deja de ser un cociente de catetos y pasa a concebirse
como una funcion. Freudenthal (1973) criticaba que la escuela
conduce a esta transicién de manera abrupta: primero presenta
el seno como “opuesto sobre hipotenusa”, y de inmediato exige
interpretarlo como un valor funcional definido para cualquier
angulo. Si el estudiante no ha comprendido la invariancia ni la
relacion entre el dngulo y los lados, esta transicién se hace opaca.

Figura 7.
Representacion grdfica de la funcion seno para evidenciar su compor-
tamiento continuo y periddico.

k] i

1 Jiald wiriala)

S

Nota: Elaboracion propia.

Comprender el seno como funcidn implica reconocer que des-
cribe codmo varia una magnitud (proyecciéon vertical de un punto
en movimiento) cuando el dngulo cambia. Esta interpretacion pre-
para al estudiante para conceptos posteriores: el circulo unitario,
las identidades trigonométricas, las graficas peridédicas e incluso
aplicaciones cientificas como el andlisis de ondas, la acUstica, la
Optica o los movimientos armaénicos.

Weber (2006) sefiala que la trigonometria se vuelve compren-
sible cuando el estudiante logra conectar la razén del tridngulo
rectadngulo con la variacién continua del circulo. Pero esa conexion
no es natural: se construye lentamente mediante experiencias
relacionadas, exploraciones guiadas y explicitacion progresiva
de significado.

En consecuencia, ensefar razones trigonomeétricas no debe
reducirse a un repertorio de definiciones, sino promover una
comprension relacional: la razén es una propiedad del dngulo,
no del tringulo; una estructura invariante, no un valor arbitrario;
un modelo de relacién, no una operacion.

Relaciones fundamentales y circulo trigonométrico
El paso desde el trigngulo rectangulo al circulo trigonométrico
constituye un salto conceptual decisivo, quizd el mdas importan-
te en la transicidon entre una trigonometria basada en figuras
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estaticas y una trigonometria concebida como una teoria de
funciones. Este desplazamiento epistemolégico no es trivial, pues
exige abandonar la sensacion de que seno, coseno o tangente son
meros cocientes entre lados, para comprenderlos como medidas
dindmicas asociadas a un movimiento angular.

A diferencia del trigngulo, cuya definicion depende de una
configuracién espacial particular, el circulo unitario ofrece un
modelo unificado donde las razones trigonométricas adquieren
su sentido mas profundo: periodicidad, simetria, continuidad y
variacién. Como sefiala Maor (1998), “el circulo trigonométrico no
es una extension del trigngulo: es su reformulacién fundamental”.

Fundamentos historicos y epistemoldgicos del circulo unitario
El origen historico de la trigonometria estdintrinsecamente vinculado
al estudio del circulo y no al tridngulo rectangulo. Ya en el siglo Il a. C,
Hiparco habia desarrollado tablas de cuerdas en la circunferencia,
relacionando longitudes y dngulos desde una perspectiva puramen-
te circular. Esta linea de trabajo se consolidaria posteriormente con
Ptolomeo, cuyo Almagesto se convirtid en la obra de referencia para la
astronomiay la matemadtica durante mas de mil aftos (Berggren, 2007).

Este dato histérico es pedagdgicamente significativo: la trigo-
nometria no nacié como una coleccion de cocientes, sino como un
estudio sistematico de la variacion angular y la forma circular. El
predominio escolar del tridngulo rectdngulo, aunque Util en términos
de accesibilidad inicial, puede restringir la comprension del estu-
diante si no se complementa con una progresion conceptual hacia
el circulo unitario.

Freudenthal (1973), desde su visidn realista de la matemdética, sos-
tiene que los conceptos deben surgir de fendmenos “experienciales”
por el estudiante. El circulo unitario, precisamente, ofrece un feno-
meno natural de movimiento uniforme: un punto que gira alrededor
de un centro. Esta experiencia dindmica, aunque representada de
manera digital o manipulativa permite comprender mejor la periodici-
dad y la continuidad que subyacen en las funciones trigonométricas.

Figura 8.
Relacion dindmica entre el movimiento circular y la funcién seno para
visualizar la periodicidad y continuidad trigonométrica.

a *

Nota: Elaboraciéon propia.
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Desde el plano cognitivo, Tall (2014) sefiala que la transicion
desde la razén estdtica hacia la funcion dindmica constituye una
ruptura conceptual: el estudiante debe abandonar la idea de que
el seno es solo un cociente para comprender que es el valor de una
funcion que depende exclusivamente del dngulo. Esta despersonali-
zacion del tridngulo es necesaria para comprender las identidades
trigonométricas, las graficas, el circulo y las aplicaciones fisicas.

Ademds, desde el andlisis funcional, el circulo unitario introduce
de manera natural los radianes. En lugar de memorizar equiva-
lencias, el estudiante entiende que un radian es la longitud de
arco correspondiente al angulo central que intercepta un arco
igual al radio. Esta interpretacion es coherente con el movimiento
y se integra sin artificios en el circulo unitario.

Periodicidad, continuidad y simetria. estructura conceptual del
circulo
El circulo trigonométrico permite visualizar relaciones fundamen-
tales que permanecen ocultas en el tringulo rectdngulo.

Periodicidad y movimiento

Al recorrer la circunferencia completa, el punto movil regresa
a la misma posicion, lo que fundamenta la periodicidad de las
funciones trigonométricas:

sen(0 + 2n) = sen®, cos(0 + 2n) = cos 0

Figura 9.
Comparaciéon grdfica de f(x)=sen(x) y g(x)=sen(x+2w) para ilustrar la
periodicidad del seno.

&
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Nota: Elaboraciéon propia.

Esta periodicidad no es una regla memorizada; es una conse-
cuencia geométrica directa del movimiento circular.

Comprender este fendmeno desde la experiencia, por ejem-
plo, mediante animaciones en GeoGebra, permite desarrollar la
intuicion funcional. Duval (1998) afirma que la coordinacion entre
registros semiodticos es central para interpretar la periodicidad:
observar el punto en movimiento y la grafica simultdneamente
permite que el estudiante construya la relacién entre posicion
angular y valor trigonométrico.
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Continvidad y suavidad
La continuidad de las funciones trigonomeétricas es una propiedad
derivada de la suavidad del movimiento circular. Cuando el punto
avanza, el seno y el coseno cambian de manera progresiva y sin
saltos. Este fendmeno marca la diferencia entre una trigonome-
tria estatica centrada en cdlculos y valores aislados y una vision
profundamente analitica donde la variacién es central.

Esta comprensién es fundamental para el cdlculo diferencial e
integral, pues explica por qué las funciones trigonométricas son
derivablesy por qué sus derivadas exhiben periodicidad y simetria.

Simetrias fundamentales
Geométricamente se muestra las simetrias de las funciones
trigonométricas:

El coseno es par: cos(—0) = cos(0)|.

El seno es impar: sen(—0) = —sen(0).

Figura 10.
Representacion grafica de las simetrias del seno y del coseno para
ilustrar su caracter impar y par, respectivamente.

Nota: Elaboracion propia.

La simetria en 180° produce identidades como:
sen(n — 0) = sen®, cos(r —0) = — cos®

Arcavi (2003) destaca que comprender estas simetrias desde
la figura y no desde la férmula fortalece la visualizacién matema-
tica, que es clave para reducir errores conceptuales y reforzar
el razonamiento.

Proyecciones, coordenadas y significado geométrico
Comprender la circunferencia como un espacio de relaciones
dindmicas transforma por completo la manera en que el estu-
diante se aproxima al seno, el coseno y la tangente. En los enfo-
ques tradicionales estas funciones se presentan como cocientes
entre lados, vinculadas a una figura estatica que convierte el
angulo en un fragmento rigido de geometria escolar. Sin em-
bargo, cuando la circunferencia y sus proyecciones entran en
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) + 2n) = sen o,

escena, las funciones trigonométricas revelan su sentido mas
profundo: son coordenadas que describen el movimiento, no
simples razones.

Esta reconceptualizacion permite que el estudiante vincule
la trigonometria con la geometria analitica, la representacion
cartesiana y la idea de variacion continua. La circunferen-
cia deja de ser un contorno para convertirse en un sistema
de referencia, y el punto que se desplaza sobre ella ya no
representa un “tridngulo” imaginario, sino una posicién en
un movimiento circular cuyos valores se expresan en forma
de coordenadas. Esta visiéon, histéricamente presente en la
obra de Euler y mas recientemente desarrollada en enfoques
didacticos contempordaneos (Tall, 2014), facilita un trdnsito
naturgl hacia el estudio de funciones periddicas, simetrias,

COS(%?‘@%E}EO%SBQ fendbmenos ondulatorios.

Desde un punto de vista geométrico, todo punto P ubicado en
la circunferencia unitaria puede describirse mediante sus coor-
denadas (x, y). Cuando ese punto se genera a partir de un giro
de medida alrededor del origen, las coordenadas adquieren un
significado trigonométrico esencial: P(@) = (COS O,Sene).

Figura 11.

Representacion del punto P(cosh, sen) en la circunferencia uni-
taria para visualizar el significado geométrico de las razones
trigonométricas.

Nota: Elaboraciéon propia.

Esta igualdad, tan compacta como profunda, articula a la vez
la geometria del circulo, la estructura analitica del sistema car-
tesiano y la variacion angular. Como sefiala Maor (1998), en esta
representacion “la trigonometria alcanza su forma mas elegante”,
pues seno y coseno dejan de depender de un tringulo particular y
pasan a describir una relacion universal entre dngulos y posiciones.

La nocién de proyeccion es clave para comprender esta es-
tructura. El coseno emerge como la proyeccidén horizontal del
punto sobre el eje x; el seno, como la proyeccidon vertical sobre
el eje y. No son longitudes arbitrarias, ni distancias absolutas:
son sombras geométricas que el punto proyecta al desplazarse
por la circunferencia. Esta metafora que Duval (1998) denomi-
na “coordinacién de registros”, permite vincular representacion
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grdfica, lenguaje analitico y significado geométrico en un mismo
acto perceptivo. El estudiante deja de memorizar grafias para
empezar ainterpretar el comportamiento de las funciones como
resultado de como estas proyecciones crecen, decrecen, se anu-
lan o cambian de signo.

Apoyo diddctico: Esta reinterpretacién tiene profundas impli-
caciones diddacticas. Cuando seno y coseno se ensefian exclusiva-
mente como cocientes, los estudiantes desarrollan concepciones
fragmentadas: piensan en trigngulos aislados, no en sistemas de
variaciéon. En cambio, cuando se introduce el circulo unitario y
se hace visible la correspondencia entre dngulos, coordenadas y
proyecciones, la trigonometria se convierte en un lenguaje visual
y conceptual que explica comportamientos reales: oscilaciones,
rotaciones, trayectorias, fendmenos periddicos. Como insisten
Arzarello y Robutti (2001), la comprensién de las funciones trigo-
nométricas se fortalece cuando el estudiante percibe el movimien-
to del punto y lo relaciona con valores numéricos y formas graficas.

La tecnologia potencia este proceso de manera notable.
GeoGebra, Desmos y otros entornos dindmicos no solo “dibujan”
la circunferencia, sino que permiten visualizar en tiempo real
codmo las proyecciones horizontaly vertical varian a medida que

* El punto avanza. La animacién revela que:

* El coseno alcanza su maximo en O radianes

* El seno aumenta hasta 7t/2

* Ambos se anulan en distintos puntos segUn la proyecciéon

correspondiente

* Ylatangente explota cuando la proyecciéon horizontal se anula.

Estos fendmenos, que en la ensefianza tradicional suelen
aparecer como hechos aislados, se integran en una narrativa
geomeétrica coherente cuando el estudiante observa la relacion
funcional entre posiciéon y proyeccion. Pierce (2010) sostiene que
este tipo de experiencias tecnolégicas contribuyen a la “flexibili-
zacion representacional”, permitiendo que el estudiante transite
sin rupturas entre lo visual, lo analitico y lo algebraico.

Figura 12.

Representacion geométrica de la tangente en la circunferencia unita-
ria como pendiente de la recta que une el origen con P(cosf, senf) y
como interseccion con la linea tangente en (1,0 ).

Nota: Elaboraciéon propia.
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La tangente, por su parte, adquiere en este contexto una inter-
pretacidn mucho mds rica que la que ofrece el tringulo rectan-
gulo. En el circulo unitario, la tangente representa la pendiente de
la recta que une el origen con el punto moévil o, alternativamente,
la interseccién de esa recta con la linea tangente al circulo en el
punto (1,0). Ambas interpretaciones, discutidas en profundidad
por Weber (2006), permiten comprender por qué la tangente
crece sin limite cerca de ®/2: no se trata de una anomalia alge-
braica, sino del comportamiento natural de una pendiente que
se aproxima a la vertical.

En sintesis, interpretar seno y coseno como coordenadas dind-
micas no es un refinamiento conceptual, sino una reconstrucciéon
completa del sentido de la trigonometria. Desde esta perspectiva,
el circulo unitario deja de ser un artificio grafico para convertirse
en la representacion mas potente para entender la estructura
profunda de las funciones trigonométricas y su papel en fenéme-
nos reales. Los estudiantes que integran esta vision adquieren
no solo habilidades de cdlculo, sino una comprensién geométrica
y analitica que les permite anticipar comportamientos, resolver
problemas complejos y conectar la trigonometria con ideas fun-
damentales del andlisis y la modelizacién cientifica.

Identidades trigonométricas bdsicas
Las identidades trigonométricas bdasicas representan mucho
mas que una serie de igualdades Utiles para resolver ejercicios.
Constituyen una red conceptual que articula la geometria, el dlge-
bray el andlisis,y que permite comprender la estructura profunda
de latrigonometria como lenguaje del cambio y de la invariancia.
En este sentido, su estudio revela un area privilegiada para analizar
como se forma el pensamiento matemdatico avanzado, como inte-
ractuan distintos registros semidticosy cémo las representaciones
geométricas se transforman en expresiones simbolicas.

Diversos autores han sefialado que ensefiar identidades Unica-
mente como “féormulas a memorizar” empobrece la matemdtica
y obstaculiza la comprension duradera (Weber, 2006; Tall, 2014).
Desde una mirada critica, este enfoque reduccionista ignora la
carga epistemolégica de las identidades: su origen geométrico,
su cardcter de propiedad universaly su papel como puente entre
significados.

El circulo unitario como fundamento conceptual
El circulo unitario ha sido reconocido como el marco conceptual
mas potente para comprender las identidades trigonométricas.
Historicamente, la trigonometria nacid vinculada a trigngulos y
cuerdas, pero su consolidacién moderna debe mucho a Euler
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quien vinculd seno y coseno a funciones periddicas y al andlisis.
Sin embargo, la representacion dominante en la educacion esco-
lar siguid siendo el triangulo rectdngulo, lo que —como advierte
Maor (1998)— genera restricciones cognitivas: los estudiantes
suelen creer que la trigonometria “solo funciona” en trigngulos,
que los angulos deben ser positivos y agudos, y que las razones
trigonométricas dependen de figuras especificas.

Figura 13.
Representacion del movimiento angular continuo en el circulo unitario
y su relacion con la extension de angulos, coordenadas y periodicidad.

Nota: Elaboracion propia.

Desde una perspectiva critica, Tall (2014) sostiene que la com-
prension profunda de la trigonometria se obstaculiza cuando el
curriculo fija el triGngulo rectadngulo como Unico punto de par-
tida. Su concepto de three worlds of mathematics muestra que
el paso del mundo encarnado (la figura) al mundo simbdlico (la
identidad) requiere estructuras conceptuales que el triGngulo
rectdngulo no provee plenamente. El circulo unitario, por el con-
trario, permite que el estudiante vea:

* La continuidad del movimiento angular,

* La extensién a dngulos mayores que 90° o negativos,
* Larelacion entre coordenadas y funciones,

* La periodicidad como propiedad estructural.

Duval (1998), desde la teoria de los reqgistros semidticos, enfa-
tiza que el circulo unitario no es solo una figura, sino un sistema
de representacion que facilita la conversion entre lo grafico y lo
algebraico. La identidad pitagdérica deja de ser una formula abs-
tracta y se convierte en la ecuacién del circulo, transformando la
percepcion del estudiante: ya no memoriza, sino que comprende
un invariante geométrico.

Apoyo diddctico:autores como Godino, Bataneroy Font (2007)
proponen que la introduccion de las identidades debe partir de
la fenomenologia del circulo unitario, porque permite reconstruir
el significado ontosemidtico de las funciones trigonométricas: su
existencia, representacion, reglas de transformacion y validacion.
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Una ensefianza basada en el circulo unitario, por tanto, no es
solo un recurso visual: es una reconstruccién epistemolégica que
devuelve significado a la trigonometria.

Identidades pitagoricas, de simetria y reciprocas
Las identidades pitagoéricas constituyen la columna vertebral
de la trigonometria. Su importancia radica en que relacionan
de manera estructural las funciones seno, coseno y tangente,
sin necesidad de recurrir a tridngulos particulares. Su validez es
universal porque se derivan de la ecuacién del circulo unitario.
Identidad fundamental

sen’0 + cos?0 =1

Esta igualdad expresa que la suma de los cuadrados de las pro-
yecciones horizontal y vertical del punto (x, y) en el circulo es
siempre 1. Es un invariante geométrico que no depende del dngulo
ni de la posicion.

Figura 14.
Representacion geométrica de la identidad fundamental
sen?(a) + cos?(a)) en la circunferencia unitaria.

LI "

Nota: Elaboraciéon propia.

Como argumenta Simmons (2016), esta identidad posee un
rol requlador dentro del sistema trigonométrico: permite acotar
valores, verificar coherencia en soluciones y enlazar la trigono-
metria con el dlgebra y el cdlculo. Cualquier error en una susti-
tucion o manipulacion suele manifestarse como contradiccion
de esta igualdad.

Identidades pitagdricas derivadas
A partir de la identidad fundamental y de las relaciones:

sen(0) cot(8) — cos(0)
cos(0)’ () sen(0)

se obtienen las dos igualdades derivadas:

tan(0) =

1+ tan0 = sec’0
1+ cot20 = csc0
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La deducciéon es puramente algebraica, pero su interpretacion
geométrica esigualmente rica. Por ejemplo, la primera identidad
se relaciona con la pendiente de la recta tangente a la circunfe-
rencia y con la proyeccion del punto a lo largo del eje vertical.
Stewart (2016) sefiala que estas identidades son esenciales para
comprender el comportamiento de las funciones trigonométri-
cas en el cdlculo integral y diferencial, pues articulan la tasa de
cambio con la curvatura del circulo.

Tabla 1.
Identidades trigonométricas fundamentales y su interpretacion

geométrica.

Tipo de Identidad Interpretacion geométrica
identidad
Pitagorica sen20 + C0829 =1 Ecuacion del circulo unitario
Pitagorica 9 9 Relacién entre pendiente y
derivada 1 4-tan0 = sec™0 proyeccién horizontal
Relacion entre inclinacién e
1 + cot?0 = csc?6 . =
inversion del seno
Cocientes sen 6 Proyeccion vertical / proyec-
tanf = cién horizontal
cos 0
cos 0 Reciproco de la tangente
cot6 =
sen 0
Reciprocas 1 Inversion horizontal
secH =
cos 0
1 Inversion vertical
csch =
sen 0
Angulo Sen(—e) = —senb Seno es funcion impar
negativo
cos(—0) = cos(f) | Coseno es par
tan(—0) = —tan(0) | Tangente es impar

Nota. Elaboracion propia basada en la relacion entre identidades trigonomé-
tricas y sus representaciones geométricas en el circulo unitario y en tridngu-
los rectangulos.

Perspectiva didactica: ensenar identidades desde la comprension
La ensefianza de las identidades trigonométricas constituye un
terreno fértil para explorar como los estudiantes transitan desde
la mera evocaciéon de formulas hacia una comprension profunda
de las relaciones matematicas. En numerosos contextos esco-
lares, las identidades se presentan como “reglas” que deben

133



Razones e identidades trigonométricas y resolucion de tridngulos

memorizarse para resolver ejercicios de simplificacion o demos-
tracion, reproduciendo una tradicion algoritmica que fragmenta
el conocimiento y reduce la trigonometria a procedimientos sin
sentido. Investigaciones recientes muestran que esta aproxi-
macién genera dificultades persistentes: errores conceptuales,
confusiones entre funcion y razén, y una débil capacidad para
justificar transformaciones

Esta perspectiva parte del reconocimiento de que las iden-
tidades son consecuencias lbdgicas de los modelos geométri-
cos fundamentales: el tridngulo rectdngulo, el circulo unitario
y la definicién funcional de las razones trigonométricas. En
este sentido, reconstruir con los estudiantes la génesis de las
identidades permite activar procesos de razonamiento que
van mds alld de la manipulacién simbdlica. Tal como sostiene
Duval (2017), la comprension matematica auténtica se asienta
en la coordinacién entre multiples registros de representacion.
Aplicado a las identidades, esto supone dialogar entre la figura
geomeétrica, la expresion algebraica, la visualizacién dindmica
y el comportamiento grafico de las funciones, reconociendo
que cada una ilumina aspectos distintos de la misma estruc-
tura conceptual.

Ejercicios para comprender, no para repetir

Desde esta mirada, es imprescindible que la tipologia de ejerci-
cios responda ala légica de la comprensidon y no al mecanicismo.
Una propuesta diddctica solida deberia contemplar al menos
cinco tipos de tareas que, articuladas entre si, permitan avanzar
desde la exploracion intuitiva hacia la formalizaciéon rigurosa:

1. Ejercicios de exploracidén visual
Consisten en actividades donde los estudiantes manipulan re-
presentaciones dindmicas para observar como cambian las ra-
zones trigonométricas al variar el dngulo. Estas tareas permiten
que las identidades “emerjan” como regularidades observables.
Hohenwarter y Lavicza (2007) demostraron que este tipo de
exploraciones aumenta la autonomia intelectual y la capacidad
de formular conjeturas.

Por ejemplo, arrastrar un punto en el circulo unitario y registrar
los valores de:

sen(0), cos(0) y tan(0)

conduce naturalmente a identificar que:
sen0 + cos?0 = 1

incluso antes de formalizar la identidad.
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2. Ejercicios de reconstruccion geométrica
Estas actividades invitan a justificar la validez de una identidad
a partir de un diagrama. Aqui el énfasis estad en razonar: explicar
por qué la identidad es verdadera. Ejemplos tipicos incluyen:
* Demostrar la identidad pitagdrica usando trigdngulos
semejantes.
+ Justificar las identidades de cociente a partir de las defini-
ciones de razén trigonométrica en el circulo unitario.
+ Explicar por qué 1 + tan20 = sec?0 se deduce de dividir la
identidad pitagorica entre cos?0

Este tipo de ejercicio responde a tareas de mediacion semioé-
tica, donde la figura actUa como puente entre el mundo visual
y el simbodlico.

3. Ejercicios de equivalencia conceptual
Su objetivo es que los estudiantes identifiquen si dos expresiones
representan la misma identidad, aunque estén escritas de forma
diferente. Este tipo de tarea favorece lo que Thompson (2016)
denomina “coherencia estructural”, indispensable para consolidar
la red de relaciones entre identidades. Algunos ejemplos:
1
« Determinar si cos6 y COS B son equivalentes;
* Decidir sidos expresiones supuestamente distintas son trans-
formaciones validas de una misma relacion trigonométrica;
*+ Comparar graficos que representan la misma funcion es-
crita con identidades distintas.

4. Ejercicios de generalizacion y aplicacion contextual
Aqui se integran problemas donde las identidades funcionan
como herramientas para resolver situaciones mas amplias: ana-
lisis de fendmenos periddicos, resolucién de tridngulos no rec-
tangulos, estudio del movimiento armonico, entre otros. Estos
ejercicios muestran que las identidades tienen un propdsito mas
allad de la manipulacion simbélica.

Ejercicios de demostracion y argumentacion simbdlica

Finalmente, cuando el estudiante ya ha interiorizado las relaciones
geomeétricas y las equivalencias conceptuales, puede abordar
demostraciones que requieren dominio algebraico. La clave estd
en que estas demostraciones no se aprendan como secuencias
memorizadas, sino como razonamientos justificables. Tchoshanov
(20M) advierte que muchos errores provienen de tratar la identidad
como un “procedimiento”, cuando en realidad es una afirmacién
universal que debe sostenerse bajo cualquier sustituciéon valida.
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La propuesta de combinar estas cinco tipologias no apunta a
fragmentar el aprendizaje, sino a construir una progresién cohe-
rente que inicie en la intuicidon, pase por la observacion y llegue
a la argumentaciéon formal. En este sentido, el rol del docente
es fundamental: debe orquestar la secuencia de tareas, ofrecer
andamiajes temporales, promover el didlogo matematico y es-
timular la metacognicién, especialmente cuando el estudiante
enfrenta la necesidad de justificar por qué un paso algebraico es
valido. La meta no es que se memoricen “todas las identidades”,
sino que se comprenda el sistema que las articula.

Cuando esto se logra, las identidades dejan de funcionar como
obstdculos y se convierten en herramientas poderosas para ana-
lizar, modelar y resolver problemas. Mas aun, el estudiante puede
reconocer que detrds de cada expresidn existe una idea geométri-
ca profunda que da sentido a la matematica como una disciplina
coherente, elegante y articulada.

Tabla 2.
Propuesta de ejercicios para ensenar identidades trigonométricas des-

de la comprension

Tipologia de
ejercicio

Ejercicio propuesto

1. Ejercicios
de
cion visual
(GeoGebra /
manipulacio-
nes dindmicas)

explora-

1. Mover un punto sobre el circulo unitario y registrar
valores de sen(0) y cos(0) para distintos dngulos.
2.Observar como crece tan(0) al acercarse alos dngulos
donde la funcién es indefinida.

3. Comparar en la misma vista los grdéficos de Sen(e),
cos(0) Y sen?0 + cos?0

4. Manipular un trigngulo rectangulo y verificar que las
razones trigonométricas se mantienen para un mismo
angulo.

5. Superponer el trigngulo rectangulo dentro del circulo
unitario para visualizar la identidad pitagorica.

Sugerencia: Invitar a formular conjeturas antes de formalizar. Preguntar:
“:Qué patrdon observas?” o “iQué crees que se mantiene constante al
mover el punto?” para promover pensamiento inductivo.
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2. Ejercicios de
reconstruccion
geométrica

1. Demostrar la identidad pitagdrica desde un tridngulo
rectdngulo dibujado por el estudiante.
2.Construir un trigngulo semejante que permitajustificar
t 0 — sen 0

anv = 5%

3. Explicar por qué 1 + tan?6 = sec?0 al dividir la iden-
tidad pitagérica entre cos20
4. Representar un tridngulo en el cuadrante Il y analizar
el signo de cada razon parajustificar transformaciones.
5. Dibujar una circunferencia de radio r y argumentar
por qué las identidades se mantienen tras un cambio

de escala.

Sugerencia: Manipular un trigngulo rectdngulo y verificar que las razones
trigonomeétricas se mantienen para un mismo angulo.

5. Superponer el tridngulo rectdngulo dentro del circulo unitario para
visualizar la identidad pitagodrica.

3. Ejercicios de
equivalencia
conceptual

1. Determinar si 1/ sec 6 es equivalente a cos().

sen 0

2.Comparar si y tan(0) pueden usarse indistinta-

mente en una eggsrgsién dada.

3. ldentificar si dos expresiones complejas representan
la misma identidad escrita en forma distinta.

4. Verificar si una grafica dada corresponde a

0 a una de sus transformaciones equivalentes.
5.Determinar qué expresiones son idénticas al cuadrado
de una razoén trigonométrica dada.

Sugerencia: Fomentar el uso de contraejemplos: “Si crees que son equi-
valentes, ¢puedes elegir un valor § que lo confirme? ¢Y uno que lo con-
tradiga?” Esto fortalece la comprension del dominio.

4. Ejercicios de
generalizacion
y aplicaciéon
contextual

1. Utilizar identidades para modelar la sombra proyec-
tada de un objeto en un problema realista.

2. Analizar un fendmeno periddico y describir qué iden-
tidades permiten simplificar el modelo trigonométrico.
3. Aplicar 1 + tan?0 = sec?6 para deducir una expresion
en un tridngulo no rectangulo mediante ley de senos o
COsenos.

4. Emplear identidades para simplificar una expresiéon
en un problema de ondas o vibraciones.

5. Utilizar una identidad para determinar la altura de un
punto observado desde dos dngulos distintos.

Sugerencia: Guiar con preguntas situadas: “¢ Qué expresion seria mas

facil de manipular?”, “;Qué identidad te ayuda a reducir el proble-

ma?”. Invitar a justificar la eleccion.
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. L 2
5. Ejercicios de |1 pemostrar que sec (6) — cos (6) = —Sec(gficis(e)
demostracion

. T 1—
simbdlica Yy |5 Mostrar que 1cos(®) _ tan(%) usando identidades

. . sen()
manipulacion | conocidas.
algebraica 3. Probar que sen(0) csc(8) = 1 bajo cualquier valor
permitido de 0
4. Simplificar una expresion compleja usando Unica-
mente transformaciones vdalidas de identidades bdsicas.

5. Verificar que dos expresiones aparentemente dis-

tintas son equivalentes transformdndolas paso a paso.

Sugerencia: Recomendar que cada paso vaya acompafiado de un bre-

»oo

ve comentario escrito: “aqui aplico esta identidad”, “aqui sustituyo esta

equivalencia”. Esto fortalece la argumentacién matemdatica.
Nota. Elaboracion propia

Algunas aplicaciones de la trigonometria en la vida cotidiana
y las ciencias
La trigonometria constituye uno de los lenguajes matematicos uni-
versales para describir, analizar y modelar fenémenos naturales y
sociales. Su fuerza radica en la capacidad de articular tres ideas fun-
damentales: variacion, periodicidad y relacion angular. Aungue suele
enseflarse de manera abstracta, desligada de su contexto historico
y de sus multiples usos contempordneos, sus aplicaciones atraviesan
casi todas las disciplinas: desde la ingenieria y la arquitectura hasta
la biologia, la muUsica, la informdtica y las ciencias de la tierra.

Como sefiala Maor (1998), la trigonometria “refleja el esfuerzo
humano por comprender las regularidades del mundo”, y esta
comprensiéon se ha ido transformando, desde las primeras obser-
vaciones astrondmicas hasta la modelaciéon digital del siglo XXI.
En este sentido, comprender sus aplicaciones no es un afladido
decorativo, sino la clave para que el estudiante perciba la trigo-
nometria como un sistema significativo, anclado en problemas
genuinos que trascienden el aula.

Trigonometria en la medicion. topografia, cartografia y geodesia

Medicidon directa e indirecta en la vida cotidiana
La medicion indirecta es, sin duda, una de las aplicaciones mas
antiguas, practicas y persistentes de la trigonometria. Mucho
antes de que las funciones trigonométricas adquirieran su forma-
lissno moderno, diversos pueblos ya empleaban procedimientos
basados en tringulos semejantes para estimar alturas, distancias
y profundidades sin necesidad de acceder fisicamente al objeto.
Esta forma de medir que consiste en calcular lo desconocido a
partir de lo observable revela la esencia misma de la trigono-
metria: un puente entre experiencia y razonamiento geométrico,
entre el mundo sensible y la abstraccion matemdatica.
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Desde una perspectiva historica, se sabe que los egipcios uti-
lizaban relaciones geométricas para determinar la pendiente de
las pirédmides, mediante la razéon llamada seked, que no es sino
el antecedente de la tangente moderna (Maor, 1998). De manera
similar, los griegos empleaban instrumentos rudimentarios para
medir sombras y obtener proporciones que permitieran estimar
alturas inaccesibles. Tales practicas evidencian que la medicion
indirecta surgi¢ de necesidades concretas y no de especulacién
tedrica: construir, orientar, navegar, delimitar territorios, resolver
problemas de la vida diaria.

En la actualidad, aunque los instrumentos tecnoldgicos son
mds sofisticados, por ejemplo: clindmetros digitales, telémetros
|Gser, estaciones totales; la lbgica geométrica subyacente perma-
nece inalterada. Como explica Stewart (2016), “la trigonometria
aplicada mantiene siempre el mismo corazén: el tribngulo como
modelo de relacién entre magnitudes”. Esto permite compren-
der por qué la medicién indirecta continUa siendo una habilidad
fundamental en profesiones tan diversas como la arquitectura, la
ingenieria civil, la topografia, la geologia, la fisica y la astronomia.

La idea basica es plantear un triadngulo donde una magnitud
desconocida se vincule con otras accesibles mediante razones
trigonométricas. Asi, medir una sombra, un dngulo de elevacion
o la longitud de una base observable permite reconstruir la di-
mensidn buscada. Este proceso se fundamenta en:

* Las propiedades de semejanza,

* La definicién funcional de seno, coseno y tangente,

* La Ley de Senos y la Ley de Cosenos cuando el tridngulo

no es rectangulo.

Por ejemplo, medir la altura de un edificio mediante la tangen-
te no es un truco escolar, sino la aplicacién directa del trigngulo
rectangulo formado por:

1. La altura desconocida,

2. La distancia horizontal medida,

3. La linea de vision.

Este modelo, aparentemente simple, es extraordinariamente
versatil: permite medir desde la anchura de un rio hasta la pro-
fundidad de un barranco, pasando por la altura de una antena,
la distancia a un arbol o la inclinacién de un tejado.

Estimacion de una altura urbana

Ejemplo 1: Imaginemos a un estudiante que desea medir un blo-
que de apartamentos sin disponer de una cinta métrica de gran
longitud. Al ponerse a 50 metros y medir un dngulo de elevaciéon
de 36°, puede aplicar:h = d - tan(0) = 50 - tan(36°) ~ 36.3 m.
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Ejemplo 2: Durante una actividad de medicidon en clase de
matemdticas, los estudiantes deben calcular la altura de una asta
de bandera en el patio de su colegio. Desde un punto A, miden
un dngulo de elevacién de 45 grados hacia la punta del asta.
Luego, retroceden 10 metros y desde un punto B, miden un nuevo
angulo de elevacion de 30 grados.

Figura 15.
Representacion geométrica del problema de medicion de la altura
del asta utilizando angulos de elevacion de 45°y30°.

Nota: Elaboracion propia.

Se pide calcular la altura del asta utilizando trigonometria.

Ejemplo 3: Durante la feria escolar, el area de Matemdaticas
instalé un stand interactivo para atraer la atencion de los es-
tudiantes. Se observd que el nUmero de visitas por hora no era
constante, sino que seguia un comportamiento periddico a lo
largo del dia. El flujo de estudiantes puede describirse mediante
la funcion:

m(t) =60+ 40sen (% (t-3)) 0<t <12

donde m(t) es el nUmero de visitas por hora y t es el tiempo
en horas medido desde la apertura del stand (1=0).

Figura 16.
Representacion grdafica de la funcion m(t) para analizar el flujo perio-
dico de estudiantes en el stand matemdtico.

Nota: Elaboracion propia.

a.Determina a qué hora ocurre el primer pico de visitas y cudntas
visitas por hora se esperan en ese momento.

b. Determina a qué hora ocurre el minimo de visitas y el valor
correspondiente.
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c.Determina en qué intervalos de tiempo la funcién m(t) es cre-
ciente y en cudles es decreciente.

d. Demuestre graficamente como se comporta el promedio de
visitas por hora durante las 12 horas de funcionamiento del stand

Medicion de pendientes y accesibilidad

La normativa de accesibilidad exige rampas con pendien-
tes maximas especificas. Un docente puede mostrar como:
pendiente = tan() permite verificar si una rampa es adecuada
midiendo solo la altura y la distancia horizontal. Este tipo de
aplicacién conecta la trigonometria con decisiones urbanisticas
y con la inclusion social.

Triangulacidon: el corazdn de la topografia
La triangulacion consiste en dividir un territorio en trigngulos
cuyas distancias y angulos pueden calcularse mediante leyes
de senos y cosenos. Snellius fue uno de los primeros en usar
estos métodos para medir la curvatura terrestre en 1617, un
hito que marco la transicion hacia una geografia cientifica
(Maor, 1998).

Ejemplo 4: Determinar la distancia entre dos colinas sin acce-
der a ellas

Se mide una base AB de 120 m y los dngulos hacia las colinas
CyD: ZA =42°y /B = 83°

La distancia AC se estima usando la Ley de Senos:

AC 120 -
sen(83°) - sen(55°) :> AC ~ 119.4m

Estos cdlculos son base para:

* Delimitar parcelas,

* Construir carreteras,

* Evaluar impacto ambiental,

* Modelar zonas de riesgo volcanico.

Aunque estos ejemplos son comunes, investigaciones muestran
que los estudiantes rara vez perciben la utilidad de la trigono-
metria en el mundo real. Duval (1998) explica que el problema
reside en la desconexién entre registros: se ensefian procedi-
mientos, pero no se articulan con la experiencia visual o corporal
del espacio.

Freudenthal (1973) afade que la matematica escolar debe
reconstruirse desde situaciones significativas; de lo contrario, se
convierte en un conjunto de reglas arbitrarias. En este sentido,
actividades practicas no son “manualidades”, sino experiencias
esenciales para romper la inertizacién de la trigonometria como
“cdlculo vacio”.
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Trigonometria en fisica: ondas, vibraciones y senales
La ecuacion general de una onda armonica: f(t)=Asen( t+ ) se ha
consolidado como uno de los modelos matematicos mas potentes
para describir procesos periddicos en fisica. En ella, la amplitud
A, la frecuencia angular y la fase inicial codifican informacion
clave sobre la energia del sistema, la rapidez con que oscila y
el modo en que se sincroniza con otras oscilaciones. Cada uno
de estos pardmetros tiene un correlato fisico claro, lo que con-
vierte a la funcién seno en un puente directo entre la expresion
algebraica y la experiencia experimental (Tipler & Mosca, 2008).
Este modelo armonico se utiliza para describir una gran va-
riedad de fendmenos:
* Osciladores mecdanicos, como el sistema masa-resorte o el
péndulo simple.
*+ Ondas sonoras, que se propagan en medios eldsticos.
* Vibraciones sismicas, que recorren el interior de la Tierra.
+ Campos electromagnéticos, cuya oscilacién explica desde
la luz visible hasta las microondas.
+ Sefiales entelecomunicaciones, andlogas y digitales, donde
las ondas se modulan para transportar informacion.

En el terreno de la mecdanica, el andlisis de pequefios despla-
zamientos alrededor del equilibrio muestra que muchas ecua-
ciones de movimiento pueden aproximarse por la ecuacién del
oscilador arménico simple. Tipler y Mosca (2008) destacan que,
en este régimen lineal, la respuesta del sistema es practicamente
sinusoidal, de modo que la trigonometria no aparece como un
artificio formal, sino como la forma natural de describir cémo
responde la materia cuando se la perturba ligeramente.

En acUstica, la sinusoide adquiere un papel central. Rossing
(2002) subraya que cualquier sonido complejo como por ejemplo:
una nota musical, una silaba pronunciada, el ruido de la ciudad,
puede descomponerse en una suma de ondas sinusoidales con
distintas frecuencias y amplitudes. Esta idea, heredera del trabajo
de Fourier, permite analizar el timbre de los instrumentos, dise-
fiar filtros electrénicos, comprimir archivos de audio y estudiar
la contaminacion sonora con herramientas matematicas finas.
La funcidn seno deja de ser entonces una curva abstracta para
convertirse en la huella matemdtica del sonido que escuchan
nuestros estudiantes.

Ejemplo 5: Interferencia de ondas sonoras

Dos fuentes sonoras emiten ondas arménicas puras de frecuen-
cias muy proéoximas.
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Sus funciones de onda (en funcidon del tiempo t) pueden mo-

delarse como: f; = sen(440t), fy = sen(445t)

Figura 17.
Visualizacién de la interferencia entre dos ondas sonoras de frecuen-
cias cercanas y su resultante modulada.
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Nota: Elaboracion propia.

a. Escribe la expresion de la onda resultante f(t) producida por
la superposicion de ambas.

b. Utiliza la identidad trigonométrica

sena -+ senb = 2sen(2£2) cos(252) para mostrar que la sefial
resultante corresponde a una oscilacion rapida modulada por
una variacion lenta de amplitud (batidos).

c. ldentifica la frecuencia “rapida” y la frecuencia de batido.

Este fendmeno se usa en afinacion musical, acUstica arquitec-
tonicay andlisis de vibraciones y el estudiante puede comprobar
que:

* La suma de dos ondas seno de frecuencias muy cerca-
nas puede reescribirse como el producto de: una onda
rapida de frecuencia media, y un coseno de frecuencia
igual a la mitad de la diferencia, cuya envolvente genera
los batidos.

* Lainterferencia de las ondas de 440 y 445 da lugar a un
sonido cuya intensidad sube y baja aproximadamente
5 veces por segundo, fendmeno usado en afinacién de
instrumentos y en andlisis de vibraciones.

Algo similar ocurre en sismologia. Las vibraciones generadas
por un terremoto se registran en forma de sefiales que, al ser ana-
lizadas, se descomponen en paquetes de ondas con estructuras
casi sinusoidales. Stein y Wysession (2003) muestran como el
estudio detallado de esas frecuencias y de su atenuacion permite
inferir propiedades de la corteza y el manto terrestres, localizar
epicentros y estimar la magnitud de los eventos sismicos. La tri-
gonometria proporciona asi un lenguaje para leer lo que ocurre
a decenas o cientos de kilbmetros bajo nuestros pies.
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En el campo de la electromagnética, las ecuaciones de
Maxwell describen campos eléctricos y magnéticos que se
propagan en forma de ondas. Griffiths (2017) explica que, en
ausencia de fuentes, las soluciones mas simples de estas ecua-
ciones son ondas planas sinusoidales, que viajan a la velocidad
de laluz. A partir de este modelo se construyen las teorias y los
dispositivos que permiten comprender desde la propagacion
de la luz en fibras 6pticas hasta el funcionamiento de antenas
y sistemas de comunicacién inalémbrica. La misma estructura
Asen(mt + (p) estd detras del disefio de laseres, radares y en-
laces satelitales.

Cuando se pasa al terreno de las sefiales discretas y las co-
municaciones modernas, la presencia de la sinusoide es igual
de evidente. Muchas técnicas de modulaciéon: de amplitud, de
frecuencia o de fase; se basan en manipular los paradmetros de
una onda portadora sinusoidal para codificar informacion. La
estabilidad de esta forma de onda, su facilidad para ser gene-
rada y filtrada y su tratamiento analitico mediante herramientas
como la transformada de Fourier justifican su predominio en
sistemas analdgicos y digitales (Rossing, 2002; Griffiths, 2017).

Todo esto otorga a la trigonometria un enorme potencial
formativo. Tall (2014) defiende que la comprensién genuina de
las funciones sinusoidales permite al estudiantado dar un salto
desde un pensamiento geométrico, ligado a triGngulos y circulos,
hacia un pensamiento funcional en el que se reconocen patro-
nes de variacion, periodicidad y simetria. Cuando el alumnado
observa que una misma ecuaciéon describe la vibracién de una
cuerda, la propagacién de la luz o la transmisién de datos en un
teléfono movil, la matemdatica deja de ser un conjunto de téc-
nicas desconectadas y se percibe como un sistema coherente
de modelos para interpretar la realidad.

En este sentido, trabajar en el aula con ejemplos de osci-
ladores mecdnicos, simulaciones de ondas sonoras, registros
sismicos reales o visualizaciones de campos electromagnéticos
no solo contextualiza la funcidén seno, sino que contribuye a
construir una imagen mdas integrada de la ciencia.

Corriente alterna y fasores

La trigonometria ocupa un lugar central en el andlisis de corrien-
te alterna (CA) debido a que las magnitudes eléctricas funda-
mentales: voltaje, corriente y potencia instantdnea; presentan
un comportamiento oscilatorio que puede describirse median-
te funciones sinusoidales. Cuando un sistema eléctrico opera
con una frecuencia determinada, sus variaciones periddicas de
voltaje se representan comUnmente con ecuaciones del tipo
V(t) = Vgsin(ot), en las que la fase y la amplitud determinan
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tanto la forma como la intensidad de la sefial. Este modelo, apa-
rentemente sencillo, permite estudiar fenédmenos como la transfe-
rencia de energia, la respuesta del sistema ante cargas resistivas
o reactivas y la relaciéon entre tensién y corriente en circuitos
lineales.

Desde el punto de vista formativo, comprender la dinGmica de
la corriente alterna implica algo mdas que aplicar féormulas: re-
quiere interpretar coémo los dngulos determinan los desfases entre
sefiales, como el coseno del dngulo de fase afecta la potencia
activa o cdmo la impedancia combina componentes resistivas y
reactivas. En este sentido, Tall (2014) subraya que la transicion del
mundo visual al simbdlico es fundamental para que el estudiante
comprenda la estructura periddica de los fendmenos eléctricos.

Asimismo, investigaciones como las de Duval (1998) y Godino,
Batanero y Font (2007) muestran que, al integrar registros gra-
ficos (diagramas fasoriales), algebraicos (nUmeros complejos)
y verbales (explicaciones de fase y amplitud), los futuros inge-
nieros desarrollan una comprensién mds robusta del comporta-
miento oscilatorio de los sistemas eléctricos y logran percibir la
trigonometria no solo como un conjunto de relaciones, sino como
un lenguaje que organiza y explica la dindmica profunda de la
corriente alterna.

Ejemplo 6: Desfase entre voltaje y corriente
Se conecta un circuito formado por una resistencia de R = 400
y una bobina ideal con inductancia L = 0,16 H en serie a una
fuente de corriente alterna de v(t) = 120v/2 sen(100xt)

Figura 18.
Representacion temporal del voltaje aplicado en el circuito RL para
analizar la impedancia y el desfase.

! -

Nota: Elaboracion propia.

a. Determina la impedancia fasorial total del circuito.

b. Calcula la corriente eficaz que circula.

c. Halla el angulo de desfase entre el voltaje y la corriente, e in-
terpreta el resultado.
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Este ejercicio ayuda a que el estudiante vea la trigonometria
como algo vivo y conectado con fendmenos reales, y no solo
como un conjunto de formulas. Al trabajar con fasores y analizar
cbmo se comportan el voltaje y la corriente en un circuito, el
alumno descubre que los dngulos, las fases y las razones trigo-
nométricas tienen un sentido fisico claro. Ademds, al combinar
dibujos, cdlculos y explicaciones, se fortalece la comprension
desde varios modos de representacién, algo fundamental para
evitar que el estudio de la CA se vuelva puramente mecdnico.

Aplicaciones biologicas, fisiolbgicas y ambientales.

Los ritmos biolégicos forman parte esencial del funcionamiento
de los organismos vivos. Desde el ciclo suefio-vigilia hasta las
variaciones diarias de la temperatura corporal, una gran parte de
estos procesos puede describirse mediante funciones periddicas,
lo que permite analizar su comportamiento con herramientas tri-
gonomeétricas. Los estudios sobre ritmos circadianos muestran que
estas oscilaciones siguen patrones bastante estables, vinculados a
cambios ambientales como la luz, la temperatura y la alimentacion.
Tal reqularidad, como sefialan Ahrens (2012) y Crowley (2015), fa-
cilita el uso de modelos senoidales para comprender la dindmica
de la actividad metabdlica, hormonal y neuroldgica.

En el dmbito de la fisiologia, la trigonometria también resulta
clave para interpretar sefiales eléctricas del cuerpo humano,
especialmente las relacionadas con el corazén y el cerebro. El
electrocardiograma (ECG) y las ondas cerebrales registradas por
electroencefalografia (EEG) presentan formas periédicas que
se analizan mediante funciones seno-coseno, transformaciones
armonicas y descomposicion en frecuencias. Herreros y Martin
(2015) muestran que estos modelos ayudan no solo a visualizar
el ritmo de los impulsos eléctricos, sino tambiéen a identificar
alteraciones que pueden indicar arritmias, apnea del suefio o
disfunciones neuroldgicas. Aqui, la trigonometria actUa como un
traductor: convierte sefiales bioldgicas complejas en patrones
matematicos que permiten tomar decisiones clinicas.

Apoyo diddctico:estos ejemplos permiten mostrar al estudian-
te que las funciones trigonométricas no solo describen ondas y
fendmenos fisicos, sino que forman parte del lenguaje con el que
se estudian procesos vitales. Al conectar matemdtica y biologia,
se favorece una comprensién mas integrada del mundo natural,
superando la idea de la trigonometria como un tema puramente
abstracto. Estudios de Tall (2014) y Freudenthal (1973) insisten en
este punto: el aprendizaje significativo emerge cuando el alumno
puede relacionar estructuras matematicas con fendmenos reales
que tienen sentido para él.
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Imaginemos el registro del ritmo cardiaco de una persona en
reposo. Al analizar el electrocardiograma durante unos segundos,
se observa que los latidos siguen un patron bastante regular:
cada 0,8 segundos aparece un nuevo pico, lo que corresponde
a unos 75 latidos por minuto. Para estudiar esa periodicidad,
podemos aproximar matematicamente la sefal con una funcién
senoidal del tipo: f(t) = A sen(ot 4+ ¢), donde A representa la
amplitud de la sefial (la intensidad del impulso eléctrico), @ es la
frecuencia angular y ¢ permite ajustar el punto de inicio.

Si la frecuencia cardiaca es de 75 latidos por minu-
to, equivalentes a 1,25 latidos por segundo, entonces:
0= 2“(1,25) ~ 7,85 rad/s_ Una funcion posible para modelar
este ritmo es: f(t) = 1,2sen(7,85t), donde la amplitud 1,21,21,2
representa unidades arbitrarias asociadas al voltaje registrado
en el ECG. Aunque se trata de una simplificacion la sefial real
incluye picos, mesetas y variaciones, esta aproximacién senoidal
permite estudiar el ritmo cardiaco en su dimensidon periddica.

Figura 19.
Modelacion senoidal del ritmo cardiaco a partir de la frecuencia de
75 latidos por minuto.

Nota: Elaboraciéon propia.

Desde el punto de vista bioldgico, este tipo de modelos es
Util para identificar alteraciones en la frecuencia o variaciones
anormales del periodo, que pueden ser indicadoras de estrés,
arritmias o trastornos del suefio. Herreros y Martin (2015) explican
que, al comparar la sefal real con su ajuste senoidal, es posible
detectar irregularidades que serian dificiles de apreciar a simple
vista. Y desde la matemdtica, el ejercicio permite mostrar con
claridad como una funcidon trigonométrica describe un proceso
vital: cada oscilacién del seno corresponde a un latido, cada pe-
riodo refleja el ritmo del corazén y cada cambio en la amplitud o
frecuencia se asocia con un comportamiento fisioldgico diferente.

Ciclos climdticos y geofisicos

Muchos fendmenos climaticos presentan patrones de variacion pe-
riddica que pueden modelarse mediante funciones trigonométricas.
La temperatura diaria, por ejemplo, sigue una curva suavemente
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oscilante influida por la rotaciéon terrestre y la radiacion solar, lo que
permite representarla mediante funciones seno o coseno con ligeras
variaciones estacionales. Del mismo modo, las mareas producto de
la interaccidon gravitatoria entre la Tierra, la Luna y el Sol responden a
combinaciones de ciclos senoidales cuyo andlisis ha sido fundamen-
tal para la navegacion y la prediccion costera (Ahrens, 2012). Incluso
fendmenos como las estaciones del afio y la variacion anual de pre-
cipitaciones pueden aproximarse mediante modelos periddicos que
permiten estudiar tendencias a largo plazo, identificar anomalias y
prever comportamientos esperados en determinados meses.

En el dmbito geofisico, las oscilaciones periddicas también
desempefian un papel crucial. Los registros sismicos, por ejem-
plo, incluyen sefiales oscilatorias que se analizan mediante
descomposicion armoénica para identificar frecuencias domi-
nantes y posibles patrones precursores de actividad tecténica.
Investigaciones recientes muestran que ciertos tipos de vibra-
ciones subterraneas como el llamado “ruido sismico”, pueden
representarse mediante combinaciones de funciones senoidales
que ayudan a caracterizar la estructura interna de la corteza
terrestre (Nakata & Nishida, 2017). Desde una perspectiva edu-
cativa, estos fendmenos permiten mostrar al estudiante coémo
las funciones trigonométricas articulan patrones que van mas
alld de la geometria y se convierten en herramientas para in-
terpretar el comportamiento dindmico de la Tierra y su sistema
climatico, conectando la matematica con el estudio responsable
del ambiente.

Consideremos la variaciéon diaria de la temperatura en una
ciudad costera. Si se registra la temperatura cada hora a lo lar-
go de varios dias y se observa que el méximo suele alcanzarse
cerca de las 14:00 y el minimo alrededor de las 5:00, es posible
aproximar este comportamiento mediante una funcion del tipo:

2n
24

donde T(t) representa la temperatura en grados Celsius y t es
la hora del dia.

En este modelo, los valores 23 y 9 indican, respectivamente,
la temperatura promedio del dia y la amplitud del ciclo térmico.
Esta representacion senoidal permite estudiar como los dias ex-
cepcionalmente cdlidos o frios se alejan de la oscilacién tipica,
y ayuda a comparar comportamientos en distintas épocas del
afo. Como explica Ahrens (2012), este tipo de modelos no pre-
tende capturar todos los detalles del clima, pero si hace posible
identificar tendencias, contrastar ciclos y comprender por qué
ciertas horas se sienten mas calientes o frias.

T(t) = 9cos (t—14) ) + 23,
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Figura 20.
Funcion cosenoidal que modela la variacion diaria de la temperatura
en una ciudad costera.

Nota: Elaboraciéon propia.

Este tipo de andlisis, utilizado en estaciones oceanogrdaficas,
permite anticipar mareas altas que pueden afectar actividades
portuarias, pesca artesanal o zonas susceptibles de inundacion.
Investigaciones geofisicas como las de Nakata y Nishida (2017)
muestran que esta misma ldgica armoénica se emplea para es-
tudiar vibraciones internas de la Tierra y comprender procesos
tectonicos. Desde una perspectiva diddctica, estos ejemplos per-
miten al estudiante visualizar que la trigonometria no solo des-
cribe tringulos, sino que resulta esencial para interpretar ciclos
naturales que experimentamos todos los dias.

Conclusiones

El recorrido realizado en este capitulo permite comprender que la
trigonometria no es Unicamente un conjunto de férmulas o técni-
cas de cdlculo: es un modo de pensar que articula relaciones entre
angulos, longitudes y variaciones periddicas presentes en el mundo
natural y construido. Al estudiar las razones trigonométricas, las
identidades fundamentales y los métodos para resolver tridngulos
rectadngulos y oblicudngulos, el estudiante toma contacto con un
lenguaje que permite describir con precision tanto situaciones
geométricas clasicas como fendmenos dindmicos mas complejos.
A lo largo del capitulo se mostrdé que detrds de cada razoéon tri-
gonomeétrica hay una estructura conceptual que da sentido a las
relaciones entre lados y angulos, y que las identidades no deben
asumirse como verdades aisladas, sino como conexiones profundas
entre funciones que comparten una misma naturaleza periddica.
En paralelo, la resolucién de tringulos permite reconocer que
la trigonometria tiene una vocacién eminentemente aplicada.
Resolver triGngulos no es un fin en si mismo: es un camino para
interpretar situaciones reales que abarcan desde mediciones in-
directas en contextos cotidianos hasta problemas de navegacion,
disefio arquitectdnico, sensores, instrumentacién y modelacion
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cientifica. Comprender c6mo se combinan datos parciales para
reconstruir una forma o determinar magnitudes inaccesibles
fortalece el pensamiento logico, el razonamiento espacial y la
capacidad para abstraer patrones. Cuando el estudiante entiende
que cada tridngulo resuelto representa una situaciéon concreta,
la trigonometria deja de ser un repertorio de procedimientos y
se convierte en una herramienta para leer el mundo.
Finalmente, la integracién de aplicaciones fisicas, bioldgicas,
ambientales y tecnolégicas permite apreciar que la trigonometria
tiene un alcance mucho mayor que el tradicional. La presencia
de fendmenos peridédicos en la ingenieria eléctrica, los ritmos
fisioldgicos, las mareas, la acustica, el andlisis de sefiales o la
climatologia muestra que las funciones trigonomeétricas son una
forma privilegiada de representar y comprender la regularidad
de muchos procesos naturales. De modo coherente con las pers-
pectivas diddacticas contempordneas, este capitulo subraya la
importancia de trabajar con representaciones multiples, argu-
mentos visuales, interpretaciones fenomenoldgicas y problemas
contextualizados que devuelvan a la trigonometria su cardacter
dindmico y significativo. Cuando el aprendizaje se organiza de
este modo, las razones e identidades dejan de ser simbolos abs-
tractos y se transforman en herramientas para pensar, modelar y
actuar en diferentes dmbitos de la vida académica y profesional.
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