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Prólogo

Hay libros que llegan para enseñar, y otros que llegan para 
acompañar. Este pertenece a ambos. Acompaña al lector en un 
via je que comienza mucho antes de abrir sus páginas, en ese 
momento íntimo en el que alguien se pregunta qué es realmente 
la geometría, por qué la trigonometría aparece en tantos cami-
nos del conocimiento, o cómo es posible que ideas tan antiguas 
sigan siendo esenciales en la vida contemporánea.

Desde civilizaciones que midieron la tierra para sobrevivir 
hasta las teorías que hoy describen el espacio curvo del univer-
so, la geometría y la trigonometría han sido formas de ordenar 
el mundo y de pensar con claridad. No son solo disciplinas ma-
temáticas; son maneras de mirar. Este libro recupera esa mirada 
con una voz que une historia, rigor y didáctica, sin perder la 
sensibilidad que hace de la matemática una creación humana 
antes que un conjunto de reglas.

A lo largo de estas páginas, el lector descubrirá que un pun-
to no es solo una marca, que una recta no es solo un trazo, y 
que un ángulo no es únicamente una medida. Cada concepto 
se revela como una estructura de pensamiento con raíces pro-
fundas, capaz de dialogar con la experiencia cotidiana y con 
las abstracciones más elevadas. El libro no exige memorizar; 
invita a comprender. No pide repetir procedimientos; propone 
reconstruirlos desde la intuición y el razonamiento.

Quien enseñe encontrará aquí un recurso que respeta la 
complejidad del aprendiza je geométrico y que ofrece explica-
ciones claras, conectadas con las necesidades reales del aula. 
Quien estudie reconocerá un texto que no se limita a mostrar 
resultados, sino que acompaña el proceso de pensar: observar, 
conjeturar, justificar, refutar y volver a empezar. Quien sim-
plemente tenga curiosidad hallará una lectura que combina 
historia, ideas y ejemplos con una narrativa que busca acercar 
la matemática a la vida.

Este libro es, en esencia, un puente: entre la geometría 
clásica y la contemporánea, entre la formalidad del razona-
miento y la intuición sensible, entre la enseñanza tradicional 
y las posibilidades que hoy ofrecen las herramientas digitales. 
Detenerse en sus páginas es reencontrarse con una matemá-
tica que sigue viva, que sigue interrogándonos y que sigue 
enseñándonos a ver.
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Evaluación para el aprendizaje

Con ese espíritu nace este prólogo: como una invitación abier-
ta a recorrer, sin prisa y con asombro, un territorio que ha acom-
pañado a la humanidad desde sus primeros trazos hasta sus 
más recientes descubrimientos. Que cada lector haga de este 
via je una experiencia propia, porque la geometría, al final, no 
se aprende únicamente con los ojos: se aprende con la mente 
despierta y con la curiosidad en movimiento.
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Capítulo I

Introducción a la geometría, 
la trigonometría y conceptos 

fundamentales 

 

Introducción 

Hablar de geometría y trigonometría es hablar de la historia 
del pensamiento humano. Desde las civilizaciones antiguas 
que midieron la tierra, trazaron templos o calcularon la po-
sición de los astros, el ser humano ha buscado entender el 
espacio que habita y las relaciones que lo sostienen. La geo-
metría nació del asombro ante las formas, de la necesidad de 
medir y ordenar; la trigonometría, del deseo de comprender 
los movimientos del cielo y transformar la observación en 
cálculo. Ambas conforman un lengua je de comprensión del 
mundo: la geometría describe la estabilidad de las formas 
y la trigonometría traduce el movimiento en medida. En su 
conjunto, constituyen una manera de pensar que une la ex-
periencia y la razón, la intuición y la demostración, la mirada 
sensible y la abstracción lógica.
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A lo largo de los siglos, la geometría y la trigonometría han 
evolucionado desde lo empírico hacia lo conceptual, conservan-
do, sin embargo, un rasgo común: su capacidad para enseñar a 
razonar. Desde los postulados de Euclides hasta las formulaciones 
axiomáticas de Hilbert, y desde las concepciones de espacio de 
Piaget hasta las representaciones digitales actuales, ambas dis-
ciplinas han sido un espejo de la mente humana en su búsqueda 
de coherencia. Comprender un punto, una recta, un plano o una 
razón trigonométrica es mucho más que memorizar definiciones: 
implica descubrir cómo la mente organiza el espacio, cómo lo 
interpreta y cómo lo transforma. En ese proceso, el estudiante 
no solo aprende a calcular, sino a pensar estructuradamente, a 
deducir, justificar y comunicar ideas con precisión.

En la actualidad, la enseñanza de la geometría y la trigonometría 
demanda integrar la tradición del razonamiento con las oportunida-
des que ofrecen los entornos digitales. Las herramientas interactivas 
como GeoGebra, Desmos permiten que el estudiante experimente 
con figuras, observe patrones y visualice relaciones que antes solo 
podían imaginarse. Esta interacción inmediata entre la idea y su 
representación contribuye a que la comprensión deje de ser estática 
para volverse dinámica. La figura se mueve, los ángulos cambian, los 
valores se ajustan, pero las relaciones se mantienen: el estudiante 
comprende entonces que la verdad geométrica no depende del 
dibujo, sino del razonamiento que lo explica.

El propósito de este capítulo es invitar a redescubrir la geo-
metría y la trigonometría como formas vivas de pensamiento, 
no solo como contenidos matemáticos. A través de un recorrido 
histórico, conceptual y didáctico, se busca comprender cómo 
ambas disciplinas han evolucionado desde la observación em-
pírica hasta la abstracción formal, sin perder su raíz humana: 
la necesidad de comprender el espacio y el cambio. El capítulo 
propone mirar la enseñanza de estas áreas como una experiencia 
intelectual y creativa, donde el estudiante observa, construye, 
argumenta y representa, integrando la intuición con la lógica y 
la exploración con la demostración. En un mundo en permanente 
transformación, comprender la estructura y el movimiento del 
espacio se convierte en una oportunidad para aprender a pensar 
con claridad, profundidad y sentido.

La geometría como ciencia del espacio: origen y evolución 
histórica
La historia de la geometría es la historia de cómo las culturas han 
aprendido a ver el espacio con rigor. Empieza con la necesidad de 
medir y termina con lenguajes abstractos que describen la cur-
vatura del universo o la estructura de los datos digitales. Ese arco 
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evolutivo no discurre en línea recta. Alterna momentos de invención 
práctica, formalización lógica, cambio de puntos de vista y síntesis 
unificadoras. Seguir ese hilo ayuda a comprender por qué enseñar 
geometría no es repetir fórmulas, sino entrenar la mirada para de-
tectar invariantes, justificar relaciones y modelar situaciones.

Las primeras manifestaciones del pensamiento geométrico 
surgen mucho antes de la existencia de una teoría formal. Nacen 
del trabajo y de la necesidad, de la relación del ser humano con 
el espacio que habita y transforma. En las civilizaciones mesopo-
támica y egipcia, la geometría aparece como un saber práctico 
y empírico, orientado a resolver problemas concretos de agri-
mensura, construcción y cálculo de áreas o volúmenes.

En Mesopotamia, las tablillas de arcilla como la Plimpton 322 
(siglo XVIII a. C.) muestran el desarrollo de relaciones numéricas 
que anticipan la teoría pitagórica. Estas tablas, escritas en cunei-
forme, registran ternas que corresponden a triángulos rectángulos 
y evidencian un pensamiento matemático operativo, basado en 
la observación y la proporción (Boyer & Merzbach, 2019; Katz, 
2009). Aunque no existía un lenguaje deductivo, se percibe ya 
una lógica subyacente en el uso de reglas empíricas, capaces de 
resolver problemas de campo, reparto o construcción.

En Egipto, el conocimiento geométrico también tuvo un ca-
rácter funcional. Los harpedonaptas, o “tensadores de cuerdas”, 
utilizaban cuerdas con nudos espaciados 3-4-5 para trazar án-
gulos rectos y replantear terrenos después de las crecidas del 
Nilo. Los papiros de Rhind y Moscú (aprox. 1800 a. C.) recopilan 
procedimientos para calcular áreas de polígonos, volúmenes de 
pirámides truncadas o cilindros, y estimaciones del número π 
con un grado de precisión sorprendente. Sin embargo, se trataba 
de un conocimiento intuitivo y algorítmico, carente aún de los 
principios de demostración o generalización propios de la mate-
mática griega posterior (Boyer & Merzbach, 2019; Stillwell, 2010).

En este contexto, la geometría fue una tecnología del orden, una 
herramienta para domesticar el espacio. Su propósito no era la 
verdad universal, sino la eficacia. Pero ese mismo saber empírico 
sentó las bases del pensamiento geométrico: la necesidad de me-
dir, comparar, representar y conservar la proporción. La semilla de 
la abstracción se encontraba ya en la acción del agrimensor que, 
sin saberlo, reproducía los principios de la razón espacial.

El giro decisivo en la historia de la geometría fue metodológico. 
Los griegos transformaron un conjunto disperso de procedimien-
tos en un sistema de conocimiento racional, articulado mediante 
definiciones, axiomas y teoremas. Este paso de la receta empírica 
a la demostración lógica marca el nacimiento del pensamiento 
matemático en sentido estricto.
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Euclides, en su monumental obra Los Elementos (siglo III a. 
C.), consolidó esta revolución intelectual. Su método se basaba 
en partir de unas pocas nociones primitivas:  punto, línea, plano, 
establecer postulados simples y deducir de ellos una red co-
herente de proposiciones. Cada afirmación debía ser probada 
mediante razonamiento, no mediante observación. La geometría 
dejó así de ser un saber empírico y se convirtió en una ciencia 
del pensamiento puro (Euclides, 2002; Boyer & Merzbach, 2019).

El espíritu demostrativo alcanzó su culminación en figuras como 
Arquímedes, quien aplicó procedimientos que hoy reconocemos 
como precursores del cálculo integral. Mediante el método de ex-
hausción, Arquímedes determinaba áreas y volúmenes por aproxi-
maciones sucesivas, anticipando el concepto de límite. Por su parte, 
Apolonio de Perga llevó la abstracción aún más lejos, al estudiar 
las secciones cónicas desde una perspectiva analítica y rigurosa 
(Stillwell, 2010; Katz, 2009). Con ellos, la geometría dejó de describir el 
espacio sensible y comenzó a crear un universo intelectual autónomo.

El modelo griego de conocimiento estableció una relación 
nueva entre razón y realidad: el saber geométrico ya no depen-
día de la experiencia, sino de la deducción. Esta independencia 
dio lugar a una matemática de estructura, donde la coherencia 
interna se volvió más importante que la utilidad práctica. Sin 
embargo, esta abstracción, que es la raíz de la ciencia moderna, 
también generó una distancia entre el conocimiento y la vida co-
tidiana. Como señala Netz (2004), la geometría griega nació en 
un contexto social de élites, donde la demostración era un acto 
intelectual y no una necesidad del trabajo manual.

 Apoyo didáctico: desde una mirada contemporánea, este legado 
plantea un desafío didáctico: ¿cómo recuperar en la escuela el equi-
librio entre la exactitud racional y la inteligencia práctica? Enseñar 
geometría hoy implica rescatar la claridad del método griego, pero 
también devolverle su conexión con la experiencia. El estudiante 
debe comprender que cada axioma tiene un origen humano, que 
la demostración no es un ritual vacío, sino una manera de justificar 
por qué el mundo puede ser pensado de forma coherente.

Con Grecia, la geometría se convierte en lenguaje universal 
del pensamiento. La noción de demostración inaugura un ideal 
de certeza que marcará toda la historia de la ciencia. Pero, al 
mismo tiempo, recuerda que la claridad conceptual nace del 
asombro, de la necesidad de explicar lo que se ve. Como escribió 
Arquímedes, “Dadme un punto de apoyo y moveré el mundo”: 
una metáfora precisa de la geometría misma, que sigue siendo 
ese punto firme desde el cual el pensamiento humano mueve los 
límites de su comprensión.
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La transmisión y reelaboración de la herencia griega despliega 
nuevas preguntas y técnicas. En India, los Śulba Sūtras y más tarde 
Aryabhata y Bhāskara II trabajan con configuraciones geométricas 
vinculadas a la astronomía y al calendario. En China, Los nueve capí-
tulos sobre el arte matemático con el comentario de Liu Hui exploran 
algoritmos para áreas y volúmenes, así como descomposiciones inge-
niosas que expresan intuiciones geométricas en términos operativos. 

La perspectiva artística descubre la proyección central como 
estructura matemática. Desargues y Poncelet fundan la geome-
tría proyectiva, que no conserva longitudes ni ángulos, pero sí 
alineaciones e incidencias. Este cambio de foco muestra que la 
geometría puede organizarse alrededor de lo que permanece 
invariante bajo ciertas transformaciones. A la vez, Monge y la 
escuela francesa sistematizan la geometría descriptiva como 
lenguaje de la ingeniería y la arquitectura, consolidando el vín-
culo entre dibujo técnico y razonamiento espacial (Gray, 2018).

Con La Géométrie de Descartes se establece una traducción 
entre figuras y ecuaciones. El plano cartesiano permite resolver 
problemas geométricos con herramientas algebraicas y, recí-
procamente, visualizar soluciones de ecuaciones como curvas. 
Junto al cálculo de Newton y Leibniz y la posterior formalización 
de Cauchy y Weierstrass, nace un diálogo incesante entre análisis 
y geometría que alimenta la física matemática y la modelación 
de fenómenos continuos (Stillwell, 2010).

La crisis de las paralelas y la pluralidad de espacios: Durante si-
glos se intentó deducir el quinto postulado de Euclides a partir de 
los otros. El fracaso de ese proyecto resultó fecundo. Lobachevski 
y Bolyai muestran que al negar el postulado emergen geometrías 
coherentes, especialmente la hiperbólica. Beltrami y luego Klein 
proporcionan modelos que aseguran su consistencia relativa. De 
pronto la pregunta ya no es si el espacio euclidiano es verdadero, 
sino qué hipótesis adoptamos y qué invariantes estudiamos en 
cada familia de transformaciones. La elíptica completa el tri-
dente no euclidiano, y la intuición común debe reeducarse para 
aceptar sumas de ángulos distintas de 180 grados o rectas que 
se comportan de forma contraintuitiva (Gray, 2018).

En este sentido, Klein propone en 1872 una visión unificadora 
que sigue vigente: una geometría se define por su grupo de trans-
formaciones y por las propiedades que permanecen invariantes 
bajo ese grupo. Euclídea se centra en isometrías, proyectiva en 
proyecciones centrales, afín en transformaciones afines. Este 
marco organiza el mapa de las geometrías y educa la mirada 
para buscar invariantes más que listas de propiedades aisladas.



23

Guerrero Zambrano Marcos Francisco 

 La idea transforma la enseñanza misma, porque invita a re-
solver problemas analizando qué cambia y qué no cuando se 
actúa sobre las figuras (Klein, 2004; Gray, 2018).

Por su parte, Gauss introduce la curvatura intrínseca y Riemann 
generaliza la noción a variedades de dimensión arbitraria. Se 
puede medir curvatura desde dentro, sin referencia al espacio 
ambiente. Ese lenguaje se convierte en la gramática natural de 
la relatividad general y de la teoría de campos, y abre caminos 
a objetos como geodésicas, tensores y formas diferenciales que 
hoy pueblan tanto la matemática pura como la física teórica 
(Stillwell, 2010).

El cambio de horizonte que inaugura el siglo XX no es solo 
técnico: es filosófico. Hilbert propone una reconstrucción de la 
geometría euclidiana basada en sistemas axiomáticos explícitos, 
donde los términos primitivos (“punto”, “recta”, “plano”) carecen 
de contenido previo y obtienen significado únicamente por las 
relaciones que los axiomas establecen. Esta “limpieza” concep-
tual permite discutir con precisión independencia, consistencia y 
completitud relativas, y convierte a la geometría en un laboratorio 
del pensamiento lógico (Hilbert, 1971). La mirada deja de centrar-
se en las figuras para enfocarse en la estructura: lo importante 
no es cómo luce un triángulo, sino qué condiciones formales lo 
constituyen.

El proyecto hilbertiano se nutre de los avances en lógica ma-
temática y da pie a programas paralelos. El sistema sintético 
de Tarski reformula la geometría elemental con un vocabulario 
mínimo (congruencia y betweenness) dentro de la teoría de mo-
delos, abriendo la puerta a demostrar resultados de decidibilidad 
y completitud para fragmentos significativos de la geometría 
euclidiana (Tarski & Givant, 1999). A la par, el impacto de los 
teoremas de Gödel obliga a matizar las expectativas fundaciona-
les: no todo sistema suficientemente expresivo puede probar su 
propia consistencia. Lejos de clausurar el programa, esta consta-
tación refuerza el valor formativo de la axiomatización: razonar 
geométricamente es razonar sobre supuestos y consecuencias 
(Stillwell, 2010).

Este desplazamiento, del objeto al sistema, tiene un eco pe-
dagógico claro. En el aula, trabajar con definiciones operativas, 
contraejemplos y dependencias axiomáticas ayuda a que el es-
tudiantado entienda que las propiedades no “caen del cielo”: se 
postulan y se derivan. Diseñar secuencias donde se compare, 
por ejemplo, la geometría euclidiana con una versión “euclidiana 
sin paralela” (reemplazando el quinto postulado) muestra que 
cambiar un axioma cambia el mundo.
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Finalmente, la axiomatización del siglo XX revela que la geome-
tría es tanto episteme como método: una forma de producir verdad 
dentro de sistemas explícitos. Ese énfasis en la forma, lejos de em-
pobrecer la disciplina, la libera para dialogar con lógicas no clásicas, 
teoría de modelos y fundamentos computacionales, ampliando su 
alcance a dominios donde lo geométrico es, ante todo, estructura.

Desde este cimiento, la geometría se despliega en direcciones 
múltiples y a menudo inesperadas. La topología estudia pro-
piedades invariantes por deformaciones continuas y formaliza 
herramientas como la homología y la cohomología para distin-
guir espacios “por dentro”. Problemas clásicos (clasificación de 
superficies, nudos, variedades) se abordan ahora con un arsenal 
algebraico y analítico de gran profundidad (Stillwell, 2010). 

La geometría diferencial moderna bebe de Riemann y crece 
con Cartan: variedades suaves, conexiones y curvatura permiten 
estudiar cómo se “dobla” el espacio. Este lenguaje se vuelve el 
alfabeto de la física teórica (relatividad general) y de la me-
cánica de medios continuos. Resultados como el teorema del 
índice de Atiyah-Singer enlazan análisis, topología y geometría, 
mostrando que cruzar fronteras conceptuales es el modo natural 
de avanzar (Stillwell, 2010). En paralelo, los grupos de Lie y sus 
representaciones proveen la sintaxis de las simetrías: cada ley 
de invariancia admite una lectura geométrica.

La geometría algebraica renace con la topología de Zariski y 
alcanza una nueva madurez con el programa de Grothendieck. Al 
introducir esquemas y funtores, la disciplina reinterpreta curvas 
y superficies definidas por ecuaciones polinómicas como objetos 
que viven simultáneamente en lo aritmético y lo geométrico. 

En otra frontera, la geometría discreta y computacional se 
convierte en gramática del mundo digital. Diagramas de Voronoi, 
triangulaciones de Delaunay y estructuras de proximidad mode-
lan teselaciones, empaquetamientos y problemas de visibilidad; 
algoritmos para polígonos, poliedros y nubes de puntos sostie-
nen gráficos por computador, visión artificial, robótica, GIS y 
bioinformática (Aurenhammer, 1991; de Berg et al., 2008). Las 
nociones clásicas: convexidad, distancia, proyección, adquieren 
una dimensión algorítmica: ya no basta con existir, hay que com-
putar eficientemente.

La expansión contemporánea también cruza con análisis ar-
mónico y procesamiento de señales: del círculo unitario a las se-
ries de Fourier y a bases onduladas capaces de capturar patrones 
en datos complejos. En aprendizaje automático, métodos de ma-
nifold learning suponen que los datos viven cerca de variedades 
de baja dimensión; medir geodésicas y curvaturas vuelve a ser 
crucial, ahora en espacios de alta dimensión. La geometría, lejos 
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de un museo de figuras, se confirma como ciencia de estructuras 
que organiza lo continuo, lo discreto y lo computacional bajo un 
mismo horizonte conceptual.

Al integrar estos hilos, la tesis central se hace visible: la geo-
metría ya no es solo medición ni solo demostración; es el estudio 
de estructuras, modelos y representaciones que dialogan con la 
lógica, el álgebra, el análisis y la computación. Ese diálogo, sos-
tenido en el tiempo, explica por qué la geometría sigue siendo 
un lenguaje privilegiado para pensar el espacio… y para pensar 
con el espacio.

Mirar la geometría con perspectiva histórica permite articular 
tres ideas didácticas. Primero, que los conceptos nacen de proble-
mas significativos y cambian cuando cambian las herramientas. 
Segundo, que el corazón de la disciplina es la justificación, no 
el dibujo bonito. Tercero, que aprender geometría es aprender 
a ver con estructura, lo que en educación se concreta en pro-
gresiones de razonamiento espacial y niveles de comprensión 
de lo visual y lo formal. La investigación didáctica lo susten-
ta con marcos como el enfoque onto-semiótico y los niveles 
de razonamiento geométrico propuestos por Van Hiele, útiles 
para planificar secuencias que avancen desde la percepción a 
la deducción con tareas ricas y representaciones coordinadas                                                    
(Godino, Batanero y Font, 2007; van Hiele, 1986).

Sistemas axiomáticos: Euclides, Hilbert y las geometrías no 
euclidianas
Un sistema axiomático es un pacto explícito: acordamos térmi-
nos primitivos que no se definen, postulados que aceptamos sin 
prueba y reglas de inferencia para deducir teoremas. Su potencia 
no está en “decir verdades” sino en hacer visibles los supuestos 
que usamos al razonar. La historia de la geometría puede leerse 
como el paso desde un edificio elegante, pero con premisas im-
plícitas, a uno con cimientos declarados y ensayados en modelos 
diversos. Ese via je va de Los Elementos de Euclides a la axioma-
tización fina de Hilbert y a la pluralidad de espacios coherentes 
que inauguran Lobachevski, Bolyai y Riemann (Euclides, 2002; 
Hilbert, 1971; Greenberg, 2011; Gray, 2018).

Euclides: el orden de las razones
La grandeza de Los Elementos de Euclides no reside únicamente 
en los resultados que contiene, sino en la forma de pensar que in-
augura. A partir de un pequeño conjunto de principios básicos, el 
autor de Alejandría construye un sistema que, durante más de dos 
milenios, fue considerado el modelo de la razón demostrativa. La 
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novedad euclidiana no es el descubrimiento de nuevos teoremas, 
sino la organización de los conocimientos geométricos existentes 
bajo una lógica rigurosa y coherente, donde cada proposición se 
justifica a partir de definiciones, postulados y nociones comunes.

Los cinco postulados que Euclides propone en el Libro I cons-
tituyen el armazón del pensamiento geométrico clásico. En for-
mulación moderna, pueden expresarse de la siguiente manera:

1.	 Entre dos puntos cualesquiera puede trazarse una recta.
2.	 Toda recta puede prolongarse indefinidamente en la misma 

dirección.
3.	Con cualquier centro y radio se puede describir un círculo.
4.	Todos los ángulos rectos son iguales entre sí.
5.	 Si una recta al cortar a otras dos formas ángulos interiores 

del mismo lado cuya suma es menor que dos rectos, esas 
dos rectas, prolongadas indefinidamente, se encontrarán 
en el lado en que la suma de los ángulos sea menor que 
dos rectos.

Los cuatro primeros postulados como muestra la figura 1(a), de-
finen un espacio gobernado por la intuición de lo recto, lo continuo 
y lo equidistante. El quinto, en cambio (figura 1 (b)), introduce una 
relación más profunda entre las líneas y el infinito: el principio de pa-
ralelismo. En su forma clásica, este postulado establece la unicidad de 
la paralela que pasa por un punto exterior a una recta dada. Durante 
siglos, este enunciado inquietó a los matemáticos, pues parecía más 
complicado que los otros y su veracidad no era tan evidente.

Figura 1.
Representación gráfica de los postulados euclidianos sobre rectas, 
círculos y ángulos rectos

Nota: Elaboración propia.

Euclides (2002) lo acepta sin discusión, pero deja entrever 
una tensión que recorrerá toda la historia de la geometría. En su 
sistema, la suma de los ángulos de un triángulo equivale a 180°, 
los polígonos semejantes conservan sus proporciones y las rectas 
paralelas nunca se encuentran.
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Figura 2.
Representación del quinto postulado de Euclides y la condición de 
paralelismo

Nota: Elaboración propia.

No obstante, esa dependencia invisible del quinto postulado 
hizo sospechar que su eliminación o modificación podía alterar 
la estructura entera del espacio.

Autores posteriores, como Saccheri en el siglo XVIII y Lobachevsky 
y Bolyai en el XIX, exploraron precisamente esa posibilidad. Al 
sustituir el postulado por versiones alternativas: una recta que 
admite más de una paralela, o ninguna, descubrieron universos 
geométricos igualmente coherentes, aunque distintos del euclidia-
no (Bonola, 1955; Katz, 2009). De esa revolución intelectual nació 
la geometría no euclidiana, una de las transformaciones más pro-
fundas del pensamiento científico, pues demostró que el espacio 
no era un dato de la experiencia, sino una construcción lógica.

El paso de Euclides a Lobachevsky representa un cambio de 
paradigma: de la geometría como descripción del mundo visible 
a la geometría como modelo del pensamiento. Como sostiene 
Hartshorne (2000), el sistema de Los Elementos no pretende des-
cribir la realidad física, sino exhibir un orden de razonamiento. Cada 
definición y cada demostración no dependen de la intuición visual, 
sino de la validez interna de los argumentos. Este modo de proceder 
influyó profundamente en la filosofía, la física y la lógica, convirtien-
do a la geometría en una escuela de pensamiento riguroso.

El método euclidiano: definir, suponer y deducir estableció 
la arquitectura del razonamiento científico. Los Elementos en-
seña que el conocimiento no surge del azar ni de la observa-
ción empírica, sino de la articulación ordenada de principios. 
En su estructura late una pedagogía de la claridad: el diagra-
ma orienta la mirada, pero la verdad pertenece al argumento. 
Como recuerda Stillwell (2010), el impacto de esta obra es 
tan profundo que “toda demostración matemática, aun la 
más moderna, sigue siendo en el fondo un eco de Euclides”.



28

Introducción a la geometría, la trigonometría y conceptos fundamentales 

Desde la mirada contemporánea, los postulados no son solo 
afirmaciones geométricas: son condiciones de posibilidad del 
pensamiento lógico. Cada uno invita a reflexionar sobre la natu-
raleza de la evidencia y la necesidad del orden. Así, el primero 
enseña la noción de conexión; el segundo, la idea de extensión; 
el tercero, la medida como invariancia; el cuarto, la igualdad 
como simetría; y el quinto, la tensión entre lo local y lo infinito.

Apoyo didáctico: el docente propone a los estudiantes 
reconstruir los postulados a partir de experiencias mani-
pulativas. Utilizan hilo y alfileres para representar líneas y 
puntos sobre una cartulina; luego comparan los resultados 
con construcciones en GeoGebra. El aula se transforma en un 
laboratorio epistemológico donde los alumnos comprenden 
que el postulado no es una verdad eterna, sino una decisión 
sobre el tipo de espacio que se quiere pensar.

Hilbert: hacer explícito lo implícito
Hilbert redefinió los conceptos fundamentales: punto, línea y plano, 
no como entidades intuitivas derivadas de la percepción espacial, 
sino como objetos abstractos relacionados entre sí por medio de 
axiomas. Esta visión formalista implicó que los términos básicos 
carecían de significado empírico y se definían únicamente por las 
relaciones que establecían dentro del sistema (Corry, 2004). Así, 
la geometría pasó de ser una descripción del espacio físico a un 
sistema deductivo cerrado, donde la validez de una proposición 
dependía exclusivamente de su consistencia interna y no de su 
correspondencia con la realidad sensible (Torretti, 2000).

Estructura del sistema axiomático de Hilbert
1.	 Incidencia: Regula la relación entre puntos, rectas y planos. 

Por ejemplo, establece que por dos puntos distintos pasa 
una sola recta, y que por tres puntos no colineales pasa un 
plano único. Este grupo de axiomas garantiza la existencia 
y unicidad de los elementos geométricos fundamentales.

Figura 3.
Representación geométrica de un plano y la relación de incidencia 
entre puntos, rectas y superficies

Nota: Elaboración Propia.
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2.	 Orden: Define la relación “entre” los puntos de una línea, in-
troduciendo la posibilidad de ordenar los puntos. Establece 
propiedades como la transitividad y la existencia de puntos 
intermedios.

Figura 4.
Representación del axioma de orden y la relación “entre” en una línea recta

Nota: Elaboración propia.

•	 Relación “Entre”: Permite establecer cuándo un punto B está 
localizado entre otros dos puntos (A y C), lo cual es la base 
para la medición y la dirección en una dimensión.

•	 Transitividad: Asegura una secuencia lógica y consistente. 
Si B está entre (A y C) y C está entre (B y D), la secuencia 
es coherentemente A, B, C, D.

•	 	 Existencia de puntos intermedios: El sistema garantiza que 
entre dos puntos distintos cualesquiera en una línea, siempre 
hay un tercer punto, lo que sienta las bases para el concepto 
de continuidad y la estructura densa de la línea recta.

3.	Congruencia: Regula la igualdad de segmentos y ángulos, 
asegurando que los cuerpos geométricos puedan trasla-
darse o superponerse sin alterar su medida. Este principio 
permite el desarrollo de la noción de igualdad geométrica 
sin depender de una interpretación física del movimiento.

Figura 5.
Representación del principio de congruencia mediante la traslación 
de un triángulo en el plano

Nota: Elaboración propia.
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La imagen muestra dos triángulos, E’F’G y E’F’G, que son 
exactamente iguales en forma y tamaño, aunque estén ubi-
cados en distintas posiciones del plano. El segundo triángulo 
se obtiene al trasladar el primero mediante un vector, sin mo-
dificar sus medidas ni sus ángulos. Esta representación ejem-
plifica el principio de congruencia propuesto en el sistema 
axiomático de Hilbert, según el cual la igualdad geométrica 
no depende de mover físicamente las figuras, sino de una 
relación lógica que asegura que sus elementos correspon-
dientes conservan la misma magnitud dentro del marco de 
la geometría formal.

4.	Paralelismo: Formaliza el postulado de las paralelas de 
Euclides, pero lo integra dentro de una estructura lógica 
más general: por un punto exterior a una recta pasa una sola 
paralela a ella. Su tratamiento formal permitió estudiar los 
sistemas alternativos, como las geometrías no euclidianas, 
desde una base axiomática común (Gray, 2018).

En el sistema de Hilbert, el paralelismo se entiende como una 
relación estrictamente lógica entre puntos y rectas, no como una 
observación visual. Su axioma establece que, por un punto exte-
rior a una recta, solo puede trazarse una única recta paralela a 
la dada, es decir, una que nunca la interseque. Este principio da 
estructura a la geometría euclidiana y permite deducir propieda-
des esenciales, como la igualdad de los ángulos alternos internos 
o la suma de 180° en los triángulos. Hilbert reformuló este postu-
lado con un lenguaje más preciso para eliminar ambigüedades 
y garantizar la coherencia del sistema, de modo que la idea de 
“paralelismo” no dependa de la intuición del dibujo, sino de una 
definición exacta dentro del razonamiento geométrico.

Figura 6.
Representación axiomática del paralelismo en el sistema de Hilbert

Nota: Elaboración propia.
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5.	 Continuidad y completitud: Introduce axiomas que garantizan 
la continuidad de la línea recta y la completitud del sistema. 
Hilbert utilizó ideas inspiradas en la teoría de los números 
reales para asegurar que no existieran “lagunas” en el espacio 
geométrico, reforzando la idea de un sistema sin contradic-
ciones ni indeterminaciones (Hilbert, 1899/1971; Torretti, 2000).

Figura 7.
Representación de la continuidad geométrica mediante puntos inter-
medios entre A y B

Nota: Elaboración propia.

Si elegimos dos puntos, por ejemplo, A en el 1 y B en el 5, siempre 
podremos encontrar otros puntos entre ellos, como el 2, el 3 o incluso 
el 2.5 y el 2.75, sin llegar nunca a un límite de división. Esto significa 
que el espacio geométrico está lleno y no tiene “huecos”, del mismo 
modo que los números reales forman una secuencia continua. En 
el aula, se puede mostrar esta idea con GeoGebra, trazando una 
recta y generando puntos entre A y B para que los estudiantes com-
prendan que la recta puede subdividirse infinitamente, reflejando 
la continuidad del pensamiento geométrico que Hilbert

El aporte de Hilbert representó un cambio epistemológico 
radical: la geometría dejó de ser un conocimiento derivado de 
la intuición espacial, como en Euclides o Kant, para convertirse 
en un sistema formal independiente del contenido empírico.

 En palabras de Torretti (2000), la geometría hilbertiana no des-
cribe el espacio físico, sino que constituye un modelo abstracto 
donde la verdad se define en términos de coherencia interna. Esta 
visión influyó decisivamente en el desarrollo de la matemática mo-
derna, la lógica formal y la teoría de modelos, siendo un precedente 
directo del pensamiento estructuralista del siglo XX (Corry, 2004).

Geometrías no euclidianas: negar el postulado sin caer en el absurdo
Durante siglos se intentó demostrar el postulado de las paralelas a par-
tir de los otros. El punto de inflexión llega cuando Lobachevski y Bolyai 
muestran que negar esa afirmación produce una teoría coherente. 
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En la geometría hiperbólica, por un punto exterior a una recta pa-
san infinitas paralelas y los triángulos tienen suma de ángulos menor 
que 180 grados. Beltrami construye los primeros modelos internos que 
certifican su consistencia relativa; más tarde, el disco de Poincaré y 
el modelo de Klein permiten hacer cuentas explícitas con geodésicas 
que se ven como arcos de circunferencia o cuerdas del disco. 

La secuencia de imágenes siguientes muestra, dentro del disco de 
Poincaré, cómo por un punto exterior P a la recta AB (en azul) pueden 
trazarse infinitas rectas hiperbólicas paralelas. En la figura (a), el punto 
E define una primera geodésica roja que pasa por P sin cortar a AB; en 
la (b), al variar el ángulo θ el punto E se desplaza por la frontera del dis-
co, generando nuevas circunferencias ortogonales que también pasan 
por P; y en la (c), al continuar moviendo E, se obtiene un abanico de 
infinitas geodésicas que no intersecan la recta azul. Esta representación 
visualiza el postulado hiperbólico: por un punto exterior a una recta 
pasan infinitas paralelas, negando así el quinto postulado de Euclides 
y evidenciando la naturaleza divergente del espacio hiperbólico.

Figura 8.
Visualización del postulado hiperbólico en el disco de Poincaré: gene-
ración de infinitas paralelas desde un punto exterior     

Nota: Elaboración propia.

Riemann describe otra alternativa, la elíptica, donde no existen 
paralelas y las geodésicas se comportan como grandes círcu-
los en la esfera con identificación de antipodales (Bonola, 1955; 
Greenberg, 2011; Gray, 2018).

El impacto conceptual es doble. Por un lado, “espacio” deja de 
ser una intuición única. Por otro, se instala la idea moderna de que 
lo geométrico se define por sus invariantes bajo transformaciones 
aceptadas, línea que Klein formula con claridad en el Programa de 
Erlangen y que organiza la disciplina por grupos de simetrías más que 
por listas de propiedades (Klein, 2004; Gray, 2018). Aquí el método 
axiomático muestra toda su fuerza: no obliga a una única geometría, 
describe familias de mundos posibles y nos enseña a compararlos.

 Apoyo didáctico: Traer este arco histórico al aula ayuda a 
formar pensamiento matemático con sentido. Tres preguntas 
vertebran una secuencia didáctica:
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a)	 ¿Qué aceptamos sin prueba? Identificar axiomas en un texto 
escolar y reescribir un teorema simple marcando exactamente dónde 
se usan. Objetivo: pasar del dibujo persuasivo al argumento sustentado.

b)	 ¿Qué pasa si cambiamos un axioma? Construir en un sof-
tware dinámico un triángulo en el disco de Poincaré y medir la 
suma de ángulos. Objetivo: comprender independencia e impli-
caciones del axioma de las paralelas.

c)	 ¿Qué permanece invariante? Clasificar problemas por el 
tipo de transformaciones que conservan su solución (isometrías, 
proyecciones, afinidades). Objetivo: adoptar la mirada estructural 
de Klein en problemas accesibles.

Estas tareas no buscan “contar historia”, sino usar la historia 
para pensar mejor: explicitar supuestos, argumentar con claridad 
y reconocer estructuras.

Conceptos fundamentales: punto, recta, plano y posición 
relativa
La geometría no solo es un campo de estudio matemático, sino 
un modo de organizar el pensamiento humano sobre el espacio. 
En su origen, fue una ciencia empírica nacida de la necesidad 
de medir, delimitar y representar el entorno. Pero a lo largo de la 
historia la geometría se ha convertido en un lenguaje formal que 
busca expresar las relaciones universales de forma, dirección y 
extensión (Heath, 1956; Hilbert, 1971).

Hoy, sin embargo, enseñar geometría no puede reducirse a 
reproducir axiomas o algoritmos: implica también comprender 
las ideas que sustentan el razonamiento espacial. Como afirma 
Freudenthal (1973), “la geometría debe ser redescubierta por los 
estudiantes como una actividad humana significativa, no como 
un conjunto de verdades ya acabadas”.

En este marco, los conceptos de punto, recta, plano y posición 
relativa no son meros elementos definitorios, sino estructuras de 
pensamiento que permiten conceptualizar el espacio desde una 
lógica de relaciones, movimientos y transformaciones.

El punto: entre la abstracción y la intuición perceptiva
El punto ha sido, desde los albores de la geometría, una de las 
nociones más enigmáticas y fascinantes. A primera vista, parece 
ser lo más simple: un pequeño trazo sobre una superficie, una 
marca o un instante de atención. Sin embargo, bajo esa apa-
rente simplicidad se oculta una de las ideas más profundas del 
pensamiento matemático. Euclides lo definió como “aquello que 
no tiene partes”, una entidad sin extensión ni anchura, pero con 



34

Introducción a la geometría, la trigonometría y conceptos fundamentales 

presencia intelectual, un lugar donde el espacio comienza a ad-
quirir significado (Heath, 1956). Esa definición, que ha perdurado 
más de dos mil años, muestra una tensión entre lo visible y lo 
invisible, entre lo que el ojo percibe y lo que la mente comprende.

Desde una mirada moderna, Hilbert (1971) retoma el punto 
como uno de los términos primitivos del sistema axiomático. No 
lo describe, simplemente lo postula. Para él, el punto no se define 
por lo que “es”, sino por las relaciones que mantiene con otros 
elementos: la recta, el plano, la distancia. En su concepción, el 
significado del punto no depende de la experiencia sensorial, sino 
del papel que cumple dentro de una estructura lógica coherente. 
De este modo, la geometría se emancipa de la intuición empírica 
para convertirse en un lenguaje formal de relaciones abstractas.

Figura 9.
Representación de puntos como elementos primitivos en la geometría 
hilbertiana

Nota: Elaboración propia.

No obstante, reducir el punto a un símbolo lógico puede empobrecer 
su riqueza cognitiva y fenomenológica. En el pensamiento humano, la 
noción de punto no nace de la abstracción pura, sino del contacto directo 
con el entorno. Piaget e Inhelder (1971) demostraron que la representa-
ción del espacio se forma progresivamente: el niño primero actúa y se 
orienta en el espacio físico, identifica lugares, direcciones y distancias, 
y solo después logra comprender el punto como posición sin exten-
sión. En este sentido, el punto no es una entidad preexistente, sino una 
construcción mental que sintetiza la experiencia de situarse y ubicarse.

Esta perspectiva encuentra resonancia en la fenomenología del espa-
cio de Merleau-Ponty (1945), quien sostiene que el cuerpo es la condición 
de posibilidad de toda percepción. El punto, desde esta óptica, no es 
una abstracción vacía, sino la expresión de una mirada encarnada: se-
ñalar, detenerse, mirar, marcar un lugar. Todo acto de “colocar un punto” 
es una forma de afirmar la presencia del sujeto en el mundo. Enseñar 
geometría, entonces, implica enseñar a mirar, a localizar, a descubrir 
el espacio como experiencia corporal antes que como sistema lógico.
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Figura 10.
Visualización del acto perceptivo en la geometría: el punto como mira-
da encarnada

Nota: Elaboración propia.

La psicología del aprendizaje geométrico aporta además una 
dimensión formativa. Según Duval (1998), comprender el punto 
exige coordinar distintos registros semióticos: el gráfico, el sim-
bólico, el verbal y el algebraico. Un estudiante puede reconocer 
un punto en una figura, pero no necesariamente comprender su 
papel en una ecuación o en un sistema de coordenadas. La en-
señanza debe propiciar ese tránsito entre lo visible y lo concep-
tual, entre el dibujo y la formulación. El punto no es solo un signo 
en el papel: es un objeto semiótico que adquiere sentido al ser 
movilizado en diferentes contextos (Godino & Batanero, 2007).

 Apoyo didáctico: El punto, en su aparente insignificancia, 
condensa toda una epistemología del conocimiento geomé-
trico. Es el lugar donde se cruzan el pensamiento sensible y el 
pensamiento lógico. En el aula, enseñar el punto sin reconocer 
su raíz perceptiva equivale a pedirle al estudiante que com-
prenda un signo sin sentido. Pero enseñar el punto solo desde 
la intuición, sin conectarlo con su función estructural, sería 
limitarlo a una experiencia sin abstracción. La enseñanza ver-
daderamente formadora es aquella que integra ambas dimen-
siones: la vivencia del espacio y la formalización del pensamiento.

En palabras de Hilbert, el punto no necesita definirse, porque 
“su verdad se mide en la coherencia del sistema que lo contiene” 
(Hilbert, 1971). En términos pedagógicos, esa coherencia se constru-
ye cuando el aprendizaje logra unir la acción, la intuición y la razón.

La recta: estructura del orden y la dirección.
La recta constituye uno de los pilares conceptuales de la geo-
metría. Si el punto representa la posición, la recta introduce la 
noción de dirección, de continuidad y de orden. Desde Euclides 
hasta la geometría moderna, la recta ha simbolizado la idea 
de lo inmutable dentro del cambio, el hilo invisible que orga-
niza el espacio. En Los Elementos, Euclides la definió como 
“una longitud sin anchura”, y añadió que “está dispuesta uni-
formemente respecto a los puntos que la componen” (Heath, 
1956). Esa descripción, aparentemente sencilla, encierra una 
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concepción profunda: la recta es una continuidad ideal, un 
objeto que la experiencia humana solo puede aproximar, pero 
nunca reproducir por completo.

En el pensamiento clásico, la recta era la imagen de la perfección 
geométrica. Hilbert (1971) reformuló su sentido dentro del sistema 
axiomático moderno: ya no como un trazo visible, sino como un ente 
primitivo definido únicamente por su relación con los puntos y los 
planos. En este marco, la recta es una entidad lógica que cumple 
funciones de alineación y orden dentro de un espacio abstracto. Su 
significado ya no depende de la percepción, sino de la consistencia 
interna del sistema. Sin embargo, esta concepción, necesaria para 
la formalización matemática, puede volverse opaca para el aprendi-
zaje si no se conecta con la experiencia perceptiva que le da origen.

Figura 11.
La recta como continuidad ideal en la geometría clásica y moderna

Nota: Elaboración propia.

Apoyo didáctico: Desde el punto de vista cognitivo, Piaget e 
Inhelder (1971) observaron que la noción de recta surge de la 
experiencia de desplazamiento y orientación. El niño concibe 
primero trayectorias, caminos y bordes; solo más tarde logra 
representar la recta como una prolongación indefinida sin grosor. 
En términos fenomenológicos, la recta es una abstracción de la 
acción, una huella idealizada del movimiento humano. Por eso, 
enseñar la recta no consiste en mostrar una figura perfecta, sino 
en guiar la transición desde la experiencia corporal del recorrido 
hasta la comprensión de una dirección infinita.

Duval (1998) enfatiza que la comprensión de la recta exige 
coordinar varios registros semióticos: el perceptivo (ver una línea 
trazada), el operacional (prolongarla o construir su perpendicu-
lar), y el discursivo (expresarla mediante ecuaciones o relacio-
nes). En este sentido, la recta es un ejemplo paradigmático de 
cómo la geometría articula visión y razonamiento.

 Para Tall (2014), la recta permite al estudiante pasar del pen-
samiento visual a la representación simbólica del cambio: enten-
der la pendiente, la dirección y la relación entre variables es, en 
última instancia, un modo de pensar la continuidad.
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La recta como idea de orden y medida
En el sistema euclidiano, las rectas no solo conectan puntos, sino 
que establecen la posibilidad de comparar, medir y deducir. La 
alineación es la primera forma de establecer relaciones entre 
posiciones. Descartes llevó esta idea al terreno del análisis al 
asociar la recta con el eje de coordenadas, transformándola en 
soporte de la medida y fundamento del álgebra geométrica. 
Gracias a él, la recta dejó de ser solo una figura y se convirtió 
en una referencia numérica, un espacio donde el pensamiento 
geométrico y el algebraico se encuentran.

Figura 12.
La recta como soporte de la medida y referencia numérica en el siste-
ma cartesiano

Nota: Elaaboración propia.

Como advierte Lakatos (1976), los conceptos matemáticos 
no son verdades inmutables, sino estructuras en evolución que 
surgen del diálogo entre conjeturas y refutaciones. Aplicado a la 
geometría, esto significa que la noción de recta se construye en 
la interacción entre intuición, error y justificación. Permitir que los 
estudiantes discutan qué es “recto” o cuándo dos puntos están 
“alineados” no debilita el rigor, sino que lo fortalece, porque lo 
hace consciente.

Cuando el alumno comprende que una recta puede prolongar-
se más allá del papel y que su existencia depende de la mente que 
la concibe, se acerca al corazón mismo de la geometría. Como 
escribió Hilbert (1971), “la recta no es una línea trazada, sino la 
expresión de una relación entre puntos dentro de un sistema 
coherente”. En ella se encuentra, silenciosa pero firme, la lección 
más profunda de la matemática: que el pensamiento humano 
puede crear continuidad a partir de la nada.

Apoyo didáctico: Utilizar GeoGebra para representar una recta 
mediante su ecuación y = mx +b permite al estudiante observar 
cómo una variación en la pendiente m transforma su inclinación. 
Así, lo algebraico y lo visual se integran en una sola estructura 
significativa.
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El docente puede invitar a los estudiantes a trazar el recorrido 
más corto entre dos puntos en el aula o el patio, vinculando la 
recta con la idea de trayectoria mínima. Esta vivencia corporal, 
como sostienen Radford (2018), reactiva la conexión entre la cog-
nición y la acción en la construcción del significado matemático.

Figura 13.
La recta como trayectoria mínima y soporte de significado en la ac-
ción matemática

                                   
Nota: Elaboración propia.

El plano: del espacio visible al espacio conceptual
El plano constituye una de las ideas más ricas y difíciles de la geometría. 
Es el escenario donde se despliega todo el pensamiento geométrico: 
contiene puntos, rectas, figuras y movimientos. Desde la antigüedad, 
el plano fue concebido como una extensión infinita y bidimensional, un 
espacio sin espesor que sirve de soporte a la construcción de figuras.

El plano: del espacio visible al espacio conceptual
El plano constituye una de las ideas más ricas y difíciles de la geometría. 
Es el escenario donde se despliega todo el pensamiento geométrico: 
contiene puntos, rectas, figuras y movimientos. Desde la antigüedad, 
el plano fue concebido como una extensión infinita y bidimensional, un 
espacio sin espesor que sirve de soporte a la construcción de figuras.

En Los Elementos, Euclides lo definió implícitamente como la 
superficie sobre la que reposan los objetos geométricos, pero su 
descripción seguía ligada a la experiencia visual del artesano y 
del agrimensor (Heath, 1956). El plano era entonces el lugar don-
de se medía y se trazaba, donde la geometría se hacía visible.

Figura 14.
El plano como extensión bidimensional para la representación de pun-
tos, rectas y figuras geométricas

Nota: Elaboración propia.
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Con el desarrollo del pensamiento abstracto, el plano dejó de ser 
solo un soporte para convertirse en un espacio conceptual. En la mo-
dernidad, Hilbert (1971) lo integró como un término primitivo dentro 
del sistema axiomático, al igual que el punto y la recta. Ya no era una 
superficie que se “ve”, sino una entidad que se postula: una estructura 
donde las relaciones son más importantes que las apariencias. Así, el 
plano pasó de ser un objeto de la mirada a ser un objeto del pensamien-
to, una idea que organiza la coherencia interna del espacio geométrico.

Ejemplo: Si tomamos un triángulo y lo rotamos 90° o lo trasla-
damos 5 unidades hacia la derecha, sigue teniendo los mismos 
lados, ángulos y área.

Figura 15.
Transformaciones rígidas y conservación de propiedades invariantes 
en un triángulo euclidiano

Nota: Elaboración propia.

Las propiedades invariantes son la distancia entre puntos y 
los ángulos.

Esto define la geometría euclidiana clásica, donde se estudian 
figuras congruentes y la métrica del espacio.
Ejemplo: Si aplicamos una dilatación a un rectángulo, este puede 
convertirse en un paralelogramo, pero las rectas paralelas siguen 
siendo paralelas.

Figura 16.
Conservación de la paralelidad en una transformación afín de un cuadrilátero

Nota: Elaboración propia.

La invariante aquí es la paralelidad, aunque se pierde la me-
dida de los ángulos y las distancias. 

Esto corresponde a la geometría afín, donde el foco está en la 
estructura de la forma y no en su tamaño.
Ejemplo: En la vista 2D se aprecia la figura original con sus líneas de 
proyección, mientras que en la vista 3D se observa el proceso de 
transformación espacial: los rayos que parten de P interceptan el 
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plano inclinado y generan la imagen proyectada. Aunque la forma 
cambia, la concurrencia y la alineación de los puntos se conservan, 
ilustrando de manera clara los principios de la geometría proyectiva 
y su relación con la perspectiva visual y la representación espacial.

Figura 17. 
Proyección central de una figura: vista 2D y vista 3D del proceso de 
transformación proyectiva

Nota: Elaboración propia.

Esta evolución epistemológica alcanza un punto decisivo con 
la teoría de los grupos de transformaciones de Felix Klein (2004). 
Para Klein, la esencia de la geometría no reside en las figuras en sí, 
sino en las transformaciones que preservan sus propiedades. Desde 
esta perspectiva, el plano no es un escenario pasivo, sino un campo 
dinámico donde se estudian las invariantes: aquellas relaciones que 
permanecen constantes bajo desplazamientos, rotaciones, simetrías 
o dilataciones. Pensar geométricamente significa, entonces, com-
prender lo que permanece dentro de lo que cambia.

Apoyo didáctico: Freudenthal (1973) retomó esta idea desde 
una mirada didáctica y la proyectó hacia el aprendizaje escolar. 
Para él, el plano debe ser entendido como un modelo del espacio 
vivido, un puente entre la experiencia del estudiante y la abstrac-
ción matemática. El aprendizaje geométrico comienza cuando 
el alumno logra reconocer en el plano una representación de 
su propio entorno: la pizarra, el suelo, una hoja o la pantalla del 
computador. Desde ahí se puede transitar hacia la comprensión 
del plano como un espacio conceptual de relaciones.

Duval (1998) profundizó esta perspectiva al afirmar que el pensa-
miento geométrico depende de la capacidad de cambiar de registro 
de representación. En el plano, las figuras no son fines en sí mismas, 
sino medios para expresar relaciones: paralelismo, perpendiculari-
dad, simetría o equivalencia. Aprender geometría implica, por tanto, 
aprender a pensar en invariantes y no solo en formas estáticas. El 
plano es el lugar donde la mente ensaya esas transformaciones, 
donde se descubren patrones de cambio y de conservación.

Desde el punto de vista cognitivo, Piaget e Inhelder (1971) 
demostraron que la comprensión del plano surge a partir de la 
coordinación de dos experiencias fundamentales: la percepción 
del espacio y la acción motriz. El niño, al desplazarse o dibujar, 
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experimenta que los objetos se ubican sobre una superficie que 
puede extenderse más allá de lo visible. A partir de esa vivencia, 
el plano se convierte en una idea reguladora, una estructura que 
organiza la posición y el movimiento. 

Apoyo didáctico: En la enseñanza de la geometría, el plano 
cumple una función integradora: articula los conceptos de punto 
y recta, pero también anticipa la noción de coordenadas, áreas y 
funciones. Desde un punto de vista didáctico, Godino y Batanero 
(2003) sostienen que el aprendizaje de los objetos matemáticos 
debe incluir tanto su dimensión fenomenológica (cómo se expe-
rimentan) como su dimensión semiótica (cómo se representan). 
El plano permite esta doble mediación: puede tocarse y verse, 
pero también imaginarse y simbolizarse.

Posición relativa: encuentros, paralelismos y perpendicularidad
La noción de posición relativa entre puntos, rectas y planos es una 
de las más antiguas y esenciales de la geometría. Desde los primeros 
trazos en la arena hasta los diagramas dinámicos de los entornos 
digitales actuales, el ser humano ha intentado comprender cómo 
los objetos se relacionan en el espacio: cuándo se cruzan, cuándo 
se alejan y cuándo se mantienen equidistantes. Estas relaciones no 
solo configuran la estructura del espacio geométrico, sino también 
la forma en que pensamos la proximidad, el límite y la dirección.

En la tradición clásica, Euclides (2002) estableció las bases de es-
tas relaciones a través de sus postulados y teoremas. En su sistema, 
dos rectas pueden interceptarse en un punto, ser paralelas si no se 
cortan, o ser perpendiculares si forman ángulos rectos. A partir de 
esas tres condiciones, se edificó todo el edificio de la geometría plana. 
Sin embargo, como recuerda Heath (1956), estas definiciones no son 
empíricas, sino conceptuales: no describen cómo se ven las rectas en 
el mundo, sino cómo deben comportarse dentro de un sistema ideal.

Figura 18.
Intersección, paralelismo y perpendicularidad como relaciones funda-
mentales entre rectas en geometría euclidiana

Nota: Elaboración propia.

La posición relativa no es solo un tema técnico, sino tam-
bién una experiencia cognitiva. Según Piaget e Inhelder (1971), 
el niño primero percibe las posiciones en términos de contacto 



42

Introducción a la geometría, la trigonometría y conceptos fundamentales 

o separación: los objetos “se tocan” o “no se tocan”. Luego, me-
diante la acción, descubre la alineación y la intersección, hasta 
que logra comprender las relaciones abstractas de paralelismo 
y perpendicularidad. Estas nociones surgen, entonces, como una 
coordinación progresiva de la acción y la percepción, que más 
tarde se interioriza en el pensamiento.

Intersección: el encuentro como fundamento
La intersección es la forma más básica de relación entre dos 
rectas. Representa el punto donde dos trayectorias se encuen-
tran, el instante en que dos direcciones se reconocen. Desde el 
punto de vista lógico, la intersección expresa la coexistencia de 
condiciones: el punto pertenece a ambas rectas, lo que implica 
una relación de inclusión compartida. Pero más allá del simbo-
lismo matemático, el encuentro entre dos rectas tiene un sentido 
profundo: introduce la noción de convergencia, la idea de que 
distintas direcciones pueden llegar a un mismo lugar.

Figura 19.
Construcción de arcos geodésicos y puntos notables en el modelo del 
disco de Poincaré

Nota: Elaboración propia.

El paralelismo ha sido históricamente una fuente de fas-
cinación y controversia. Para Euclides, dos rectas son para-
lelas si están en el mismo plano y no se cortan, por más que 
se prolonguen indefinidamente. Detrás de esta definición 
se esconde el famoso quinto postulado, cuya naturaleza no 
evidente inspiró siglos de reflexión. Lobachevsky y Bolyai, al 
cuestionarlo, dieron origen a las geometrías no euclidianas, 
demostrando que el espacio puede concebirse de otros mo-
dos (Bonola, 1955).

En el ámbito didáctico, el paralelismo enseña una idea de 
invariancia en el cambio: aunque las rectas se extiendan o se 
desplacen, su distancia mutua permanece constante.
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Apoyo didáctico: Este concepto puede explorarse a través de 
construcciones con regla y compás, pero también con software 
como GeoGebra, donde los estudiantes pueden mover rectas 
paralelas y observar que, sin importar la inclinación o la posición, 
nunca se cruzan. Duval (1998) señala que la visualización diná-
mica permite al alumno pasar del registro perceptivo al registro 
teórico, favoreciendo la comprensión de relaciones que no de-
penden del dibujo, sino de las propiedades lógicas del espacio.

Figura 20.
Visualización dinámica del paralelismo mediante el control de pen-
diente y posición en GeoGebra

Nota: Elaboración propia.

Perpendicularidad: el equilibrio de los contrarios
Si el paralelismo expresa armonía y estabilidad, la perpendicu-
laridad representa equilibrio y oposición. Dos rectas son perpen-
diculares cuando se cortan formando ángulos de 90 grados. Esta 
relación introduce el concepto de ortogonalidad, que será funda-
mental para el álgebra lineal, la trigonometría y el análisis vectorial. 
Pero más allá de su utilidad formal, la perpendicularidad ofrece 
una poderosa intuición visual: el orden que nace de la simetría.

En el aula, este concepto puede abordarse con actividades 
concretas. Los estudiantes pueden construir perpendiculares uti-
lizando una escuadra, verificando visualmente los ángulos rectos, 
y luego trasladar esa experiencia al plano digital. En GeoGebra, 
la herramienta de “recta perpendicular” permite explorar cómo 
la posición depende de la dirección original. Al mover el punto 
de corte, se observa que la nueva recta cambia, pero el ángulo 
recto se conserva, reforzando la noción de invariante geométrica.

Tall (2014) explica que estas experiencias de manipulación 
visual favorecen el paso del pensamiento “encarnado” al pen-
samiento “formal”. Cuando el estudiante comprende que la per-
pendicularidad no depende del dibujo, sino de una condición 
relacional (dos rectas que forman ángulos iguales), ha dado un 
salto conceptual hacia el razonamiento matemático.

Las nociones de intersección, paralelismo y perpendiculari-
dad constituyen mucho más que capítulos de la geometría: son 
modos de pensar la relación entre lo distinto. Interceptarse es 
compartir un punto; ser paralelas es coexistir sin tocarse; ser 
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perpendiculares es equilibrar opuestos. Estas relaciones, que na-
cieron como descripciones del espacio físico, se han convertido 
en estructuras universales del razonamiento humano.

Apoyo didáctico: Cuando el estudiante comprende que la posición re-
lativa no depende del dibujo, sino de una lógica que puede generalizarse 
a cualquier contexto, ha alcanzado la verdadera comprensión geométrica. 

En palabras de Hilbert (1971), “la geometría no trata del espacio, 
sino de la forma del pensamiento”.

Razonamiento deductivo e inductivo en la construcción 
geométrica.
El razonamiento geométrico constituye una de las expresiones más 
refinadas del pensamiento matemático. En él se encuentran dos 
movimientos esenciales del conocer: la inducción, que permite des-
cubrir regularidades y formular hipótesis a partir de la observación, 
y la deducción, que organiza el conocimiento mediante la argumen-
tación lógica. Desde Euclides hasta la didáctica contemporánea, la 
tensión entre ambos modos de pensar ha modelado la forma en 
que la humanidad concibe el espacio, la forma y la medida.

Pero este debate no es solo teórico; tiene consecuencias directas 
en la forma en que enseñamos y aprendemos. El aula, en cualquier 
nivel educativo, se convierte en un laboratorio donde la mente oscila 
entre mirar y demostrar, entre imaginar y justificar. Hoy, con la media-
ción de herramientas digitales como GeoGebra, Desmos, ese labo-
ratorio adquiere una nueva dimensión: los estudiantes pueden ver el 
razonamiento en acción, experimentar los teoremas como procesos 
dinámicos y explorar las relaciones entre intuición y formalización.

La inducción: el valor del descubrimiento en la era digital
Históricamente, la inducción ha sido el punto de partida del co-
nocimiento geométrico. En las culturas antiguas el conocimiento 
geométrico era esencialmente empírico: se derivaba de la obser-
vación y la repetición de patrones (Katz, 2009). En el pensamiento 
moderno, Polya (1954) consolidó esta visión al señalar que todo ra-
zonamiento matemático comienza con una intuición descubridora, 
donde el estudiante “ve” una regularidad antes de poder explicarla.

Freudenthal (1973) profundiza esta idea al afirmar que el co-
nocimiento matemático debe construirse como una reinvención 
guiada: el estudiante no recibe la verdad geométrica como un 
dogma, sino que la redescubre a través de la experiencia. De 
este modo, la inducción se convierte en una estrategia cognitiva 
y didáctica que otorga sentido al aprendizaje.

Sin embargo, autores como Hilbert (1971) y Brousseau (1986) 
advierten que la inducción por sí sola no garantiza la validez 
del conocimiento. Hilbert argumenta que la geometría, para 
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ser ciencia, necesita independencia de la percepción y debe 
sustentarse en un sistema axiomático coherente. Brousseau 
agrega que el aprendiza je por experimentación sin guía puede 
conducir a “errores estabilizados”, es decir, a intuiciones falsas 
que se consolidan como creencias.

En este sentido, la introducción de recursos digitales ofrece una 
posibilidad intermedia: la inducción visual no se queda en lo sensorial, 
sino que permite observar patrones bajo condiciones controladas, por 
ejemplo, un docente puede pedir a los estudiantes que construyan va-
rios triángulos en GeoGebra y midan la suma de sus ángulos interiores.

Al mover un vértice, los estudiantes observan cómo cambian 
los valores individuales pero la suma total se mantiene en 180°. 

Esta observación repetida genera una conjetura inductiva va-
lidada por la experiencia digital: “La suma de los ángulos de un 
triángulo siempre es 180°”.

Lo que antes era una simple observación manual se convierte 
ahora en una inducción visual interactiva, donde el alumno puede 
manipular infinitas configuraciones en pocos segundos, compro-
bando la estabilidad de la relación. Así, la tecnología refuerza 
la generalización sin reemplazar el pensamiento. En palabras 
de Duval (1998), la visualización digital no es solo una ayuda 
perceptiva, sino un modo de representación que transforma la 
naturaleza del razonamiento mismo.

Figura 21.
Exploración dinámica de un triángulo isósceles y conservación de los 
ángulos en la base

Nota: Elaboración propia.

La deducción: de la certeza lógica a la comprensión conceptual
Si la inducción descubre, la deducción explica. En el méto-
do euclidiano, la deducción constituye el corazón del pen-
samiento geométrico: a partir de postulados, se derivan 
teoremas mediante inferencias lógicas. Euclides (2002) or-
ganizó Los Elementos como un edificio intelectual donde 
cada proposición se apoya en otra anterior, estableciendo 
un modelo de pensamiento riguroso que ha perdurado por 
más de dos milenios.
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Sin embargo, varios autores han cuestionado la tendencia 
a enseñar la deducción como un fin en sí mismo. Freudenthal 
(1973) señala que la demostración formal pierde sentido cuan-
do el estudiante no comprende su origen intuitivo. Del mismo 
modo, Godino y Batanero (2007) sostienen que enseñar a 
demostrar requiere partir de la necesidad del alumno por 
justificar una observación, no de la obligación de repetir un 
formato lógico.

Por ejemplo, los estudiantes pueden usar GeoGebra para 
construir un triángulo isósceles, trazar sus alturas y observar 
cómo los ángulos en la base se mantienen iguales al mover 
los vértices. Luego, con la guía del docente, pueden demostrar 
formalmente que esto se debe al principio de congruencia de 
triángulos. En este proceso, la tecnología actúa como mediado-
ra entre lo perceptivo y lo lógico, fortaleciendo la comprensión 
de la demostración como un proceso racional y no meramente 
formal (Figura 22).

Hilbert (1971) defendía la deducción como el más alto nivel de 
pensamiento matemático, en la medida en que no depende de 
la observación sino de la coherencia interna. Sin embargo, Tall 
(2014) propone una ampliación: la deducción no debe entender-
se como ruptura con la intuición, sino como una extensión de 
ella hacia el mundo formal. El pensamiento matemático, afirma 
Tall, transita entre tres mundos: el encarnado, el simbólico y el 
formal,  y la enseñanza debe ayudar a los estudiantes a moverse 
entre ellos con naturalidad.

Figura 22.
Exploración dinámica de un triángulo isósceles y conservación de los 
ángulos en la base

Nota: Elaboración propia.

En la práctica, esto implica que el estudiante no solo aprenda 
a probar teoremas, sino a construir argumentos visuales y ver-
bales. La deducción deja de ser un ritual lógico para convertirse 
en una experiencia de comprensión.
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Diálogo crítico entre las dos formas de razonamiento
Las posturas de los autores muestran una tensión fecunda 
entre la experiencia y la formalización. Hilbert exige rigor; 
Freudenthal pide significado; Piaget observa desarrollo cogni-
tivo; Duval enfatiza la mediación representacional; Tall destaca 
la conexión entre visualización y abstracción. Cada enfoque 
revela un aspecto del aprendiza je geométrico, pero ninguno 
agota su complejidad.

Desde la perspectiva piagetiana, la inducción y la deducción 
son fases complementarias de una misma construcción mental. 
El pensamiento inductivo aparece primero, ligado a la acción y la 
percepción, mientras que el deductivo emerge más tarde, cuando 
el niño puede operar sobre relaciones y no solo sobre objetos 
(Piaget & Inhelder, 1971). En cambio, desde la epistemología de 
Hilbert, la deducción no es un estadio, sino una exigencia univer-
sal del pensamiento matemático. Para él, la intuición no basta 
para garantizar la verdad; es necesario el sistema.

Duval (1998) introduce un matiz clave: la comprensión 
geométrica no depende solo del tipo de razonamiento, sino 
de la capacidad de cambiar de registro semiótico. Es decir, 
el estudiante debe aprender a pasar de la figura al lengua je, 
del lengua je al símbolo y del símbolo al argumento. Por tanto, 
la enseñanza debe integrar lo visual, lo verbal y lo lógico, y 
la tecnología puede facilitar esa integración al permitir ver y 
explicar simultáneamente.

Freudenthal (1973) se distancia del formalismo hilbertiano, cri-
ticando la enseñanza que reduce la deducción a un ejercicio de 
autoridad. Para él, “demostrar” no significa aplicar reglas, sino 
comprender la necesidad de que algo sea como es. Esta idea coin-
cide con la visión de Tall (2014), quien considera que la deducción 
debe presentarse como una extensión natural del pensamiento 
visual, no como su negación.

La mediación tecnológica como nuevo terreno epistemológico
En la actualidad, la incorporación de recursos digitales no 
solo modifica la didáctica, sino también la epistemología del 
aprendiza je geométrico. La posibilidad de manipular objetos 
matemáticos dinámicos cambia la forma en que el estudiante 
razona y valida el conocimiento. Lo digital se convierte en 
un “espacio intermedio” entre el mundo empírico y el formal: 
permite experimentar la deducción en movimiento.

Por ejemplo, al explorar el teorema de Thales en GeoGebra, 
el alumno puede trazar una circunferencia y observar que to-
dos los triángulos inscritos en ella con un diámetro común son 
rectángulos.
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Figura 23.
Triángulos inscritos con diámetro común: visualización interactiva del 
teorema de Thales

Nota: Elaboración propia.

Esta comprobación visual inmediata genera confianza, pero 
también plantea preguntas: ¿por qué ocurre esto? Esa curiosidad 
conduce a la deducción formal. Así, la herramienta digital actúa 
como un dispositivo epistémico que estimula la transición entre 
ver, conjeturar y demostrar.

En el contexto ecuatoriano, esta mediación tecnológica se 
vuelve especialmente relevante, ya que muchos estudiantes 
enfrentan dificultades para visualizar conceptos espaciales de 
forma abstracta. La geometría digital ofrece una oportunidad 
de inclusión cognitiva, permitiendo que quienes aprenden con 
estilos visuales o kinestésicos puedan acceder al razonamiento 
formal a través de la manipulación.

La historia del pensamiento geométrico puede leerse como 
una oscilación constante entre el descubrimiento y la de-
mostración, entre la observación y el argumento. Lo que los 
autores nos enseñan es que no hay verdadera deducción sin 
inducción significativa, ni inducción valiosa sin deducción que 
la estructure. Enseñar geometría, por tanto, no consiste en 
elegir entre ver o razonar, sino en enseñar a ver razonando 
y a razonar viendo.

El desafío contemporáneo consiste en equilibrar el rigor lógico 
con la comprensión intuitiva, incorporando la tecnología no como 
fin, sino como mediadora del pensamiento. Las herramientas di-
gitales no sustituyen la argumentación, pero sí la enriquecen, al 
permitir experimentar la lógica del espacio de manera dinámica 
y colaborativa.

Como afirmó Tall (2014), “la mente matemática madura cuan-
do el ojo, la mano y la palabra se unen en un mismo acto de 
comprensión”. La geometría, en su diálogo eterno entre inducción 
y deducción, nos enseña precisamente eso: a unir la mirada, el 
gesto y el pensamiento en una forma de conocimiento que es a 
la vez racional, estética y humana.
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Conclusiones

El recorrido desarrollado en este capítulo permite comprender 
que la geometría no es únicamente una rama de las matemá-
ticas dedicada al estudio del espacio, sino una forma de pen-
samiento que el ser humano ha construido para comprender, 
representar y transformar su entorno. A lo largo de su historia, 
esta disciplina ha unido la experiencia sensorial con la abstrac-
ción racional, ofreciendo una mirada que busca en lo visible 
el orden y en lo pensado la coherencia. Desde las mediciones 
empíricas de las civilizaciones antiguas hasta las representa-
ciones dinámicas que hoy posibilitan los entornos digitales, la 
geometría ha conservado un mismo propósito: explicar la forma 
del mundo a través de la razón, la medida y la belleza.

En la actualidad, la enseñanza de la geometría se ha revita-
lizado gracias a la incorporación de recursos tecnológicos que 
amplían las posibilidades de explorar, visualizar y demostrar. 
Las herramientas digitales permiten que el estudiante observe, 
manipule y comprenda los objetos geométricos en movimiento, 
descubriendo regularidades y justificando sus conclusiones con 
una lógica propia. De esta manera, la demostración deja de ser 
un acto mecánico para convertirse en una experiencia viva de 
razonamiento, en la que se integran la intuición, la observación 
y la argumentación. La tecnología, bien utilizada, no sustituye 
el pensamiento matemático, sino que lo amplifica y le devuelve 
su dimensión creativa y reflexiva.

Así entendida, la geometría continúa siendo una escuela del 
pensamiento, una forma de mirar y comprender el mundo con 
precisión, equilibrio y profundidad. Enseñarla hoy significa fo-
mentar la capacidad de descubrir relaciones, de razonar con 
claridad y de encontrar sentido en las estructuras del espacio y 
del cambio. Cada punto, cada línea y cada figura se convierten 
entonces en una expresión de la inteligencia humana, en una 
invitación a pensar el orden del universo y a reconocer en ese 
orden la armonía entre la percepción y la idea.
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Capítulo II

Polígonos, áreas, circunferencia y 
círculo 

 

Introducción

Hablar de ángulos y triángulos es adentrarse en el corazón de la 
geometría. Si en el capítulo anterior las figuras planas y el círculo 
revelaban la estructura del espacio y la medida de la curvatura, 
ahora el foco se desplaza hacia la relación entre líneas, inclinaciones 
y proporciones, es decir, hacia la comprensión del cambio dentro 
de la forma. Los ángulos y los triángulos son, en muchos sentidos, 
la gramática fundamental del lenguaje geométrico: con ellos se 
explica cómo las figuras se abren, cómo se orientan en el plano y 
cómo se conectan unas con otras a través de relaciones constantes.

Desde los primeros trazos de la humanidad sobre arena o 
piedra, los triángulos han sido herramientas de medición y cono-
cimiento. Egipcios y babilonios los utilizaron para dividir terrenos 
y construir pirámides; los griegos, para fundamentar las prime-
ras nociones de razón y proporción. En esa herencia histórica 
se encuentra el origen de la trigonometría, disciplina que, siglos 
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después, permitió calcular distancias celestes, orientar la nave-
gación y comprender los ciclos de la naturaleza. Stewart (2016) 
recuerda que, sin la trigonometría, la física moderna y la astro-
nomía habrían carecido del lenguaje necesario para describir el 
movimiento periódico y el equilibrio de las fuerzas.

Sin embargo, más allá de su utilidad técnica, el estudio de 
los triángulos y los ángulos posee un profundo valor formativo. 
Apostol (1991) subraya que las relaciones trigonométricas son 
una puerta al pensamiento funcional: expresan cómo una mag-
nitud depende de otra, cómo el cambio en un ángulo produce 
una variación en una razón. En la enseñanza, esta comprensión 
trasciende lo numérico: invita al estudiante a pensar en relacio-
nes, no solo en valores.

En el plano cognitivo, Duval (2017) advierte que los ángulos 
introducen un tipo de visualización particular: no basta con ob-
servar la figura, hay que imaginar el movimiento de los lados, 
el giro, la apertura. Este acto mental vincula la percepción con 
el razonamiento, y explica por qué el ángulo es, al mismo tiem-
po, una medida y un símbolo del dinamismo del espacio. Tall 
(2014) agrega que en este tránsito entre la experiencia visual y 
la formalización simbólica se desarrolla la base del pensamiento 
trigonométrico: una forma de razonar sobre lo continuo a partir 
de relaciones discretas.

Desde el punto de vista didáctico, el triángulo se convierte 
en un laboratorio privilegiado de la argumentación. Brousseau 
(2002) sostiene que las situaciones en torno a sus propiedades 
fomentan en el estudiante la búsqueda de justificaciones y la ela-
boración de conjeturas. En la práctica, medir un ángulo, comparar 
lados o demostrar la invariancia de las razones en triángulos se-
mejantes son experiencias que transforman el aprendizaje en una 
actividad de descubrimiento y no en una repetición mecánica.

Por otra parte, Van Hiele (1986) señala que el desarrollo del 
pensamiento trigonométrico exige transitar por distintos niveles 
de comprensión. El estudiante comienza reconociendo figuras 
y medidas (nivel visual), luego identifica relaciones y patrones 
(nivel analítico) y, finalmente, construye un sistema formal que le 
permite generalizar (nivel deductivo). La enseñanza, por tanto, 
debe acompañar ese proceso con tareas que integren manipu-
lación, observación y razonamiento simbólico.

En el mundo actual, donde la tecnología convierte el movimien-
to en datos y los ángulos en coordenadas, la trigonometría vuelve 
a adquirir un papel protagónico. Desde la ingeniería civil hasta la 
inteligencia artificial, sus principios sustentan los algoritmos que 
modelan trayectorias, reconstruyen imágenes o simulan entornos 
virtuales. Moreno-Armella y Sriraman (2005) destacan que esta 
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continuidad entre geometría clásica y tecnología moderna es una 
oportunidad pedagógica: permite mostrar que las matemáticas 
son una forma viva de pensar, no un saber del pasado.

En el aula, el estudio de los triángulos y los ángulos puede 
convertirse en un espacio de integración entre la lógica y la 
creatividad. Al resolver problemas de construcción, el estudiante 
aprende a decidir, a justificar, a estimar. Al analizar funciones tri-
gonométricas, descubre que detrás de las fórmulas hay un ritmo, 
una periodicidad, una forma de describir lo que cambia y vuelve 
a repetirse. Presmeg (2020) resalta que este sentido estético 
del conocimiento a saber de la capacidad de ver armonía en las 
relaciones, es tan importante como la precisión formal.

Por ello, este capítulo no se limitará a presentar las definicio-
nes y teoremas tradicionales, sino que propondrá una lectura 
conceptual, visual y didáctica del triángulo y de las relaciones 
trigonométricas. Se abordarán los siguientes ejes:

•	 La noción de ángulo como medida del giro y expresión del 
movimiento en el plano.

•	 Los triángulos como estructuras de razonamiento y modelos 
de proporcionalidad.

•	 Las razones trigonométricas como herramientas para rela-
cionar magnitudes y modelar fenómenos.

•	 Las funciones trigonométricas como extensión analítica del 
pensamiento geométrico.

•	 La enseñanza y evaluación del pensamiento trigonométrico, 
desde un enfoque constructivista y semiótico.

El propósito general será mostrar que la trigonometría no es 
un conjunto de reglas abstractas, sino una forma de pensar el 
cambio a partir de la geometría. Cada ángulo, cada triángulo y 
cada razón representan una relación entre lo estático y lo diná-
mico, entre la forma y la medida.

Así, al finalizar este capítulo, se espera que el lector comprenda 
que enseñar y aprender trigonometría es enseñar y aprender a 
razonar con el espacio, a traducir lo visible en estructura, y a des-
cubrir en cada figura una huella del orden que habita el mundo.

Clasificación de polígonos: regulares e irregulares
La noción de polígono constituye una de las primeras formas de 
organización del pensamiento geométrico. A simple vista, un po-
lígono es una figura cerrada delimitada por segmentos de recta, 
pero en el plano conceptual representa un modelo de estructura 
espacial, un modo de ordenar el mundo a partir de relaciones 
entre puntos, líneas y ángulos.



55

Guerrero Zambrano Marcos Francisco 

Figura 1.
Polígonos como estructuras espaciales: relaciones entre puntos, seg-
mentos y ángulos

Nota: Elaboración propia.

Apostol (1991) lo considera una “representación del límite entre 
la medida discreta y la continuidad del espacio”, una idea que 
permite enlazar la geometría con la aritmética y el álgebra en 
el proceso de aprendizaje.

En la historia del pensamiento matemático, los polígonos regulares 
fueron considerados símbolos de armonía y proporción. Los pitagóri-
cos y Euclides les atribuyeron un valor filosófico: la regularidad como 
expresión de perfección. Sin embargo, la geometría moderna y la edu-
cación contemporánea los reinterpretan como modelos culturales de 
organización visual, más que como objetos absolutos. Presmeg (2020) 
sostiene que la geometría no puede reducirse a una descripción estáti-
ca del espacio, sino que debe entenderse como una mediación cultural 
que refleja formas históricas de ver, construir y representar el mundo.

Desde una perspectiva cognitiva, Duval (1999) advierte que 
el pensamiento geométrico se distingue por su capacidad de 
articular registros de representación: el gráfico (la figura), el 
simbólico (las fórmulas) y el verbal (la descripción). Comprender 
un polígono no se limita a reconocerlo visualmente, sino a identi-
ficar qué propiedades permanecen invariantes cuando su forma 
cambia. Esta mirada permite superar la enseñanza memorística 
y avanzar hacia una comprensión relacional, donde los polígonos 
son sistemas de relaciones más que dibujos cerrados.

Figura 2.
Comparación de polígonos regulares según forma, número de lados y 
disposición espacial

Nota: Elaboración propia.
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El polígono regular (aquel cuyos lados y ángulos son con-
gruentes) encarna el ideal de simetría y equilibrio; en cambio, 
el irregular desafía esa idea, mostrando que el conocimiento 
geométrico también surge de la diferencia y la variación. 

Stewart (2016) enfatiza que en la enseñanza de la geometría 
es tan importante estudiar las formas perfectas como las imper-
fectas, porque solo en la comparación el estudiante descubre las 
propiedades que las definen.

Consideremos la figura siguiente para describir las propieda-
des de los polígonos regulares

Figura 3.
Propiedades angulares de un polígono regular: igualdad de lados, án-
gulos interiores y ángulos exteriores

Nota: Elaboración propia.

Lados y vértices: El número de lados n coincide con el número 
de vértices y ángulos. Cada lado tiene la misma longitud.

Ángulos interiores: Los ángulos interiores de un polígono re-
gular son iguales entre sí, y su medida se calcula con la fórmula:

Ángulo interior =   

Ángulos exteriores: Los ángulos exteriores también son igua-
les, y su suma siempre es 360°, sin importar el número de lados:

Ángulo exterior =  

Simetría: Los polígonos regulares poseen:
1.	 Ejes de simetría que pasan por los vértices y los puntos 

medios de los lados.
2.	 Simetría rotacional, ya que al rotarse un ángulo de    la 

figura coincide consigo misma.

Circunferencia circunscrita e inscrita: Todo polígono regular puede:
1.	 Inscribirse en una circunferencia (todos sus vértices per-

tenecen a ella).
2.	 Circunscribir una circunferencia (todos sus lados son tan-

gentes a ella).
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El centro de ambas coincide con el centro de simetría del polígono.

Apotema y área:  La apotema      es el segmento perpendicular 
trazado desde el centro del polígono hasta el punto medio de un lado.

El área de un polígono regular puede calcularse como: A=   
donde: P = perímetro del polígono y a = apotema.

Relación entre radio, lado y apotema: En un polígono regular, los 
radios, lados y apotema forman triángulos isósceles congruentes.

Si el radio es R y el número de lados n, el lado se puede ex-
presar como:

y la apotema como:

Apoyo didáctico: El aprendizaje de las propiedades geométri-
cas de los polígonos regulares y sus relaciones con las circunfe-
rencias requiere diseñar actividades que combinen la manipu-
lación visual, el razonamiento geométrico y la argumentación 
matemática. De acuerdo con Duval (2017), la comprensión de las 
figuras geométricas depende de la coordinación entre los distin-
tos registros semióticos de representación (figural, simbólico y 
discursivo). Por ello, los ejercicios deben permitir al estudiante 
pasar del dibujo al cálculo, y del cálculo a la explicación teórica.

Ejercicios de exploración visual y construcción: Los primeros 
ejercicios deben centrarse en reconocer y construir polígonos 
regulares utilizando herramientas como GeoGebra o materiales 
manipulativos. Por ejemplo, se puede pedir al estudiante cons-
truir un pentágono regular y trazar su circunferencia circunscrita, 
analizando cómo varía el radio cuando cambia la longitud del 
lado. Según Arzarello et al. (2014), la experimentación dinámi-
ca en entornos digitales facilita la visualización de invariantes 
geométricos y promueve la formulación de conjeturas.

Figura 4.
Hexágono regular: bisectrices interiores y relación con la circunferen-
cia inscrita y circunscrita

Nota: Elaboración propia.
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Ejemplo 1: “Construye un hexágono regular en GeoGebra. Dibuja 
las bisectrices de los ángulos interiores y observa su punto de inter-
sección. ¿Qué relación guarda este punto con las circunferencias 
inscrita y circunscrita?”. Estos ejercicios deben concluir con una dis-
cusión colectiva, en la que los estudiantes verbalicen las propiedades 
observadas y contrasten sus conjeturas con definiciones formales.

Ejercicios de razonamiento y justificación: Una segunda etapa 
debe enfocarse en el razonamiento geométrico y la justificación 
de propiedades, como la igualdad de los ángulos o la constancia 
del radio circunscrito. Brousseau (2002) plantea que las situa-
ciones didácticas de validación favorecen la construcción del 
conocimiento matemático cuando el estudiante se enfrenta a la 
necesidad de justificar sus observaciones empíricas mediante 
argumentaciones deductivas.

Figura 5.
Pentágono regular: bisectrices interiores y centro de la circunferencia 
inscrita

Nota: Elaboración propia.

Ejemplo 2: “Demuestra que los ángulos interiores de un pentágono 
regular miden 108°. Luego, explica por qué el punto de intersección 
de las bisectrices coincide con el centro de la circunferencia inscrita.”

Este tipo de ejercicios ayuda a transitar del nivel de visualiza-
ción al de análisis y deducción, siguiendo los niveles de razona-
miento geométrico propuestos por Van Hiele (1986).

Ejercicios de aplicación y resolución de problemas: 
Posteriormente, conviene incorporar ejercicios que involucren 
cálculos métricos y contextos aplicados. Tall (2014) sostiene que 
la comprensión profunda de los conceptos matemáticos surge 
cuando los estudiantes logran vincular las imágenes concep-
tuales con las definiciones formales. En este sentido, calcular 
áreas, perímetros, diagonales o radios mediante fórmulas debe 
integrarse con la interpretación geométrica de cada magnitud.
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Figura 6.
Modelación geométrica de un polígono inscrito y circunscrito como 
aproximaciones a la realidad física

Nota: Elaboración propia.

Ejemplo 3: “Diseña un jardín con forma de hexágono regular de 
8 m de lado. Calcula la longitud del cerco necesario y la cantidad 
de césped que se debe cubrir. Representa las circunferencias 
inscrita y circunscrita e interpreta sus significados en el diseño.”

Estos ejercicios contextualizados desarrollan competencias 
de modelación matemática, ya que conectan la geometría con 
la realidad física y la resolución de problemas prácticos.

Ejercicios de comparación y generalización: Finalmente, se 
recomienda plantear tareas que promuevan la generalización 
de propiedades a distintos tipos de polígonos. Según De Villiers 
(2010), la exploración de patrones y relaciones numéricas permite 
que los estudiantes descubran regularidades estructurales, como 
la relación entre el número de lados y los ángulos interiores o la 
tendencia de los radios inscritos y circunscritos.

Ejemplo 4: “Completa una tabla donde relaciones el número de 
lados n con los ángulos interiores, los radios r y R, y el cociente 
r/R. Analiza qué sucede cuando n tiende a infinito. “Este tipo de 
actividad estimula el pensamiento algebraico y variacional, acer-
cando al estudiante a la idea del límite geométrico del polígono 
regular, que se aproxima al círculo.

Dimensión cognitiva y didáctica de la regularidad
El estudio de los polígonos regulares e irregulares posee un enor-
me potencial didáctico, ya que permite observar el paso del pen-
samiento perceptivo al analítico. Van Hiele (1986) explicó que el 
desarrollo del razonamiento geométrico se produce en niveles: el 
primero es visual, basado en la apariencia; el segundo, analítico, 
centrado en las propiedades; y el tercero, relacional, donde se 
construyen jerarquías entre las figuras.

 En este proceso, la regularidad cumple una función clave: es 
el patrón que permite reconocer lo común entre las diferencias.
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Mariotti y Bussi (1998) destacan que enseñar geometría hoy 
implica reconstruir la figura como un objeto de pensamiento y no 
como un simple dibujo. La construcción de un polígono, sea con 
regla y compás o con herramientas digitales, es una acción reflexi-
va: al trazar, el estudiante explora relaciones y genera significados.

Moreno-Armella y Sriraman (2005) argumentan que las he-
rramientas tecnológicas no sustituyen la abstracción, sino que 
la amplifican, al permitir que el alumno visualice la variación 
continua de las figuras y observe cómo ciertas propiedades tales 
como la congruencia de lados o ángulos permanecen invariantes.

Figura 7.
Exploración de relaciones angulares y estructurales mediante la cons-
trucción dinámica de polígonos

Nota: Elaboración propia.

Cuando un estudiante modifica un vértice de un polígono regu-
lar y observa cómo se conserva la suma de los ángulos interiores, 
está participando en un proceso de razonamiento dinámico, base 
de la comprensión formal.

Esta visión dialógica del aprendizaje geométrico transforma la 
enseñanza: la regularidad deja de ser una categoría cerrada y se 
convierte en un principio heurístico. 

En lugar de preguntar “¿qué figura es esta?”, el docente puede 
promover preguntas como “¿qué condiciones hacen que una figura 
sea regular?” o “¿qué sucede si alteramos una de esas condicio-
nes?”. Este cambio fomenta la curiosidad, la argumentación y la 
autonomía cognitiva, que según Duval (2017) son los verdaderos 
indicadores de comprensión matemática.

La irregularidad como desafío cognitivo y estético.
En el ámbito educativo, los polígonos irregulares suelen re-
cibir menos atención, aunque su estudio resulta igualmente 
fundamental. Lejos de representar el “error” o la “falla” del 
modelo regular, la irregularidad constituye un espacio privi-
legiado para el razonamiento analítico.

Presmeg (2020) propone revalorizar la irregularidad como 
una forma legítima de pensamiento geométrico, donde el estu-
diante aprende a buscar orden dentro del desorden aparente.
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Figura 8.
Contraste entre figura irregular y figura regular: reconocimiento de 
relaciones internas en geometría

Nota: Elaboración propia.

Desde una mirada cognitiva, Duval (1999) señala que el reco-
nocimiento de una figura irregular requiere superar la percepción 
global y centrarse en las relaciones internas.

 Es decir, un alumno comprende mejor una figura cuando pue-
de analizar cómo se relacionan sus lados y ángulos, incluso si no 
son congruentes. 

Este análisis de lo no simétrico desarrolla la flexibilidad mental 
y la capacidad de abstraer propiedades esenciales, habilidades 
clave en la formación matemática superior.

La irregularidad también tiene un valor estético y cultural. 
En arte, arquitectura y naturaleza, las formas irregulares son 
omnipresentes: desde los cristales hasta los patrones fractales.

Introducir esta perspectiva en el aula contribuye a vincular 
la matemática con el mundo visual y artístico. Godino, Batanero 
y Font (2007) afirman que el conocimiento matemático cobra 
sentido cuando el estudiante puede relacionarlo con contextos 
significativos, y la irregularidad ofrece precisamente esa conexión 
entre la teoría y la experiencia.

Una práctica formativa efectiva consiste en invitar a los es-
tudiantes a construir polígonos regulares con GeoGebra y luego 
alterar uno de sus vértices. Observar (figura 9 a ,9b) cómo cam-
bian los ángulos y el perímetro, y discutir qué propiedades se 
mantienen, permite descubrir que la geometría es un sistema de 
relaciones más que de figuras perfectas. 

Figura 9.
Variación de ángulos y perímetros al modificar un vértice de un trián-
gulo construido en GeoGebra

Nota: Elaboración propia.
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En esta experiencia, el error se convierte en recurso cogniti-
vo, una idea desarrollada por Brousseau (2002), quien plantea 
que el aprendiza je surge de los conflictos entre las represen-
taciones previas y las nuevas experiencias.

La clasificación como razonamiento relacional
Clasificar polígonos implica mucho más que nombrar figuras o 
agruparlas por su número de lados. Supone establecer relaciones 
lógicas, reconocer invariantes y construir redes de propiedades 
que revelan la estructura del conocimiento geométrico. Desde 
esta perspectiva, la clasificación deja de ser un ejercicio de me-
morización para convertirse en una forma de razonamiento que 
conecta la observación con la deducción.

De acuerdo con De Villiers (2010), clasificar figuras requiere 
desarrollar la capacidad de argumentar sobre las relaciones en-
tre conceptos, más que limitarse a repetir definiciones. Cuando 
un estudiante comprende que “todo cuadrado es un rectángulo, 
pero no todo rectángulo es un cuadrado”, está elaborando una 
jerarquía conceptual, identificando condiciones necesarias y 
suficientes que permiten distinguir y generalizar. Este tipo de 
razonamiento no solo amplía la comprensión geométrica, sino 
que fortalece la estructura del pensamiento lógico.

Figura 10.
Relación jerárquica entre cuadrado y rectángulo mediante compara-
ción de propiedades geométricas

Nota: Elaboración propia.

En la escuela, esta comprensión suele enfrentarse a una en-
señanza que privilegia la descripción visual por encima de la 
argumentación. Sin embargo, como señala Duval (2017), el pensa-
miento geométrico no se reduce a ver, sino a coordinar diferentes 
registros semióticos: el gráfico, el verbal y el simbólico. 

 Apoyo didáctico: El aula, entonces, debe transformarse en un 
espacio donde clasificar signifique pensar, comparar, conjeturar y 
justificar. Brousseau (2002) considera que las situaciones de clasi-
ficación constituyen un tipo de “situación didáctica fundamental”, 
porque permiten al alumno enfrentarse a la necesidad de explicar 
sus propias decisiones. En esta dinámica, el docente deja de ser quien 
impone categorías y pasa a ser un mediador del razonamiento.
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Figura 11.
Comparación de cuadriláteros para analizar límites conceptuales entre 
clases de figuras

Nota: Elaboración propia.

Una secuencia didáctica puede iniciar con la comparación de 
figuras que comparten propiedades y continuar con la discusión 
sobre los límites entre una clase y otra. En este proceso, el estu-
diante aprende a revisar sus propias clasificaciones, a redefinir 
criterios y a argumentar desde la estructura y no desde la apa-
riencia. Según Van Hiele (1986), este tránsito constituye el paso del 
pensamiento visual al pensamiento relacional, una de las etapas 
esenciales en la formación geométrica.

En el contexto de la didáctica contemporánea, Duval (2017) denomina 
a este proceso “pensamiento deductivo visual”: la capacidad de razonar 
a partir de las propiedades estructurales de una figura, interpretando 
la imagen como soporte del razonamiento lógico. De este modo, la cla-
sificación deja de ser un procedimiento estático y se convierte en una 
actividad cognitiva dinámica que promueve la generalización.

A su vez, Mariotti y Bussi (1998) sostienen que las tareas de cla-
sificación son un escenario ideal para la mediación semiótica. A 
través del lenguaje, el gesto, el dibujo o el software de geometría 
dinámica, los estudiantes construyen significados compartidos 
sobre las propiedades de las figuras. 

Presmeg (2020) añade que la clasificación también puede abor-
darse desde una dimensión estética y cultural. La manera en que 
el estudiante agrupa figuras, reconoce simetrías o establece rela-
ciones de semejanza responde a una sensibilidad hacia el orden 
y la armonía. En este sentido, clasificar es también una forma de 
apreciar la geometría como lenguaje de la belleza, en la que la 
razón y la emoción se complementan.

Propiedades de triángulos y cuadriláteros
El triángulo constituye la figura geométrica fundamental a partir de 
la cual se derivan las propiedades del plano. En su aparente sencillez 
se sintetizan conceptos esenciales como la congruencia, la semejan-
za, la estabilidad y la proporcionalidad. Apostol (1991) explica que el 
triángulo es “la mínima configuración cerrada que permite definir un 
plano”, pues con tres puntos no colineales se determina un espacio 
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bidimensional. Esta característica le otorga un papel estructural en 
toda la geometría: cualquier polígono puede descomponerse en 
triángulos, y toda figura plana puede reconstruirse a partir de ellos.

Figura 12.
Representación tridimensional de un triángulo para analizar su estruc-
tura geométrica básica

Nota: Elaboración propia.

Desde el punto de vista epistemológico, el triángulo también 
representa la puerta de entrada al razonamiento deductivo. 
Brousseau (2002) sostiene que, en el proceso de aprendiza je 
geométrico, las figuras no deben presentarse como objetos aca-
bados, sino como situaciones problemáticas que el estudiante 
explora para descubrir regularidades. Cuando un alumno compa-
ra triángulos, mide sus ángulos, o intenta determinar la igualdad 
de sus lados, no solo aprende propiedades; desarrolla una forma 
de pensar en la que la observación se transforma en deducción.

Figura 13.
Triángulo con medición de ángulos para promover el razonamiento 
deductivo

Nota: Elaboración propia.

Duval (2017) aporta una visión complementaria al analizar los 
registros semióticos implicados en la comprensión geométrica. 
Para este autor, la figura dibujada no es la geometría misma, sino 
un medio de representación que el sujeto debe interpretar. En el 
caso del triángulo, entender sus propiedades implica coordinar 
registros visuales, simbólicos y verbales: ver la forma, expresarla 
mediante letras y fórmulas, y describirla con argumentos lógicos. 

Asimismo, Van Hiele (1986) identificó distintos niveles de ra-
zonamiento geométrico que resultan esenciales en la enseñanza 
del triángulo. En el nivel visual, el estudiante reconoce figuras por 



65

Guerrero Zambrano Marcos Francisco 

su apariencia; en el analítico, distingue sus partes y propiedades; 
y en el informal, establece relaciones entre figuras. El paso de un 
nivel a otro requiere mediación docente, experiencias manipula-
tivas y un lenguaje cada vez más formal.

La noción de rigidez del triángulo constituye otra de sus pro-
piedades centrales. Stewart (2016) señala que, a diferencia de 
otras figuras poligonales, un triángulo con lados fijos no puede 
deformarse sin alterar sus medidas.

Figura 14.
Construcciones articuladas para explorar la rigidez estructural en 
geometría

Nota: Elaboración propia.

Este principio, que se aplica en ingeniería, arquitectura y ro-
bótica, puede explorarse en el aula mediante construcciones con 
varillas o entornos digitales como GeoGebra.

 A través de la experiencia, los estudiantes comprueban que 
tres lados determinan una figura única, comprendiendo empíri-
camente el fundamento de la congruencia.

Relaciones de congruencia, semejanza y proporcionalidad
Las propiedades de los triángulos no se reducen a la suma de 
sus ángulos interiores o a la igualdad de sus lados; su verdadero 
valor didáctico reside en las relaciones que permiten establecer 
entre figuras. De Villiers (2010) argumenta que la congruencia y la 
semejanza no son simples criterios de comparación, sino medios 
para introducir a los estudiantes en el razonamiento lógico.

Figura 15.
Triángulos congruentes mediante el criterio Lado–Ángulo–Lado (LaL)

Nota: Elaboración propia.
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La congruencia (Figura 15) se basa en la igualdad exacta 
de lados y, mientras que la semejanza exige comprender la 
proporcionalidad entre dimensiones, anticipando la noción 
de función. 

Mariotti y Bussi (1998) destacan la importancia de la mediación 
semiótica en la enseñanza de estas propiedades. La tecnología, 
al ofrecer representaciones dinámicas, facilita que el estudiante 
observe cómo varían las figuras y reconozca qué elementos 
permanecen invariantes.

Por ejemplo, al modificar un triángulo en un entorno digital y 
conservar los ángulos, los alumnos descubren que las propor-
ciones entre los lados se mantienen. Este tipo de tareas, según 
Moreno-Armella y Sriraman (2005), convierte la abstracción ma-
temática en una experiencia perceptible y manipulable.

Godino, Batanero y Font (2007) proponen interpretar estas 
relaciones dentro de un enfoque onto-semiótico, que entiende 
la actividad matemática como una práctica cultural en la que 
interactúan objetos, significados y argumentos. 

Desde esta perspectiva, el estudio de la congruencia o semejanza 
no consiste solo en aplicar fórmulas, sino en analizar los significados 
que los estudiantes atribuyen a los objetos geométricos. Así, un trián-
gulo deja de ser una figura estática y se convierte en un sistema de 
relaciones que cobra sentido en la resolución de problemas reales.

  Apoyo didáctico: En términos pedagógicos, el tratamiento 
de la semejanza puede orientarse hacia la resolución de situa-
ciones de proporcionalidad. Por ejemplo, cuando los estudiantes 
miden la altura de un árbol mediante su sombra, aplican intui-
tivamente la igualdad de razones. Tall (2014) sugiere que este 
tipo de experiencias vincula los “tres mundos del pensamiento 
matemático”: el corporal (la acción y la percepción), el simbóli-
co (las operaciones y el lenguaje) y el formal (las definiciones y 
demostraciones). Esta integración es la que permite comprender 
la matemática como una construcción coherente y no como un 
conjunto de reglas aisladas.

El triángulo rectángulo, en particular, representa una síntesis de 
todas estas relaciones. En él se aplican los teoremas de Pitágoras 
y de las razones trigonométricas, que expresan vínculos invarian-
tes entre lados y ángulos. 

Su estudio introduce al alumno en la idea de función trigo-
nométrica, donde la variación de un ángulo produce una razón 
constante entre lados, un concepto que anticipa la comprensión 
de la continuidad y el cambio en el cálculo diferencial (Apostol, 
1991; Stewart, 2016).
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Figura 16.
Triángulo rectángulo y aplicación del teorema de Pitágoras

Nota: Elaboración propia.

La diversidad estructural de los cuadriláteros
El estudio de los cuadriláteros constituye un punto de inflexión en 
la comprensión geométrica, porque exige superar la percepción 
visual de las formas y centrarse en las relaciones estructurales 
que las definen. A diferencia de los triángulos, en los cuadriláte-
ros intervienen simultáneamente propiedades de paralelismo, 
igualdad, perpendicularidad y simetría, lo que requiere una coor-
dinación entre registros gráficos, numéricos y verbales. 

Desde una clasificación geométrica elemental, los cuadriláte-
ros pueden dividirse en dos grandes grupos: paralelogramos y 
no paralelogramos. Los primeros se caracterizan por tener pa-
res de lados opuestos paralelos, lo que les otorga propiedades 
específicas de simetría y congruencia. 

Dentro de ellos se distinguen el cuadrado, el rectángulo, el 
rombo y el romboide. 

Figura 17.
Paralelogramos: cuadrado, rectángulo, rombo y romboide

Nota: Elaboración propia.

El cuadrado posee cuatro lados iguales y ángulos rectos, repre-
sentando la máxima regularidad dentro del grupo. El rectángulo 
mantiene los ángulos rectos, pero con lados opuestos iguales, 
mientras que el rombo conserva la igualdad de lados, aunque sin 
perpendicularidad entre ellos. Por su parte, el romboide presenta 
solo el paralelismo y la igualdad de lados opuestos, sin ángulos 
rectos ni diagonales iguales.
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Apoyo didáctico: Una experiencia formativa puede comenzar 
con la construcción de un romboide en GeoGebra, para analizar 
las relaciones entre sus diagonales. El docente plantea el reto: 
“¿Se cortan las diagonales del romboide en su punto medio?”. 
Los estudiantes dibujan el cuadrilátero, trazan las diagonales y 
observan la intersección. Al medir los segmentos resultantes, des-
cubren que las diagonales sí se bisecan, aunque no son iguales 
ni perpendiculares. Este hallazgo los conduce a reflexionar sobre 
la estructura del paralelogramo y a reconocer que el paralelismo 
de los lados es la propiedad que garantiza la bisección, no la 
igualdad de los lados ni los ángulos.

Otro estudio significativo consiste en explorar los límites entre 
las clases de cuadriláteros. En GeoGebra, los estudiantes constru-
yen un trapecio ABCD y analizan qué ocurre cuando el segundo 
par de lados se aproxima al paralelismo.

Figura 18.
Transformación de un trapecio en un paralelogramo mediante el ajuste 
de vértices

Nota: Elaboración propia.

Al modificar los vértices, observan que la figura se transforma 
gradualmente en un paralelogramo, es decir, pasa de tener un 
solo par de lados paralelos a tener dos.

Esta actividad les permite comprender que el paralelismo no 
depende de la apariencia visual, sino de una relación geométrica 
precisa entre rectas, que puede verificarse mediante la igualdad 
de pendientes o la no intersección. La experiencia concreta, apo-
yada en herramientas dinámicas, facilita lo que Duval (2017) llama 
coordinación de registros: el estudiante pasa de la percepción 
visual (ver rectas “casi paralelas”) al razonamiento simbólico 
(verificar pendientes iguales).

Al finalizar, el docente invita a comparar las propiedades del 
trapecio con las del romboide, preguntando: “¿Qué cambia y 
qué se conserva cuando una figura pasa de ser trapecio a ser 
paralelogramo?”

Este tipo de preguntas promueve el razonamiento relacional 
y ayuda al estudiante a reconocer que las figuras geométricas 
no son entidades aisladas, sino expresiones de un sistema de 
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relaciones lógicas. Tal como afirma Van Hiele (1986), esta capa-
cidad de deducir propiedades unas a partir de otras constitu-
yen una de las etapas esenciales del pensamiento geométrico 
avanzado.

Los no paralelogramos, en cambio, no presentan ambos pares 
de lados paralelos. El trapecio constituye el caso más representa-
tivo, pues tiene solo un par de lados paralelos; puede ser isósceles 
si los lados no paralelos son iguales, rectángulo si posee un ángulo 
de 90°, o escaleno si todos sus lados y ángulos son diferentes.

Finalmente, el trapezoide carece totalmente de paralelismo, 
siendo el tipo más general y menos regular dentro de la categoría.

Esta clasificación, más que una lista de rasgos, debe concebir-
se como una red jerárquica de relaciones, ya que un cuadrado 
es simultáneamente rectángulo y rombo, y ambos son subcasos 
de un paralelogramo.

Figura 19.
Ejemplo de cuadrilátero no paralelogramo con análisis de sus lados

Nota: Elaboración propia.

De esta forma, la enseñanza debe guiar al estudiante a descubrir 
vínculos entre propiedades y no solo a reconocer formas, favore-
ciendo el tránsito hacia un pensamiento relacional (Van Hiele, 1986).

Cálculo de perímetros y áreas de figuras planas
El concepto de medida constituye uno de los pilares del pensa-
miento matemático y una de las ideas más antiguas que la huma-
nidad desarrolló para comprender y transformar el mundo. Desde 
las primeras civilizaciones, medir fue una necesidad práctica y 
simbólica: los egipcios medían la tierra tras las crecidas del Nilo, 
los babilonios dividían el círculo en 360 grados, y los griegos 
construyeron un sistema deductivo a partir de esas prácticas. 
Para Apostol (1991), el cálculo geométrico no es solo una técnica, 
sino una forma de razonar sobre las relaciones que existen entre 
la magnitud, la forma y la proporción.

El perímetro y el área emergen como expresiones distintas de 
una misma idea: la cuantificación del espacio. 

El perímetro remite a la longitud de un contorno, una magni-
tud unidimensional que recorre los límites de la figura; el área, 
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en cambio, cuantifica la extensión bidimensional que esa fron-
tera encierra. Aunque suelen enseñarse como nociones básicas, 
su comprensión profunda implica reconocer la diferencia entre 
medir un objeto y comprender su estructura. Brousseau (2002) 
advierte que la enseñanza tradicional de la medida ha tendido 
a privilegiar el cálculo sobre el significado, dejando al estudiante 
sin una comprensión conceptual de lo que se mide.

El perímetro: entre la longitud y la forma
El concepto de perímetro parece simple, pero encierra una notable ri-
queza conceptual. Definirlo como “la suma de los lados” es insuficien-
te, pues reduce su sentido geométrico a una operación aritmética.

Figura 20.
Perímetro de un hexágono regular y representación de la suma de sus 
lados

Nota: Elaboración propia.

En realidad, el perímetro expresa la idea de recorrido, de borde, 
de límite. En un hexágono regular de lado a, decir que su períme-
tro es 6a significa que, si desplegáramos sus lados en una línea, 
esa longitud equivaldría al contorno total de la figura.

Van Hiele (1986) explica que en los niveles iniciales del razo-
namiento geométrico, los estudiantes suelen confundir perímetro 
con área porque ambos se asocian a la “grandeza” de la figura. 
No es raro que crean que una figura más grande tiene nece-
sariamente mayor perímetro. Superar esa confusión requiere 
experiencias que permitan distinguir longitud de extensión. 

  Apoyo didáctico: Brousseau (2002) propone diseñar situacio-
nes didácticas que permitan al estudiante construir el concepto de 
perímetro a partir de la acción. Medir con una cuerda el contorno 
de un jardín, rodear figuras con un hilo o calcular el recorrido de 
una pista son ejemplos de tareas que articulan la experiencia cor-
poral con la abstracción simbólica. El aprendizaje de la medida del 
perímetro no se limita a obtener un número; implica comprender 
la relación entre el objeto y su representación métrica.

Duval (1999) añade que el perímetro puede entenderse como 
una forma de representación discursiva del espacio: al medirlo, 
se está traduciendo una figura visual a un conjunto de símbolos 



71

Guerrero Zambrano Marcos Francisco 

lineales.

Figura 21.
Aproximación poligonal al perímetro curvilíneo en figuras circulares

Nota: Elaboración propia.

Este proceso requiere interiorizar la idea de continuidad, pues 
el perímetro de una curva se define mediante una suma infinita 
de segmentos infinitesimales. Aquí se insinúa ya la conexión con 
el cálculo diferencial, donde la longitud de una curva se deter-
mina mediante una integral. Apostol (1991) subraya que esta 
transición histórica del perímetro rectilíneo al curvilíneo marcó 
el nacimiento del análisis matemático moderno.

En la enseñanza, la comprensión del perímetro se fortalece 
cuando se integra con la geometría dinámica. Moreno-Armella 
y Sriraman (2005) muestran que el uso de programas como 
GeoGebra permite a los estudiantes modificar figuras y observar 
cómo varía su perímetro. Al mover un vértice de un polígono y 
ver cómo el valor del perímetro cambia, el alumno comprende 
que la medida no es un número fijo, sino una propiedad depen-
diente de la forma.

El área: de la intuición al razonamiento formal
El concepto de área representa un salto cognitivo mayor que 
el de perímetro. Medir un contorno es recorrer; medir un área 
es comparar una extensión bidimensional con una unidad 
de referencia. Duval (2017) afirma que esta transición exige 
un cambio de registro: el estudiante debe pasar del dominio 
lineal al superficial, del pensamiento unidimensional al bidi-
mensional. Sin ese cambio cognitivo, el área se convierte en 
una simple multiplicación de números sin sentido.

Históricamente, la noción de área se construyó a partir 
de la equivalencia y la descomposición. Los griegos, según 
Stewart (2016), definieron el área de un paralelogramo me-
diante la equivalencia con un rectángulo, y la del triángulo 
como la mitad de la del paralelogramo de igual base y altura. 
Estas definiciones expresan una idea profunda: medir una 
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superficie es transformarla en otra equivalente cuya medida 
se conoce.

Figura 22.
Descomposición y transformación de un polígono para justificar el 
cálculo de área

Nota: Elaboración propia.

Godino, Batanero y Font (2007) destacan que el área no es 
solo una cantidad física, sino un objeto de significado. Desde el 
enfoque onto-semiótico, su comprensión depende de las prácti-
cas institucionales en las que se usa: medir, calcular, representar 
o justificar. Por eso, el área de un triángulo o un círculo no debe 
enseñarse como una fórmula aislada, sino como el resultado de 
una serie de prácticas que tienen sentido en contextos culturales 
(arquitectura, agrimensura, diseño, arte).

Presmeg (2020) propone considerar también la dimensión se-
miótica y cultural de las figuras. Medir un área implica reconocer 
la figura como un símbolo de orden y armonía, no solo como un 
espacio físico. En este sentido, enseñar el área puede vincularse 
con la estética, con la idea de que el número y la forma expresan 
proporciones que el ser humano percibe como belleza.

El cálculo de áreas de figuras planas se fundamenta en tres 
ideas: la equivalencia, la composición-descomposición y la trans-
formación. El área de un triángulo puede deducirse a partir del 
rectángulo; la de un polígono regular, a partir del triángulo isós-
celes central; y la del círculo, mediante la aproximación poligonal.

Comprender el área y el perímetro implica reconocer que me-
dir es una forma de abstraer. En el nivel empírico, se mide con 
una regla o una cuadrícula; en el nivel analítico, se mide con una 
ecuación o una integral. Apostol (1991) y Tall (2014) coinciden en 
que esta evolución refleja la historia misma de la matemática: del 
número concreto al número continuo, de la suma de longitudes 
a la noción de límite.

La circunferencia y el círculo
Desde la antigüedad, medir el círculo fue un desafío. Los egipcios 
y los babilonios conocían aproximaciones empíricas para calcular 
su perímetro; los griegos, en cambio, buscaron una explicación 
racional. Arquímedes fue el primero en demostrar que el área de 
un círculo es igual a la de un triángulo rectángulo cuyo cateto base 
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es la longitud de su circunferencia y cuya altura es el radio. Esta 
deducción, según Stewart (2016), anticipa el concepto moderno 
de integral: una suma infinita de elementos infinitesimales.

El círculo, como figura perfecta, desafió a los matemáticos por-
que su medida exigía la introducción de un número irracional: π . 
Apostol (1991) explica que π  no es solo una constante geométrica, 
sino un número que encarna la idea de límite, pues surge de la 
relación entre la longitud de una curva y su diámetro. En este 
sentido, el círculo se convierte en el punto de encuentro entre la 
geometría y el análisis, entre la intuición visual y la abstracción 
simbólica.

Tall (2014) sostiene que el círculo es una figura privilegiada para 
explorar los tres mundos del pensamiento matemático. En el mundo 
corporal, el estudiante lo percibe como un objeto perfecto; en el 
simbólico, lo representa mediante ecuaciones como ; 
y en el formal, razona sobre sus propiedades y deduce teoremas. 
Este tránsito entre mundos no es lineal: requiere mediación, re-
flexión y múltiples experiencias sensoriales y conceptuales.

La circunferencia: frontera y medida
La circunferencia puede definirse como el conjunto de puntos 
del plano que equidistan de un punto fijo llamado centro. Esta 
definición algebraica encierra una profundidad geométrica y 
filosófica.  Es la figura que expresa el equilibrio entre constancia 
y cambio: todos sus puntos son distintos, pero guardan una re-
lación invariable con el centro.

Figura 23.
Representación de la circunferencia como lugar geométrico de puntos 
equidistantes del centro

Nota: Elaboración propia.

Van Hiele (1986) señala que este tipo de invariancia es fun-
damental en el desarrollo del pensamiento geométrico, pues 
permite comprender que una figura puede transformarse sin 
perder su esencia.

Desde el punto de vista de la medida, la longitud de la cir-
cunferencia representa uno de los primeros casos donde la in-
tuición choca con la exactitud matemática. No puede medirse 
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con regla ni con compás; requiere una aproximación progresiva 
mediante polígonos inscritos o circunscritos, tal como demostró 
Arquímedes. Brousseau (2002) interpreta este proceso como 
una situación de aprendiza je por reconstrucción, en la que el 
alumno experimenta la necesidad de un nuevo tipo de número y 
de método para medir lo que no puede contarse directamente.

Moreno-Armella y Sriraman (2005) destacan que los entornos digi-
tales han abierto nuevas posibilidades para explorar la circunferencia 
como objeto dinámico. En programas como GeoGebra, el estudiante 
puede variar el radio y observar en tiempo real cómo cambia el 
perímetro, comprendiendo de manera empírica la proporcionalidad 
directa entre ambos. El círculo: interior, superficie y continuidad.

El círculo representa, a diferencia de la circunferencia, la totali-
dad de los puntos que se encuentran dentro de un radio fijo desde 
el centro. Es, por tanto, una figura de extensión, no de borde. La 
circunferencia es la línea cerrada que delimita al círculo, mientras 
que el círculo es la región que dicha línea encierra.

Figura 24.
Diferencia conceptual entre circunferencia y círculo como límite y superficie

Nota: Elaboración propia.

Sin embargo, en la experiencia escolar, los estudiantes tienden 
a confundir ambas figuras. Duval (1999) señala que esta confusión 
se debe a una falta de diferenciación entre el registro percepti-
vo y el conceptual: se “ve” la circunferencia, pero se “piensa” el 
círculo. Enseñar a distinguir ambas requiere experiencias en las 
que el estudiante manipule objetos físicos y observe la diferencia 
entre recorrer un límite y cubrir una superficie.

El área del círculo se relaciona con su perímetro de una ma-
nera que fascina tanto a la mente como a la vista. La fórmula 

π  expresa la proporcionalidad cuadrática entre el radio y 
la superficie, y su deducción implica la idea de límite.

Figura 25.
Relación entre la longitud de la circunferencia y el diámetro en la 
definición geométrica de π
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Nota: Elaboración propia.

El número π es quizá la constante más emblemática de la ma-
temática. Su aparición en la medida del círculo revela el vínculo 
entre lo geométrico y lo analítico. 

Apostol (1991) lo define como la razón entre la longitud de la cir-
cunferencia y su diámetro, una relación que permanece constante sin 
importar el tamaño del círculo. Sin embargo, su valor exacto no puede 
expresarse mediante una fracción: es irracional, infinito y no periódico.

Stewart (2016) subraya que π simboliza el paso de la medida 
empírica al razonamiento abstracto. Para medir un círculo no 
basta con trazarlo; hay que representarlo simbólicamente. De allí 
que π se convierta en un punto de encuentro entre la geometría 
y la filosofía: mide lo que no puede medirse directamente, y en 
esa paradoja reside su poder formativo.

Cuando se calcula el área de un círculo mediante la fórmula 
π , se está aplicando una idea que supera la percepción di-

recta. El estudiante no puede medir físicamente esa superficie, pero 
puede representarla simbólicamente. Este salto del mundo visual 
al simbólico es el núcleo del pensamiento matemático superior. 
Stewart (2016) subraya que el cálculo integral generaliza la idea 
de área al considerar superficies delimitadas por curvas arbitrarias.

Figura 26.
Representación simbólica del área del círculo

Nota: Elaboración propia.

Así, el área deja de ser solo una magnitud geométrica para 
convertirse en un modelo del cambio continuo. Comprender esta 
transición ayuda al estudiante a concebir la geometría y el cál-
culo no como disciplinas separadas, sino como dimensiones de 
un mismo razonamiento.

Desde el punto de vista cognitivo, el círculo es una figura ideal 
para enseñar la noción de continuidad. Tall (2014) argumenta 
que la transición del círculo tangible al círculo analítico, es decir, 
de la figura dibujada a la ecuación , ilustra el paso 
del pensamiento geométrico concreto al abstracto. Cuando el 
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estudiante comprende que todos los puntos que satisfacen esa 
ecuación forman una misma figura, su razonamiento alcanza un 
nivel formal de generalización.

Presmeg (2020) añade una dimensión semiótica y cultural al 
estudio del círculo. En muchas culturas, el círculo simboliza el ciclo 
de la vida, el tiempo o la totalidad. Integrar estas interpretaciones 
en la enseñanza no significa abandonar el rigor matemático, sino 
reconocer la dimensión humana del conocimiento geométrico. La 
forma perfecta no solo se calcula: también se interpreta y se siente.

Propiedades métricas del círculo: arcos, cuerdas, sectores y segmentos
El estudio del círculo trasciende la simple contemplación de una 
forma perfecta. Su riqueza geométrica reside en la red de relacio-
nes métricas que lo habitan: los arcos, las cuerdas, los sectores y 
los segmentos. Cada uno de estos elementos revela una manera 
distinta de medir y comprender el espacio curvo. Apostol (1991) 
señala que el paso del razonamiento sobre rectas y triángulos a la 
medida de curvas y áreas circulares marcó un punto de inflexión 
en la historia de la matemática: obligó a pensar la medida como 
una sucesión infinita de aproximaciones.

En la geometría escolar, estos elementos constituyen un puen-
te entre el pensamiento euclidiano y el pensamiento analítico. 
Mientras el estudiante mide longitudes y ángulos, se enfrenta a 
la necesidad de cuantificar lo que no es lineal. En este sentido, 
los arcos y las cuerdas introducen el problema de la curvatura, 
y los sectores y segmentos, el de la subdivisión del área. 

El círculo, con su estructura simétrica, permite abordar la 
geometría como un sistema de relaciones armónicas. Van Hiele 
(1986) sostiene que la madurez geométrica se alcanza cuando el 
estudiante puede reconocer las propiedades invariantes de las 
figuras y deducir unas a partir de otras. En el caso del círculo, esa 
invariancia se manifiesta en la relación constante entre el radio 
y la longitud de cualquier arco, o en la proporcionalidad entre 
el ángulo central y el área del sector. Estas conexiones, más que 
fórmulas, son expresiones de un pensamiento relacional.

El arco de circunferencia representa la porción del borde cir-
cular comprendida entre dos puntos, mientras que la cuerda es el 
segmento que los une directamente. Aunque ambos comparten 
los mismos extremos, su naturaleza métrica es distinta: el arco 
pertenece al mundo curvo, la cuerda al mundo rectilíneo.

Figura 27.
Aproximación de la longitud de un arco mediante el uso de cuerdas
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Nota: Elaboración propia.

Stewart (2016) explica que comprender la relación entre am-
bas es clave para desarrollar una visión analítica del círculo, pues 
en esa relación se condensa la idea de aproximación.

Si el arco se hace cada vez más pequeño, su longitud tiende a la 
de la cuerda. Este fenómeno introduce intuitivamente el concepto 
de límite. Apostol (1991) lo utiliza para explicar cómo la longitud 
de una curva puede definirse como el límite de las longitudes de 
los segmentos que la aproximan. Así, el estudio de los arcos y las 
cuerdas prepara el terreno para el razonamiento infinitesimal.

Apoyo didáctico: Desde el punto de vista didáctico, Brousseau 
(2002) recomienda diseñar situaciones donde el estudiante des-
cubra por sí mismo las relaciones entre ángulos, arcos y cuerdas. 
Por ejemplo, al explorar con compás y regla, puede observar que 
los arcos subtendidos por un mismo ángulo central son congruen-
tes, o que la cuerda es mayor cuanto más próximo se encuen-
tra su arco al diámetro. Estas experiencias empíricas activan el 
proceso de abstracción progresiva que Van Hiele describe como 
esencial para avanzar hacia el razonamiento formal.

Figura 28.
Relaciones entre arco, cuerda y ángulo central como base para la abs-
tracción progresiva

Nota: Elaboración propia.

Duval (2017) advierte, sin embargo, que el razonamiento sobre 
curvas exige una conversión semiótica compleja: el estudiante debe 
traducir lo que ve (la forma curvada) a un discurso simbólico (una 
relación trigonométrica). En este sentido, los entornos digitales se 
convierten en aliados poderosos. Moreno-Armella y Sriraman (2005) 
demostraron que, al manipular arcos y cuerdas en GeoGebra, los 
alumnos pueden observar visualmente cómo varía la longitud del 
arco en función del ángulo central, interiorizando la proporcionali-
dad θ cuando el ángulo se mide en radianes. La visualización 
deja de ser un apoyo y se transforma en una forma de pensamiento.

El círculo también puede descomponerse en partes delimita-
das por radios y cuerdas. El sector circular es la región compren-
dida entre dos radios y el arco que los une; el segmento circular, la 
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comprendida entre una cuerda y el arco correspondiente. Ambos 
permiten abordar el área del círculo no como una totalidad, sino 
como una suma de partes, lo que introduce la idea de integración.

Figura 29.
Descomposición del círculo en sector y segmento circular para intro-
ducir la idea de integración

Nota: Elaboración propia.

Apostol (1991) muestra que el área del sector circular es pro-
porcional al ángulo central, y puede expresarse como:

 
θ
π π θ

 si el ángulo se mide en radianes.

Esta relación, aparentemente simple, encierra una com-
prensión profunda: la idea de que toda medida es una com-
paración entre una parte y el todo. Stewart (2016) sugiere 
que esta proporcionalidad ofrece un ejemplo accesible del 
pensamiento funcional, pues el área del sector depende li-
nealmente del ángulo, mientras que la del círculo completo 
constituye el caso máximo.

El segmento circular, por su parte, representa una región más 
compleja, cuyo cálculo combina el área del sector con la del 
triángulo isósceles formado por los radios y la cuerda.

Figura 30.
Representación del segmento circular como combinación del sector y 
el triángulo isósceles

Nota: Elaboración propia.

Este tipo de problemas exige al estudiante integrar diferentes 
conocimientos geométricos, como la trigonometría y la descom-
posición de figuras. 

Duval (1999) afirma que el aprendizaje significativo se logra 
cuando el alumno no solo aplica fórmulas, sino que comprende 
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cómo los distintos registros se relacionan para describir un mis-
mo fenómeno.

Aplicaciones de cálculo de áreas y perímetros
El cálculo de áreas y perímetros trasciende su carácter instru-
mental para convertirse en una herramienta de comprensión del 
espacio, de análisis estructural y de razonamiento matemático. 
Lejos de constituir un conjunto de fórmulas que el estudian-
te debe memorizar, representa un campo de aplicación donde 
confluyen la medida, la proporcionalidad y la modelación. Esta 
dimensión aplicada, cuando se enseña de forma crítica, fomenta 
la capacidad de transferir el conocimiento matemático a con-
textos sociales, científicos y tecnológicos, cumpliendo así una 
función formativa integral.

Desde la perspectiva de Duval (2017), comprender una medi-
da implica coordinar registros de representación que van desde 
lo perceptivo hasta lo simbólico. Por ello, al calcular el área de 
una superficie o el perímetro de un contorno, el estudiante no 
solo realiza operaciones numéricas, sino que también interpre-
ta gráficamente, compara magnitudes y comunica relaciones. 
El cálculo geométrico se transforma entonces en una práctica 
de pensamiento: un proceso de modelación en el que el sujeto 
construye significado y no simplemente ejecuta reglas.

En este sentido, el docente debe proporcionar tanto herra-
mientas teóricas como ejercicios prácticos que promuevan 
el razonamiento, la modelación y la resolución de problemas 
contextualizados.

El desarrollo del pensamiento geométrico no depende solo 
del conocimiento de fórmulas, sino de la calidad y diversidad 
de las tareas que el estudiante enfrenta. Cada tipo de ejerci-
cio sobre áreas y perímetros refleja una concepción particular 
del aprendiza je matemático: algunos se centran en la memo-
rización de reglas, otros en la exploración, la argumentación 
o la modelación. Según Brousseau (2002), las situaciones di-
dácticas deben organizarse de modo que el conocimiento 
emerja del conflicto cognitivo y no de la repetición mecánica. 
De igual manera, Duval (2017) recuerda que comprender la 
geometría implica articular distintos registros de represen-
tación tales como: figural, simbólico, numérico y verbal para 
generar sentido.

La tipología que se presenta a continuación amplía la visión 
tradicional de los ejercicios, fundamentando cada tipo desde di-
versas perspectivas teóricas y mostrando ejemplos que reflejan 
su potencial formativo.
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Tabla 1.
Fórmulas fundamentales de perímetro y área en figuras planas

Figura Perímetro (P) Área (A)
Comentario 
conceptual

Cuadrado  El lado es la uni-
dad generadora 
de toda la figura; 
su área expresa la 
noción de “magni-
tud cuadrada”.

Rectángulo Expresa la rela-
ción producto en-
tre dos dimensio-
nes ortogonales.

Triángulo  Permite visualizar 
la mitad de un pa-
ralelogramo como 
modelo.

Rombo Las diagonales 
son ejes de sime-
tría que determi-
nan el área.

Paralelogramo Equivalente en 
área al rectángulo 
de igual base y 
altura.

Trapecio El área resulta del 
promedio de las 
bases multiplica-
do por la altura.

Polígono
regular (n 
lados)

 

La fórmula gene-
raliza la estructu-
ra de los polígo-
nos simétricos.

Círculo  π π Representa el 
límite de los polí-
gonos regulares al 
tender ( ).
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Sector circular π θ π θ
Mide la propor-
ción del círculo 
delimitada por un 
ángulo central.

Nota. La tabla sintetiza relaciones métricas esenciales en figuras geométri-
cas básicas, destacando cómo cada expresión revela una estructura concep-
tual distinta del espacio y de la medida. Elaboración propia.

1.	 Ejercicios de aplicación directa de fórmulas
Estos ejercicios constituyen el punto de partida para el dominio 
instrumental. Buscan que el estudiante reconozca las dimensiones 
relevantes y aplique correctamente las expresiones algebraicas. 
Aunque son de naturaleza reproductiva, tienen un valor introduc-
torio cuando se acompañan de explicaciones gráficas y justifica-
ciones verbales.

Según Brousseau (2002), las tareas directas deben enmarcarse 
en situaciones didácticas intencionadas que no se reduzcan a la 
mecanización, sino que permitan comprender la relación entre la 
figura, la medida y la fórmula. Tall (2014) añade que en este nivel 
los estudiantes transitan del mundo encarnado (visual) al mundo 
simbólico (algebraico), integrando la observación y la manipulación 
con la simbolización matemática.

Tabla 2.
Ejercicios introductorios de perímetro y área en figuras planas

Calcular el área de un triángulo 
de base 15 cm y altura 10 cm.

Hallar el perímetro de un círculo 
de radio 7 cm.

π π

Calcular el área de un parale-
logramo con base 8 m y altura 
5 m.

π π

Determinar el área de un trape-
cio cuyas bases miden 10 y 6 m, 
y su altura 4 m.

Nota. Los ejercicios ilustran cómo la aplicación directa de fórmulas se vuelve 
significativa cuando el estudiante comprende la relación entre la representa-
ción geométrica y el modelo algebraico. Elaboración propia.

2.	 Ejercicios de descomposición y recomposición de figuras
Este tipo de tareas promueve la visualización y la capaci-
dad analítica. El estudiante aprende a reconocer que una 
figura compleja puede dividirse en polígonos más simples o 
combinarse con otras para formar nuevas configuraciones 
equivalentes. 
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De Villiers (2010) argumenta que este tipo de ejercicios 
activa la función descubridora del razonamiento geométrico, 
porque el alumno infiere relaciones entre las partes. Duval 
(2017) añade que estas tareas facilitan la conversión entre re-
gistros semióticos, lo que estimula la abstracción geométrica.

Finalidad: Fomentar la capacidad de descomponer, abs-
traer y reconstruir, desarrollando la visión estructural de las 
figuras geométricas (Godino, Batanero y Font, 2007).

Tabla 3.
Ejercicios de composición y descomposición de áreas para el desa-
rrollo del razonamiento geométrico

Calcular el área de una figura for-
mada por un rectángulo de 10 m × 
6 m y un triángulo isósceles adya-
cente con base 10 m y altura 4 m.

Determinar el área sombreada al 
restar de un cuadrado de 12 cm de 
lado un círculo inscrito.

π

Calcular el área de una figura 
compuesta por un semicírculo de 
radio 3 cm y un rectángulo de 6 
cm × 4 cm.

π

Dividir un hexágono regular en 
seis triángulos equiláteros y hallar 
el área total en función del lado.

Nota. Los ejercicios presentados integran la visualización geométrica con el 
uso de representaciones simbólicas. Elaboración propia.

Finalidad: Fomentar la capacidad de descomponer, abstraer 
y reconstruir, desarrollando la visión estructural de las figuras 
geométricas (Godino, Batanero y Font, 2007).

3.	 Ejercicios de transformación y conservación
En estos ejercicios se analizan los efectos de las transformaciones 
geométricas (ampliaciones, reducciones, deformaciones) sobre el área 
y el perímetro. El objetivo es comprender las relaciones de proporcio-
nalidad y covariación.

Moreno-Armella y Sriraman (2005) sostienen que las transformacio-
nes permiten revelar la dialéctica entre forma y medida, favoreciendo 
una comprensión dinámica del espacio. Stewart (2016) complementa 
esta idea al señalar que los ejercicios de covariación preparan al es-
tudiante para el razonamiento diferencial y la optimización.
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Tabla 4.
Ejercicios de homotecia, perímetro y variación de áreas en figuras 
planas

Calcular el área y el perímetro de 
un rectángulo 4 × 6 y luego de uno 
homotético con razón 2. El perímetro se duplica y el 

área se cuadruplica.

Comparar el área de dos figuras 
con el mismo perímetro:

Cuadrado de lado 6 m: 
Rectángulo de lados 9 y 3: 

         
El cuadrado maximiza el área.

Explorar la variación del área del 
círculo al duplicar su radio:

π π

Nota. Estos ejercicios muestran cómo los cambios de escala modifican el 
perímetro y el área, fortaleciendo la comprensión de relaciones geométricas 
fundamentales. . Elaboración propia.

Finalidad: Comprender las relaciones entre magnitudes y de-
sarrollar pensamiento variacional (Tall, 2014).

4.	Ejercicios de generalización algebraica
Estos ejercicios permiten derivar expresiones generales a partir de 
casos particulares, lo cual impulsa la capacidad de abstraer y forma-
lizar. Mariotti y Bussi (1998) afirman que el aprendizaje geométrico 
implica la mediación semiótica: el estudiante traduce observaciones 
visuales en lenguaje algebraico. Duval (2017) explica que esta con-
versión simbólica constituye un salto cognitivo hacia la abstracción.

Tabla 5.
Problemas avanzados de generalización y representación funcional en 
geometría plana

Deduzca la fórmula del área de un polígono 
regular de n lados de longitud k y apotema R.

Expresar el área de un cuadrado como fun-
ción del perímetro.

Mostrar que el área del círculo puede expre-
sarse en función del perímetro: π

Determinar una relación general entre el 
área y el número de lados de un polígono 
regular inscrito en un círculo de radio r.

π

Nota. Los ejercicios integran proporcionalidad, perímetro y funciones trigo-
nométricas para fortalecer la comprensión estructural del área en figuras 
regulares y en el círculo. Elaboración propia.
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Finalidad: Favorecer la formalización, la simbolización y la ca-
pacidad de establecer patrones generales, base del pensamiento 
algebraico (Brousseau, 2002).

5.	 Ejercicios de modelación contextualizada
Estos ejercicios trasladan los conocimientos geométricos a situa-
ciones del entorno real, fortaleciendo la comprensión funcional 
y la conciencia social del aprendizaje.

Presmeg (2020) subraya que la modelación otorga significado 
cultural a la matemática; al resolver problemas reales, el estu-
diante desarrolla una comprensión situada. Moreno-Armella y 
Sriraman (2005) añaden que el trabajo con contextos auténticos 
estimula la autonomía y la reflexión crítica.

Tabla 6.
Problemas aplicados de geometría en contextos reales y de estima-
ción cuantitativa

Una pista de atletismo tiene forma de rectángulo con dos semicírculos 
de radio 30 m en los extremos. Calcular el perímetro y el área total.

Calcular el costo de colocar cerámica en una habitación de 5 m × 3 
m si cada caja cubre 1.5 m² y cuesta 12 USD.

Determinar el área de un terreno trapezoidal con bases 40 y 25 m, y 
altura 20 m, para estimar la cantidad de semillas a sembrar si cada 
hectárea requiere 250 kg.

Diseñar un vitral circular con diámetro de 2 m, calculando la cantidad 
de vidrio (en m²) y el perímetro del marco metálico.

Nota. Las tareas integran modelación geométrica y razonamiento métrico 
para resolver situaciones auténticas de cálculo de áreas, perímetros y costos. 
Elaboración propia.

Finalidad: Desarrollar la transferencia del conocimiento y la 
conciencia de que la geometría es una herramienta para com-
prender y transformar el entorno (Presmeg, 2020).

6.	Ejercicios de argumentación y demostración
En este nivel se busca razonar, justificar y probar propiedades 
geométricas. Este tipo de tarea promueve la comprensión pro-
funda del sistema deductivo y la conexión entre observación, 
inferencia y demostración. De Villiers (2010) define la demos-
tración como una actividad de descubrimiento y explicación 
que desarrolla la autonomía cognitiva. Tall (2014) y Duval (2017) 
coinciden en que la argumentación geométrica representa la 
culminación del aprendizaje, porque el estudiante logra articular 
los tres mundos del pensamiento: visual, simbólico y formal.
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Tabla 7.
Tareas demostrativas para el desarrollo del razonamiento geométrico 
avanzado

Demostrar que el área del triángulo es la mitad del área del rectángulo 
que comparte su base y altura.

Probar que entre todas las figuras con igual perímetro, el círculo en-
cierra el área máxima.

Justificar que el área del rombo es igual al semiproducto de sus 
diagonales.

Argumentar que la suma de las áreas de los cuadrados construidos 
sobre los catetos de un triángulo rectángulo equivale al cuadrado 
sobre la hipotenusa (teorema de Pitágoras)

Nota. Las actividades promueven la argumentación deductiva y la comprensión 
profunda de propiedades geométricas fundamentales. Elaboración propia.

Finalidad: Desarrollar el razonamiento lógico, la capacidad 
de explicación y la metacognición geométrica (De Villiers, 2010; 
Brousseau, 2002).

Conclusiones

El capítulo sobre polígonos, áreas, circunferencia y círculo permitió 
comprender que la geometría no solo describe las formas del mun-
do, sino que enseña a pensar con precisión, orden y sensibilidad. A 
través del estudio de las figuras planas se aprendió que medir es 
también comparar, abstraer y razonar; cada perímetro calculado y 
cada superficie determinada son el resultado de una construcción 
mental que une la observación con la lógica. Esta relación entre 
forma y medida invita a concebir la geometría como un lenguaje 
del pensamiento y no como una lista de fórmulas, pues detrás de 
cada cálculo hay una idea de estructura, equilibrio y armonía.

El análisis de las propiedades de los polígonos y de las relaciones 
entre sus lados y ángulos permitió descubrir la coherencia interna 
del razonamiento geométrico. Comprender cómo una figura puede 
descomponerse, transformarse o conservar sus magnitudes abre al 
estudiante la posibilidad de reconocer patrones y regularidades en 
la naturaleza. En este proceso, el cálculo de áreas y perímetros deja 
de ser un fin para convertirse en un medio que desarrolla capacida-
des más amplias: visualizar, inferir, conjeturar y argumentar. De este 
modo, la enseñanza geométrica se vuelve una experiencia intelectual 
que conecta lo tangible con lo abstracto.

Finalmente, el estudio de la circunferencia y el círculo ofreció una 
síntesis entre la razón y la intuición, al mostrar cómo la perfección 
de las formas redondas traduce la búsqueda humana de proporción 
y movimiento. El aprendizaje de estos contenidos, cuando se vincula 
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con la práctica y la exploración tecnológica, fomenta una compren-
sión viva de la medida, la equivalencia y la variación. La geometría 
se convierte así en una escuela del pensamiento, una disciplina que 
enseña a observar con rigor, a expresar con claridad y a descubrir 
la belleza que existe en la relación entre número, espacio y forma.
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Capítulo III

Relaciones métricas en triángulos, 
poliedros, cuerpos de revolución y 

modelo de Van Hiele 

 

Introducción

El estudio de la geometría adquiere un lugar fundamental en 
la formación matemática cuando se reconocen las relaciones 
internas que estructuran las figuras y los cuerpos del espacio. 
Comprender un triángulo, un poliedro o un sólido de revolu-
ción no se limita a identificarlos visualmente, sino a revelar 
las conexiones que existen entre sus elementos, sus medidas 
y las transformaciones que los caracterizan. Cada figura con-
serva una lógica interna que puede analizarse, compararse 
y generalizarse, y es en este proceso donde el razonamiento 
geométrico encuentra su verdadero sentido formativo.

A lo largo de este capítulo, se aborda la geometría desde 
una perspectiva que integra la observación, la medición y la 
deducción como partes de un mismo proceso de construcción 
del conocimiento. Las relaciones métricas permiten recono-
cer cómo se organizan los elementos de las figuras planas y 
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espaciales, cómo se mantienen o se modifican ba jo distintas 
condiciones, y qué principios gobiernan su estructura. Al mis-
mo tiempo, el estudio de los cuerpos tridimensionales abre 
la posibilidad de comprender el espacio en toda su profundi-
dad, desde la interpretación de sus formas hasta el cálculo de 
áreas y volúmenes que aparecen con frecuencia en contextos 
reales y aplicados.

Finalmente, el capítulo incorpora un enfoque centrado en el de-
sarrollo progresivo del razonamiento geométrico, reconociendo 
que los estudiantes avanzan por etapas diferenciadas que requie-
ren propuestas didácticas cuidadosamente estructuradas. Este 
marco permite comprender por qué algunos conceptos resultan 
intuitivos mientras otros exigen mayor abstracción, y orienta la 
enseñanza hacia experiencias que favorezcan un pensamiento 
más consciente, reflexivo y articulado. Así, el capítulo busca no 
solo describir propiedades geométricas, sino también mostrar 
cómo estas se convierten en herramientas para comprender el 
espacio y para formar una manera de pensar matemática más 
profunda y flexible.

Relaciones métricas en triángulos rectángulos y oblicuángulos
Hay relaciones matemáticas que, más allá de su formalidad, pare-
cen contener una suerte de verdad íntima sobre el modo en que se 
organiza el espacio. Entre ellas, las relaciones métricas en los trián-
gulos rectángulos y oblicuángulos ocupan un lugar privilegiado: no 
solo permiten medir, sino que revelan cómo el espacio se ordena, 
se abre, se proyecta y, en cierto sentido, se deja comprender.

Un triángulo no es solo una figura; es una estructura de pen-
samiento. En él se encuentran la rectitud y la oblicuidad, la cons-
tancia y la variación, el límite y la posibilidad. Por eso, al trabajar 
sus relaciones métricas, no enseñamos únicamente fórmulas; 
enseñamos a ver. Y ver, en geometría, implica comprender cómo 
los objetos se configuran, qué relaciones preservan, cuáles ceden 
o se transforman.

A lo largo de la historia de la matemática, las relaciones mé-
tricas han sido el puente entre el pensamiento intuitivo y el pen-
samiento deductivo. Como advierte Tall (2014), la comprensión 
surge cuando el estudiante consigue articular su imagen con-
ceptual como aquello que imagina cuando piensa en un ángulo 
que se abre, en un lado que crece, en una altura que cae, con la 
definición formal que captura el comportamiento de esas figuras 
bajo reglas precisas.

Pero para llegar ahí, el docente debe guiar un recorrido que 
no es solo cognitivo, sino epistemológico y didáctico. Van Hiele 
lo comprendió con claridad: el estudiante no nace sabiendo 
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“razonar geométricamente”; necesita pasar por niveles de per-
cepción, análisis, abstracción y deducción que deben ser cuida-
dosamente cultivados (Fuys et al., 1988).

La perpendicularidad como principio generativo: el triángulo 
rectángulo como origen
El triángulo rectángulo es quizá la figura más potente de la geo-
metría clásica. No por su simplicidad, sino porque en él convergen 
tres elementos que definen la estructura del espacio euclidiano: 
la perpendicularidad, la proyección y la semejanza.

Cuando Euclides presenta el Teorema de Pitágoras, no lo hace 
como un procedimiento para “hallar un lado”, sino como una equi-
valencia de áreas que explica una forma fundamental de equi-
librio geométrico. Apostol (1991) insiste en este punto: Pitágoras 
no es un truco, sino una revelación sobre cómo se distribuye la 
extensión en un triángulo recto.

La altura trazada desde el vértice recto, es decir, esa línea 
silenciosa que cae con naturalidad hacia la hipotenusa, no es 
un adorno técnico.

 Es, en sí misma, un acto geométrico: al caer, genera dos trián-
gulos nuevos, cada uno semejante al original. La figura se multi-
plica, y con ella, la estructura métrica se hace visible.

Figura 1.
Descomposición métrica del triángulo rectángulo mediante la altura.

Nota: Elaboración propia.

Desde ahí nace todo: la relación entre catetos y proyeccio-
nes, la proporcionalidad de los triángulos semejantes, la equiva-
lencia entre áreas, las razones trigonométricas como cocientes 
invariantes.

Así entendida, la perpendicularidad deja de ser un simple “dato 
geométrico” disponible en la figura para convertirse en un prin-
cipio generativo que organiza la producción misma del espacio 
matemático. Esta idea, presente en la tradición euclidiana pero 
reinterpretada desde la didáctica contemporánea, invita a mirar 
la perpendicularidad no como una propiedad aislada sino como 
una estructura relacional que permite engendrar significados, de-
finir objetos y establecer jerarquías conceptuales. En palabras de 
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Mariotti y Bussi (2020), toda relación que el estudiante construye 
sobre una figura es potencialmente un acto de pensamiento; 
y la perpendicularidad, por su potencia operativa, orienta ese 
pensamiento hacia la construcción de invariantes y sistemas.

En la geometría clásica, Euclides (Heath, 1956) utiliza la perpen-
dicularidad para fundar nociones como altura, distancia mínima 
y ángulos rectos, que luego sirven para desarrollar teoremas 
más complejos. Desde esta perspectiva, la perpendicularidad 
produce matemática: de ella se derivan criterios de congruencia, 
definiciones de tangencia y caracterizaciones de simetría. No 
es unívoca: funciona como núcleo desde el cual se despliega un 
sistema coherente de relaciones.

En la didáctica de la geometría, esta idea adquiere un matiz 
epistemológico relevante. Duval (2017) explica que el sentido 
matemático no se encuentra en las figuras sino en el sistema de 
operaciones cognitivas que los estudiantes pueden realizar sobre 
ellas. La perpendicularidad, en cuanto operación se convierte en 
un motor epistemológico que tiende puentes entre diferentes 
registros: gráfico, discursivo y algebraico. Así, al construir una 
altura en un triángulo, el estudiante no “aplica una definición”, 
sino que genera un dispositivo de lectura de la figura que rede-
fine su estructura interna.

Cuando se define la distancia de un punto a una recta, la 
perpendicularidad actúa como criterio de optimización: selec-
ciona el camino más corto entre infinitos posibles. En contextos 
más avanzados, la perpendicularidad sostiene la teoría de pro-
yecciones ortogonales, indispensable en álgebra lineal, análisis 
vectorial y geometría analítica. Como señala Stewart (2016), las 
proyecciones permiten reescribir problemas geométricos en 
términos algebraicos y facilitan transiciones entre espacios de 
distinta dimensión.

Ejemplo 1:
Imagine una escalera apoyada en un muro. Sabemos que la 
parte inferior se desliza hacia afuera. Si quisiéramos modelar la 
longitud de la escalera, podríamos caer en la tentación de aplicar 
directamente el teorema de Pitágoras. Pero, desde esta mirada 
conceptual, la fórmula es solo la consecuencia final de un proceso 
más profundo: la escalera, el muro y el suelo conforman un trián-
gulo rectángulo donde la perpendicularidad reparte el espacio.

La escalera no “vale”  ; la escalera es la diagonal que 
equilibra el área combinada de dos cuadrados que expresan la 
extensión de los catetos.
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Figura 2.
Representación geométrica de la escalera como hipotenusa del trián-
gulo rectángulo.

Nota: Elaboración propia.

La oblicuidad como expansión del pensamiento: triángulos sin 
ángulos rectos
Una vez que el estudiante ha comprendido la estructura métrica 
del triángulo rectángulo, la geometría exige un salto conceptual: 
¿qué ocurre cuando ningún ángulo es recto?

Aquí surge la necesidad de las leyes del seno y del coseno. 
No como herramientas de cálculo, sino como puentes concep-
tuales entre la rectitud y la oblicuidad. Freudenthal (1973) diría 
que, cuando el ángulo deja de ser recto, el fenómeno cambia: la 
perpendicularidad ya no estructura el espacio.

 El docente debe ofrecer nuevas maneras de experimentar la 
figura. Esto puede hacerse desde dos intuiciones:

•	 La visión angular: la Ley del Seno nace cuando interpreta-
mos que un lado no crece solo por su longitud, sino por la 
apertura del ángulo que lo sostiene.

•	 La tensión lateral del triángulo: la ley del coseno nace cuando 
reconocemos que el lado opuesto está influenciado no solo por 
los otros dos, sino por el “empuje” que genera el ángulo entre ellos.

Los triángulos oblicuángulos pueden inscribirse en circunfe-
rencias. Ese hecho aparentemente simple cambia todo: cada 
lado es una cuerda, y la apertura angular determina su longitud.

Figura 3.
Representación geométrica de la Ley del Seno en un triángulo inscrito 
en una circunferencia.

Nota: Elaboración propia.



92

Relaciones métricas en triángulos, poliedros, cuerpos de revolución y modelo de Van Hiele 

Así, la Ley del Seno afirma  ,  donde 
R es el radio de la circunferencia circunscrita al triángulo. Ruiz y 
Álvarez (2008) muestran que muchos estudiantes aplican la Ley 
del Seno sin entender que sus raíces están en esa configuración: 
el triángulo inscrito en un círculo.

Ejemplo: En el Parque Nacional Cotopaxi, un equipo de guar-
daparques necesita medir la distancia entre dos puntos remotos 
A y B para instalar un cable de monitoreo. 

Desde un punto de observación C, que se encuentra a 500 me-
tros de A, se mide el ángulo entre las líneas CA y CB, obteniendo 
un ángulo en C de 50°.

Figura 4.
Aplicación de la Ley del Coseno para determinar la distancia entre 
dos puntos remotos.

Nota: Elaboración propia.

Además, el ángulo en A entre las líneas AB y AC se midió como 
70°. Con estos datos: ¿Cuál es la distancia entre los puntos A y B?

La distancia se determina directamente aplicando: 
.

Ley del Coseno: Pitágoras modificado por el ángulo
La Ley del Coseno: α , suele introducirse 
como una simple “extensión” del Teorema de Pitágoras para 
triángulos sin ángulo recto.

Figura 5.
Representación geométrica de la Ley del Coseno en un triángulo 
oblicuángulo.

Nota: Elaboración propia.
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Para muchos autores, esta ley no es únicamente un resultado 
técnico, sino un punto donde convergen distintas concepciones 
del espacio: la geométrica clásica heredada de Euclides, la vec-
torial moderna, la fenomenológica del movimiento angular, la 
cognitiva del razonamiento visual y la didáctica de los registros 
semióticos.

Lo que habitualmente aparece como una fórmula estática es, en 
realidad, una expresión condensada de varias maneras de entender 
la geometría como ciencia de las relaciones. Este apartado recupera 
esas miradas, no para oponerlas, sino para permitir que dialoguen 
entre sí y restituyan a la Ley del Coseno su densidad conceptual.

Aunque Euclides nunca escribió la Ley del Coseno con las for-
mas algebraicas actuales, sí anticipó su estructura conceptual en 
los Libros II y VI de Los Elementos. En la Proposición 12 del Libro II, 
Euclides muestra cómo las áreas construidas sobre los lados de un 
triángulo no rectángulo se relacionan mediante una serie de parale-
logramos y rectángulos cuya inclinación depende del ángulo interior.

Desde esta lectura:
•	 El término  expresa un equilibrio ideal de áreas 

“como si el triángulo fuera recto”
•	 El término α  introduce la distorsión angular que 

rompe ese equilibrio.
La Ley del Coseno adquiere así un carácter casi poético: ex-

presa cómo la oblicuidad perturba la “armonía pitagórica” del 
espacio. En palabras de Euclides, el triángulo oblicuo no puede 
ser leído sin considerar la inclinación de sus lados, algo que 
la fórmula moderna captura con precisión. Freudenthal (1973), 
desde su teoría de la matematización, sostiene que la clave está 
en recuperar el fenómeno: ¿qué pasa realmente con un triángulo 
cuando su ángulo se abre o se cierra? (Figura 6).

Figura 6.
Variación del lado opuesto en función de la apertura del ángulo según 
la Ley del Coseno.

Nota: Elaboración propia.

1.	 Cuando , el triángulo está en una forma “estable” 
y se cumple Pitágoras.
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2.	 Cuando , los lados se acercan: el triángulo “tira” 
hacia dentro, y la corrección angular es negativa.

3.	Cuando , el triángulo “se abre” y se vuelve expan-
sivo: la corrección es positiva.

La Ley del Coseno traduce ese comportamiento en una re-
lación precisa. No describe un fenómeno abstracto: describe el 
movimiento. En términos freudenthalianos, es un ejemplo pode-
roso de cómo un concepto matemático captura la estructura de 
un fenómeno que podría experimentarse con simples varillas 
articuladas.

Duval (2017) argumenta que la dificultad no radica en la com-
plejidad de la fórmula, sino en que el estudiante no logra coor-
dinar los registros de representación:

•	 Figural: ver cómo cambia el lado opuesto al ángulo,
•	 Verbal: describir cómo la variación angular altera la figura,
•	 Simbólico: comprender la estructura α
•	 Dinámico: observar la figura en movimiento usando software.

La Ley del Coseno solo se comprende cuando el estudiante 
puede pasar de uno a otro registro sin perder coherencia. Desde 
esta posición, enseñar la fórmula sin su traducción figural y di-
námica equivale a quitarle su significado. Mariotti y Bussi (2020) 
enfatizan que la comprensión geométrica se construye en la 
interacción discursiva. Desde esta óptica, la Ley del Coseno no 
se enseña aplicándola, sino discutiéndola: ¿por qué aparece la 
corrección angular? ¿Por qué el coseno negativo hace crecer el 
lado? ¿Qué ocurre si el ángulo es obtuso?

En este sentido, la Ley del Coseno es un excelente terreno 
didáctico:

•	  Permite comparar triángulos.
•	  Invita a argumentar sobre tamaños relativos.
•	  Revela el papel del ángulo en la forma global de la figura.

Semejanza de triángulos y razón de proporcionalidad
La noción de semejanza constituye uno de los pilares concep-
tuales de la geometría euclidiana porque articula la forma, la 
medida y la proporcionalidad como un sistema coherente para 
describir el espacio. Entendida desde el aula, la semejanza per-
mite al estudiante transitar desde la intuición visual de “figuras 
con la misma forma” hacia una comprensión formal que implica 
ratios constantes, invariantes geométricos y transformaciones 
que preservan la proporcionalidad. 
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Como señala Hartshorne (2000), la semejanza es un puente 
entre la geometría elemental y la teoría de las transformaciones, 
y su enseñanza representa una oportunidad privilegiada para 
desarrollar pensamiento multiplicativo, razonamiento propor-
cional y comprensión profunda de la estructura del triángulo, un 
objeto central en la matematicidad escolar.

Se aborda la semejanza desde tres perspectivas comple-
mentarias: una geométrica–teórica, una métrica–aplicada y 
una didáctica anclada en los niveles del modelo de Van Hiele. 
Se busca mostrar que la semejanza no es un concepto aislado 
sino un eje generador que permite establecer relaciones métri-
cas en triángulos, definir razones trigonométricas, comprender 
propiedades de poliedros y modelar problemas de escala en 
cuerpos de revolución. A través de esta mirada integradora, 
se construye una articulación entre la teoría clásica (Euclides, 
Hilbert), las aproximaciones contemporáneas del razonamiento 
geométrico (Duval, 2017; Mariotti & Bussi, 2020) y los desafíos 
actuales de su enseñanza.

Partiendo de la premisa de la centralidad de las actividades 
semióticas, la discusión matemática colectiva desempeña un 
papel crucial: durante esta discusión, la acción intencional del 
docente se centra en guiar el proceso de mediación semiótica 
que conduce a la evolución esperada de los signos. El papel del 
docente en el proceso de enseñanza-aprendizaje basado en el 
uso de artefactos y, en particular, en un entorno de geometría 
dinámica (Mariotti, 2009).

Idea fundamental de semejanza: forma, invariancia y multipli-
cación escalar
Dos triángulos son semejantes cuando conservan la forma, aun si 
no conservan el tamaño. Este enunciado, aparentemente simple, 
esconde una riqueza conceptual profunda: la forma puede ser 
entendida como aquello que permanece invariante frente a una 
transformación de escala. 

Desde un punto de vista matemático, la semejanza se forma-
liza mediante transformaciones homotéticas que multiplican 
todas las distancias por un mismo factor k. Como lo explica 
Coxeter (1963), dicha multiplicación uniforme preserva ángulos y 
direcciones, lo que permite mantener la estructura proporcional 
interna de la figura.
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Figura 7.
Triángulos homotéticos que conservan la estructura proporcional bajo 
un mismo factor de escala.

Nota: Elaboración propia.

El teorema fundamental establece que dos triángulos son seme-
jantes si se cumple alguno de los siguientes criterios equivalentes:

•	 AAA: Igualdad de sus tres ángulos.
•	 LAL: Proporcionalidad de dos lados incluidos entre ángulos 

iguales.
•	 LLL: Proporcionalidad de los tres lados.
Estas condiciones, ya presentes en los Elementos de Euclides, 

adquieren relevancia moderna al comprenderse como equivalentes 
a la existencia de una transformación homotética entre las figuras 
(Hartshorne, 2000). En efecto, cuando el estudiantado comprende 
que no es necesario comparar todos los elementos del triángulo 
sino solo una estructura mínima de proporcionalidad, se abre paso 
a un pensamiento geométrico más abstracto y relacional.

Figura 8.
Relación de proporcionalidad entre lados homólogos como fundamen-
to de la semejanza de triángulos.

Nota: Elaboración propia.

En el aula, esta comprensión se fortalece cuando se vinculan 
representaciones visuales con expresiones simbólicas. Por ejem-
plo, al observar que en dos triángulos semejantes se cumple: 

, el estudiante empieza a identificar el factor 
de escala como la constante que relaciona ambas figuras. Este 
razonamiento multiplicativo es fundamental para comprender 
fenómenos reales como mapas, escalas arquitectónicas, amplia-
ciones fotográficas y modelos tridimensionales.

La razón de proporcionalidad constituye el corazón métrico 
de la semejanza. Representa el número que permite pasar de 
un triángulo base a un triángulo ampliado o reducido. Pero más 
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allá de su uso numérico, la razón de proporcionalidad organiza 
la estructura interna de la figura: determina cómo se relacionan 
sus alturas, sus medianas, sus bisectrices y hasta sus áreas.

S i   con factor  k ,  entonces :  
.  Este resultado, 

aparentemente evidente, permite comprender fenómenos mé-
tricos más complejos. Por ejemplo, las alturas también guardan 
proporcionalidad: , y lo mismo ocurre con radios ins-
critos y circunscritos, lo que muestra la potencia de la semejanza 
para unificar múltiples relaciones métricas.

Figura 9.
Proporcionalidad de alturas y elementos métricos derivados en trián-
gulos semejantes.

Nota: Elaboración propia.

Proporcionalidad cuadrática en áreas
La proporcionalidad cuadrática es uno de los resultados más be-
llos y a la vez más difíciles de internalizar para el estudiantado. 
La intuición opera inicialmente en un plano lineal: duplicar un 
lado “parece” que debería duplicar el área. Sin embargo, como 
explican Pape y Tchoshanov (2001), el desarrollo del pensamien-
to multiplicativo requiere comprender que el área surge de la 
interacción de dos dimensiones simultáneamente. De allí que la 
semejanza no solo escale longitudes: amplifica la figura en dos 
direcciones, generando una transformación cuadrática.

Si dos triángulos  son semejantes con fac-
tor k, se cumple:

La ecuación expresa que el área no crece por adición sino por 
multiplicación compuesta. Como señala Tall (2014), este salto 
cognitivo implica pasar de un razonamiento “uno-a-uno” a un 
razonamiento “multivariable”: la escala afecta ancho y altura, lo 
cual es difícil de asimilar sin representaciones visuales dinámi-
cas. Aquí, los softwares geométricos como GeoGebra resultan 
cruciales para observar cómo, al arrastrar un punto, el área se 
transforma a una tasa cuadrática.
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Figura 10.
Relación cuadrática de las áreas en triángulos semejantes con factor 
de escala k.

Nota: Elaboración propia.

Desde una perspectiva aplicada, comprender esta ley es in-
dispensable en arquitectura, diseño de modelos, fabricación de 
piezas y representación proporcional en planos. Una maqueta 
construida a escala 1:51:51:5 no requiere cinco veces menos ma-
terial, sino veinticinco veces menos. Ignorar este principio tiene 
implicaciones económicas reales. Jones y Tzekaki (2016) sos-
tienen que el fracaso en comprender el crecimiento cuadrático 
explica errores frecuentes en el aprendizaje de geometría y en 
la resolución de problemas aplicados.

Pero la proporcionalidad cuadrática no opera solo en triángu-
los: se generaliza a cualquier región plana.

Figura 11.
Ampliación de una región plana y crecimiento cuadrático de su área.

Nota: Elaboración propia.

Así, si un cuadrado con lado s se transforma mediante un 
factor de escala k, su área será: . Lo mis-
mo aplica para polígonos regulares, trapecios, figuras curvas 
aproximadas y regiones construidas por descomposición. Por 
ello, el razonamiento cuadrático no es un contenido aislado, 
sino un principio generador que atraviesa toda la geometría 
métrica y analítica.

Ejemplo:  Una ciudad tiene una plazoleta central con forma 
de hexágono regular. Cada lado del hexágono interior mide 
20 m. En un proyecto de renovación urbana se decide ampliar 
la plazoleta manteniendo la forma, de modo que el contorno 
exterior sea un hexágono regular semejante, con todas las lon-
gitudes multiplicadas por un factor de escala . Es decir, 
el hexágono exterior es una “versión agrandada” del interior, 
como en tu construcción de GeoGebra.
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Figura 12.
Ampliación homotética de una plaza hexagonal con factor de escala k=1.5.

Nota: Elaboración propia.

1.	 Calcular la longitud del lado del hexágono exterior.
2.	 Calcular el área de la plazoleta original (hexágono interior).
3.	Calcular el área total delimitada por el hexágono exterior.
4.	Calcular el área del anillo pavimentado nuevo, es decir, la 

región entre ambos hexágonos.
5.	 Verificar que el área se ha multiplicado por .

Tabla 1.
Cálculos de longitudes y áreas en hexágonos semejantes con factor de 
escala k=1.5k.

Longitud del lado del hexá-
gono exterior

Área de la plazoleta original 
(hexágono interior).

Área total delimitada por el 
hexágono exterior.

Área del anillo pavimentado 
nuevo, es decir, la región en-
tre ambos hexágonos.

Verificar que el área se ha 
multiplicado por 

Nota. La tabla presenta el proceso de cálculo de las áreas asociadas a un 
hexágono regular y a su imagen homotética con razón 1.5, verificando la re-
lación cuadrática entre áreas y la escala de semejanza. Elaboración propia.

Ejemplo: Una plaza circular tiene radio 10 m. El municipio quie-
re construir una nueva plaza semejante, con todas sus dimensio-
nes multiplicadas por .
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Figura 13.
Plaza circular y su versión homotética con factor de escala k=1.2.

Nota: Elaboración propia.

1.	¿Cuál será el radio de la nueva plaza?
2.	 Usa la fórmula π  para encontrar el área de ambas 

plazas.
3.	Verifica que el área se ha multiplicado por .
4.	Si el césped cuesta , ¿cuánto aumenta el costo 

total de césped?

Tabla 2.
Cálculos del radio, áreas y costos en una plaza circular ampliada con 
factor de escala k=1.2.

Radio de la nueva 
plaza Radio de la nueva plaza: . 

Área de ambas plazas π π π
π π π

Verifica que el área 
se ha multiplicado 
por .

π
π

queda comprobado que el área se ha multi-
plicado por , tal como indica la teoría de 
semejanza: al escalar las longitudes por k, las 
áreas se escalan por .

Si el césped cuesta 
, ¿cuánto 

aumenta el costo to-
tal de césped?

π
π

Aumento del Costo:

π π

El costo total del césped aumenta aproxima-
damente en 825,70 USD.

Nota. La tabla muestra el proceso de cálculo del radio homotético, las áreas de am-
bas plazas y la verificación de la relación cuadrática entre áreas y el factor de escala, 
así como la variación del costo del césped en función del área. Elaboración propia.
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Apoyo didáctico: El estudiantado no debe ver las fórmulas de 
área como recetas aisladas, sino como modelos para comprender 
relaciones de proporcionalidad. Se propone partir de la intuición 
y la experiencia: anticipar cómo cambia el área y el costo al mo-
dificar el radio, dibujar, discutir y luego formalizar la idea de que 
un aumento lineal del radio genera un aumento cuadrático del 
área. El logro de la competencia y comprensión por parte de los 
estudiantes de los distintos componentes de un saber matemático 
requiere el diseño y la implementación de procesos de instrucción 
que tengan en cuenta dichos componentes (Godino, 2005).

El uso de GeoGebra o Desmos permite explorar dinámica-
mente las diferentes relaciones, completar tablas y comparar 
radios, áreas y costos, favoreciendo el paso entre registros de 
representación (verbal, gráfico y simbólico) que Duval (2017) con-
sidera esencial para construir significado matemático. Además, 
se sugiere comparar distintos procedimientos de resolución (con 
y sin uso directo del factor de semejanza k^2, para promover la 
argumentación y la toma de decisiones matemáticas conscien-
tes, en coherencia con la teoría de situaciones didácticas de 
Brousseau (2002).

Poliedros y cuerpos de revolución: clasificación y propiedades
Comprender los poliedros y los cuerpos de revolución supone 
asumir que la geometría del espacio no es solo un conjunto de 
fórmulas para calcular áreas y volúmenes, sino una forma de 
pensamiento que articula estructura, simetría y movimiento. En 
el espacio tridimensional, las figuras dejan de ser simples con-
tornos visibles y se convierten en sistemas organizados. Como 
señalan Hilbert y Cohn-Vossen (1952), una figura geométrica es 
siempre el resultado de idealizar una experiencia tridimensio-
nal: no es una copia del mundo, sino un “modelo depurado” de 
algunas de sus invariantes esenciales. Los poliedros y los cuer-
pos de revolución, en este sentido, permiten observar cómo la 
matemática abstrae lo que permanece constante en medio de 
la diversidad de formas y tamaños. En este epígrafe ampliado 
profundizamos en la clasificación de estas figuras, su estructura 
interna, sus propiedades métricas y sus significados didácticos 
y epistemológicos. Lo hacemos desde una visión integradora, 
coherente con el espíritu del libro: comprender el espacio como 
experiencia, como estructura y como lenguaje.

Qué entendemos por poliedros y cuerpos de revolución
Llamamos poliedro a todo sólido limitado por un número finito de 
polígonos planos, que se encuentran por sus lados formando aristas 
y por sus vértices formando ángulos sólidos. Coxeter (1963) define 
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el poliedro como una “red de polígonos ensamblados en el espacio” 
que constituye una estructura cerrada. Esta idea de ensamblaje es 
pedagógicamente fértil, ya que invita a pensar los sólidos como 
construcciones que se pueden desmontar en sus “piezas” planas, 
las caras, y volver a montar a través de desarrollos o redes.

Por su parte, un cuerpo de revolución se obtiene al girar una 
figura plana alrededor de una recta de su plano. El giro produce 
un sólido cuyas secciones perpendiculares al eje son congruentes 
o al menos relacionadas de forma regular. Hilbert y Cohn-Vossen 
(1952) subrayan que esta forma de generar sólidos introduce una 
perspectiva dinámica de la geometría: el cuerpo de revolución es “la 
huella” de un movimiento, una curva que se desplaza en el espacio.

Ambos tipos de sólidos permiten trabajar con la idea de volu-
men como ocupación del espacio, así como con áreas de super-
ficies que ya no son sólo polígonos planos, sino envolventes que 
“rodean” una región tridimensional. Esta ampliación conceptual 
es central para el estudio posterior del cálculo integral y de la 
modelación geométrica de fenómenos físicos (Stewart, 2016).

Clasificación de poliedros: prismas, pirámides y sólidos regulares
Prismas y pirámides

Una primera clasificación distingue entre prismas y pirámides.
Un prisma es un poliedro con dos bases congruentes y para-

lelas, unidas por caras laterales que son paralelogramos.
 La naturaleza del polígono base (triángulo, cuadrilátero, pen-

tágono, etc.) determina el nombre del prisma.

Figura 14.
Representación tridimensional de un prisma con bases congruentes y 
caras laterales paralelográmicas.

Nota: Elaboración propia.

Una pirámide es un poliedro con una base poligonal y caras late-
rales que son triángulos que se encuentran en un vértice común, el 
ápice. De nuevo, el nombre responde al número de lados de la base: 
pirámide triangular, cuadrangular, pentagonal, y así sucesivamente.

Esta clasificación tiene una ventaja didáctica evidente. Permite un 
diálogo permanente entre plano y espacio. Un prisma puede verse 
como “un polígono que se desplaza en línea recta”, mientras que una 
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pirámide puede interpretarse como “un polígono que se contrae hasta 
un punto (Godino y Batanero, 2007). Estas imágenes dinámicas ayudan 
a los estudiantes a vincular el volumen con la idea de suma de infinitas 
secciones o láminas, anticipando intuitivamente el uso del cálculo.

Figura 15.
Representación tridimensional de una pirámide con base poligonal y 
un vértice común o ápice.

Nota: Elaboración propia.

Una familia particularmente importante es la de los poliedros 
regulares, aquellos cuyas caras son polígonos regulares con-
gruentes y en cada vértice concurren el mismo número de caras.

Figura 16.
Modelo tridimensional de un poliedro regular construido a partir de 
caras congruentes.

Nota: Elaboración propia.

Desde la Antigüedad se conoce que sólo existen cinco, los lla-
mados sólidos platónicos: tetraedro, cubo, octaedro, dodecaedro 
e icosaedro (Coxeter, 1963). Estos sólidos ejemplifican la máxima 
simetría posible en el espacio euclídeo tridimensional.

Figura 17.
Representación tridimensional de un cubo como ejemplo de sólido 
platónico.

Nota: Elaboración propia.
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A su lado se sitúan los poliedros semirregulares o sólidos ar-
quimedianos, que admiten más de un tipo de polígono regular 
como cara, pero mantienen una estructura de vértices “uniforme”.

 Su estudio introduce de manera natural la noción de dualidad 
y de truncamiento, es decir, operaciones sobre poliedros que 
permiten generar nuevas formas a partir de otras, y que pueden 
explorarse con modelos físicos o software de geometría dinámica 
tridimensional (Hilbert y Cohn-Vossen, 1952).

El traba jo con prismas, pirámides y sólidos regulares no se 
limita al reconocimiento de figuras; debe promover procesos 
de construcción, manipulación y argumentación. Actividades 
como modelar poliedros con software dinámico (GeoGebra 
3D), analizar sus redes, comparar sus volúmenes mediante ra-
zonamiento proporcional o investigar la presencia de sólidos 
regulares en estructuras naturales favorecen un aprendiza je 
significativo en el sentido de Ausubel (2000). Asimismo, la 
combinación de manipulativos físicos y entornos digitales 
permite que el estudiante relacione la estructura tridimensio-
nal con sus representaciones en planos, vistas y diagramas, 
logrando así una comprensión más profunda y flexible.

Volúmenes y áreas de cuerpos geométricos
La teoría del área y del volumen ha sido presentada tradicional-
mente como un conjunto de fórmulas acabadas, resultado de un 
proceso histórico lineal y acumulativo. Sin embargo, autores como 
Netz (2004), Manders (2008) y Presmeg (2020) han mostrado 
que su desarrollo conceptual no ha estado exento de tensiones 
internas, reinterpretaciones y rupturas epistemológicas. La idea 
de “medir el espacio” se ha construido a partir de disputas entre 
aproximación intuitiva y rigor deductivo, entre razonamiento visual 
y cálculo formal, entre experiencia física y abstracción matemática.

Por ejemplo, Manders (2008) sostiene que la geometría anti-
gua no se basaba en la noción moderna de magnitudes conti-
nuas, sino en sistemas altamente diagramáticos donde el razona-
miento dependía de inferencias visuales, no de ecuaciones. Esto 
cuestiona la idea extendida de que las fórmulas actuales sobre 
volumen y área son una “continuidad natural” de descubrimientos 
antiguos: más bien se trata de reconstrucciones modernas sobre 
marcos conceptuales muy diferentes.

A nivel pedagógico, Duval (2017) critica la enseñanza centrada 
en fórmulas porque produce una “despersonalización” del pensa-
miento geométrico: el estudiante aprende a aplicar procedimien-
tos sin comprender los sistemas de relaciones que les dan sentido. 
Tall (2014) coincide al señalar que la transición entre el pensa-
miento sensorio-motriz, el pensamiento visual y el pensamiento 
formal no ocurre automáticamente; requiere un andamiaje que 
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reconstruya el concepto desde múltiples representaciones.
Otros autores, como Fischbein (1993), advierten que la noción 

de volumen es particularmente susceptible a errores cognitivos 
persistentes, ya que las intuiciones espaciales no siempre coin-
ciden con las propiedades matemáticas. Por ejemplo, muchos 
estudiantes creen que, si se duplica un radio y se mantiene la 
altura, “el volumen también se duplica”, desconociendo las rela-
ciones cúbicas que gobiernan los cuerpos de revolución.

Desde estos enfoques críticos, el área y el volumen no se en-
tienden como un “capítulo técnico”, sino como un terreno donde 
convergen epistemología, psicología cognitiva, visualización, 
lenguaje matemático y razonamiento proporcional. Esta mirada 
analítica permite profundizar en las bases del cálculo geomé-
trico y comprender por qué algunos conceptos como apotema, 
generatriz o sección transversal continúan siendo difíciles para 
estudiantes incluso en niveles avanzados.

Tensiones epistemológicas en la noción de área y volumen
Heath (1956) resalta que Arquímedes utilizaba métodos heu-
rísticos que serían considerados “impropios” dentro del marco 
axiomático euclidiano. Esta tensión histórica revela un conflicto 
entre dos visiones:

•	 La geometría como intuición estructural, que admite razo-
namientos basados en equilibrio, corte y recomposición.

•	 La geometría como sistema axiomático, donde solo cuentan 
las demostraciones formales. 

En el aula, la segunda suele imponerse, generando dificulta-
des para estudiantes que aún operan en modos de pensamiento 
visual (Duval, 2017).

Autores contemporáneos de análisis, como Ciarlet (2025), 
muestran que la definición moderna de área se formula riguro-
samente a partir de la teoría de medida y de las integrales de 
Riemann y, sobre todo, de Lebesgue, en contraste con las apro-
ximaciones geométrico-discretas con las que suele enseñarse 
este concepto en la educación secundaria.

Esto genera una brecha conceptual: la escuela enseña área 
como suma de superficies “planas”, mientras que la universidad 
la redefine como límite de particiones infinitesimales.

Presmeg (2020) advierte que el énfasis tradicional en fórmu-
las descontextualizadas reduce el razonamiento espacial a un 
proceso automático. Fischbein (1993) muestra que esto genera 
“ilusiones cognitivas” difíciles de superar, pues el estudiante me-
moriza sin conectar las fórmulas con su origen geométrico.
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Ejemplos críticos que revelan dificultades conceptuales
La investigación didáctica ha documentado que el área y el vo-
lumen son conceptos “epistémicamente sensibles”: pequeños 
malentendidos generan errores persistentes (Fischbein, 1993; 
Hershkowitz, 2011). Los siguientes ejemplos permiten analizar 
estas dificultades desde perspectivas críticas.

Ejemplo 2:  Área lateral del cilindro: un pensamiento engañoso
Muchos estudiantes creen que “el cilindro se abre en un cuadra-

do”, cuando en realidad el desarrollo plano de su superficie lateral 
es un rectángulo cuyo ancho corresponde al perímetro de la base, 
no al diámetro. Este error deriva de una intuición “plana” que no re-
conoce la naturaleza envolvente de la superficie curva (Duval, 2017)

Ejemplo correcto: Cilindro de radio 4 cm y altura 10 cm: 

π π π
Figura 18.
Representación tridimensional del cilindro y su superficie lateral para 
el cálculo del área.

Nota: Elaboración propia.

Esta comprensión requiere coordinar registros: el registro grá-
fico (desarrollo plano), el registro geométrico (perímetro de la 
base) y el registro algebraico (fórmula). La incoordinación entre 
estos explica el error.

Ejemplo 3: Volumen del cono: error clásico de proporcionalidad
Muchos estudiantes piensan que si un cilindro y un cono tienen 

la misma base y altura, “el volumen del cono es la mitad”. Esto 
contradice la estructura geométrica:

π .  La razón 1:3 no es evidente para la intuición. 

Como señala Fischbein (1993), los errores de proporcionalidad 
volumétrica se deben a que el pensamiento intuitivo mantiene 
asociaciones lineales incluso en contextos exponenciales o cú-
bicos.La reducción lineal del radio hacia un vértice implica una 
contracción cúbica del volumen, lo cual exige una comprensión 
avanzada del espacio tridimensional.
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Figura 19.
Comparación visual entre el cilindro y el cono para analizar la razón 
volumétrica 1:3.

Nota: Elaboración propia.

Ejemplo 4: La esfera como cuerpo “cognitivamente opaco”
Según McGee (1999), incluso estudiantes universitarios pre-

sentan dificultades para:

Figura 20.
Relación entre la esfera y el cilindro circunscrito para visualizar área y 
volumen.

Nota: Elaboración propia.

•	 Comprender que la superficie de la esfera equivale al área del 
cilindro circunscrito sin tapas,

•	 Aceptar que el volumen de la esfera depende del cubo del radio,
•	 Visualizar cortes no circulares según el ángulo del plano secante,
•	 Entender que la esfera no tiene desarrollo plano exacto.

π
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Fórmulas fundamentales de áreas y volúmenes en cuerpos 
geométricos

Tabla 3.
Fórmulas fundamentales de áreas y volúmenes en cuerpos 
geométricos

Cuerpo 
geométrico

Área lateral Área total Volumen

Prisma

Pirámide

Cilindro π π π π
Cono π π π π

Esfera π π

Cubo

Tetraedro 
regular

Nota. La tabla sintetiza las expresiones esenciales para calcular el área lateral, 
el área total y el volumen de diversos cuerpos geométricos que se utilizan con 
frecuencia en la resolución de problemas métricos. Elaboración propia.

Problemas aplicados y contextualizados
Los siguientes ejercicios aplican los conceptos anteriores en con-
textos reales y formativos. Cada uno está diseñado para promover 
razonamiento espacial, modelación matemática y análisis crítico.

Ejemplo:  Diseño de un tanque cilíndrico ecológico
Una comunidad rural desea construir un tanque cilíndrico para 

almacenar agua lluvia. El diámetro debe ser 2 metros y la altura 
3 metros.

•	 Determine el volumen total del tanque.
•	 Calcule el área total de material necesario para su construcción 

(sin tapa).
•	 Analice si la intuición coincide con el resultado obtenido.
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Figura 21.
Representación del tanque cilíndrico para el cálculo de volumen y área 
de construcción.

Nota: Elaboración propia.

Tabla 4.
Cálculo del volumen y áreas asociadas a un tanque cilíndrico

Radio

Volumen π π π
Área lateral π π π

Área de la base π π

Área total π π π
Nota. La tabla presenta los valores geométricos fundamentales del tanque 
cilíndrico a partir de sus dimensiones, con el fin de estimar la capacidad de 
almacenamiento y el material de construcción requerido. Elaboración propia.

Intuitivamente, muchos estudiantes predicen un volumen “ma-
yor”, pues asocian “altura grande con volumen grande”, sin con-
siderar la dependencia cuadrática del radio (Tall, 2014).

Ejemplo: Optimización de envases comerciales.
Una empresa fabrica envases cónicos para café. Cada envase debe 

tener 350 cm. El departamento de diseño afirma que “a mayor radio, 
menor altura” y que esto “no afecta la cantidad de material necesario”.

Determine si esta afirmación es correcta hallando el área la-
teral de dos envases distintos:

•	 Modelo A: radio 4 cm.
•	 Modelo B: radio 6 cm.
Use la relación del volumen del cono para hallar las alturas.

Figura 22.
Comparación geométrica de dos envases cónicos con igual volumen y 
radios distintos para analizar el área lateral requerida.

Nota: Elaboración propia.
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Solución:  Volumen:  π .

Tabla 5.
Cálculo comparativo de altura, generatriz y área lateral en dos envases 
cónicos con igual volumen

Modelo A
π

Generatriz

Área lateral π π π

Modelo B:
π

Generatriz

Área lateral π
Nota. La tabla presenta el análisis geométrico de dos modelos de envases 
cónicos, ambos con volumen fijo de 350 cm³, pero con radios diferentes, a fin 
de comparar cómo varían la altura, la generatriz y el área lateral requerida 
para su fabricación. Elaboración propia.

Contrario a la afirmación del departamento, el área sí cam-
bia significativamente. El modelo con mayor radio usa menos 
material, lo que ilustra cómo la geometría puede ser clave en la 
eficiencia industrial (Ciarlet, 2025).

Ejemplo: Un domo geodésico para una feria científica se cons-
truirá como un hemisferio de radio 5 metros.

Figura 23.
Representación geométrica de un domo hemisférico de radio 5 me-
tros para el análisis de volumen y superficie.

Nota: Elaboración propia.

•	 Calcule su volumen interno.
•	 Estime el área superficial externa.
•	 Analice la dificultad cognitiva de este problema.
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Tabla 6.
Cálculo del volumen interno y del área superficial externa de un domo 
hemisférico

Volumen interno. � � �

Área superficial externa π π π

La dificultad surge porque los estudiantes suelen creer que 
“la mitad de una esfera tiene la mitad de área”, lo cual es falso. 
Aunque el volumen sí es la mitad, el área no lo es, debido a la 
falta de las tapas (McGee, 1999).

Apoyo didáctico: Para fortalecer el aprendizaje significativo de 
áreas y volúmenes, se recomienda un enfoque integrado que combine:

1.	 Construcción activa y modelación física
Permitir que los estudiantes manipulen redes, construyan po-

liedros, corten modelos y comparen volúmenes mediante reci-
pientes o material manipulativo. Esta experiencia concreta re-
duce la distancia entre percepción y concepto (Van Hiele, 1986; 
Hershkowitz, 2011).

2.	 Articulación entre representaciones
Proponer actividades donde se pase deliberadamente de:

•	 La figura 3D a su desarrollo,
•	 La fórmula al argumento geométrico,
•	 La vista del sólido a su corte transversal,
•	 El caso particular al caso general.
Duval (2017) subraya que este tránsito es indispensable para 

una comprensión profunda.
3.	 Resolución de problemas contextualizados

Incluir problemas que conecten los cuerpos geométricos con 
situaciones reales: diseño de depósitos, empaques, domos, reci-
pientes, estructuras arquitectónicas o modelos físicos. Presmeg 
(2020) destaca que la visualización se fortalece cuando los ob-
jetos adquieren función y sentido.

4.	Debate sobre errores y contraejemplos
Analizar errores comunes: como pensar que un cilindro se abre 
en un cuadrado o que un cono tiene la mitad del volumen de un 
cilindro, permite reconstruir las intuiciones espaciales desde el 
razonamiento lógico (Fischbein, 1993).

5.	 Integración gradual de herramientas digitales
Utilizar software como GeoGebra 3D para explorar dinámi-
camente cortes, desarrollos y variaciones paramétricas. Estas 
herramientas permiten observar relaciones que de otra forma 
serían invisibles, y apoyan el paso del pensamiento icónico al 
pensamiento formal (Tall, 2014).
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Una enseñanza más reflexiva y conceptual del área y el 
volumen no solo conduce a mejores resultados académicos, 
sino que promueve una forma más madura de pensar mate-
máticamente. Los estudiantes que comprenden el significado 
de las fórmulas, que reconocen las relaciones internas de 
los cuerpos y que logran moverse entre diferentes represen-
taciones desarrollan un pensamiento geométrico sólido y 
transferible a la ingeniería, la arquitectura, la física y otros 
campos del conocimiento. Es esta integración entre intuición, 
visualización, razonamiento y formalización, la que convierte 
la geometría tridimensional en una verdadera herramienta 
para interpretar y modelar el mundo.

Modelo de Van Hiele: niveles de razonamiento geométrico
El estudio del razonamiento geométrico ha sido una preocu-
pación central para la didáctica de la matemática, particular-
mente en contextos donde el aprendiza je se concibe como un 
proceso de transición entre formas elementales de intuición 
espacial y modos avanzados de pensamiento formal. Entre 
los modelos más influyentes en la comprensión de este pro-
ceso se encuentra el Modelo de Van Hiele, desarrollado por 
Pierre y Dina van Hiele a mediados del siglo XX. Este modelo 
describe la evolución del pensamiento geométrico a través 
de niveles jerárquicos y secuenciales, que explican cómo los 
estudiantes pasan del reconocimiento visual de las figuras a 
la comprensión profunda de sistemas deductivos complejos 
(Van Hiele, 1986).

 Apoyo didáctico: Una de las contribuciones fundamentales 
del modelo radica en asumir que el aprendiza je geométri-
co no depende únicamente de la maduración cognitiva, sino 
sobre todo de la organización didáctica y del tipo de expe-
riencias que se ofrecen al estudiante. Así, la enseñanza debe 
ser estructurada de modo que los contenidos, el lengua je, las 
tareas y las interacciones pedagógicas se alineen con el nivel 
de razonamiento en el que se encuentra el aprendiz. Duval 
(2017) coincide en esta perspectiva al considerar que la com-
prensión geométrica requiere coordinar diferentes registros 
semióticos; los errores comunes provienen precisamente de 
exigir razonamientos formales a estudiantes que aún operan 
en niveles inferiores.

En lo que sigue, se detalla cada nivel del modelo, integrando 
aportes críticos de diversos autores y remarcando su relevancia 
para la enseñanza contemporánea.
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Nivel 1: Visualización o reconocimiento
En el primer nivel, el estudiante reconoce las figuras por su apa-
riencia global, sin atender a sus propiedades internas. Un cua-
drado es “lo que parece un cuadrado”, un triángulo es “una figura 
con punta arriba”, y un cilindro es “una forma parecida a una lata”.

Este reconocimiento se basa en y no en criterios matemáticos.
Según Duval (2017), en este nivel predomina la “aprehensión 

perceptiva” del objeto, y no su estructura. Por ello, los estudiantes 
pueden confundir figuras según su orientación, tamaño o color, 
o considerar que dos figuras son diferentes solo porque se pre-
sentan desde otra perspectiva.

La enseñanza en este nivel requiere actividades manipulativas, 
exploración de figuras, clasificación intuitiva, comparación por 
semejanza visual y uso del lenguaje cotidiano antes de introducir 
definiciones formales.

Nivel 2: Análisis
El segundo nivel se caracteriza por la identificación de propieda-
des de las figuras. El estudiante ya no solo reconoce una figura por 
su apariencia, sino que describe rasgos específicos: “tiene cuatro 
lados”, “tiene ángulos rectos”, “sus caras son rectángulos”, etc.

Sin embargo, estas propiedades todavía se conciben de ma-
nera aislada, sin establecer relaciones entre ellas. Por ejemplo, 
una persona en este nivel puede saber que un cuadrado tiene 
lados iguales y ángulos rectos, pero no deduce que esto implica 
pertenecer también al conjunto de los rectángulos.

Tall (2014) denomina este estadio como un pensamiento donde lo 
visual comienza a dialogar con lo verbal, pero aún no se alcanza la 
comprensión de las interdependencias lógicas entre las propiedades.

La labor docente debe centrarse en:
•	 Describir figuras con precisión.
•	 Identificar y medir atributos.
•	 Comparar propiedades.
•	 Realizar construcciones simples.

Nivel 3: Ordenamiento o clasificación informal
En este nivel, el estudiante comprende las relaciones entre 
propiedades y consigue organizar las figuras en categorías 
jerárquicas.

Por ejemplo: Si una figura tiene cuatro lados y cuatro 
ángulos rectos, es un rectángulo; si sus lados son también 
iguales, pertenece a la subcategoría de los cuadrados. Este 
tipo de razonamiento implica inferencias lógicas simples y 
la capacidad de establecer inclusiones entre clases de fi-
guras. Según Hershkowitz (2011), aquí surge el inicio de la 
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estructura conceptual geométrica, donde las propiedades ya 
no se entienden de manera aislada, sino articuladas en redes 
de significados.

Un desafío frecuente es que muchos estudiantes no alcanzan 
este nivel porque la enseñanza salta directamente de nombres 
visuales a definiciones formales, sin ofrecer actividades de cla-
sificación, argumentación y razonamiento informal.

Nivel 4: Deducción formal
El cuarto nivel marca la entrada plena en el pensamiento geomé-
trico avanzado. En este nivel, los estudiantes comprenden que:

•	 Las definiciones están interconectadas,
•	 Los teoremas se derivan unos de otros,
•	 Un sistema geométrico se organiza a partir de axiomas,
•	 La demostración garantiza la validez universal de las afirmaciones.
Aquí emerge la capacidad de seguir y construir demos-

traciones, justificar propiedades, y entender que una figura 
puede definirse de varias formas equivalentes.

Tall (2014) considera este nivel como un tránsito hacia el “mun-
do formal” de la matemática, donde los objetos dejan de depen-
der de la percepción y se transforman en entidades abstractas 
definidas por relaciones.

En términos pedagógicos, este nivel exige tareas que involucren:
•	 Secuencias de deducción.
•	 Análisis de contraejemplos.
•	 Validación de conjeturas.
•	 Ejercicios de demostración gradual.

Nivel 5 Razonamiento axiomático o rigor
El nivel más avanzado implica comprender y manejar sistemas axiomá-
ticos completos, compararlos, analizarlos y reconstruirlos. El estudiante 
puede trabajar con geometrías alternativas , analizar la independencia 
de axiomas y construir sistemas equivalentes o contrastantes.

 Apoyo didáctico: Este nivel no es propio de la educación bá-
sica, pero es esencial para la formación matemática avanzada, 
particularmente en carreras científicas. Autores como Manders 
(2008) y Netz (2004) han mostrado que este nivel de análisis 
coincide con el tipo de razonamiento practicado históricamente 
en la geometría griega, donde las figuras se convertían en soporte 
para inferencias abstractas.

Implicaciones didácticas
•	 La enseñanza debe alinearse al nivel donde se encuentra el 

estudiante, evitando exigir razonamientos formales cuando 
aún no se domina la organización conceptual previa.
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•	 Las actividades deben transitar desde la manipulación y 
visualización hacia la clasificación y la deducción.

•	 El lenguaje matemático debe introducirse progresivamente, 
en articulación con registros visuales, verbales y simbólicos.

•	 La evaluación debe considerar no solo los resultados, sino la for-
ma en que el estudiante justifica, organiza y conecta sus ideas.

Como señala Duval (2017), “el obstáculo mayor de la geometría 
no está en las figuras en sí, sino en los modos de representación 
que utilizamos para significarlas”.

 
Conclusiones

El capítulo muestra que comprender la geometría exige mucho 
más que aplicar fórmulas o identificar figuras. A lo largo del aná-
lisis se evidencia que el razonamiento geométrico se construye 
cuando el estudiante aprende a relacionar distintas formas de 
representar el espacio, pasando de una observación inicial a una 
interpretación más profunda de las propiedades y estructuras. 
Esta perspectiva permite entender por qué ciertos conceptos, 
como área, volumen o perpendicularidad, generan dificultades 
persistentes: requieren coordinar ideas que no se desarrollan de 
manera espontánea.

También se señala que el progreso en el pensamiento geomé-
trico depende de ofrecer experiencias de aprendizaje bien or-
ganizadas. El avance desde el reconocimiento visual hasta la 
deducción formal demanda actividades que permitan observar, 
analizar, clasificar, argumentar y, finalmente, justificar. Para ello 
se necesita una enseñanza que acompañe de manera gradual 
el desarrollo del razonamiento, respetando los ritmos de com-
prensión y fomentando la exploración crítica de las figuras y sus 
relaciones internas.

En conjunto, el capítulo concluye que la geometría debe en-
señarse como un sistema de ideas interconectadas y no solo 
como un conjunto de procedimientos aislados. Comprender 
el espacio implica integrar intuición, visualización, análisis y 
razonamiento formal, de modo que el estudiante pueda desa-
rrollar una mirada más coherente y creativa sobre las formas 
y sus relaciones. Al adoptar una perspectiva más reflexiva, la 
geometría se convierte en una herramienta para interpretar 
el mundo y en un medio para fortalecer un pensamiento ma-
temático más sólido y significativo.
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Capítulo IV

Razones e identidades 
trigonométricas y resolución de 

triángulos

 

Introducción

Hablar de trigonometría es hablar de un modo particular de 
comprender el espacio: no ya desde la figura estática, sino 
desde la relación que emerge al comparar longitudes, ángu-
los y variaciones. Mientras la geometría organiza la forma, la 
trigonometría organiza el cambio, la razón y la periodicidad. 
Históricamente nació del diálogo entre astronomía, navega-
ción, agrimensura y cálculo de distancias inaccesibles; hoy, 
sin embargo, constituye un lengua je transversal que articula 
modelos físicos, señales, oscilaciones, gráficos digitales y mo-
vimientos periódicos.

Autores como Maor (1998) recuerdan que la trigonometría es 
una de las pocas ramas de las matemáticas cuya historia está 
profundamente entrelazada con la observación del cielo. Los astró-
nomos griegos y árabes refinaron las razones trigonométricas no 
por curiosidad abstracta, sino para predecir trayectorias, calcular 
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eclipses y comprender la posición de los astros. En Oriente, mate-
máticos como Aryabhata y Bhāskara desarrollaron tablas de senos 
y senos que influirían siglos después en la obra de Regiomontano. 
Con el Renacimiento, la trigonometría dio un salto decisivo: se inde-
pendizó de la astronomía y se consolidó como teoría matemática.

Pero, más allá de la historia, la trigonometría ha enfrentado 
dificultades didácticas persistentes. Tall (2013) y Weber (2006) 
advierten que existe un conflicto cognitivo entre la experiencia vi-
sual del ángulo, la razón numérica y la periodicidad. Para muchos 
estudiantes, el seno y el coseno son funciones “extrañas” porque 
no emergen de su experiencia cotidiana. De ahí que la enseñan-
za deba integrar la comprensión geométrica, la representación 
gráfica, el uso de simuladores y la interpretación contextualizada.

Este capítulo aborda la trigonometría desde esa mirada am-
plia: parte del triángulo rectángulo, se desplaza al círculo unitario, 
articula las identidades con su sentido geométrico y culmina con 
la resolución de triángulos y aplicaciones reales. El enfoque no 
se limita al cálculo: busca reconstruir la arquitectura conceptual 
que sostiene la disciplina y mostrar cómo los entornos digitales 
pueden transformar la experiencia de aprender trigonometría.

Razones trigonométricas en el triángulo rectángulo
La enseñanza de las razones trigonométricas constituye uno de 
los momentos más significativos de la formación matemática en 
el nivel medio y superior. Aunque suele presentarse como un tema 
accesible su aparente simplicidad enmascara desafíos cognitivos 
profundos. Más allá de memorizar relaciones, el estudiante debe 
comprender que las razones trigonométricas no dependen del ta-
maño del triángulo, sino del ángulo que las determina, una idea que 
para el docente parece evidente, pero que para el aprendiz implica 
una ruptura conceptual con su percepción intuitiva del espacio.

Figura 1.
Representación comparativa de las funciones seno y coseno en el 
intervalo 

Nota: Elaboración propia.
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Freudenthal (1973) señalaba que las matemáticas “solo tienen sen-
tido cuando emergen de la realidad del estudiante” y que conceptos 
como el seno o el coseno no deberían enseñarse como abstracciones 
prematuras, sino como relaciones que el estudiante puede experi-
mentar, manipular y verificar. Este enfoque, más fenomenológico y 
menos formalista, permite que la trigonometría se construya desde 
la acción, la visualización y el sentido, antes que desde la técnica.

Con esta premisa, el presente epígrafe desarrolla cuatro di-
mensiones complementarias que permiten comprender el origen, 
la función y el significado de las razones trigonométricas en el 
triángulo rectángulo:

1.	 La invariancia como fundamento
2.	 Los registros semióticos y el problema de la coordinación
3.	 El potencial del ejemplo y la visualización dinámica
4.	 Hacia una comprensión relacional y funcional de la trigonometría.

La invariancia como fundamento conceptual
El corazón de las razones trigonométricas radica en la invariancia: 
para un ángulo agudo cualquiera, existe una relación constante 
entre ciertos lados del triángulo rectángulo, sin importar su ta-
maño o su orientación. Esta idea, que parece sencilla, pone en 
tensión la percepción natural del estudiante, quien suele asociar 
magnitudes visuales absolutas con magnitudes relacionales.

El hecho de que un triángulo crezca o se reduzca produce la 
impresión de que “todo cambia”, cuando en realidad algo per-
manece idéntico: la razón entre el cateto opuesto y la hipotenusa 
(seno), entre el cateto adyacente y la hipotenusa (coseno) o entre 
catetos (tangente). Según Weber (2006), uno de los errores más 
persistentes en trigonometría consiste en “operacionalizar” las 
razones sin comprender que expresan una propiedad estructural 
del triángulo.

Figura 2.
Invariancia del seno de un ángulo en triángulos rectángulos semejantes.

Nota: Elaboración propia.

Históricamente, este principio ya estaba presente en las cons-
trucciones geométricas de Hiparco y Menelao, cuyos trabajos 
evidenciaban que relaciones entre lados permanecían constantes 
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para ángulos fijos (Maor, 1998). En esta tradición, la trigonometría 
se concibió no como un conjunto de definiciones, sino como un 
fenómeno de estabilidad geométrica.

Para el estudiante actual, este fenómeno rara vez se hace 
evidente si no se acompaña de experiencias manipulativas. 
Considérese un triángulo rectángulo con un ángulo de 45°. Si se 
duplican todos sus lados, el cateto opuesto y la hipotenusa dupli-
can su longitud, pero la razón permanece invariable. No obstante, 
esta idea desafía la percepción: el triángulo “parece” ser otro. 
Freudenthal argumenta que, sin una vivencia explícita de esta 
invariancia, el concepto se vuelve verbal, pero no significativo.

Figura 3.
Semejanza de triángulos y conservación de las razones trigonométricas.

Nota: Elaboración propia.

Aquí, la enseñanza puede apoyarse en tareas basadas en 
semejanza: dibujar triángulos de distintos tamaños, medir los 
cocientes, comparar resultados y reflexionar sobre lo que per-
manece y lo que cambia. 

En este caso ambos triángulos son semejantes por tener dos 
ángulos respectivamente iguales (aa).

La invariancia no es un hecho que se memoriza, sino una ex-
periencia intelectual que se reconoce.

Registros semióticos y dificultades cognitivas 
Duval (1998) sostiene que la comprensión matemática profunda 
depende de la capacidad del estudiante para coordinar distintos 
registros semióticos:

1.	 El gráfico (la figura),
2.	 El numérico (las medidas),
3.	 El simbólico-verbal (la razón expresada como θ .

Cuando uno de estos registros domina sobre los otros, emer-
gen errores recurrentes. Por ejemplo, algunos estudiantes iden-
tifican el cateto opuesto basándose en su orientación vertical, 
no en su oposición frente al ángulo; otros manipulan las medidas 
sin interpretar la figura; otros aplican la fórmula correcta, pero 
en un triángulo distinto al que observan.

Esto se debe a que la escuela suele privilegiar el registro 
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simbólico sin entrenar la correspondencia entre representación 
gráfica y expresión simbólica. El estudiante puede saber que 
“el seno es opuesto sobre hipotenusa”, pero no saber identificar 
cuál es el opuesto cuando el triángulo está girado o cuando la 
figura es inusual.

Tall (2013) explica que el concepto de ángulo, aunque fun-
damental, es perceptivamente inestable: cambia visualmente 
según su orientación, forma y contexto. De ahí que identificar 
los lados relativos al ángulo constituya una de las barreras más 
persistentes en el aprendizaje de la trigonometría.

Figura 4.
Ejemplos de triángulos en posiciones no convencionales para fortale-
cer la identificación conceptual de las razones trigonométricas.

Nota: Elaboración propia.

Apoyo didáctico: este problema puede abordarse con ejerci-
cios que presenten triángulos en posiciones no convencionales o 
incluso figuras donde el triángulo no es evidente a primera vista 
como rampas inclinadas, estructuras arquitectónicas, escaleras 
o planos topográficos para obligar al estudiante a reconstruir la 
figura conceptual antes de operar con ella. 

Tareas como “marque el cateto opuesto en diez triángulos 
rotados” parecen simples, pero cumplen una función decisiva: 
consolidan la relación entre geometría y lenguaje formal.

El potencial del ejemplo y la visualización dinámica
Los ejemplos contextualizados permiten que la trigonometría se 
comprenda como un sistema de relaciones aplicables a varia-
ciones reales, y no como un artificio escolar. Un caso clásico es 
el del poste cuya sombra mide 4.6 metros cuando el ángulo de 
elevación del sol es de 41°. La tangente no es aquí un “cociente”, 
sino la expresión de una relación entre la altura del poste y la 
distancia proyectada. El estudiante descubre que, detrás de un 
fenómeno cotidiano, subyace una estructura trigonométrica.

Otro ejemplo valioso consiste en explorar triángulos incom-
pletos. Puede proponerse al estudiante imaginar un triángulo 
rectángulo donde solo se ve el cateto adyacente y parte de la 
hipotenusa. Aunque el triángulo no sea visible en su totalidad, 
las razones siguen siendo aplicables porque no pertenecen a 
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la figura dibujada, sino a la estructura conceptual que la figura 
representa. Esta experiencia refuerza la idea de que la trigono-
metría es una lógica interna de las relaciones angulares y no una 
técnica dependiente del dibujo.

Figura 5.
Representación trigonométrica de un poste y su sombra para analizar 
la razón tangente.

Nota: Elaboración propia.

La visualización dinámica amplifica estas experiencias. GeoGebra, 
más que una herramienta tecnológica, actúa como un mediador con-
ceptual. Al mover un vértice (figura 6 a, b, c), el estudiante observa 
simultáneamente el cambio de los lados y la constancia de las razones.

Al rotar la figura, ve que el cateto opuesto cambia de posición percep-
tiva, pero no de función. La tecnología hace visible la estructura oculta 
que la percepción distorsiona. Tall (2014) afirma que la exploración 
dinámica favorece la formación de una “imagen conceptual robusta”, 
capaz de integrar variación, invariancia y representación simbólica.

Figura 6 
Variación dinámica de un triángulo rectángulo para observar la cons-
tancia de las razones trigonométricas.

Nota: Elaboración propia. 

Incluso es posible animar situaciones reales: un automóvil que 
asciende una pendiente, una escalera que se desliza sobre una 
pared, un dron que cambia su altura manteniendo el ángulo res-
pecto al operador. En todas estas escenas, el triángulo rectángulo 
aparece como un modelo implícito, y las razones trigonométricas 
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como las herramientas que explican las relaciones entre posicio-
nes, distancias y ángulos.

Hacia una comprensión relacional y funcional de la trigonometría
Un desafío epistemológico aparece en el momento en que el 
seno deja de ser un cociente de catetos y pasa a concebirse 
como una función. Freudenthal (1973) criticaba que la escuela 
conduce a esta transición de manera abrupta: primero presenta 
el seno como “opuesto sobre hipotenusa”, y de inmediato exige 
interpretarlo como un valor funcional definido para cualquier 
ángulo. Si el estudiante no ha comprendido la invariancia ni la 
relación entre el ángulo y los lados, esta transición se hace opaca.

Figura 7.
Representación gráfica de la función seno para evidenciar su compor-
tamiento continuo y periódico.

Nota: Elaboración propia.

Comprender el seno como función implica reconocer que des-
cribe cómo varía una magnitud (proyección vertical de un punto 
en movimiento) cuando el ángulo cambia. Esta interpretación pre-
para al estudiante para conceptos posteriores: el círculo unitario, 
las identidades trigonométricas, las gráficas periódicas e incluso 
aplicaciones científicas como el análisis de ondas, la acústica, la 
óptica o los movimientos armónicos.

Weber (2006) señala que la trigonometría se vuelve compren-
sible cuando el estudiante logra conectar la razón del triángulo 
rectángulo con la variación continua del círculo. Pero esa conexión 
no es natural: se construye lentamente mediante experiencias 
relacionadas, exploraciones guiadas y explicitación progresiva 
de significado.

En consecuencia, enseñar razones trigonométricas no debe 
reducirse a un repertorio de definiciones, sino promover una 
comprensión relacional: la razón es una propiedad del ángulo, 
no del triángulo; una estructura invariante, no un valor arbitrario; 
un modelo de relación, no una operación.

Relaciones fundamentales y círculo trigonométrico
El paso desde el triángulo rectángulo al círculo trigonométrico 
constituye un salto conceptual decisivo, quizá el más importan-
te en la transición entre una trigonometría basada en figuras 
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estáticas y una trigonometría concebida como una teoría de 
funciones. Este desplazamiento epistemológico no es trivial, pues 
exige abandonar la sensación de que seno, coseno o tangente son 
meros cocientes entre lados, para comprenderlos como medidas 
dinámicas asociadas a un movimiento angular.

A diferencia del triángulo, cuya definición depende de una 
configuración espacial particular, el círculo unitario ofrece un 
modelo unificado donde las razones trigonométricas adquieren 
su sentido más profundo: periodicidad, simetría, continuidad y 
variación. Como señala Maor (1998), “el círculo trigonométrico no 
es una extensión del triángulo: es su reformulación fundamental”.

Fundamentos históricos y epistemológicos del círculo unitario
El origen histórico de la trigonometría está intrínsecamente vinculado 
al estudio del círculo y no al triángulo rectángulo. Ya en el siglo II a. C., 
Hiparco había desarrollado tablas de cuerdas en la circunferencia, 
relacionando longitudes y ángulos desde una perspectiva puramen-
te circular. Esta línea de trabajo se consolidaría posteriormente con 
Ptolomeo, cuyo Almagesto se convirtió en la obra de referencia para la 
astronomía y la matemática durante más de mil años (Berggren, 2007).

Este dato histórico es pedagógicamente significativo: la trigo-
nometría no nació como una colección de cocientes, sino como un 
estudio sistemático de la variación angular y la forma circular. El 
predominio escolar del triángulo rectángulo, aunque útil en términos 
de accesibilidad inicial, puede restringir la comprensión del estu-
diante si no se complementa con una progresión conceptual hacia 
el círculo unitario.

Freudenthal (1973), desde su visión realista de la matemática, sos-
tiene que los conceptos deben surgir de fenómenos “experienciales” 
por el estudiante. El círculo unitario, precisamente, ofrece un fenó-
meno natural de movimiento uniforme: un punto que gira alrededor 
de un centro. Esta experiencia dinámica, aunque representada de 
manera digital o manipulativa permite comprender mejor la periodici-
dad y la continuidad que subyacen en las funciones trigonométricas.

Figura 8.
Relación dinámica entre el movimiento circular y la función seno para 
visualizar la periodicidad y continuidad trigonométrica.

Nota: Elaboración propia.
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Desde el plano cognitivo, Tall (2014) señala que la transición 
desde la razón estática hacia la función dinámica constituye una 
ruptura conceptual: el estudiante debe abandonar la idea de que 
el seno es solo un cociente para comprender que es el valor de una 
función que depende exclusivamente del ángulo. Esta despersonali-
zación del triángulo es necesaria para comprender las identidades 
trigonométricas, las gráficas, el círculo y las aplicaciones físicas.

Además, desde el análisis funcional, el círculo unitario introduce 
de manera natural los radianes. En lugar de memorizar equiva-
lencias, el estudiante entiende que un radian es la longitud de 
arco correspondiente al ángulo central que intercepta un arco 
igual al radio. Esta interpretación es coherente con el movimiento 
y se integra sin artificios en el círculo unitario.

Periodicidad, continuidad y simetría: estructura conceptual del 
círculo
El círculo trigonométrico permite visualizar relaciones fundamen-
tales que permanecen ocultas en el triángulo rectángulo.

Periodicidad y movimiento
Al recorrer la circunferencia completa, el punto móvil regresa 

a la misma posición, lo que fundamenta la periodicidad de las 
funciones trigonométricas:

θ π θ θ π θ

Figura 9.
Comparación gráfica de f(x)=sen(x) y g(x)=sen(x+2π) para ilustrar la 
periodicidad del seno.

Nota: Elaboración propia.

Esta periodicidad no es una regla memorizada; es una conse-
cuencia geométrica directa del movimiento circular.

Comprender este fenómeno desde la experiencia, por ejem-
plo, mediante animaciones en GeoGebra, permite desarrollar la 
intuición funcional. Duval (1998) afirma que la coordinación entre 
registros semióticos es central para interpretar la periodicidad: 
observar el punto en movimiento y la gráfica simultáneamente 
permite que el estudiante construya la relación entre posición 
angular y valor trigonométrico.
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Continuidad y suavidad
La continuidad de las funciones trigonométricas es una propiedad 
derivada de la suavidad del movimiento circular. Cuando el punto 
avanza, el seno y el coseno cambian de manera progresiva y sin 
saltos. Este fenómeno marca la diferencia entre una trigonome-
tría estática centrada en cálculos y valores aislados y una visión 
profundamente analítica donde la variación es central.

Esta comprensión es fundamental para el cálculo diferencial e 
integral, pues explica por qué las funciones trigonométricas son 
derivables y por qué sus derivadas exhiben periodicidad y simetría.

Simetrías fundamentales
Geométricamente se muestra las simetrías de las funciones 
trigonométricas:

El coseno es par: θ θ .
El seno es impar:  θ θ .

Figura 10.
Representación gráfica de las simetrías del seno y del coseno para 
ilustrar su carácter impar y par, respectivamente.

Nota: Elaboración propia.

La simetría en 180° produce identidades como:

π θ θ π θ θ

Arcavi (2003) destaca que comprender estas simetrías desde 
la figura y no desde la fórmula fortalece la visualización matemá-
tica, que es clave para reducir errores conceptuales y reforzar 
el razonamiento.

Proyecciones, coordenadas y significado geométrico
Comprender la circunferencia como un espacio de relaciones 
dinámicas transforma por completo la manera en que el estu-
diante se aproxima al seno, el coseno y la tangente. En los enfo-
ques tradicionales estas funciones se presentan como cocientes 
entre lados, vinculadas a una figura estática que convierte el 
ángulo en un fragmento rígido de geometría escolar. Sin em-
bargo, cuando la circunferencia y sus proyecciones entran en 
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escena, las funciones trigonométricas revelan su sentido más 
profundo: son coordenadas que describen el movimiento, no 
simples razones.

Esta reconceptualización permite que el estudiante vincule 
la trigonometría con la geometría analítica, la representación 
cartesiana y la idea de variación continua. La circunferen-
cia deja de ser un contorno para convertirse en un sistema 
de referencia, y el punto que se desplaza sobre ella ya no 
representa un “triángulo” imaginario, sino una posición en 
un movimiento circular cuyos valores se expresan en forma 
de coordenadas. Esta visión, históricamente presente en la 
obra de Euler y más recientemente desarrollada en enfoques 
didácticos contemporáneos (Tall, 2014), facilita un tránsito 
natural hacia el estudio de funciones periódicas, simetrías, 
proyecciones y fenómenos ondulatorios.

Desde un punto de vista geométrico, todo punto P ubicado en 
la circunferencia unitaria puede describirse mediante sus coor-
denadas (x, y). Cuando ese punto se genera a partir de un giro 
de medida θ alrededor del origen, las coordenadas adquieren un 
significado trigonométrico esencial: θ θ θ .

Figura 11.
Representación del punto  en la circunferencia uni-
taria para visualizar el significado geométrico de las razones 
trigonométricas.

Nota: Elaboración propia.

Esta igualdad, tan compacta como profunda, articula a la vez 
la geometría del círculo, la estructura analítica del sistema car-
tesiano y la variación angular. Como señala Maor (1998), en esta 
representación “la trigonometría alcanza su forma más elegante”, 
pues seno y coseno dejan de depender de un triángulo particular y 
pasan a describir una relación universal entre ángulos y posiciones.

La noción de proyección es clave para comprender esta es-
tructura. El coseno emerge como la proyección horizontal del 
punto sobre el eje x; el seno, como la proyección vertical sobre 
el eje y. No son longitudes arbitrarias, ni distancias absolutas: 
son sombras geométricas que el punto proyecta al desplazarse 
por la circunferencia. Esta metáfora que Duval (1998) denomi-
na “coordinación de registros”, permite vincular representación 

θ π θ θ π θ
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gráfica, lenguaje analítico y significado geométrico en un mismo 
acto perceptivo. El estudiante deja de memorizar grafías para 
empezar a interpretar el comportamiento de las funciones como 
resultado de cómo estas proyecciones crecen, decrecen, se anu-
lan o cambian de signo.

 Apoyo didáctico: Esta reinterpretación tiene profundas impli-
caciones didácticas. Cuando seno y coseno se enseñan exclusiva-
mente como cocientes, los estudiantes desarrollan concepciones 
fragmentadas: piensan en triángulos aislados, no en sistemas de 
variación. En cambio, cuando se introduce el círculo unitario y 
se hace visible la correspondencia entre ángulos, coordenadas y 
proyecciones, la trigonometría se convierte en un lenguaje visual 
y conceptual que explica comportamientos reales: oscilaciones, 
rotaciones, trayectorias, fenómenos periódicos. Como insisten 
Arzarello y Robutti (2001), la comprensión de las funciones trigo-
nométricas se fortalece cuando el estudiante percibe el movimien-
to del punto y lo relaciona con valores numéricos y formas gráficas.

La tecnología potencia este proceso de manera notable. 
GeoGebra, Desmos y otros entornos dinámicos no solo “dibujan” 
la circunferencia, sino que permiten visualizar en tiempo real 
cómo las proyecciones horizontal y vertical varían a medida que 

•	 El punto avanza. La animación revela que:
•	 El coseno alcanza su máximo en 0 radianes
•	 El seno aumenta hasta π
•	 Ambos se anulan en distintos puntos según la proyección 

correspondiente
•	 Y la tangente explota cuando la proyección horizontal se anula.
Estos fenómenos, que en la enseñanza tradicional suelen 

aparecer como hechos aislados, se integran en una narrativa 
geométrica coherente cuando el estudiante observa la relación 
funcional entre posición y proyección. Pierce (2010) sostiene que 
este tipo de experiencias tecnológicas contribuyen a la “flexibili-
zación representacional”, permitiendo que el estudiante transite 
sin rupturas entre lo visual, lo analítico y lo algebraico.

Figura 12.
Representación geométrica de la tangente en la circunferencia unita-
ria como pendiente de la recta que une el origen con  y 
como intersección con la línea tangente en (1,0).

Nota: Elaboración propia.
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La tangente, por su parte, adquiere en este contexto una inter-
pretación mucho más rica que la que ofrece el triángulo rectán-
gulo. En el círculo unitario, la tangente representa la pendiente de 
la recta que une el origen con el punto móvil o, alternativamente, 
la intersección de esa recta con la línea tangente al círculo en el 
punto (1,0). Ambas interpretaciones, discutidas en profundidad 
por Weber (2006), permiten comprender por qué la tangente 
crece sin límite cerca de π : no se trata de una anomalía alge-
braica, sino del comportamiento natural de una pendiente que 
se aproxima a la vertical.

En síntesis, interpretar seno y coseno como coordenadas diná-
micas no es un refinamiento conceptual, sino una reconstrucción 
completa del sentido de la trigonometría. Desde esta perspectiva, 
el círculo unitario deja de ser un artificio gráfico para convertirse 
en la representación más potente para entender la estructura 
profunda de las funciones trigonométricas y su papel en fenóme-
nos reales. Los estudiantes que integran esta visión adquieren 
no solo habilidades de cálculo, sino una comprensión geométrica 
y analítica que les permite anticipar comportamientos, resolver 
problemas complejos y conectar la trigonometría con ideas fun-
damentales del análisis y la modelización científica.

Identidades trigonométricas básicas
Las identidades trigonométricas básicas representan mucho 
más que una serie de igualdades útiles para resolver ejercicios. 
Constituyen una red conceptual que articula la geometría, el álge-
bra y el análisis, y que permite comprender la estructura profunda 
de la trigonometría como lenguaje del cambio y de la invariancia. 
En este sentido, su estudio revela un área privilegiada para analizar 
cómo se forma el pensamiento matemático avanzado, cómo inte-
ractúan distintos registros semióticos y cómo las representaciones 
geométricas se transforman en expresiones simbólicas.

Diversos autores han señalado que enseñar identidades única-
mente como “fórmulas a memorizar” empobrece la matemática 
y obstaculiza la comprensión duradera (Weber, 2006; Tall, 2014). 
Desde una mirada crítica, este enfoque reduccionista ignora la 
carga epistemológica de las identidades: su origen geométrico, 
su carácter de propiedad universal y su papel como puente entre 
significados.

El círculo unitario como fundamento conceptual
El círculo unitario ha sido reconocido como el marco conceptual 
más potente para comprender las identidades trigonométricas. 
Históricamente, la trigonometría nació vinculada a triángulos y 
cuerdas, pero su consolidación moderna debe mucho a Euler 
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quien vinculó seno y coseno a funciones periódicas y al análisis. 
Sin embargo, la representación dominante en la educación esco-
lar siguió siendo el triángulo rectángulo, lo que —como advierte 
Maor (1998)— genera restricciones cognitivas: los estudiantes 
suelen creer que la trigonometría “solo funciona” en triángulos, 
que los ángulos deben ser positivos y agudos, y que las razones 
trigonométricas dependen de figuras específicas.

Figura 13.
Representación del movimiento angular continuo en el círculo unitario 
y su relación con la extensión de ángulos, coordenadas y periodicidad.

Nota: Elaboración propia.

Desde una perspectiva crítica, Tall (2014) sostiene que la com-
prensión profunda de la trigonometría se obstaculiza cuando el 
currículo fija el triángulo rectángulo como único punto de par-
tida. Su concepto de three worlds of mathematics muestra que 
el paso del mundo encarnado (la figura) al mundo simbólico (la 
identidad) requiere estructuras conceptuales que el triángulo 
rectángulo no provee plenamente. El círculo unitario, por el con-
trario, permite que el estudiante vea:

•	 La continuidad del movimiento angular,
•	 La extensión a ángulos mayores que 90° o negativos,
•	 La relación entre coordenadas y funciones,
•	 La periodicidad como propiedad estructural.

Duval (1998), desde la teoría de los registros semióticos, enfa-
tiza que el círculo unitario no es solo una figura, sino un sistema 
de representación que facilita la conversión entre lo gráfico y lo 
algebraico. La identidad pitagórica deja de ser una fórmula abs-
tracta y se convierte en la ecuación del círculo, transformando la 
percepción del estudiante: ya no memoriza, sino que comprende 
un invariante geométrico.

 Apoyo didáctico: autores como Godino, Batanero y Font (2007) 
proponen que la introducción de las identidades debe partir de 
la fenomenología del círculo unitario, porque permite reconstruir 
el significado ontosemiótico de las funciones trigonométricas: su 
existencia, representación, reglas de transformación y validación.
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Una enseñanza basada en el círculo unitario, por tanto, no es 
solo un recurso visual: es una reconstrucción epistemológica que 
devuelve significado a la trigonometría.

Identidades pitagóricas, de simetría y recíprocas
Las identidades pitagóricas constituyen la columna vertebral 
de la trigonometría. Su importancia radica en que relacionan 
de manera estructural las funciones seno, coseno y tangente, 
sin necesidad de recurrir a triángulos particulares. Su validez es 
universal porque se derivan de la ecuación del círculo unitario.
Identidad fundamental

θ θ
Esta igualdad expresa que la suma de los cuadrados de las pro-
yecciones horizontal y vertical del punto (x, y) en el círculo es 
siempre 1. Es un invariante geométrico que no depende del ángulo 
ni de la posición.

Figura 14.
Representación geométrica de la identidad fundamental 

  en la circunferencia unitaria.

Nota: Elaboración propia.

Como argumenta Simmons (2016), esta identidad posee un 
rol regulador dentro del sistema trigonométrico: permite acotar 
valores, verificar coherencia en soluciones y enlazar la trigono-
metría con el álgebra y el cálculo. Cualquier error en una susti-
tución o manipulación suele manifestarse como contradicción 
de esta igualdad.

Identidades pitagóricas derivadas
A partir de la identidad fundamental y de las relaciones:

θ
θ
θ

θ
θ
θ

se obtienen las dos igualdades derivadas:

θ θ

θ θ
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La deducción es puramente algebraica, pero su interpretación 
geométrica es igualmente rica. Por ejemplo, la primera identidad 
se relaciona con la pendiente de la recta tangente a la circunfe-
rencia y con la proyección del punto a lo largo del eje vertical. 
Stewart (2016) señala que estas identidades son esenciales para 
comprender el comportamiento de las funciones trigonométri-
cas en el cálculo integral y diferencial, pues articulan la tasa de 
cambio con la curvatura del círculo.

Tabla 1.
Identidades trigonométricas fundamentales y su interpretación 
geométrica.

Tipo de 
identidad

Identidad Interpretación geométrica

Pitagórica θ θ Ecuación del círculo unitario

Pitagórica 
derivada θ θ

Relación entre pendiente y 
proyección horizontal

θ θ
Relación entre inclinación e 
inversión del seno

Cocientes
θ

θ
θ

Proyección vertical / proyec-
ción horizontal

θ
θ
θ

Recíproco de la tangente

Recíprocas
θ

θ
Inversión horizontal

θ
θ

Inversión vertical

Ángulo 
negativo

θ θ Seno es función impar

θ θ Coseno es par

θ θ Tangente es impar

Nota. Elaboración propia basada en la relación entre identidades trigonomé-
tricas y sus representaciones geométricas en el círculo unitario y en triángu-
los rectángulos.

Perspectiva didáctica: enseñar identidades desde la comprensión
La enseñanza de las identidades trigonométricas constituye un 
terreno fértil para explorar cómo los estudiantes transitan desde 
la mera evocación de fórmulas hacia una comprensión profunda 
de las relaciones matemáticas. En numerosos contextos esco-
lares, las identidades se presentan como “reglas” que deben 
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memorizarse para resolver ejercicios de simplificación o demos-
tración, reproduciendo una tradición algorítmica que fragmenta 
el conocimiento y reduce la trigonometría a procedimientos sin 
sentido. Investigaciones recientes muestran que esta aproxi-
mación genera dificultades persistentes: errores conceptuales, 
confusiones entre función y razón, y una débil capacidad para 
justificar transformaciones 

Esta perspectiva parte del reconocimiento de que las iden-
tidades son consecuencias lógicas de los modelos geométri-
cos fundamentales: el triángulo rectángulo, el círculo unitario 
y la definición funcional de las razones trigonométricas. En 
este sentido, reconstruir con los estudiantes la génesis de las 
identidades permite activar procesos de razonamiento que 
van más allá de la manipulación simbólica. Tal como sostiene 
Duval (2017), la comprensión matemática auténtica se asienta 
en la coordinación entre múltiples registros de representación. 
Aplicado a las identidades, esto supone dialogar entre la figura 
geométrica, la expresión algebraica, la visualización dinámica 
y el comportamiento gráfico de las funciones, reconociendo 
que cada una ilumina aspectos distintos de la misma estruc-
tura conceptual.

Ejercicios para comprender, no para repetir
Desde esta mirada, es imprescindible que la tipología de ejerci-
cios responda a la lógica de la comprensión y no al mecanicismo. 
Una propuesta didáctica sólida debería contemplar al menos 
cinco tipos de tareas que, articuladas entre sí, permitan avanzar 
desde la exploración intuitiva hacia la formalización rigurosa:

1.	 Ejercicios de exploración visual
Consisten en actividades donde los estudiantes manipulan re-
presentaciones dinámicas para observar cómo cambian las ra-
zones trigonométricas al variar el ángulo. Estas tareas permiten 
que las identidades “emerjan” como regularidades observables. 
Hohenwarter y Lavicza (2007) demostraron que este tipo de 
exploraciones aumenta la autonomía intelectual y la capacidad 
de formular conjeturas. 

Por ejemplo, arrastrar un punto en el círculo unitario y registrar 
los valores de:

θ θ θ
conduce naturalmente a identificar que:

θ θ

incluso antes de formalizar la identidad.
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2.	 Ejercicios de reconstrucción geométrica
Estas actividades invitan a justificar la validez de una identidad 
a partir de un diagrama. Aquí el énfasis está en razonar: explicar 
por qué la identidad es verdadera. Ejemplos típicos incluyen:

•	 Demostrar la identidad pitagórica usando triángulos 
semejantes.

•	 Justificar las identidades de cociente a partir de las defini-
ciones de razón trigonométrica en el círculo unitario.

•	 Explicar por qué θ θ se deduce de dividir la 
identidad pitagórica entre θ

Este tipo de ejercicio responde a tareas de mediación semió-
tica, donde la figura actúa como puente entre el mundo visual 
y el simbólico.

3.	 Ejercicios de equivalencia conceptual
Su objetivo es que los estudiantes identifiquen si dos expresiones 
representan la misma identidad, aunque estén escritas de forma 
diferente. Este tipo de tarea favorece lo que Thompson (2016) 
denomina “coherencia estructural”, indispensable para consolidar 
la red de relaciones entre identidades. Algunos ejemplos:

•	 Determinar si θ  y θ son equivalentes;
•	 Decidir si dos expresiones supuestamente distintas son trans-

formaciones válidas de una misma relación trigonométrica;
•	 Comparar gráficos que representan la misma función es-

crita con identidades distintas.

4.	Ejercicios de generalización y aplicación contextual
Aquí se integran problemas donde las identidades funcionan 
como herramientas para resolver situaciones más amplias: aná-
lisis de fenómenos periódicos, resolución de triángulos no rec-
tángulos, estudio del movimiento armónico, entre otros. Estos 
ejercicios muestran que las identidades tienen un propósito más 
allá de la manipulación simbólica. 

Ejercicios de demostración y argumentación simbólica
Finalmente, cuando el estudiante ya ha interiorizado las relaciones 
geométricas y las equivalencias conceptuales, puede abordar 
demostraciones que requieren dominio algebraico. La clave está 
en que estas demostraciones no se aprendan como secuencias 
memorizadas, sino como razonamientos justificables. Tchoshanov 
(2011) advierte que muchos errores provienen de tratar la identidad 
como un “procedimiento”, cuando en realidad es una afirmación 
universal que debe sostenerse bajo cualquier sustitución válida.
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La propuesta de combinar estas cinco tipologías no apunta a 
fragmentar el aprendizaje, sino a construir una progresión cohe-
rente que inicie en la intuición, pase por la observación y llegue 
a la argumentación formal. En este sentido, el rol del docente 
es fundamental: debe orquestar la secuencia de tareas, ofrecer 
andamiajes temporales, promover el diálogo matemático y es-
timular la metacognición, especialmente cuando el estudiante 
enfrenta la necesidad de justificar por qué un paso algebraico es 
válido. La meta no es que se memoricen “todas las identidades”, 
sino que se comprenda el sistema que las articula.

Cuando esto se logra, las identidades dejan de funcionar como 
obstáculos y se convierten en herramientas poderosas para ana-
lizar, modelar y resolver problemas. Más aún, el estudiante puede 
reconocer que detrás de cada expresión existe una idea geométri-
ca profunda que da sentido a la matemática como una disciplina 
coherente, elegante y articulada.

Tabla 2.
Propuesta de ejercicios para enseñar identidades trigonométricas des-
de la comprensión

Tipología de 
ejercicio

Ejercicio propuesto

1 .  Ejercicios 
de explora-
c ión v isua l 
(GeoGebra / 
manipulacio-
nes dinámicas)

1. Mover un punto sobre el círculo unitario y registrar 
valores de θ  y θ  para distintos ángulos.
2. Observar cómo crece θ  al acercarse a los ángulos 
donde la función es indefinida.
3. Comparar en la misma vista los gráficos de θ , 

θ  y θ θ
4. Manipular un triángulo rectángulo y verificar que las 
razones trigonométricas se mantienen para un mismo 
ángulo.
5. Superponer el triángulo rectángulo dentro del círculo 
unitario para visualizar la identidad pitagórica.

Sugerencia: Invitar a formular conjeturas antes de formalizar. Preguntar: 
“¿Qué patrón observas?” o “¿Qué crees que se mantiene constante al 
mover el punto?” para promover pensamiento inductivo.
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2. Ejercicios de 
reconstrucción 
geométrica

1. Demostrar la identidad pitagórica desde un triángulo 
rectángulo dibujado por el estudiante.
2. Construir un triángulo semejante que permita justificar 

θ θ
θ

 
3. Explicar por qué θ θ al dividir la iden-
tidad pitagórica entre θ
4. Representar un triángulo en el cuadrante II y analizar 
el signo de cada razón para justificar transformaciones.
5. Dibujar una circunferencia de radio r y argumentar 
por qué las identidades se mantienen tras un cambio 
de escala.

Sugerencia: Manipular un triángulo rectángulo y verificar que las razones 
trigonométricas se mantienen para un mismo ángulo.
5. Superponer el triángulo rectángulo dentro del círculo unitario para 
visualizar la identidad pitagórica.

3. Ejercicios de 
equivalencia 
conceptual

1. Determinar si θ es equivalente a θ .
2. Comparar si θ

θ
 y θ  pueden usarse indistinta-

mente en una expresión dada.
3. Identificar si dos expresiones complejas representan 
la misma identidad escrita en forma distinta.
4. Verificar si una gráfica dada corresponde a 
o a una de sus transformaciones equivalentes.
5. Determinar qué expresiones son idénticas al cuadrado 
de una razón trigonométrica dada.

Sugerencia: Fomentar el uso de contraejemplos: “Si crees que son equi-
valentes, ¿puedes elegir un valor θ que lo confirme? ¿Y uno que lo con-
tradiga?” Esto fortalece la comprensión del dominio.

4. Ejercicios de 
generalización 
y aplicación 
contextual

1. Utilizar identidades para modelar la sombra proyec-
tada de un objeto en un problema realista. 
2. Analizar un fenómeno periódico y describir qué iden-
tidades permiten simplificar el modelo trigonométrico.
3. Aplicar θ θ para deducir una expresión 
en un triángulo no rectángulo mediante ley de senos o 
cosenos.
4. Emplear identidades para simplificar una expresión 
en un problema de ondas o vibraciones.
5. Utilizar una identidad para determinar la altura de un 
punto observado desde dos ángulos distintos.

Sugerencia: Guiar con preguntas situadas: “¿Qué expresión sería más 
fácil de manipular?”, “¿Qué identidad te ayuda a reducir el proble-
ma?”. Invitar a justificar la elección.



138

Razones e identidades trigonométricas y resolución de triángulos

5. Ejercicios de 
demostración 
simbólica y 
manipulación 
algebraica

1. Demostrar que θ θ θ
θ θ

2. Mostrar que 
θ

θ
θ

 usando identidades 
conocidas.
3. Probar que θ θ  bajo cualquier valor 
permitido de θ
4. Simplificar una expresión compleja usando única-
mente transformaciones válidas de identidades básicas.
5. Verificar que dos expresiones aparentemente dis-
tintas son equivalentes transformándolas paso a paso.

Sugerencia: Recomendar que cada paso vaya acompañado de un bre-
ve comentario escrito: “aquí aplico esta identidad”, “aquí sustituyo esta 
equivalencia”. Esto fortalece la argumentación matemática.

Nota. Elaboración propia

Algunas aplicaciones de la trigonometría en la vida cotidiana 
y las ciencias
La trigonometría constituye uno de los lenguajes matemáticos uni-
versales para describir, analizar y modelar fenómenos naturales y 
sociales. Su fuerza radica en la capacidad de articular tres ideas fun-
damentales: variación, periodicidad y relación angular. Aunque suele 
enseñarse de manera abstracta, desligada de su contexto histórico 
y de sus múltiples usos contemporáneos, sus aplicaciones atraviesan 
casi todas las disciplinas: desde la ingeniería y la arquitectura hasta 
la biología, la música, la informática y las ciencias de la tierra.

Como señala Maor (1998), la trigonometría “refleja el esfuerzo 
humano por comprender las regularidades del mundo”, y esta 
comprensión se ha ido transformando, desde las primeras obser-
vaciones astronómicas hasta la modelación digital del siglo XXI. 
En este sentido, comprender sus aplicaciones no es un añadido 
decorativo, sino la clave para que el estudiante perciba la trigo-
nometría como un sistema significativo, anclado en problemas 
genuinos que trascienden el aula.

Trigonometría en la medición: topografía, cartografía y geodesia
Medición directa e indirecta en la vida cotidiana

La medición indirecta es, sin duda, una de las aplicaciones más 
antiguas, prácticas y persistentes de la trigonometría. Mucho 
antes de que las funciones trigonométricas adquirieran su forma-
lismo moderno, diversos pueblos ya empleaban procedimientos 
basados en triángulos semejantes para estimar alturas, distancias 
y profundidades sin necesidad de acceder físicamente al objeto. 
Esta forma de medir que consiste en calcular lo desconocido a 
partir de lo observable revela la esencia misma de la trigono-
metría: un puente entre experiencia y razonamiento geométrico, 
entre el mundo sensible y la abstracción matemática.
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Desde una perspectiva histórica, se sabe que los egipcios uti-
lizaban relaciones geométricas para determinar la pendiente de 
las pirámides, mediante la razón llamada seked, que no es sino 
el antecedente de la tangente moderna (Maor, 1998). De manera 
similar, los griegos empleaban instrumentos rudimentarios para 
medir sombras y obtener proporciones que permitieran estimar 
alturas inaccesibles. Tales prácticas evidencian que la medición 
indirecta surgió de necesidades concretas y no de especulación 
teórica: construir, orientar, navegar, delimitar territorios, resolver 
problemas de la vida diaria.

En la actualidad, aunque los instrumentos tecnológicos son 
más sofisticados, por ejemplo: clinómetros digitales, telémetros 
láser, estaciones totales; la lógica geométrica subyacente perma-
nece inalterada. Como explica Stewart (2016), “la trigonometría 
aplicada mantiene siempre el mismo corazón: el triángulo como 
modelo de relación entre magnitudes”. Esto permite compren-
der por qué la medición indirecta continúa siendo una habilidad 
fundamental en profesiones tan diversas como la arquitectura, la 
ingeniería civil, la topografía, la geología, la física y la astronomía.

La idea básica es plantear un triángulo donde una magnitud 
desconocida se vincule con otras accesibles mediante razones 
trigonométricas. Así, medir una sombra, un ángulo de elevación 
o la longitud de una base observable permite reconstruir la di-
mensión buscada. Este proceso se fundamenta en: 

•	 Las propiedades de semejanza,
•	 La definición funcional de seno, coseno y tangente,
•	 La Ley de Senos y la Ley de Cosenos cuando el triángulo 

no es rectángulo.
Por ejemplo, medir la altura de un edificio mediante la tangen-

te no es un truco escolar, sino la aplicación directa del triángulo 
rectángulo formado por:

1.	 La altura desconocida,
2.	 La distancia horizontal medida,
3.	 La línea de visión.

Este modelo, aparentemente simple, es extraordinariamente 
versátil: permite medir desde la anchura de un río hasta la pro-
fundidad de un barranco, pasando por la altura de una antena, 
la distancia a un árbol o la inclinación de un tejado.

Estimación de una altura urbana
Ejemplo 1: Imaginemos a un estudiante que desea medir un blo-
que de apartamentos sin disponer de una cinta métrica de gran 
longitud. Al ponerse a 50 metros y medir un ángulo de elevación 
de 36°, puede aplicar: θ .
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Ejemplo 2: Durante una actividad de medición en clase de 
matemáticas, los estudiantes deben calcular la altura de una asta 
de bandera en el patio de su colegio. Desde un punto A, miden 
un ángulo de elevación de 45 grados hacia la punta del  asta. 
Luego, retroceden 10 metros y desde un punto B, miden un nuevo 
ángulo de elevación de 30 grados.

Figura 15.
Representación geométrica del problema de medición de la altura 
del asta utilizando ángulos de elevación de .

Nota: Elaboración propia.

Se pide calcular la altura del asta utilizando trigonometría.
Ejemplo 3: Durante la feria escolar, el área de Matemáticas 

instaló un stand interactivo para atraer la atención de los es-
tudiantes. Se observó que el número de visitas por hora no era 
constante, sino que seguía un comportamiento periódico a lo 
largo del día. El flujo de estudiantes puede describirse mediante 
la función:

π

donde m(t) es el número de visitas por hora y t es el tiempo 
en horas medido desde la apertura del stand (t=0).

Figura 16.
Representación gráfica de la función m(t) para analizar el flujo perió-
dico de estudiantes en el stand matemático.

Nota: Elaboración propia.

a. Determina a qué hora ocurre el primer pico de visitas y cuántas 
visitas por hora se esperan en ese momento.
b. Determina a qué hora ocurre el mínimo de visitas y el valor 
correspondiente.
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c. Determina en qué intervalos de tiempo la función m(t) es cre-
ciente y en cuáles es decreciente.
d. Demuestre gráficamente cómo se comporta el promedio de 
visitas por hora durante las 12 horas de funcionamiento del stand

Medición de pendientes y accesibilidad
La normativa de accesibilidad exige rampas con pendien-
tes máximas específicas. Un docente puede mostrar cómo: 

θ  permite verificar si una rampa es adecuada 
midiendo solo la altura y la distancia horizontal. Este tipo de 
aplicación conecta la trigonometría con decisiones urbanísticas 
y con la inclusión social.

Triangulación: el corazón de la topografía
La triangulación consiste en dividir un territorio en triángulos 
cuyas distancias y ángulos pueden calcularse mediante leyes 
de senos y cosenos. Snellius fue uno de los primeros en usar 
estos métodos para medir la curvatura terrestre en 1617, un 
hito que marcó la transición hacia una geografía científica 
(Maor, 1998).

Ejemplo 4: Determinar la distancia entre dos colinas sin acce-
der a ellas

Se mide una base AB de 120 m y los ángulos hacia las colinas  

La distancia AC se estima usando la Ley de Senos:

Estos cálculos son base para:
•	 Delimitar parcelas,
•	 Construir carreteras,
•	 Evaluar impacto ambiental,
•	 Modelar zonas de riesgo volcánico.

Aunque estos ejemplos son comunes, investigaciones muestran 
que los estudiantes rara vez perciben la utilidad de la trigono-
metría en el mundo real. Duval (1998) explica que el problema 
reside en la desconexión entre registros: se enseñan procedi-
mientos, pero no se articulan con la experiencia visual o corporal 
del espacio.

Freudenthal (1973) añade que la matemática escolar debe 
reconstruirse desde situaciones significativas; de lo contrario, se 
convierte en un conjunto de reglas arbitrarias. En este sentido, 
actividades prácticas no son “manualidades”, sino experiencias 
esenciales para romper la inertización de la trigonometría como 
“cálculo vacío”.
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Trigonometría en física: ondas, vibraciones y señales
La ecuación general de una onda armónica: f(t)=Asen(ωt+ϕ)  se ha 
consolidado como uno de los modelos matemáticos más potentes 
para describir procesos periódicos en física. En ella, la amplitud 
A, la frecuencia angular ω y la fase inicial φ codifican información 
clave sobre la energía del sistema, la rapidez con que oscila y 
el modo en que se sincroniza con otras oscilaciones. Cada uno 
de estos parámetros tiene un correlato físico claro, lo que con-
vierte a la función seno en un puente directo entre la expresión 
algebraica y la experiencia experimental (Tipler & Mosca, 2008). 

Este modelo armónico se utiliza para describir una gran va-
riedad de fenómenos:

•	 Osciladores mecánicos, como el sistema masa–resorte o el 
péndulo simple.

•	 Ondas sonoras, que se propagan en medios elásticos.
•	 Vibraciones sísmicas, que recorren el interior de la Tierra.
•	 Campos electromagnéticos, cuya oscilación explica desde 

la luz visible hasta las microondas.
•	 Señales en telecomunicaciones, análogas y digitales, donde 

las ondas se modulan para transportar información.

En el terreno de la mecánica, el análisis de pequeños despla-
zamientos alrededor del equilibrio muestra que muchas ecua-
ciones de movimiento pueden aproximarse por la ecuación del 
oscilador armónico simple. Tipler y Mosca (2008) destacan que, 
en este régimen lineal, la respuesta del sistema es prácticamente 
sinusoidal, de modo que la trigonometría no aparece como un 
artificio formal, sino como la forma natural de describir cómo 
responde la materia cuando se la perturba ligeramente.

En acústica, la sinusoide adquiere un papel central. Rossing 
(2002) subraya que cualquier sonido complejo como por ejemplo: 
una nota musical, una sílaba pronunciada, el ruido de la ciudad, 
puede descomponerse en una suma de ondas sinusoidales con 
distintas frecuencias y amplitudes. Esta idea, heredera del trabajo 
de Fourier, permite analizar el timbre de los instrumentos, dise-
ñar filtros electrónicos, comprimir archivos de audio y estudiar 
la contaminación sonora con herramientas matemáticas finas. 
La función seno deja de ser entonces una curva abstracta para 
convertirse en la huella matemática del sonido que escuchan 
nuestros estudiantes.

Ejemplo 5: Interferencia de ondas sonoras
Dos fuentes sonoras emiten ondas armónicas puras de frecuen-
cias muy próximas.
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Sus funciones de onda (en función del tiempo t) pueden mo-
delarse como: 

Figura 17.
Visualización de la interferencia entre dos ondas sonoras de frecuen-
cias cercanas y su resultante modulada.

Nota: Elaboración propia.

a. Escribe la expresión de la onda resultante f(t) producida por 
la superposición de ambas.
b. Utiliza la identidad trigonométrica 

 para mostrar que la señal 
resultante corresponde a una oscilación rápida modulada por 
una variación lenta de amplitud (batidos).
c. Identifica la frecuencia “rápida” y la frecuencia de batido.

Este fenómeno se usa en afinación musical, acústica arquitec-
tónica y análisis de vibraciones y el estudiante puede comprobar 
que:

•	 La suma de dos ondas seno de frecuencias muy cerca-
nas puede reescribirse como el producto de: una onda 
rápida de frecuencia media, y un coseno de frecuencia 
igual a la mitad de la diferencia, cuya envolvente genera 
los batidos.

•	 La interferencia de las ondas de 440 y 445 da lugar a un 
sonido cuya intensidad sube y ba ja aproximadamente 
5 veces por segundo, fenómeno usado en afinación de 
instrumentos y en análisis de vibraciones.

Algo similar ocurre en sismología. Las vibraciones generadas 
por un terremoto se registran en forma de señales que, al ser ana-
lizadas, se descomponen en paquetes de ondas con estructuras 
casi sinusoidales. Stein y Wysession (2003) muestran cómo el 
estudio detallado de esas frecuencias y de su atenuación permite 
inferir propiedades de la corteza y el manto terrestres, localizar 
epicentros y estimar la magnitud de los eventos sísmicos. La tri-
gonometría proporciona así un lenguaje para leer lo que ocurre 
a decenas o cientos de kilómetros bajo nuestros pies.
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En el campo de la electromagnética, las ecuaciones de 
Maxwell describen campos eléctricos y magnéticos que se 
propagan en forma de ondas. Griffiths (2017) explica que, en 
ausencia de fuentes, las soluciones más simples de estas ecua-
ciones son ondas planas sinusoidales, que via jan a la velocidad 
de la luz. A partir de este modelo se construyen las teorías y los 
dispositivos que permiten comprender desde la propagación 
de la luz en fibras ópticas hasta el funcionamiento de antenas 
y sistemas de comunicación inalámbrica. La misma estructura 

ω φ  está detrás del diseño de láseres, radares y en-
laces satelitales.

Cuando se pasa al terreno de las señales discretas y las co-
municaciones modernas, la presencia de la sinusoide es igual 
de evidente. Muchas técnicas de modulación: de amplitud, de 
frecuencia o de fase; se basan en manipular los parámetros de 
una onda portadora sinusoidal para codificar información. La 
estabilidad de esta forma de onda, su facilidad para ser gene-
rada y filtrada y su tratamiento analítico mediante herramientas 
como la transformada de Fourier justifican su predominio en 
sistemas analógicos y digitales (Rossing, 2002; Griffiths, 2017).

Todo esto otorga a la trigonometría un enorme potencial 
formativo. Tall (2014) defiende que la comprensión genuina de 
las funciones sinusoidales permite al estudiantado dar un salto 
desde un pensamiento geométrico, ligado a triángulos y círculos, 
hacia un pensamiento funcional en el que se reconocen patro-
nes de variación, periodicidad y simetría. Cuando el alumnado 
observa que una misma ecuación describe la vibración de una 
cuerda, la propagación de la luz o la transmisión de datos en un 
teléfono móvil, la matemática deja de ser un conjunto de téc-
nicas desconectadas y se percibe como un sistema coherente 
de modelos para interpretar la realidad.

En este sentido, traba jar en el aula con ejemplos de osci-
ladores mecánicos, simulaciones de ondas sonoras, registros 
sísmicos reales o visualizaciones de campos electromagnéticos 
no solo contextualiza la función seno, sino que contribuye a 
construir una imagen más integrada de la ciencia. 
Corriente alterna y fasores
La trigonometría ocupa un lugar central en el análisis de corrien-
te alterna (CA) debido a que las magnitudes eléctricas funda-
mentales: volta je, corriente y potencia instantánea; presentan 
un comportamiento oscilatorio que puede describirse median-
te funciones sinusoidales. Cuando un sistema eléctrico opera 
con una frecuencia determinada, sus variaciones periódicas de 
volta je se representan comúnmente con ecuaciones del tipo 

ω , en las que la fase y la amplitud determinan 
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tanto la forma como la intensidad de la señal. Este modelo, apa-
rentemente sencillo, permite estudiar fenómenos como la transfe-
rencia de energía, la respuesta del sistema ante cargas resistivas 
o reactivas y la relación entre tensión y corriente en circuitos 
lineales. 

Desde el punto de vista formativo, comprender la dinámica de 
la corriente alterna implica algo más que aplicar fórmulas: re-
quiere interpretar cómo los ángulos determinan los desfases entre 
señales, cómo el coseno del ángulo de fase afecta la potencia 
activa o cómo la impedancia combina componentes resistivas y 
reactivas. En este sentido, Tall (2014) subraya que la transición del 
mundo visual al simbólico es fundamental para que el estudiante 
comprenda la estructura periódica de los fenómenos eléctricos. 

Asimismo, investigaciones como las de Duval (1998) y Godino, 
Batanero y Font (2007) muestran que, al integrar registros grá-
ficos (diagramas fasoriales), algebraicos (números complejos) 
y verbales (explicaciones de fase y amplitud), los futuros inge-
nieros desarrollan una comprensión más robusta del comporta-
miento oscilatorio de los sistemas eléctricos y logran percibir la 
trigonometría no solo como un conjunto de relaciones, sino como 
un lenguaje que organiza y explica la dinámica profunda de la 
corriente alterna.

Ejemplo 6: Desfase entre volta je y corriente
Se conecta un circuito formado por una resistencia de  
y una bobina ideal con inductancia  en serie a una 
fuente de corriente alterna de π

Figura 18.
Representación temporal del voltaje aplicado en el circuito RL para 
analizar la impedancia y el desfase.

Nota: Elaboración propia.

a. Determina la impedancia fasorial total del circuito.
b. Calcula la corriente eficaz que circula.
c. Halla el ángulo de desfase entre el volta je y la corriente, e in-
terpreta el resultado.
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Este ejercicio ayuda a que el estudiante vea la trigonometría 
como algo vivo y conectado con fenómenos reales, y no solo 
como un conjunto de fórmulas. Al trabajar con fasores y analizar 
cómo se comportan el volta je y la corriente en un circuito, el 
alumno descubre que los ángulos, las fases y las razones trigo-
nométricas tienen un sentido físico claro. Además, al combinar 
dibujos, cálculos y explicaciones, se fortalece la comprensión 
desde varios modos de representación, algo fundamental para 
evitar que el estudio de la CA se vuelva puramente mecánico.

	
Aplicaciones biológicas, fisiológicas y ambientales.

Los ritmos biológicos forman parte esencial del funcionamiento 
de los organismos vivos. Desde el ciclo sueño–vigilia hasta las 
variaciones diarias de la temperatura corporal, una gran parte de 
estos procesos puede describirse mediante funciones periódicas, 
lo que permite analizar su comportamiento con herramientas tri-
gonométricas. Los estudios sobre ritmos circadianos muestran que 
estas oscilaciones siguen patrones bastante estables, vinculados a 
cambios ambientales como la luz, la temperatura y la alimentación. 
Tal regularidad, como señalan Ahrens (2012) y Crowley (2015), fa-
cilita el uso de modelos senoidales para comprender la dinámica 
de la actividad metabólica, hormonal y neurológica.

En el ámbito de la fisiología, la trigonometría también resulta 
clave para interpretar señales eléctricas del cuerpo humano, 
especialmente las relacionadas con el corazón y el cerebro. El 
electrocardiograma (ECG) y las ondas cerebrales registradas por 
electroencefalografía (EEG) presentan formas periódicas que 
se analizan mediante funciones seno–coseno, transformaciones 
armónicas y descomposición en frecuencias. Herreros y Martín 
(2015) muestran que estos modelos ayudan no solo a visualizar 
el ritmo de los impulsos eléctricos, sino también a identificar 
alteraciones que pueden indicar arritmias, apnea del sueño o 
disfunciones neurológicas. Aquí, la trigonometría actúa como un 
traductor: convierte señales biológicas complejas en patrones 
matemáticos que permiten tomar decisiones clínicas.

 Apoyo didáctico: estos ejemplos permiten mostrar al estudian-
te que las funciones trigonométricas no solo describen ondas y 
fenómenos físicos, sino que forman parte del lenguaje con el que 
se estudian procesos vitales. Al conectar matemática y biología, 
se favorece una comprensión más integrada del mundo natural, 
superando la idea de la trigonometría como un tema puramente 
abstracto. Estudios de Tall (2014) y Freudenthal (1973) insisten en 
este punto: el aprendizaje significativo emerge cuando el alumno 
puede relacionar estructuras matemáticas con fenómenos reales 
que tienen sentido para él.
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Imaginemos el registro del ritmo cardíaco de una persona en 
reposo. Al analizar el electrocardiograma durante unos segundos, 
se observa que los latidos siguen un patrón bastante regular: 
cada 0,8 segundos aparece un nuevo pico, lo que corresponde 
a unos 75 latidos por minuto. Para estudiar esa periodicidad, 
podemos aproximar matemáticamente la señal con una función 
senoidal del tipo: ω ϕ , donde A representa la 
amplitud de la señal (la intensidad del impulso eléctrico), ω es la 
frecuencia angular y ϕ permite a justar el punto de inicio.

Si la frecuencia cardíaca es de 75 latidos por minu-
to, equivalentes a 1,25 latidos por segundo, entonces: 
ω π . Una función posible para modelar 
este ritmo es: , donde la amplitud 1,21,21,2 
representa unidades arbitrarias asociadas al volta je registrado 
en el ECG. Aunque se trata de una simplificación la señal real 
incluye picos, mesetas y variaciones, esta aproximación senoidal 
permite estudiar el ritmo cardíaco en su dimensión periódica.

Figura 19.
Modelación senoidal del ritmo cardíaco a partir de la frecuencia de 
75 latidos por minuto.

Nota: Elaboración propia.

Desde el punto de vista biológico, este tipo de modelos es 
útil para identificar alteraciones en la frecuencia o variaciones 
anormales del periodo, que pueden ser indicadoras de estrés, 
arritmias o trastornos del sueño. Herreros y Martín (2015) explican 
que, al comparar la señal real con su a juste senoidal, es posible 
detectar irregularidades que serían difíciles de apreciar a simple 
vista. Y desde la matemática, el ejercicio permite mostrar con 
claridad cómo una función trigonométrica describe un proceso 
vital: cada oscilación del seno corresponde a un latido, cada pe-
riodo refleja el ritmo del corazón y cada cambio en la amplitud o 
frecuencia se asocia con un comportamiento fisiológico diferente.

Ciclos climáticos y geofísicos
Muchos fenómenos climáticos presentan patrones de variación pe-
riódica que pueden modelarse mediante funciones trigonométricas. 
La temperatura diaria, por ejemplo, sigue una curva suavemente 
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oscilante influida por la rotación terrestre y la radiación solar, lo que 
permite representarla mediante funciones seno o coseno con ligeras 
variaciones estacionales. Del mismo modo, las mareas producto de 
la interacción gravitatoria entre la Tierra, la Luna y el Sol responden a 
combinaciones de ciclos senoidales cuyo análisis ha sido fundamen-
tal para la navegación y la predicción costera (Ahrens, 2012). Incluso 
fenómenos como las estaciones del año y la variación anual de pre-
cipitaciones pueden aproximarse mediante modelos periódicos que 
permiten estudiar tendencias a largo plazo, identificar anomalías y 
prever comportamientos esperados en determinados meses.

En el ámbito geofísico, las oscilaciones periódicas también 
desempeñan un papel crucial. Los registros sísmicos, por ejem-
plo, incluyen señales oscilatorias que se analizan mediante 
descomposición armónica para identificar frecuencias domi-
nantes y posibles patrones precursores de actividad tectónica. 
Investigaciones recientes muestran que ciertos tipos de vibra-
ciones subterráneas como el llamado “ruido sísmico”, pueden 
representarse mediante combinaciones de funciones senoidales 
que ayudan a caracterizar la estructura interna de la corteza 
terrestre (Nakata & Nishida, 2017). Desde una perspectiva edu-
cativa, estos fenómenos permiten mostrar al estudiante cómo 
las funciones trigonométricas articulan patrones que van más 
allá de la geometría y se convierten en herramientas para in-
terpretar el comportamiento dinámico de la Tierra y su sistema 
climático, conectando la matemática con el estudio responsable 
del ambiente.

Consideremos la variación diaria de la temperatura en una 
ciudad costera. Si se registra la temperatura cada hora a lo lar-
go de varios días y se observa que el máximo suele alcanzarse 
cerca de las 14:00 y el mínimo alrededor de las 5:00, es posible 
aproximar este comportamiento mediante una función del tipo:

π
,

donde  representa la temperatura en grados Celsius y t es 
la hora del día.

En este modelo, los valores 23 y 9 indican, respectivamente, 
la temperatura promedio del día y la amplitud del ciclo térmico. 
Esta representación senoidal permite estudiar cómo los días ex-
cepcionalmente cálidos o fríos se alejan de la oscilación típica, 
y ayuda a comparar comportamientos en distintas épocas del 
año. Como explica Ahrens (2012), este tipo de modelos no pre-
tende capturar todos los detalles del clima, pero sí hace posible 
identificar tendencias, contrastar ciclos y comprender por qué 
ciertas horas se sienten más calientes o frías.
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Figura 20.
Función cosenoidal que modela la variación diaria de la temperatura 
en una ciudad costera.

Nota: Elaboración propia.

Este tipo de análisis, utilizado en estaciones oceanográficas, 
permite anticipar mareas altas que pueden afectar actividades 
portuarias, pesca artesanal o zonas susceptibles de inundación. 
Investigaciones geofísicas como las de Nakata y Nishida (2017) 
muestran que esta misma lógica armónica se emplea para es-
tudiar vibraciones internas de la Tierra y comprender procesos 
tectónicos. Desde una perspectiva didáctica, estos ejemplos per-
miten al estudiante visualizar que la trigonometría no solo des-
cribe triángulos, sino que resulta esencial para interpretar ciclos 
naturales que experimentamos todos los días.

Conclusiones

El recorrido realizado en este capítulo permite comprender que la 
trigonometría no es únicamente un conjunto de fórmulas o técni-
cas de cálculo: es un modo de pensar que articula relaciones entre 
ángulos, longitudes y variaciones periódicas presentes en el mundo 
natural y construido. Al estudiar las razones trigonométricas, las 
identidades fundamentales y los métodos para resolver triángulos 
rectángulos y oblicuángulos, el estudiante toma contacto con un 
lenguaje que permite describir con precisión tanto situaciones 
geométricas clásicas como fenómenos dinámicos más complejos. 
A lo largo del capítulo se mostró que detrás de cada razón tri-
gonométrica hay una estructura conceptual que da sentido a las 
relaciones entre lados y ángulos, y que las identidades no deben 
asumirse como verdades aisladas, sino como conexiones profundas 
entre funciones que comparten una misma naturaleza periódica.

En paralelo, la resolución de triángulos permite reconocer que 
la trigonometría tiene una vocación eminentemente aplicada. 
Resolver triángulos no es un fin en sí mismo: es un camino para 
interpretar situaciones reales que abarcan desde mediciones in-
directas en contextos cotidianos hasta problemas de navegación, 
diseño arquitectónico, sensores, instrumentación y modelación 
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científica. Comprender cómo se combinan datos parciales para 
reconstruir una forma o determinar magnitudes inaccesibles 
fortalece el pensamiento lógico, el razonamiento espacial y la 
capacidad para abstraer patrones. Cuando el estudiante entiende 
que cada triángulo resuelto representa una situación concreta, 
la trigonometría deja de ser un repertorio de procedimientos y 
se convierte en una herramienta para leer el mundo.

Finalmente, la integración de aplicaciones físicas, biológicas, 
ambientales y tecnológicas permite apreciar que la trigonometría 
tiene un alcance mucho mayor que el tradicional. La presencia 
de fenómenos periódicos en la ingeniería eléctrica, los ritmos 
fisiológicos, las mareas, la acústica, el análisis de señales o la 
climatología muestra que las funciones trigonométricas son una 
forma privilegiada de representar y comprender la regularidad 
de muchos procesos naturales. De modo coherente con las pers-
pectivas didácticas contemporáneas, este capítulo subraya la 
importancia de trabajar con representaciones múltiples, argu-
mentos visuales, interpretaciones fenomenológicas y problemas 
contextualizados que devuelvan a la trigonometría su carácter 
dinámico y significativo. Cuando el aprendizaje se organiza de 
este modo, las razones e identidades dejan de ser símbolos abs-
tractos y se transforman en herramientas para pensar, modelar y 
actuar en diferentes ámbitos de la vida académica y profesional.
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