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Prólogo

Escribir este libro fue un ejercicio de volver a mirar el cálculo 
con los ojos de quien lo descubre por primera vez. A lo largo 
de los años he visto cómo muchos estudiantes se enfrentan a 
sus conceptos con una mezcla de desconcierto y resignación, 
como si se tratara de un territorio reservado para unos pocos. 
Sin embargo, cada idea fundamental del cálculo a saber del 
límite, la variación, la continuidad, la derivada,  nació de pre-
guntas humanas muy profundas, de la necesidad casi intuitiva 
de entender cómo cambian las cosas. Esa historia, que suele 
olvidarse en las aulas, devuelve al cálculo una dimensión cer-
cana y sorprendentemente accesible.

Durante la elaboración de estas páginas, me propuse recu-
perar esa esencia. No se trata solo de presentar definiciones 
precisas o procedimientos bien estructurados, sino de ofrecer 
una forma distinta de entrar en el tema: más pausada, más 
visual, más consciente de la importancia de la intuición. El 
cálculo no se aprende a golpes de fórmulas, sino cuando el 
estudiante logra ver en una gráfica, en un movimiento o en 
una idea sencilla, aquello que luego la matemática formal logra 
expresar con elegancia. Ese puente entre la vivencia y el rigor, 
entre la curiosidad y la estructura, es el corazón de este libro.

Mi deseo es que estas páginas acompañen tanto a quienes 
enseñan como a quienes aprenden. Que el docente encuentre 
aquí recursos para renovar su manera de explicar y que el 
estudiante descubra que el cálculo no es un obstáculo, sino un 
lengua je para comprender el mundo con más profundidad. Si 
este libro logra, aunque sea en una pequeña medida, desper-
tar ese interés genuino por pensar el cambio y la variación, 
entonces habrá cumplido su propósito.



Introducción

Cálculo de una variable: un enfoque conceptual, visual y 
didáctico del cambio es una obra que invita a redescubrir el 
cálculo desde su esencia más profunda: la búsqueda humana 
por comprender el movimiento, la transformación y la con-
tinuidad. Su autor plantea que el cálculo no debe ser visto 
únicamente como una colección de reglas o algoritmos, sino 
como una forma de pensamiento que permite leer el mundo 
en clave de cambio. A lo largo de sus capítulos, el libro recorre 
los fundamentos históricos y conceptuales de esta disciplina, 
desde las intuiciones de Arquímedes hasta la formalización 
de Newton y Leibniz, revelando cómo la humanidad logró 
traducir lo infinitamente pequeño en un lengua je capaz de 
describir lo continuo. Esta mirada no pretende simplificar el 
rigor matemático, sino devolverle su sentido formativo, inte-
grando el razonamiento lógico con la intuición, la visualización 
y la experiencia.

El autor propone un enfoque didáctico que une teoría y 
práctica, donde el aula se convierte en un espacio de explo-
ración intelectual. El cálculo se enseña aquí como una expe-
riencia cognitiva y estética, en la que los símbolos, las gráficas 
y las palabras se convierten en lengua jes complementarios 
del pensamiento. A través de herramientas como GeoGebra, 
Desmos y Python, el estudiante puede observar el cambio en 
acción, manipular funciones, analizar variaciones y descubrir 
patrones que antes permanecían ocultos. De esta manera, el 
aprendiza je deja de ser una actividad pasiva para transfor-
marse en un proceso activo de construcción de significado. 
Cada capítulo ha sido diseñado para guiar al lector de forma 
gradual: desde la comprensión del límite como idea de apro-
ximación, hasta la derivada como medida del cambio y la 
integral como reconstrucción del todo, cerrando con una re-
flexión sobre cómo enseñar el cálculo de manera significativa.

Escrito desde la experiencia docente y con una profunda 
sensibilidad pedagógica, este libro busca tender un puente 
entre el conocimiento matemático y la vida cotidiana. La obra 
invita a los profesores a enseñar desde la comprensión y a 
los estudiantes a pensar el cálculo como una forma de mirar 
el mundo con ojos nuevos. En sus páginas, la precisión del 



pensamiento se une con la emoción de descubrir, y la mate-
mática se presenta no como una barrera, sino como un camino 
hacia la comprensión del cambio que sostiene la realidad. 
En definitiva, este texto propone una educación matemática 
más humana, reflexiva y creativa, en la que el cálculo no solo 
se aprende, sino que se vive como una experiencia de pensa-
miento, de belleza y de sentido.
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Capítulo I

Fundamentos del cálculo y noción 
de límite

 

Introducción

El cálculo constituye una de las creaciones intelectuales más 
profundas de la humanidad. Su desarrollo no solo transformó 
la matemática, sino también la manera en que comprendemos 
los fenómenos naturales, el movimiento, el crecimiento y el 
cambio. Desde la perspectiva didáctica, enseñar cálculo implica 
mucho más que transmitir técnicas de derivación o integración: 
significa guiar al estudiante hacia una comprensión dinámica 
del mundo, donde las magnitudes se transforman de forma 
continua y el pensamiento se orienta hacia la modelización de 
lo real (Tall, 2009).

Históricamente, el cálculo emergió como respuesta a pro-
blemas concretos: medir áreas curvas, describir trayectorias, 
predecir velocidades. Sin embargo, su consolidación teórica 
requirió siglos de evolución conceptual, desde las ideas intuiti-
vas de Arquímedes hasta la rigurosa formalización de Cauchy 
y Weierstrass. En este proceso, la noción de límite se erigió 
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como el corazón del cálculo: la frontera entre lo finito y lo infi-
nito, entre la experiencia empírica y la abstracción matemática 
(Boyer & Merzbach, 2011; Edwards, 1979).

En la enseñanza contemporánea, el estudio del límite y la con-
tinuidad exige un enfoque que combine la intuición visual, la 
interpretación gráfica y la formalización simbólica. Comprender 
el límite no se reduce a memorizar definiciones, sino a construir 
esquemas mentales que relacionen la variación, la aproximación 
y la estabilidad. Por ello, este capítulo busca ofrecer una mirada 
integral de los fundamentos del cálculo, situando al estudiante 
ante las ideas que dieron origen a la ciencia del cambio.

El nacimiento del cálculo: de Arquímedes a Newton y Leibniz
El origen del cálculo puede rastrearse en los intentos de los an-
tiguos por medir lo inconmensurable. Arquímedes, mediante su 
método de exhaución, anticipó la noción de límite al aproximar 
áreas y volúmenes a través de figuras poligonales cada vez más 
pequeñas (Boyer & Merzbach, 2011). En sus “Cuadraturas de la 
parábola” ya se percibe una intuición del infinito, aunque aún 
expresada con herramientas geométricas.

Durante el siglo XVII, la necesidad de describir el movimiento y 
las leyes de la naturaleza condujo a una transformación profunda 
del pensamiento matemático. Newton, en su Philosophiae Naturalis 
Principia Mathematica, utilizó el cálculo al que llamó método de 
las fluxiones, explicar la gravitación universal y el movimiento 
planetario. Paralelamente, Leibniz desarrolló su propio enfoque, 
introduciendo la notación diferencial, que permitía expresar las 
relaciones de cambio de manera simbólica (Guicciardini, 2018).

Ambos compartieron una visión: el cálculo debía servir para 
traducir las leyes naturales al lenguaje de la razón. Sin embargo, 
la falta de una definición rigurosa de los infinitesimales generó 
críticas, especialmente de filósofos como Berkeley, quien conside-
raba al cálculo una “ficción metafísica” (Edwards, 1979). Solo en el 
siglo XIX, con los aportes de Cauchy y Weierstrass, la noción de 
límite dotó al cálculo de su fundamento lógico. Desde entonces, 
el cálculo se consolidó como el lenguaje universal del cambio, in-
dispensable para la física, la ingeniería, la biología y la economía.

Función y cambio: la relación entre magnitudes variables
La función constituye el lenguaje del cambio. Desde su concep-
ción moderna, desarrollada por Leonhard Euler en el siglo XVIII, 
una función expresa una correspondencia entre dos conjuntos, 
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de modo que a cada valor de la variable independiente  le 
corresponde un único valor de la variable dependiente . Esta 
idea, que puede parecer simple, transformó para siempre la 
manera en que comprendemos los fenómenos naturales. A tra-
vés de ella, las variaciones del mundo: la caída de un cuerpo, el 
crecimiento de una planta, la oscilación de un péndulo o el flujo 
de una corriente eléctrica; pudieron describirse y predecirse 
con precisión (Stewart, 2021).

Pero más allá de su definición formal, la función debe enten-
derse como una forma de pensar el cambio, como una manera de 
percibir la relación entre magnitudes variables. En palabras de 
Kaput (1994), aprender cálculo significa “aprender a ver el mundo 
en términos de relaciones cambiantes”. Esta afirmación resume 
un giro epistemológico fundamental: el paso de un pensamiento 
centrado en resultados estáticos a uno orientado al proceso, a la 
variación continua, al movimiento.

De la relación algebraica al significado fenomenológico
Cuando se enseña cálculo únicamente a través de expresiones 
algebraicas, el concepto de función se reduce a un conjunto de re-
glas manipulables. Sin embargo, cada función encierra una histo-
ria: un fenómeno, un proceso o una interacción entre magnitudes. 

Ejemplo 1: La función lineal no es solo una ecuación, sino la 
representación de una relación constante (Figura 1): cada incre-
mento de una unidad en  provoca un aumento de dos unidades 
en . Esta correspondencia puede modelar el costo de un servi-
cio con tarifa fija o el nivel del agua en un tanque que se llena a 
ritmo constante. Comprender esa relación como una forma de 
variación es el punto de partida para construir un pensamiento 
verdaderamente funcional (Tall, 2009).

Figura 1.
Representación de una relación lineal

Nota. Elaboración propia.
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Ejemplo2: en el movimiento de un cuerpo que cae ba jo la ac-
ción de la gravedad (Figura 2), si se desprecia la resistencia del 
aire, su altura en función del tiempo puede representarse como:

 

donde  es la altura inicial y  la aceleración de la gravedad. 
Esta función cuadrática describe un cambio no uniforme, donde 
la velocidad aumenta con el tiempo. Al graficarla, el estudiante 
observa cómo la trayectoria parabólica traduce el movimiento 
real del cuerpo en un lenguaje matemático. Esa conexión entre 
lo físico y lo simbólico es el puente cognitivo que permite com-
prender el cálculo como una ciencia del cambio (Stewart, 2021).

Figura 2.
Caída de un cuerpo por acción de la gravedad

Nota. Elaboración propia.

La mirada visual del cambio: aprender con los ojos
Comprender el vínculo entre función y cambio exige pasar de lo 
simbólico a lo visual. Como afirma Tall (2009), la gráfica de una 
función no es solo una representación, sino una “ventana cogni-
tiva” que permite ver cómo una cantidad responde a la variación 
de otra. La pendiente de una curva, por ejemplo, sintetiza el sen-
tido del cambio: una pendiente positiva indica crecimiento; una 
negativa, decrecimiento; una horizontal, estabilidad.

 Ejemplo 3: analizar el crecimiento de una planta. Si se miden 
su altura  en función del tiempo , los datos suelen a justarse a 
una función logística:  
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donde  representa la altura máxima,  la tasa de crecimiento 
y  el punto de inflexión. Al graficar esta función, el estudiante 
observa tres etapas: crecimiento lento inicial, desarrollo acele-
rado y estabilización. De esta manera, la función deja de ser un 
objeto abstracto para convertirse en un modelo de la vida, donde 
la matemática narra una historia biológica. 

En el ejemplo (Figura 3) podemos observar que:
•	 	Etapa inicial: la planta crece muy lentamente porque sus 

procesos biológicos aún se están adaptando.
•	 	Etapa intermedia: cerca  de semanas, el creci-

miento es más acelerado. Aquí la pendiente de la curva es 
máxima.

•	 	Etapa final: conforme se acerca al límite , el cre-
cimiento disminuye hasta estabilizarse, ya que la planta 
alcanza su tamaño maduro.

Figura 3. 
Caída de un cuerpo por acción de la gravedad

 

Nota. Elaboración propia.

Esta evolución refleja cómo en la naturaleza el crecimien-
to no es lineal, sino que responde a límites fisiológicos y 
ambientales.

Como señala Blum y Ferri (2009), esta capacidad de tra-
ducir situaciones reales a modelos funcionales es una de las 
competencias más poderosas que ofrece la matemática, pues 
permite comprender, explicar y predecir fenómenos complejos.
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La función como herramienta de modelización
Desde la perspectiva de la educación matemática, la función 
debe enseñarse no solo como un concepto, sino como una he-
rramienta para modelar la realidad. De acuerdo con Hiebert 
y Carpenter (1992), la comprensión significativa de las mate-
máticas implica construir conexiones entre diferentes repre-
sentaciones de un mismo fenómeno. Así, cuando un estudiante 
utiliza una función para describir la velocidad de un automóvil, 
está coordinando ideas algebraicas, gráficas, físicas y verbales. 
Por ejemplo, el movimiento rectilíneo uniforme se representa 
con la función:   

(Figura 4) donde y es la velocidad constante. Si , la 
gráfica de  muestra una línea recta que expresa una relación 
directa entre tiempo y distancia. 

Figura 4.
Movimiento rectilíneo uniforme de un automóvil

Nota. Elaboración propia.

Ejemplo 4: Supongamos un automóvil que parte desde 
con velocidad constante . En cada intervalo de tiem-
po igual, el móvil recorre distancias iguales.

En cambio, si el movimiento es acelerado, la función se vuel-
ve cuadrática y la curva se inclina progresivamente, reflejando 
un cambio de ritmo. Supongamos un automóvil que parte del 
reposo  y acelera con . En este caso, la gráfica 
del movimiento rectilíneo uniformemente acelerado muestra 
cómo la distancia recorrida por el automóvil no aumenta de 
manera constante, sino cada vez más rápido a medida que 
pasa el tiempo. Al inicio, el avance es lento, pero poco a poco 
la curva se eleva con mayor inclinación, lo que indica que el 
vehículo va ganando velocidad. La ecuación    (Figura 
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5) expresa esa aceleración: si el tiempo se duplica, la distancia 
se multiplica por cuatro. Esta relación permite entender que 
el movimiento no es uniforme, sino que está marcado por un 
cambio continuo de ritmo. 

Figura 5.
Movimiento rectilíneo uniformemente acelerado de un automóvil
 

Nota. Elaboración propia.

Ejemplo 5: Al observar la gráfica, el estudiante puede asociar el 
crecimiento de la curva con la sensación de un vehículo que parte 
desde el reposo y acelera, conectando así la idea matemática 
con una experiencia real y tangible del movimiento. En ambos 
casos, el estudiante aprende a pensar en términos de variación, 
más allá de la fórmula.

Esta concepción se concuerda con la idea de Kaput (1994) de 
que el pensamiento funcional constituye una forma de razona-
miento dinámico que atraviesa toda la matemática. En su visión, 
la función es la herramienta que permite pasar del análisis de 
situaciones discretas al estudio de procesos continuos, desarro-
llando una comprensión profunda de la relación causa–efecto.

	
Una visión cognitiva del cambio

Desde el punto de vista cognitivo, comprender una función impli-
ca coordinar varias formas de pensamiento. Según Tall y Vinner 
(1981), los estudiantes construyen una “imagen conceptual” de 
la función antes de dominar su definición formal. Esa imagen se 
nutre de ejemplos, gráficos y metáforas que vinculan la matemá-
tica con la experiencia. Cuando un estudiante observa el nivel del 
agua subir en un recipiente y lo representa mediante una curva 
creciente, está activando un pensamiento funcional incluso sin 
utilizar fórmulas.
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En este sentido, la enseñanza del cálculo debería centrarse 
en promover la coherencia entre imágenes, símbolos y signifi-
cados. El objetivo no es que el estudiante memorice ecuaciones, 
sino que comprenda que toda función expresa una historia de 
cambio, una relación entre dos realidades en movimiento. Como 
plantea Duval (2006), el verdadero aprendiza je matemático 
surge cuando el sujeto logra traducir entre diferentes registros 
de representación (gráfico, numérico, verbal y algebraico) sin 
perder el sentido del concepto.

Función, tecnología y exploración didáctica
El uso de entornos dinámicos como GeoGebra permite que los 
estudiantes manipulen funciones y observen cómo la variación 
de los parámetros altera la gráfica. Por ejemplo, al modificar el 
coeficiente  en , se aprecia cómo la parábola se abre o se 
cierra, permitiendo visualizar la relación entre forma y parámetro. 
Esta exploración, defendida por Artigue (2009) como parte del 
enfoque instrumental, potencia la construcción del conocimiento 
al integrar la acción, la visualización y la reflexión.

Ejemplo 6: Un ejercicio ilustrativo consiste en representar el 
movimiento de un proyectil lanzado con velocidad inicial  y 
ángulo θ (Figura 6). Su trayectoria se describe mediante:

θ
θ

Manipulando  y θ, los estudiantes pueden observar cómo 
cambia el alcance máximo y la altura del proyectil, relacionando 
las propiedades de la función con leyes físicas. De este modo, 
el aprendiza je se transforma en una experiencia exploratoria 
que combina razonamiento abstracto y experimentación visual.

Figura 6.
Movimiento de un proyectil

Nota. Elaboración propia.
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Pensar en movimiento: la función como forma de comprensión
La función enseña a pensar en movimiento. El cálculo no solo 
describe el cambio: enseña a percibirlo, a cuantificarlo y a re-
presentarlo. Desde esta perspectiva, el aprendiza je de las fun-
ciones constituye un punto de inflexión en la formación mate-
mática, pues introduce una forma de pensamiento relacional, 
continuo y contextualizado. Como subraya Stewart (2021), el 
cálculo ayuda a “ver lo continuo en medio de lo discreto, y lo 
infinito en lo finito”, una idea que conecta la razón matemática 
con la sensibilidad filosófica.

En la enseñanza universitaria, este enfoque puede traducirse 
en experiencias didácticas donde el estudiante construye mode-
los de cambio reales: crecimiento poblacional, consumo energé-
tico, vibraciones sonoras o circulación sanguínea. Cada modelo 
es una puerta hacia la comprensión profunda de la variación y 
hacia el reconocimiento del poder del pensamiento funcional 
para interpretar el mundo.

Concepto de límite: interpretación intuitiva, gráfica y algebraica
El concepto de límite es uno de los pilares del pensamiento ma-
temático moderno. En torno a él se articula la posibilidad de 
describir procesos de cambio continuo, analizar lo infinitesimal y 
comprender la transición entre lo discreto y lo continuo. El límite 
es, por tanto, una idea fronteriza: permite acercarse al compor-
tamiento de una función cuando los valores se aproximan a un 
punto crítico, incluso cuando el propio valor en ese punto no 
existe. Como sostiene Stewart (2021), “la noción de límite pro-
porciona el fundamento sobre el cual descansan todas las ideas 
del cálculo”.

El límite como intuición del acercamiento
La idea de límite no nació en el aula ni en los manuales de 
cálculo, sino en la mente de los primeros pensadores que se 
enfrentaron a problemas del movimiento y la variación. Zenón 
de Elea, ya en el siglo V a. C., planteó sus célebres paradojas 
sobre la imposibilidad del movimiento continuo, mostrando 
que una distancia puede dividirse indefinidamente en partes 
más pequeñas. Detrás de su aparente contradicción se encon-
traba la pregunta esencial: ¿qué ocurre cuando una cantidad 
cambia de forma incesante, pero dentro de márgenes cada 
vez más pequeños?

Siglos después, Isaac Newton y Gottfried Leibniz tradujeron esa 
intuición filosófica en un lenguaje simbólico, introduciendo la idea 
de la razón de cambio instantáneo. No hablaban aún de “límite”, 
pero operaban con cantidades que tendían a cero, construyendo 
así la base conceptual del cálculo diferencial (Grabiner, 1981).
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La noción moderna del límite, sin embargo, no se consolidó 
hasta el siglo XIX con Karl Weierstrass, quien reemplazó las ideas 
intuitivas de “infinitesimales” por una definición rigurosa basada 
en distancias: las famosas condiciones ε δ. Gracias a ellas, la 
matemática logró expresar la idea de “acercarse tanto como se 
desee” con precisión lógica (Tall, 1980). No obstante, la enseñanza 
del límite no debería comenzar con esta definición formal. 

 Ejemplo 7: si observamos la función, notamos que al sustituir 
 el denominador se anula (Figura 7). Pero si analizamos 

los valores próximos a 1 (0.9, 0.99, 1.01, 1.001), vemos que  se 
acerca cada vez más a 2. 

Aunque la función no está definida en , su comporta-
miento alrededor de ese punto sí revela una tendencia clara. 
Comprender esa tendencia constituye el primer paso para 
captar la idea de límite.

Figura 7.
Comportamiento en la cercanía de 

Nota. Elaboración propia.

Como destaca Cornu (1991), muchos estudiantes enfrentan 
obstáculos al aprender este concepto porque su pensamiento 
permanece anclado en el valor exacto, no en el comportamiento 
cercano. Por ello, el proceso de enseñanza debe guiar al alumno 
desde la observación empírica de la aproximación hasta la for-
malización progresiva.

La visualización del límite: del trazo a la comprensión
El pensamiento visual desempeña un papel esencial en la com-
prensión del límite. La gráfica de una función permite ver el pro-
ceso de aproximación y reconocer el valor hacia el cual tienden 
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los puntos de la curva. De hecho, la representación visual pre-
cede a la formalización algebraica y ofrece un apoyo cognitivo 
fundamental (Tall, 2009).

Ejemplo 8: Consideremos la función (Figura 8). Si se grafica 
cerca del punto , la curva se aproxima a la altura 1 por ambos 
lados del eje, aunque el valor en  no esté definido. Al observar 
esta continuidad visual, el estudiante intuye que el límite debe ser 1. 
Aquí, la gráfica no solo representa el fenómeno: lo hace inteligible.

Figura 8.
Comportamiento en la cercanía de 

Nota. Elaboración propia.

Las herramientas tecnológicas como GeoGebra, Desmos o 
Grapher potencian esta comprensión al permitir manipular di-
námicamente los valores y observar cómo la función responde. 
La interactividad transforma la idea de límite en una experiencia 
perceptiva. Según Artigue (2009), esta exploración digital favo-
rece el desarrollo del pensamiento funcional, pues el estudiante 
deja de ver la función como un objeto estático para concebirla 
como un proceso vivo de cambio.

 Ejemplo 9: modelar el enfriamiento de un líquido. Si la tempe-
ratura  de una taza de café sigue la función donde  repre-
senta el tiempo en minutos, la gráfica muestra cómo la tempe-
ratura desciende progresivamente hasta estabilizarse en 20 °C 
(Figura 9). El límite de  cuando  tiende al infinito es 20, lo 
que corresponde a la temperatura ambiente. Aquí, el límite no solo 
tiene un significado matemático: describe un fenómeno físico de 
equilibrio térmico.

De esta manera, el límite se convierte en un puente entre lo 
abstracto y lo real. Como señala Kaput (1994), “la enseñanza 
del cálculo debe partir de experiencias de variación y cambio 
observables, para que las fórmulas adquieran sentido y no se 
perciban como artificios simbólicos”.
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Figura 9.
Comportamiento cuando t tiende al infinito

Nota. Elaboración propia.

El límite formal: rigor y lenguaje
La formalización algebraica del límite surge cuando necesitamos 
expresar con precisión lo que la intuición y la observación ya 
habían anticipado. La definición de Weierstrass traduce el acer-
camiento en términos de proximidad entre números.

Un número real  es el límite de una función  cuando  tien-
de o se aproxima a    si y solo si para cualquier número real 
positivo ε, por pequeño que sea, existe un número real δ, tal que 
para todo   si la distancia entre  y , es menor que δ, 
entonces la distancia entre  y  es menor que ε.

Esta formulación, aunque abstracta, tiene una belleza concep-
tual: elimina cualquier referencia al movimiento y conserva solo 
la relación entre dos distancias, ε y δ. Stewart (2021) la presenta 
como la culminación del razonamiento sobre la continuidad, 
mientras que Tall y Vinner (1981) la interpretan como una defini-
ción formal que debe construirse sobre una imagen conceptual 
previa.

Ejemplo 10:  Demostrar aplicando la definición de límite que 

Solución.
Aplicando la definición habrá que buscar δ ε , ε  tal que  

δ Entonces εtrabajando con esta 
última desigualdad, tenemos:

ε ε

ε δ δ ε
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de donde 
ε

.  Luego si hacemos δ ε  estaríamos 
garantizando que para todo radio δ ε

 las imágenes de 
estarían dentro la franja de error ε, por lo que .

Figura 10.
Comportamiento de  en .

 
Nota. Elaboración propia.

Es importante denotar que no es necesario que  esté defi-
nida en el punto para que tenga límite en él (Figura 10). Esto 
significa que al encontrar el límite de  cuando  se apro-
xima a “ ”, no se considera . De hecho,  no necesita 
estar definida cuando . Lo único que importa es cómo 
se define  cerca de .

En la mayoría de las situaciones prácticas, encontrar el 
δ (positivo) en función del ε el cual ha sido arbitrariamente 
seleccionado, es muy difícil en general, por tanto, en nuestro 
curso, no haremos énfasis en este procedimiento, es opcio-
nal por parte de los estudiantes, el estudio de este aspecto 
en algún libro que el profesor le indique oportunamente. Por 
lo que la definición de límite no es una herramienta cómoda 
para el cálculo de límites como veremos a continuación. Algo 
verdaderamente importante en este contexto es, el hecho de 
que el límite de existir es siempre único, y se resalta por el 
teorema que sigue a continuación.

Observe en las figuras siguientes que en el inciso c),  
no está definida y, en el inciso b), . Sin embargo, en 
cada caso, independientemente de lo que sucede en , es 
cierto que. (Figura 11)
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Figura 11.
Comportamiento de  cuando  tiende a 

a)	                         b)                                c)
	  

Nota. Elaboración propia.

Propiedades fundamentales de los límites
El concepto de límite, además de su profundidad teórica, posee 
una estructura lógica que le confiere coherencia dentro del sis-
tema matemático. Una vez comprendida su definición intuitiva 
y formal, surge la necesidad de estudiar sus propiedades funda-
mentales, aquellas que permiten operar con funciones sin perder 
la consistencia del razonamiento. El límite no es un artificio ais-
lado, sino una extensión natural de las propiedades aritméticas 
al mundo del cambio y la aproximación.

Como señala Stewart (2021), el cálculo adquiere poder operativo 
cuando las reglas que rigen los números reales se trasladan al aná-
lisis de las funciones. Estas propiedades son las que hacen posible 
calcular límites con rigor y simplicidad, evitando recurrir siempre a 
la definición ε δ, aunque esta sea su fundamento lógico.

Teorema: Si una función  tiene límite en un punto , entonces 
este límite es único.

Este principio, aparentemente obvio, posee un profundo signi-
ficado epistemológico: afirma que el proceso de aproximación de 
una función hacia un punto no puede conducir a dos resultados 
distintos. Si los valores de  se acercan simultáneamente a dos 
números diferentes   y , no puede hablarse de límite. En otras 
palabras, la tendencia que define al límite debe ser inequívoca.

Desde una perspectiva visual, este teorema se aprecia cuando 
la gráfica de una función se aproxima a un solo valor en el eje  
al acercarse al punto . Si desde la derecha y desde la izquierda 
la función converge al mismo valor, entonces ese es el límite. En 
cambio, si la función tiende a valores distintos según la dirección 
de aproximación, el límite no existe.

Ejemplo 11:  la función 
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no posee límite en , pues los valores laterales difieren. La 
gráfica muestra un salto que simboliza precisamente la ruptura 
de la unicidad (Figura 12).

Figura 12.
Comportamiento alrededor de 

 

Nota. Elaboración propia.

Este teorema es esencial porque establece la determinación 
del comportamiento funcional, evitando ambigüedades que ha-
rían imposible definir continuidad o derivación. Desde una lectura 
pedagógica, este principio también refuerza la idea de que el 
límite es un comportamiento global, no una simple sustitución 
numérica.

Propiedades algebraicas del límite y Límites laterales
Comprendida la unicidad, el siguiente paso es reconocer cómo 
los límites se comportan frente a las operaciones básicas. Si dos 
funciones poseen límites definidos en un mismo punto, entonces 
su suma, su producto o su cociente (cuando el denominador no se 
anula) también los tienen. Estas propiedades son las que otorgan 
al cálculo su capacidad de generalización.

“Sean  y  dos funciones tales que existen los límites: 

〗y 〗entonces:

1.	  

2.	

3.	

4.	 α β α β
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5.	

6.	

Otras propiedades sobre los límites son las siguientes:
•	 Si una función  es positiva para todo  de una vecindad 

reducida de un punto  y el existe el límite de  en dicho 
punto entonces el límite  es también positivo.

•	 	Si dos funciones  y  satisfacen cierta relación de des-
igualdad para todo  de una vecindad reducida de un 
punto ,  entonces si los límites de ambas 
existen se cumple que .

•	 	Sean , ,  tres funciones tales que cumplen: 
 para todo  de cierta vecindad redu-

cida de un punto . Entonces si existen los límites de  y 
 en dicho punto y supongamos es igual a , entonces el 

límite de  también es  en dicho punto. (En algunos textos 
esta propiedad se le denomina “emparedado”, “sándwich” 
o propiedad de “intercalación”

Estas reglas pueden demostrarse rigurosamente a partir de 
la definición formal, pero también se entienden intuitivamente 
si se considera que el límite preserva la estructura aritmética de 
las operaciones. Es decir, el comportamiento de las funciones al 
aproximarse a un punto imita el comportamiento de los números 
a los que tienden. Larson y Edwards (2022) señalan que este 
conjunto de propiedades transforma el límite en una herramien-
ta manipulativa: una “aritmética del cambio” que hace posible 
operar con expresiones complejas sin necesidad de reconstruir 
el razonamiento desde cero.

En ocasiones ocurre que, para analizar la existencia del límite 
en un punto, tenemos necesidad de analizar el comportamiento 
tanto por la derecha como por la izquierda de dicha función en 
la vecindad reducida de dicho punto para poder arribar a la 
conclusión de si existe o no el límite en dicho punto, este análisis 
lo haremos bajo el acápite de Límites laterales.

Por tanto, el concepto de límites laterales es de vital impor-
tancia para el análisis de la existencia del límite de la función en 
un punto. Los límites laterales derecho e izquierdo del punto se 
denotan por y
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Teorema:
“El límite de una función f en un punto x0 existe, sí y sólo sí, 

existen y son iguales los límites laterales respecto a dicho punto”.
El límite general existe únicamente si ambos límites laterales 

existen y son iguales:

 

Ejemplo 12:   Sea la función

 . 

Al evaluar los límites laterales en  (Figura 13),  

Los valores son distintos, por lo que el límite no existe.

Figura 13.
Comportamiento alrededor de 

 

Nota. Elaboración propia.

Límites de funciones algebraicas
El estudio de los límites de funciones algebraicas constituye 
un punto de partida fundamental para comprender el com-
portamiento de las expresiones matemáticas más comunes 
en el análisis. Estas funciones  aparecen con frecuencia en 
problemas de física, economía, ingeniería o biología, y su 
análisis permite describir fenómenos de crecimiento, equili-
brio o tendencia.
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Desde el punto de vista formal, las funciones algebraicas se 
caracterizan por estar formadas por operaciones finitas de suma, 
resta, multiplicación, división y potencias de la variable inde-
pendiente. A diferencia de las funciones trascendentes (como 
las trigonométricas o exponenciales), las algebraicas poseen un 
comportamiento más predecible , en muchos casos, su límite 
puede determinarse mediante una simple evaluación directa.

Sin embargo, más allá de su aparente sencillez, el cálculo de 
sus límites permite al estudiante afianzar los principios de con-
tinuidad, simplificación y aproximación que sustentan todo el 
razonamiento del cálculo diferencial.

Como señalan Larson y Edwards (2022), las funciones alge-
braicas son el “laboratorio natural del límite”: en ellas se aprende 
a reconocer cuándo una función se comporta de manera continua 
y cuándo las operaciones algebraicas requieren ser a justadas 
mediante factorización o racionalización.

a.	Funciones polinomiales: Para calcular el límite en un punto 
 de una función polinómica de la forma:     

  

reales o complejos, basta evaluar la función en dicho punto, 
es decir, 

b.	Funciones racionales: Para calcular el límite en un punto x0 
de una función racional

donde:

, 

basta evaluar cada polinomio de dicha función, es decir:  

c.	 	Funciones trigonométricas, exponenciales logarítmicas e 
hiperbólicas: En todos los casos para calcular el límite en 
un punto  de una cualquiera de estas funciones, basta 
evaluar la función correspondiente en el punto .
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d.	Funciones en la forma, . Para calcular el límite de 
una función de este tipo basta expresarla en la forma ex-
ponencial, a saber: 〖

  

y calcular el límite del exponente: 

, 

teniendo en cuenta que el resultado final es igual a: “ ” 
elevado a dicho valor obtenido.

Comprender el sentido del infinito en el cálculo 

El estudio de los límites infinitos marca un punto de inflexión en 
la formación conceptual del estudiante de cálculo, pues introduce 
una de las ideas más abstractas y poderosas de las matemáticas: 
el comportamiento de una función cuando crece o decrece sin 
límite. No se trata de “alcanzar” el infinito, sino de describir una 
tendencia, un modo de comportamiento de la función cuando 
la variable independiente se aproxima a un determinado valor 
(Stewart, 2021).

En palabras simples, un límite infinito permite expresar que 
los valores de una función pueden aumentar o disminuir indefi-
nidamente a medida que nos acercamos a cierto punto, aunque 
la función no esté definida en ese punto. Es una manera formal 
de decir que la función “se dispara” hacia arriba o hacia abajo, 
lo cual tiene una interpretación visual muy concreta: la existencia 
de una asíntota vertical.

Ejemplo 13: consideremos la función
 

, 

Si observamos su comportamiento alrededor de , notamos 
que los valores de  aumentan sin límite cuando  se aproxima 
a 3 por la derecha, y disminuyen sin límite cuando se aproxima 
por la izquierda (Figura 14). De este modo: 

 y .

En consecuencia, la recta  es una asíntota vertical de la función. 
Este fenómeno aparece con frecuencia en modelos de la na-

turaleza, como en la ley de Coulomb, donde la intensidad del 
campo eléctrico crece indefinidamente al acercarse a una carga 
puntual (Thomas et al., 2024).
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Figura 14.
Comportamiento alrededor de 

Nota. Elaboración propia.

Sea  una función definida por ambos lados de , excepto 
posiblemente en la misma , entonces 

〗

significa que los valores de  pueden ser arbitrariamente gran-
des (tan grandes como queramos), tomando  suficientemente 
cerca de , pero no igual a “ ”.

Sea  una función definida por ambos lados de , excepto 
posiblemente en la misma , entonces  

significa que los valores de  pueden ser negativos arbitra-
riamente grandes (tan grandes como queramos), tomando 
suficientemente cerca de , pero no igual a “ ”.(Tabla 1)

La recta  se llama asíntota vertical de la curva  
si al menos una de las siguientes afirmaciones es verdadera:

Tabla 1.
Límites infinitos y límites laterales de una función

Nota. Elaboración propia.
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Los límites infinitos también pueden definirse de manera 
precisa: 

Definición:  Sea   una función definida sobre algún intervalo 
abierto que contiene al número “ ”, excepto posiblemente en 
“ ” misma. Entonces

 

significa que para todo número positivo  existe un número δ 
positivo tal que si δ entonces .

Esta formulación, presentada con precisión en los textos clá-
sicos de análisis de Apostol (1967) revela que los límites infinitos 
no representan valores alcanzados, sino comportamientos asin-
tóticos, un tipo de acercamiento sin llegada, característico del 
pensamiento infinitesimal.

Apoyo didáctico: En la enseñanza del cálculo, los límites infini-
tos cobran sentido cuando se visualizan. El uso de herramientas 
como GeoGebra o Desmos permite representar el crecimiento 
o decrecimiento abrupto de las funciones

Ejemplo 14:  si graficamos 

, 

observamos que la curva se eleva hacia el infinito tanto por la 
izquierda como por la derecha de , mostrando una simetría 
vertical. Esto se expresa como:

. 

Por tanto, la recta x=1 es una asíntota vertical (Figura 15).

Figura 15.
Comportamiento alrededor de 

Nota. Elaboración propia.
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Comportamientos similares muestran otras funciones como 
se muestra a continuación:

Figura 16.
Comportamiento alrededor de 

Nota. Elaboración propia

Figura 17.
Indeterminaciones para  

Nota. Elaboración propia

Desde una perspectiva analítica, los límites infinitos permiten 
describir fenómenos de crecimiento o decrecimiento no acotado 
y establecer condiciones de existencia de derivadas e integrales 
impropias. Por ejemplo, en el cálculo integral, cuando el área bajo 
una curva se extiende hacia una asíntota vertical, se recurre a 
los límites infinitos para definir correctamente el valor del área 
(Thomas et al., 2024).

Asimismo, la mediación visual y simbólica ayuda a superar las 
concepciones ingenuas de infinito como “el número más grande”, 
permitiendo comprenderlo como una idea límite, un proceso 
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que nunca se completa. Este cambio cognitivo, conocido como 
“reconceptualización del infinito”, es un hito en la transición al 
pensamiento matemático avanzado (Hiebert & Grouws, 2007).
Límites infinitos en el infinito
Cuando en cálculo hablamos de límites infinitos en el infinito, nos 
referimos al comportamiento de una función cuando la variable 
independiente  crece o decrece indefinidamente. En otras pala-
bras, queremos entender qué ocurre con  cuando  o 

. En este contexto, el término “infinito” ya no representa 
un punto inaccesible en el eje de las ordenadas, sino una dirección 
de avance ilimitado sobre el eje de las abscisas (Stewart, 2021).

Así, cuando decimos que 

significa que los valores de  aumentan indefinidamente a 
medida que  crece sin límite. De forma similar,

 〗

expresa que la función decrece indefinidamente cuando  toma 
valores negativos muy grandes.

En ambos casos, se analiza la tendencia de la función en los 
extremos del dominio, lo cual resulta fundamental para com-
prender fenómenos de crecimiento y decrecimiento ilimitado, 
así como el comportamiento global de modelos polinomiales, 
exponenciales, racionales y logarítmicos (Thomas et al., 2024).

También pueden considerarse los planteamientos siguientes: 

,   y 

Es fácil estudiar el comportamiento en el infinito de la función 
polinomial de grado S:  

 
reales o complejos

 
.

 Es decir, que el comportamiento en  dependerá del signo 
del coeficiente principal.
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Por otra parte el límite en el infinito de funciones racionales 
de la forma: 

donde

  

depende de los grados de los polinomios en el numerador ( ) y 
el denominador ( ).

Tabla 2.
Límites en el infinito según grado de los polinomios

Casos Justificación

Grado del numera-
dor es menor que el 
grado del denomina-
dor 

0 El denominador cre-
ce más rápido que el 
numerador.

Grado del numera-
dor es igual grado 
del denominador 

Los términos de 
mayor grado domi-
nan; el resto se hace 
despreciable.

Grado del numera-
dor es mayor que 
grado del denomina-
dor 

(dependiendo 
del signo de los 

coeficientes)

El numerador crece 
más rápido que el 
denominador; no hay 
límite finito. 

Nota. Elaboración propia.

 Ejemplo 15:

 . 

Grado del numerador es menor que el grado del denominador 
 (Figura 18)

Formas indeterminadas
En el estudio de los límites, la noción de forma indeterminada ocu-
pa un lugar esencial porque representa una situación en la que los 
procedimientos algebraicos convencionales no permiten obtener 
directamente un resultado. Una forma indeterminada surge cuan-
do, al sustituir un valor en una función, se obtiene una expresión 
ambigua que no define un límite único, como por ejemplo:
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 .

Figura 18.
Límites en el infinito con grado del numerador menor que el denominador 

Nota. Elaboración propia

Estas expresiones son “indeterminadas” porque el resultado 
final depende del comportamiento específico de las funciones 
involucradas al aproximarse al punto de interés. Así, la misma 
forma simbólica puede conducir a distintos valores numéricos 
del límite, según el contexto (Stewart, 2021).

El término “indeterminada” no significa que el límite no exis-
ta necesariamente, sino que no puede determinarse median-
te una simple sustitución. En estos casos, es necesario aplicar 
transformaciones algebraicas, razonamiento analítico o reglas 
específicas, como la Regla de L’Hôpital, para resolver la ambigüe-
dad. Desde una perspectiva analítica, las formas indeterminadas 
surgen de la interacción entre funciones que, al aproximarse a 
un mismo punto o al infinito, tienden simultáneamente a valo-
res extremos o nulos. Esto genera una tensión conceptual: ¿qué 
domina, el crecimiento o la disminución? (Thomas et al., 2024).

Las formas indeterminadas más comunes pueden agruparse 
según su estructura:

1.	 Cocientes indeterminados: 

 

Son las más frecuentes y se resuelven aplicando factoriza-
ciones, racionalizaciones o la Regla de L’Hôpital.
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2.	 	Productos indeterminados: . Requieren transformar 
el producto en un cociente para poder aplicar técnicas de 
límites.

3.	 	Diferencias indeterminadas: . Suelen aparecer en 
funciones racionales o radicales y demandan la búsqueda 
de una forma común de comparación entre las tasas de 
crecimiento.

4.		Potencias indeterminadas: . Representan una 
competencia entre la base y el exponente: una cantidad que 
tiende a 1 pero elevada a una potencia muy grande, o una 
base que tiende a 0 pero con exponente variable.

Estas categorías no son arbitrarias, sino que reflejan las dife-
rentes maneras en que se puede producir una indeterminación 
entre magnitudes infinitesimales o infinitas     (Apostol, 1967).

Ejemplo 16: Calcular 

. 

Responde a una forma del tipo , que luego de factorizar y 
simplificar eliminamos la indeterminación. (Figura 19)

Figura 19.
Indeterminaciones del tipo  

 

Nota. Elaboración propia

Ejemplo 17: Calcular 

. 

El crecimiento de numerador y denominador es comparable 
(Figura 20). Dividiendo ambos entre .



43

Reinoso Sánchez Miguel Ángel / Saquinaula Brito José Luis

El resultado final depende del cociente de los coeficientes 
principales.

Figura 20.
Indeterminaciones del tipo 

 

Nota. Elaboración propia

Desde el punto de vista analítico, las formas indetermina-
das muestran que el cálculo diferencial e integral no se limita 
a sustituir valores, sino a comprender comportamientos de 
tendencia. Son un espacio donde la matemática deja de ser 
estática y se convierte en una disciplina del cambio, del acer-
camiento progresivo y del análisis de la magnitud relativa de 
dos procesos (Tall, 2019).

Apoyo didáctico:  las formas indeterminadas ofrecen una opor-
tunidad privilegiada para vincular lo algebraico con lo concep-
tual. En el aula, el estudiante puede experimentar la frustración 
inicial de no obtener un resultado definido, pero con la guía ade-
cuada puede transformar esa incertidumbre en un proceso de 
indagación y descubrimiento. De este modo, el docente fomenta 
el pensamiento analítico y la autonomía en la resolución de pro-
blemas (Hiebert & Grouws, 2007).
Límites fundamentales
Los límites fundamentales son la piedra angular del cálculo, 
porque representan los comportamientos más simples, pero a 
la vez más reveladores, de las funciones en torno a un punto. 
Comprenderlos implica reconocer que el cálculo no es una 
colección de reglas para manipular expresiones, sino un len-
gua je del cambio. 

A través de los límites fundamentales, aprendemos a describir 
procesos que se aproximan, se transforman y tienden a una esta-
bilidad dinámica. Son los primeros escenarios donde el estudiante 
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observa cómo lo infinitamente pequeño y lo infinitamente grande 
se relacionan con lo finito, dando sentido matemático al cambio 
continuo (Stewart, 2021). 

En la historia del pensamiento matemático, estos límites fue-
ron el punto de encuentro entre la intuición geométrica de los 
griegos y el rigor analítico de Newton y Leibniz. Lo que en la 
antigüedad se concebía como una aproximación o “razonamien-
to por exceso y defecto”, hoy se formula con precisión como un 
límite: una tendencia que nunca se completa, pero que se puede 
describir con exactitud (Apostol, 1967).

El dominio de los límites fundamentales permite al estu-
diante anticipar resultados sin recurrir a métodos complica-
dos. Son expresiones que condensan leyes de comportamien-
to universal de las funciones y que aparecen reiteradamente 
en derivadas, integrales, ecuaciones diferenciales y mode-
laciones científicas.

Figura 21.
Límite fundamental trigonométrico

Nota. Elaboración propia

a.	El límite del seno sobre su argumento

 . 

Este límite expresa una verdad geométrica: cuando el án-
gulo es muy pequeño, el arco y la cuerda de un círculo son 
prácticamente iguales. (Figura 21). 
En términos visuales, el seno de un ángulo medido en radia-
nes se comporta como la función identidad cerca del origen.

b) El límite exponencial que define el número 

. 
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Este límite describe un proceso de crecimiento continuo. 
A medida que el número de incrementos por unidad de tiempo 

aumenta sin límite, la cantidad resultante tiende a estabilizarse 
en el número . (Figura 22)

Figura 22.
Límite exponencial

Nota. Elaboración propia

Este resultado, que emerge del análisis del interés compuesto, 
es un puente entre la matemática y la economía, entre el tiempo 
discreto y el continuo. Stewart (2021) lo llama “el límite que tra-
duce el ritmo natural del crecimiento de la vida”.

c.	 Límite exponencial en el origen┬

Este resultado es la contraparte del anterior. Mientras que 
el exponencial describe un crecimiento ilimitado, el logaritmo 
refleja un proceso de desaceleración infinita         (Figura 23). 
Juntos, ambos límites expresan la dualidad entre expansión y 
compresión, o entre lo multiplicativo y lo aditivo (Apostol, 1967).

Figura 23.
Comportamiento exponencial alrededor del origen

 
Nota. Elaboración propia
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d.	Límite logarítmico

 . 

Este resultado (Figura 24) es la contraparte del anterior. 
Mientras que el exponencial describe un crecimiento ili-
mitado, el logaritmo refleja un proceso de desaceleración 
infinita. Juntos, ambos límites expresan la dualidad entre 
expansión y compresión, o entre lo multiplicativo y lo aditivo 
(Apostol, 1967).

	
Figura 24.
Comportamiento logarítmico alrededor del origen

 

Nota. Elaboración propia

Además del límite

, 

existe otro de igual relevancia: 

Este límite explica la concavidad de la función coseno en tor-
no al origen. En la enseñanza, este caso ofrece la posibilidad de 
introducir la idea de aproximación cuadrática: a medida que  
se hace pequeño, el coseno se aproxima a la parábola

 , 

lo que anticipa el estudio de las series de Taylor.
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Apoyo didáctico:  los límites fundamentales cumplen una fun-
ción de ancla je cognitivo. Al trabajar con ellos, el docente puede 
construir puentes entre lo intuitivo y lo formal.

Por ejemplo, al analizar el límite

, 

el profesor puede pedir a los estudiantes que observen qué su-
cede con el triángulo inscrito en un círculo unitario a medida que 
el ángulo disminuye. De este modo, la noción abstracta de límite 
se transforma en una experiencia tangible y visual.

Hiebert y Grouws (2007) sostienen que los aprendizajes signi-
ficativos en matemáticas ocurren cuando el estudiante percibe la 
coherencia entre los procedimientos y las ideas. Los límites funda-
mentales, enseñados con este enfoque, dejan de ser simples fórmu-
las para convertirse en herramientas de comprensión del cambio.
Infinitésimos equivalentes
En el estudio del cálculo, los infinitésimos equivalentes represen-
tan una de las herramientas más elegantes y conceptualmente 
profundas para comprender el comportamiento de las funciones 
en las cercanías de un punto. Estos permiten comparar el grado 
de “pequeñez” de dos magnitudes que tienden a cero, simpli-
ficando el análisis de límites, derivadas y desarrollos locales. 
Aunque su origen se remonta a los razonamientos intuitivos de 
Newton y Leibniz, su formalización moderna se encuentra en 
el análisis asintótico y en el lenguaje de los límites, lo que los 
convierte en un puente entre la intuición geométrica y el rigor 
analítico (Stewart, 2021; Apostol, 1967).

Cuando dos expresiones  y  se anulan al aproximarse  
a un cierto valor a, pero lo hacen a un ritmo tan similar que su co-
ciente tiende a uno, decimos que son infinitésimos equivalentes.

 Formalmente:

  si y solo si . 

Esta relación no solo indica que ambas funciones tienden a 
cero, sino que sus “velocidades de anulación” son prácticamen-
te indistinguibles en el límite. Como señala Spivak (1994), “los 
infinitésimos equivalentes nos permiten sustituir lo complicado 
por lo esencialmente igual, sin alterar el valor del límite” (p. 123).

Por ejemplo, cuando

. 
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En estos casos, las funciones de la izquierda pueden reem-
plazarse por sus equivalentes en cálculos de límites sin alterar 
el resultado final.

Apoyo didáctico:  introducir los infinitésimos equivalen-
tes no debe limitarse a un formalismo algebraico. Es fun-
damental que el estudiante visualice cómo dos curvas se 
aproximan tan estrechamente en torno a un punto que sus 
gráficas parecen coincidir. En términos visuales, decir que 
si , significa que ambas funciones son casi indis-
tinguibles cerca de .

Continuidad y tipos de discontinuidades
La continuidad es una idea que une el pensamiento geométrico, 
analítico y fenomenológico del cálculo. Representa la posibili-
dad de describir procesos sin interrupciones, donde el cambio 
ocurre de manera suave y progresiva. En términos sencillos, 
una función es continua si su gráfica puede dibujarse sin le-
vantar el lápiz del papel; sin embargo, esta imagen intuitiva 
se formaliza mediante el lengua je de los límites: una función 

 es continua en un punto  si cumple tres condiciones 
esenciales (Stewart, 2021): 

1.	  está definida (esto es,  está en el dominio de )

2.	 existe〗

3.	

Este triple criterio, consolidado por Cauchy y Weierstrass, 
asegura que el comportamiento de la función no se vea inte-
rrumpido ni por huecos ni por saltos en la gráfica, ofreciendo 
una herramienta rigurosa para modelar fenómenos naturales 
y técnicos.

Ejemplo 18: la función  es continua para todo 
número real, pues es un polinomio, y los polinomios según 
Larson y Edwards (2022), son funciones continuas en todo su 
dominio. Si tomamos , se verifica que y que ; por 
tanto, no existe ruptura ni ambigüedad en su comportamiento. 
(Figura 25)
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Figura 25.
Continuidad de la función  en 

 

Nota. Elaboración propia

En contraste, la función racional   

, 

presenta un punto problemático en  (Figura 26). Al sustituir 
directamente, se obtiene una indeterminación . No obstante, al 
simplificarla como  (para ), observamos que 
el límite 

.
 

Aunque el valor de la función no está definido en , el lími-
te sí existe; por tanto, se trata de una discontinuidad removible, 
que puede eliminarse redefiniendo . Este ejemplo ilustra 
cómo el análisis de continuidad no se limita a detectar errores 
algebraicos, sino que invita a reflexionar sobre el significado 
mismo de “suavidad” en el comportamiento funcional.

Figura 26.
Discontinuidad removible en 

Nota. Elaboración propia
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Para eliminarla, se redefine la función asignando el valor del 
límite en ese punto: , de modo que la nueva función 

es continua en todo su dominio, ya que se ha “rellenado” el vacío 
del gráfico en .

Otro tipo de ruptura ocurre en las discontinuidades de salto, 
donde los límites laterales existen, pero son distintos. 

Ejemplo 19: Un ejemplo clásico es la función por tramos  
                          

Al aproximarse a , se obtiene

 y 

Como ambos límites difieren, existe un salto vertical de una uni-
dad (Figura 27). Esta discontinuidad se observa con claridad al 
graficarla, y al discutirla en el aula permite que los estudiantes 
comprendan cómo el cambio en la definición de una función 
afecta su continuidad. Apostol (1967) enfatiza que estas discon-
tinuidades modelan situaciones reales donde hay un cambio re-
pentino, como una variación de voltaje o un cambio de velocidad 
en un sistema mecánico.

Figura 27.
Discontinuidad de salto en 

Nota. Elaboración propia

Un tercer tipo es la discontinuidad infinita, que se produce 
cuando la función crece sin límite en las cercanías de un punto 
(Figura 28). Por ejemplo,  tiene una discontinuidad in-
finita en , ya que al acercarse desde la derecha, los valores 
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se disparan hacia  y desde la izquierda, hacia . La grá-
fica muestra dos ramas que nunca se tocan, separadas por una 
asíntota vertical. 

Figura 28.
Discontinuidad infinita en 

 

Nota. Elaboración propia

Existen también discontinuidades oscilatorias, menos comunes, 
pero conceptualmente ricas. Por ejemplo, la función 

 

no tiene límite cuando  tiende a 0, ya que sus valores oscilan 
indefinidamente entre –1 y 1. (Figura 29) No hay tendencia defi-
nida, sino una vibración infinita que impide la continuidad. 

Figura 29.
Discontinuidad oscilatoria

Nota. Elaboración propia
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Este caso, analizado por Tall (1992), ayuda a los estudiantes 
a percibir que no todas las irregularidades se deben a rupturas 
visibles: algunas surgen del propio comportamiento interno de 
la función, más allá de la ausencia de definición puntual.

Un caso interesante es la función

, 

que aunque oscila indefinidamente cuando  tiende a cero, lo 
hace con una amplitud decreciente. (Figura 30)

Figura 30.
Discontinuidad oscilatoria

Nota. Elaboración propia

En consecuencia, el límite existe y vale cero. Este ejemplo, 
analizado en textos como el de Stewart (2021), resulta especial-
mente útil en la enseñanza porque demuestra que una función 
puede conservar un comportamiento oscilatorio sin perder la 
continuidad. En el plano conceptual, este tipo de funciones ayu-
dan a los estudiantes a visualizar cómo la multiplicación por un 
factor atenuante (en este caso, ) “suaviza” la vibración del seno, 
haciendo visible la convergencia hacia un punto estable.

Apoyo didáctico:  Desde un enfoque pedagógico, enseñar la 
continuidad y las discontinuidades de funciones trascendentes 
requiere fomentar la comprensión visual, intuitiva y experimental, 
antes que la aplicación mecánica de reglas. (Figura 31)

Figura 31.
Representación gráfica en Geogebra

Nota. Elaboración propia
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El uso de herramientas digitales como GeoGebra o Desmos 
favorece que los estudiantes “vean” el comportamiento de las 
funciones cuando se aproximan a puntos críticos, comprendiendo 
la noción de límite desde la experiencia. Por ejemplo, al manipular 
un deslizador en la función exponencial 

 

se observa cómo los valores crecen abruptamente cuando  
tiende a cero por la derecha, mientras que tienden a cero por la 
izquierda. Este contraste visual permite entender una discontinui-
dad infinita asimétrica, típica en funciones de tipo exponencial 
inversa (Stewart, 2021).

Del mismo modo, la función logarítmica  ofrece 
una experiencia significativa al acercarse a . En la gráfica 
se percibe una caída pronunciada hacia el infinito negativo, lo 
que posibilita discutir con los estudiantes cómo la continuidad 
depende del dominio natural de la función (Figura 32). 

Figura 32.
Representación gráfica en Geogebra

Nota. Elaboración propia

Tall (1992) señala que este tipo de visualizaciones facilita cons-
truir lo que denomina una imagen conceptual del límite, en la 
que el alumno deja de pensar en la continuidad como “dibujar 
sin levantar el lápiz” y la comprende como un fenómeno de es-
tabilidad del comportamiento funcional.

Dimensión pedagógica: enseñar el límite desde la experiencia
Enseñar el concepto de límite representa uno de los mayores de-
safíos del cálculo diferencial. Su naturaleza abstracta, vinculada 
a la idea de aproximación infinita, suele generar en los estudian-
tes confusión conceptual y resistencia cognitiva. No obstante, 
cuando el límite se aborda desde la experiencia, es decir, desde 
la observación del cambio y la tendencia en fenómenos reales 
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o simulados, el aprendiza je se transforma en una vivencia de 
descubrimiento, en la que la intuición se articula con la formali-
zación. En esta dimensión pedagógica, el límite deja de ser una 
definición estática para convertirse en una relación dinámica 
entre valores que se aproximan (Cornu, 1991; Tall, 2013).

 El concepto de límite constituye una de las ideas más pro-
fundas y formativas del pensamiento matemático. Enseñarlo 
desde la experiencia implica asumir que su comprensión no 
se reduce a una definición formal, sino que emerge de una 
vivencia intelectual y sensorial del cambio. En este sentido, la 
enseñanza del límite debe propiciar que el estudiante experi-
mente la aproximación, observe la tendencia y razone sobre 
lo que ocurre “cuando nos acercamos indefinidamente” a un 
valor. Este proceso vivencial convierte la abstracción mate-
mática en una forma de percepción refinada de la realidad 
(Cornu, 1991; Tall, 2013).

Comprender el límite como experiencia de aproximación
El límite no puede enseñarse como una fórmula aislada; requie-
re que el estudiante perciba cómo una magnitud se aproxima 
a un valor sin necesariamente alcanzarlo. Esta vivencia de 
“aproximarse sin llegar” se convierte en el núcleo cognitivo 
del concepto. Como señala Tall & Vinner (1981), muchos errores 
en la comprensión del límite provienen de enseñar su defini-
ción antes de que el alumno haya construido la intuición de 
la tendencia.

Por ejemplo, cuando se observa una secuencia como 
1,0.1,0.01,0.001,…1, 0.1, 0.01, 0.001, el estudiante puede experimentar 
que los términos “se acercan” a cero, aunque nunca lleguen a ser 
exactamente cero. Esta experiencia perceptiva es la base sobre 
la cual puede más tarde comprender que 

. 

Aquí el límite deja de ser una operación mecánica para con-
vertirse en una manera de pensar el infinito como proceso.

Stewart (2021) sostiene que el límite es la idea que permite 
pasar de lo finito a lo infinitesimal, de la medida al cambio. Su 
comprensión surge cuando el estudiante descubre que “el lí-
mite no es un punto al que se llega, sino un valor hacia el cual 
se tiende” (p. 89). Esta diferencia entre llegar y tender, entre 
alcanzar y aproximarse, constituye la frontera conceptual que 
debe recorrerse en la enseñanza del cálculo.
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La noción de límite como proceso y no como resultado
Uno de los obstáculos más comunes es concebir el límite 
como un número final, un resultado estático. Sin embargo, 
su esencia radica en el proceso de acercamiento. Tall (1992) 
advierte que el pensamiento matemático avanzado requiere 
superar la visión operacional para acceder a una visión es-
tructural, donde el límite se entiende como relación dinámica. 
Por ejemplo, al estudiar 

,

el foco no debe situarse en obtener “1” como respuesta, sino 
en observar cómo la razón se estabiliza alrededor de 1 cuando 

 se aproxima a 0. La experiencia visual y numérica permite 
que el estudiante vea cómo la función se autoajusta a un valor 
constante. En ese instante, comprende que el límite expresa una 
estabilidad en medio del cambio.

El límite no representa solo un destino, sino una tendencia 
continua que revela la regularidad del fenómeno. Artigue 
(2009) subraya que enseñar el límite exige reconstruir el 
sentido del movimiento y del acercamiento, pues “la noción 
de límite implica una mirada sobre el proceso, no sobre el 
punto final” (p. 174).
La vivencia del límite a través de la continuidad
La experiencia del límite se hace tangible cuando se relacio-
na con la idea de continuidad. El estudiante puede observar 
que, en una función continua, los valores de la variable inde-
pendiente se aproximan sin saltos ni interrupciones, y que el 
límite en un punto coincide con el valor de la función. Pero 
más allá del formalismo, lo esencial es que perciba la suavi-
dad del cambio.

Ejemplo 20: al analizar en un simulador el comportamiento 
de la función                             

cuando  se aproxima a 1, el estudiante nota que, aunque 
el punto  está “vacío”, los valores de  alrededor de 
él se agrupan en torno a 2. Comprende entonces que el lí-
mite existe incluso si el valor de la función no está definido 
en ese punto.

Esa observación lleva a una conclusión profunda: el límite no 
pertenece necesariamente al dominio de la función; es una cons-
trucción del pensamiento, una predicción sobre lo que ocurriría si 
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el proceso continuara (Tall, 2013). Esta interpretación transforma 
el límite en una herramienta epistémica que permite pensar lo 
inexistente como posible.
La experiencia del límite en el movimiento
El límite adquiere sentido pleno cuando se vincula con el mo-
vimiento, una de las fuentes históricas de su creación. Newton 
y Leibniz lo concibieron como una manera de describir lo que 
ocurre instantáneamente en procesos de cambio continuo. Así, 
el límite surge de la necesidad de expresar lo que ocurre “cuan-
do el tiempo se reduce infinitamente” o “cuando la distancia se 
vuelve infinitesimal”.

Una estrategia pedagógica efectiva consiste en utilizar experi-
mentos de movimiento real o simulado. Por ejemplo, medir cómo 
varía la velocidad promedio de un objeto en trayectos cada vez 
más cortos alrededor de un punto. El estudiante descubre que, 
aunque el intervalo temporal tiende a cero, la razón de cambio 
se aproxima a un valor constante: la velocidad instantánea. En 
ese momento, la definición formal del límite: 

, 

ya no aparece como un artificio algebraico, sino como una tra-
ducción simbólica de una experiencia vivida. 
El límite como experiencia cognitiva del infinito
Enseñar el límite desde la experiencia implica también acom-
pañar al estudiante en su primer contacto significativo con el 
infinito. No un infinito estático o metafísico, sino un infinito dinámi-
co, representado en la sucesión interminable de acercamientos.              
Cornu (1991) describe este tránsito como el “choque cognitivo 
del infinito”, una etapa donde el estudiante debe reconciliar dos 
ideas opuestas: la imposibilidad de alcanzar un valor y la certeza 
de poder aproximarse indefinidamente a él.

Esta vivencia exige que el docente fomente la reflexión 
metacognitiva:

•	 	¿Por qué nunca se llega al valor?
•	 	¿Por qué aun así decimos que el límite “existe”?

Estas preguntas permiten descubrir que el límite no depende 
del punto alcanzado, sino del comportamiento del proceso. En 
palabras de Tall (2013), el límite es “una visión del infinito domes-
ticado por el razonamiento” (p. 91).
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Enseñar el límite como pensamiento relacional
Desde una perspectiva pedagógica profunda, enseñar el límite 
desde la experiencia implica guiar al estudiante hacia la com-
prensión de que el límite es una relación entre variables, no un 
valor aislado. Su sentido surge en la interacción entre lo que 
cambia y lo que permanece. En este contexto, la enseñanza del 
límite se vuelve una oportunidad para desarrollar el pensamiento 
relacional, una forma de razonamiento que trasciende la mani-
pulación simbólica para situarse en la comprensión estructural.

Conclusiones

El recorrido por los fundamentos del cálculo y la noción de límite 
nos permite comprender que esta rama de la matemática no es 
solo un conjunto de fórmulas o reglas, sino una forma profunda 
de pensar el cambio y la continuidad. A lo largo del capítulo se 
mostró cómo el límite se convierte en la idea central del razo-
namiento matemático moderno, porque nos enseña a entender 
procesos que se aproximan, crecen o decrecen sin llegar ne-
cesariamente a un punto final. El cálculo, en este sentido, nos 
ofrece una mirada más precisa y al mismo tiempo más sensible 
del mundo, al permitir describir fenómenos naturales, físicos o 
sociales desde la lógica de la variación. Comprender el límite es, 
en esencia, aprender a razonar sobre lo infinitamente pequeño 
y lo infinitamente grande, sobre lo que se acerca sin alcanzarse 
y, aun así, puede medirse y explicarse con rigor.

Desde una perspectiva pedagógica, este capítulo deja claro 
que enseñar cálculo no debe reducirse a repetir procedimientos, 
sino a generar experiencias de comprensión. Cuando el estu-
diante logra visualizar cómo una función se aproxima a un valor, 
cómo un cambio se estabiliza o cómo una curva se suaviza, el 
aprendizaje adquiere sentido y profundidad. El uso de recursos 
gráficos, tecnológicos y ejemplos cercanos a la realidad favorece 
que el límite deje de ser una idea abstracta y se convierta en una 
experiencia intelectual concreta. En última instancia, este capítulo 
invita a mirar el cálculo como una forma de pensamiento que 
une razón e intuición, precisión y asombro, ayudando a formar 
una mente capaz de interpretar el cambio con claridad, lógica 
y sensibilidad.
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Capítulo II

Derivada: análisis del cambio y 
variación de las funciones

 

Introducción

La noción de derivada marca un punto de inflexión en la his-
toria del pensamiento matemático, pues transforma la idea 
de cambio en un objeto cuantificable. Mientras el concepto de 
límite proporciona las bases para comprender la continuidad, 
la derivada permite estudiar cómo varía una magnitud en un 
instante determinado. Su desarrollo fue una respuesta a pre-
guntas que la humanidad se había hecho durante siglos: ¿cómo 
medir la velocidad de un cuerpo en movimiento?, ¿cómo de-
terminar el punto más alto o más ba jo de una curva?, ¿cómo 
describir la variación instantánea de un fenómeno natural 
o social? Desde las reflexiones geométricas de Fermat y los 
razonamientos infinitesimales de Newton y Leibniz, el cálculo 
diferencial se ha convertido en un lenguaje universal para ana-
lizar el cambio, ofreciendo modelos que explican la dinámica 
del mundo físico, biológico y tecnológico.
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El estudio de la derivada en este capítulo se organiza a par-
tir de su fundamento conceptual y su interpretación geomé-
trica. Se inicia con la definición de la derivada como límite del 
cociente incremental, para luego explorar su representación 
como pendiente de la recta tangente y su relación con la di-
rección del cambio de una función. Posteriormente, se abordan 
las reglas básicas de derivación y su aplicación a funciones 
algebraicas y trascendentes, así como las derivadas de orden 
superior, que permiten analizar comportamientos más comple-
jos como la curvatura o la aceleración. Cada apartado busca 
articular el razonamiento algebraico con la comprensión visual, 
de modo que el estudiante no solo aplique procedimientos, 
sino que comprenda el sentido del cambio y su relación con 
la forma y el crecimiento de las funciones.

Desde una perspectiva didáctica, este capítulo propone 
integrar la exploración gráfica y simbólica con el uso de he-
rramientas tecnológicas como GeoGebra o Desmos, que fa-
cilitan la visualización de la derivada y su interpretación en 
contextos reales. La derivada deja de ser vista únicamente 
como un algoritmo para transformarse en un concepto que 
explica fenómenos de la vida cotidiana: el aumento o dismi-
nución de una población, la velocidad de un vehículo, la ren-
tabilidad de una inversión o la propagación de una señal. De 
esta manera, se fomenta una comprensión profunda, dinámica 
y significativa del cálculo, orientada no solo a la resolución 
de problemas, sino también a la construcción de una mirada 
crítica sobre el cambio y la variación en los distintos campos 
del conocimiento.

La derivada como límite del cociente incremental
La derivada surge de la necesidad de medir con precisión el 
cambio instantáneo, una idea que marcó uno de los mayores 
logros del pensamiento matemático. Mientras el álgebra permite 
calcular variaciones entre puntos distantes, el cálculo diferencial 
busca capturar lo que ocurre en un instante infinitesimal: el mo-
mento exacto en que algo crece, decrece o se transforma. Esta 
noción se formaliza a través del límite del cociente incremental, 
expresión que representa la razón de cambio promedio entre 
dos puntos cada vez más cercanos sobre una curva. Así, si una 
función  describe un fenómeno continuo, la derivada en un 
punto  se define como 

, 
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siempre que dicho límite exista (Figura 1). Esta formulación ex-
presa la pendiente de la recta tangente a la curva en el punto 

, y constituye el corazón del análisis del cambio. En pa-
labras de Stewart (2021), la derivada no solo mide la rapidez con 
que una cantidad varía, sino que revela la estructura interna del 
movimiento, la dirección del crecimiento y la sensibilidad de una 
función ante pequeñas modificaciones en su variable.

Figura 1.
Límite del cociente incremental de en 

 

Nota. Elaboración propia

El concepto de derivada tiene raíces históricas profundas. 
Fermat, en el siglo XVII, exploró métodos para hallar máximos 
y mínimos sin conocer aún la noción de límite, mientras que 
Newton y Leibniz, de manera independiente, formalizaron el 
cálculo infinitesimal para estudiar el movimiento de los cuer-
pos celestes y los fenómenos naturales (Boyer, 2011). Newton 
concibió la derivada como una razón de velocidades, vincula-
da al cambio en el tiempo, mientras que Leibniz la interpretó 
como una relación entre diferenciales infinitesimales, lo que 
dio origen a la notación aún utilizada.

Estas visiones convergieron en una misma intuición: el cam-
bio continuo puede ser descrito matemáticamente mediante 
un límite, una idea que siglos más tarde sería rigurosamen-
te formulada por Cauchy y Weierstrass. Larson y Edwards 
(2022) señalan que esta evolución histórica demuestra cómo 
la derivada no nació de una definición formal, sino de una 
necesidad intelectual: comprender el comportamiento de 
la naturaleza a través de sus variaciones. Comprender la 
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derivada como límite implica, por tanto, entenderla como una 
transición conceptual: se pasa de una razón promedio a una 
razón instantánea. (Figura 2)

Figura 2.
Límite del cociente incremental de en 

Nota. Elaboración propia

Ejemplo 1: consideremos la función  . Si se analiza 
la variación de  entre los puntos  y , el co-
ciente incremental es 

Al hacer h cada vez más pequeño, el término h tiende a 
cero, y el límite resulta ser 4. Así, la derivada de , lo 
que indica que la pendiente de la tangente en ese punto es 
4. Este valor expresa el ritmo exacto de cambio de la función 
en ese instante, mostrando cómo la derivada actúa como un 
“microscopio matemático” que revela la variación puntual de 
una magnitud (Thomas et al., 2024). 

Definición función derivable
Sea  una función definida en un intervalo abierto y  un punto 
de ese intervalo. Se dice que  es derivable en dicho punto  
si existe el límite: 

,  

y en este caso se denomina derivada de  en  y se denota por: 
.
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Otra notación usada en la práctica es Notación de Leibniz

 

Si  es derivable en un punto , la derivada de f en dicho punto, 
que denotaremos por , es igual al valor de la pendiente de 
la recta tangente a la curva definida por  en dicho punto 

. Por tanto la ecuación de la recta tangente viene dada por: 

.

Ejemplo 2: Podemos calcular la derivada de  en 
un punto por ejemplo (3,- 6) donde  se defina como:  

. (Figura 3)

Sea  la abscisa de (3 ,- 6), entonces:

por tanto , de ahí que la recta en el punto  tiene 
pendiente -2. 

Figura 3.
Derivada de  en un punto (3,- 6) 

 

Nota. Elaboración propia
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En la práctica, este razonamiento se extiende a múltiples 
contextos. En física, la derivada de la posición respecto al 
tiempo define la velocidad instantánea; en economía, la deri-
vada del costo o del ingreso respecto a la cantidad producida 
permite estudiar la productividad marginal; en biología, la de-
rivada de una función de crecimiento celular describe el ritmo 
de reproducción en un instante específico. Así, la derivada se 
convierte en un instrumento de lectura del cambio, capaz de 
conectar las leyes del movimiento, el crecimiento y la optimiza-
ción con su representación matemática. Apostol (1967) afirma 
que la potencia del cálculo radica en su universalidad: el mismo 
razonamiento que explica la aceleración de un cuerpo sirve 
para analizar el comportamiento de una función logística o el 
flujo de información en un circuito electrónico.

Apoyo didáctico: enseñar la derivada como límite del co-
ciente incremental exige un enfoque visual y experimental. Es 
fundamental que el estudiante observe cómo la secante entre 
dos puntos de una curva se convierte progresivamente en una 
tangente al acercar ambos puntos entre sí. GeoGebra y Desmos 
permiten visualizar este proceso dinámicamente, mostrando 
cómo la pendiente promedio se transforma en una pendiente 
instantánea. Tall (1992) sugiere que este tránsito de lo intuitivo 
a lo formal es decir de la percepción del cambio a su expre-
sión simbólica, es esencial para desarrollar una comprensión 
profunda del cálculo.

Interpretación geométrica: pendiente, tangente y dirección de 
cambio
El concepto de derivada, piedra angular del cálculo diferencial, 
alcanza su comprensión más profunda cuando se interpreta 
geométricamente. Desde la perspectiva visual, la derivada de 
una función en un punto expresa la pendiente de la recta tan-
gente a su gráfica en ese lugar. Esta idea, aparentemente senci-
lla, contiene la esencia misma del cálculo: cuantificar cómo una 
magnitud cambia en un instante infinitesimal. Así, el estudio de 
la pendiente y la tangente no es una cuestión meramente alge-
braica, sino una ventana hacia la comprensión del movimiento, el 
crecimiento, la oscilación y la transformación de los fenómenos 
naturales y sociales (Stewart, 2021).

Cuando se observa una función en el plano cartesiano, la 
forma de su curva revela su historia de cambio. Si una fun-
ción crece, su pendiente es positiva; si decrece, es negativa; 
si se mantiene constante, la pendiente es cero. La derivada 

 expresa precisamente esa inclinación en el punto , 
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es decir, la dirección y magnitud del cambio instantáneo. En 
términos geométricos, la pendiente puede definirse como el 
límite del cociente incremental:

Esta definición permite pasar del cálculo de una razón media 
de cambio a una razón instantánea, lo que equivale a reempla-
zar la secante por la tangente, que representa el comportamien-
to de la función en un único punto. Como explica Apostol (1967), 
esta transición es un acto conceptual: el paso de lo finito a lo 
infinitesimal, del intervalo al punto, de la variación al instante.

  Apoyo didáctico:  visualizar esta relación es esencial para 
el aprendiza je del cálculo. Artigue (2009) subraya que la ense-
ñanza tradicional del límite y la derivada suele quedar atrapa-
da en la manipulación simbólica, mientras que los estudiantes 
comprenden de forma más natural el cambio si pueden repre-
sentarlo gráficamente y observar cómo las rectas secantes se 
transforman en tangentes. Por ello, la interpretación geomé-
trica no solo refuerza la comprensión conceptual, sino que 
propicia una experiencia cognitiva del cambio: ver cómo una 
función “se mueve” en torno a un punto y cómo la pendiente 
se convierte en el indicador más preciso de esa dinámica.

La dirección de cambio se manifiesta en la orientación de la 
tangente: ascendente cuando la función aumenta, descendente 
cuando disminuye. La magnitud de esa inclinación mide la inten-
sidad del cambio. Cuando la derivada es grande, el fenómeno 
varía rápidamente; cuando es pequeña, el cambio es lento o casi 
nulo. Este enfoque permite comprender la derivada como un 
lenguaje geométrico universal para describir procesos de la rea-
lidad: velocidad en física, crecimiento en biología, productividad 
marginal en economía o intensidad de respuesta en ingeniería.

Para comprender más profundamente esta relación entre 
pendiente, tangente y dirección de cambio, resulta especial-
mente enriquecedor analizar funciones trascendentes, pues 
ellas exhiben comportamientos no lineales que desafían la 
intuición inicial del estudiante y lo obligan a construir signifi-
cados más elaborados.

Ejemplo 3: la función  representa el paradigma del 
crecimiento continuo. Su derivada,   , indica que la 
pendiente de la tangente en cada punto coincide exactamente 
con el valor de la función. (Figura 4)

Geométricamente, esto significa que la dirección de cambio 
crece a la misma velocidad con que la función se eleva. En el 
plano, las tangentes a la curva son cada vez más inclinadas a 
medida que se avanza hacia la derecha: lo que comienza como 
un ascenso moderado se convierte en una elevación casi vertical.
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Figura 4.
Crecimiento continuo de 

Nota. Elaboración propia

Este comportamiento tiene implicaciones fenomenológicas 
profundas: en biología modela el crecimiento poblacional sin 
límites; en economía, el interés compuesto; en física, el aumen-
to exponencial de una reacción en cadena.

En contraste, la función  ilustra el comportamien-
to opuesto. Su derivada 

 

expresa un crecimiento cada vez más lento a medida que 
aumenta  (Figura 5). Geométricamente, las tangentes en 
los puntos cercanos a  son inclinadas, pero conforme la 
función avanza hacia la derecha, se aplanan gradualmente. La 
dirección de cambio sigue siendo positiva, pero la pendiente 
se reduce hasta acercarse a cero.

Figura 5.
Comportamiento aplanado de 

Nota. Elaboración propia
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Esta función encarna la noción de rendimientos decrecientes: 
al principio, el cambio es rápido, pero con el tiempo los incre-
mentos se vuelven mínimos. En contextos reales, este patrón 
describe procesos de aprendiza je, saturación o amortiguación. 
Didácticamente, permite explorar cómo una derivada positiva 
no siempre implica un crecimiento notable, y cómo el valor de 
la pendiente traduce visualmente la intensidad de la variación 
(Biza et al., 2018). El estudiante comprende así que la pendiente 
no solo señala dirección, sino también ritmo, y que el cambio 
puede volverse casi imperceptible sin dejar de ser positivo.

El caso de la función  ofrece una interpretación 
geométrica especialmente rica. Su derivada, , 
muestra que la pendiente oscila entre -1 y 1. La curva del seno 
sube y ba ja periódicamente, y las tangentes acompañan ese 
movimiento con inclinaciones que cambian continuamente 
de signo. Cuando el seno alcanza un máximo o un mínimo, la 
tangente es horizontal (pendiente cero); cuando cruza el eje 

, la pendiente es máxima o mínima.
Esta relación entre función y derivada (Figura 6) revela una 

sincronía geométrica: el coseno está siempre adelantado un 
cuarto de ciclo respecto al seno. En el plano cartesiano, ello 
se traduce en una correspondencia dinámica entre posición 
y velocidad.

Figura 6.
Comportamiento oscilatorio de la pendiente

 

Nota. Elaboración propia

Apoyo didáctico:  esta dualidad no solo tiene valor mate-
mático, sino que constituye un modelo conceptual del cambio 
periódico, presente en los movimientos ondulatorios, las os-
cilaciones eléctricas o las vibraciones mecánicas. Según Tall 
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(1993), el estudio del seno y el coseno es una oportunidad pe-
dagógica para conectar la derivada con la intuición física del 
cambio, permitiendo que los estudiantes asocien las nociones 
de pendiente, velocidad y dirección con experiencias visuales.

Además, la función seno ejemplifica que el cambio no es 
siempre progresivo ni acumulativo, sino reversible y cíclico. En 
cada punto de la curva, la pendiente indica no solo cuánto se 
modifica la magnitud, sino hacia dónde se orienta ese cambio. 
Esta dimensión direccional de la derivada permite extender 
el razonamiento a fenómenos donde la variación implica al-
ternancia, equilibrio o ritmo, aspectos fundamentales para la 
comprensión del mundo natural.

La función  constituye un caso fascinante para 
explorar la noción de dirección de cambio extrema (Figura 7). 
Su derivada, , se hace cada vez mayor conforme 
x se aproxima a los puntos de discontinuidad

π π

Geométricamente, esto significa que las pendientes de las tan-
gentes se incrementan sin límite, volviéndose prácticamente ver-
ticales. La función expresa así un comportamiento en el que el 
cambio instantáneo se descontrola, aproximándose a la infinitud.

Figura 7.
Comportamiento infinito de las pendientes de la tangente 

 

Nota. Elaboración propia
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Visualizar esta situación en el plano permite discutir con los 
estudiantes la idea de pendiente infinita y su relación con las asín-
totas verticales. No se trata de una noción trivial: implica aceptar 
que una función puede cambiar tan rápidamente que su dirección 
de cambio deja de ser mensurable en términos finitos. Apostol 
(1967) explica que esta propiedad fue una de las motivaciones 
históricas para formalizar el concepto de límite. En este sentido, la 
función tangente no solo enseña cálculo, sino que recrea su origen 
histórico: la necesidad de comprender lo inabarcable.

 Apoyo didáctico: Tall (1993) y Artigue (2009) coinciden 
en que la comprensión del cálculo se consolida cuando el es-
tudiante transita del pensamiento operacional (centrado en 
reglas y algoritmos) al pensamiento estructural (capaz de 
visualizar el cambio como una forma). En este tránsito, la in-
terpretación geométrica actúa como puente cognitivo entre 
el símbolo y la experiencia. Herramientas tecnológicas como 
GeoGebra y Desmos potencian este enfoque, ya que permiten 
experimentar el cambio en tiempo real: ver cómo la recta tan-
gente se desplaza, cómo su pendiente varía y cómo el número 
derivado cobra sentido visual y narrativo.

El aprendiza je de la derivada, por tanto, no se agota en cal-
cular pendientes. Supone desarrollar una sensibilidad geomé-
trica para percibir la dirección del cambio en el espacio y en 
el tiempo. Cuando el estudiante logra asociar una función 
con su comportamiento gráfico, y la pendiente con la historia 
de su variación, ha dado un paso esencial en el dominio del 
pensamiento matemático avanzado. La derivada se convierte 
entonces en un modo de mirar el mundo: un lengua je visual y 
conceptual del cambio continuo, capaz de explicar la armonía 
entre las leyes matemáticas y los procesos de la realidad.

Reglas básicas de derivación y derivadas de funciones alge-
braicas y trascendentes
El paso desde la comprensión conceptual de la derivada hacia su 
dominio técnico requiere reconocer que cada regla de derivación 
encierra una lógica del cambio. Las reglas no son simples rece-
tas algorítmicas, sino expresiones condensadas de propiedades 
estructurales del límite. Como señala Stewart (2021), derivar una 
función equivale a analizar cómo el cambio en una magnitud 
afecta el comportamiento de otra dentro de una relación fun-
cional. De esta manera, el cálculo se convierte en una gramática 
simbólica del movimiento y de la variación.

En el ámbito didáctico, enseñar las reglas de derivación impli-
ca promover un aprendiza je que vaya más allá de la mecaniza-
ción. Artigue (2009) advierte que muchos estudiantes aprenden 
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a derivar sin comprender, porque asocian la derivada con una 
secuencia operativa y no con una construcción teórica basada 
en el límite. En consecuencia, es indispensable que las reglas 
sean presentadas como manifestaciones del concepto de razón 
de cambio y no como fórmulas independientes. En otras pala-
bras, derivar debe entenderse como pensar el cambio dentro 
de una estructura formal coherente.

La regla de la potencia y la intuición del crecimiento
La regla de la potencia es una de las más fundamentales y, al 
mismo tiempo, una de las más reveladoras desde el punto de vista 
del aprendizaje. Si  con , entonces . 

Esta fórmula encierra una verdad geométrica: la pendiente 
de la curva  en cada punto depende proporcionalmente 
de la potencia inmediata inferior. En términos visuales, cuanto 
mayor es el exponente, más rápido crece la pendiente confor-
me uno se aleja del origen.

Ejemplo 4: en , la derivada  indica que 
la inclinación aumenta cuadráticamente con x; mientras que 
en  , la derivada 

 

revela que la pendiente disminuye conforme  crece, tendiendo 
a infinito cuando  se aproxima a cero (Figura 8) . 

Figura 8.
Regla de la potencia

Nota. Elaboración propia

Esta dualidad permite reflexionar sobre el ritmo del cambio: 
unas funciones se aceleran, otras se desaceleran, pero todas 
obedecen la misma ley estructural.
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Larson y Edwards (2022) destacan que la regla de la poten-
cia, por su simplicidad, es una puerta de entrada para com-
prender el comportamiento local de las funciones. A través de 
su aplicación a polinomios, el estudiante aprende que cada 
término de una función puede analizarse por separado y que 
el cambio total se obtiene como la suma de los cambios par-
ciales. Esta observación, que parece trivial, encierra el prin-
cipio de superposición del cambio, un concepto que reapare-
cerá en el estudio de la integral como suma de variaciones 
infinitesimales.

La regla del producto y la regla del cociente: interacción y 
compensación
Cuando dos funciones dependen simultáneamente de la mis-
ma variable, sus variaciones se entrelazan. De allí surgen 
las reglas del producto y del cociente, que revelan cómo el 
cambio en una función afecta a la otra. La regla del producto 
se expresa como: 

. 

Esta relación puede interpretarse geométricamente como la 
suma de dos efectos: el cambio de la primera función cuando la 
segunda se mantiene fija, y el cambio de la segunda cuando la 
primera se mantiene constante. En modelos físicos o económicos, 
este principio traduce la interacción entre factores: el cambio to-
tal es la suma de los cambios parciales a justados por los valores 
actuales de las variables.

De manera análoga, la regla del cociente expresa una diná-
mica de compensación: 

Aquí, el signo negativo del numerador muestra que cuando 
el numerador y el denominador cambian en el mismo sen-
tido, su efecto en la razón puede atenuarse o incluso inver-
tirse. Esta estructura refleja una intuición de equilibrio: los 
cambios proporcionales en el numerador y el denominador 
pueden neutralizarse. Tall (1993) sugiere que este tipo de re-
laciones son cognitivamente desafiantes para el estudiante, 
porque implican coordinar dos procesos de variación simul-
táneos, algo que requiere una comprensión relacional más 
que aritmética.
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La regla de la cadena: la estructura profunda del cambio
Entre todas las reglas de derivación, la regla de la cadena re-
presenta la forma más pura de la dependencia funcional. Si una 
variable y depende de otra u, y esta a su vez depende de , en-
tonces el cambio total de y con respecto a  es el producto de 
los cambios intermedios:  

.

Ejemplo 5:  si , la derivada  

El exponente  actúa como un mediador: el cambio en  se am-
plifica por la derivada del exponente, y luego se proyecta sobre la 
derivada de la función exponencial. Desde una visión geométrica, 
la regla de la cadena describe cómo un estiramiento o contrac-
ción del eje  se traduce en una deformación proporcional en la 
pendiente de la curva.

Artigue (2009) subraya que esta regla no solo tiene un 
valor algebraico, sino epistemológico: introduce al estudiante 
en el pensamiento funcional jerárquico, donde cada nivel de 
dependencia genera un efecto sobre los demás. 

Comprender la regla de la cadena es comprender que el 
cambio no ocurre en aislamiento, sino dentro de sistemas in-
terconectados. (Figura 9)

Figura 9.
Regla de la cadena

 

Nota. Elaboración propia
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Derivadas de funciones algebraicas: el cambio modelado por 
la forma
Las funciones polinomiales permiten visualizar el cambio como 
una construcción acumulativa. Cada término , aporta una 
contribución específica al ritmo global de variación. Por ejemplo, si 

, entonces  .  

La derivada es también un polinomio, pero de grado inferior, 
lo cual sugiere que el cambio es siempre menos complejo que 
la forma original: la variación “simplifica” la estructura, elimi-
nando una capa de crecimiento. 

Este fenómeno, señalado por Stewart (2021), ilustra la idea 
de que el cálculo no destruye la forma, sino que la interpreta 
a otro nivel.

En el caso de las funciones racionales, la derivada incorpora 
la noción de compensación. 

Ejemplo 6: Si 

 , entonces . 

La complejidad del resultado refleja la interacción entre el 
crecimiento del numerador y el del denominador (Figura 10).

 Geométricamente, este tipo de funciones muestran regiones 
donde la dirección del cambio puede invertirse, fenómeno que 
en el aula resulta valioso para discutir el concepto de monoto-
nía y el comportamiento asintótico de las funciones.

Figura 10.
Comportamiento asintótico de 

Nota. Elaboración propia
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Derivadas de funciones trascendentes: la geometría del cambio 
en la naturaleza

Las funciones trascendentes introducen una nueva forma de 
pensar la derivada: no como una simple pendiente numérica, sino 
como una expresión de ritmo, dirección y naturaleza del cambio. 
En ellas, la derivada se convierte en una narrativa del compor-
tamiento del fenómeno representado: unas funciones crecen sin 
límite (exponenciales), otras se estabilizan (logarítmicas o hiperbó-
licas), y otras oscilan (trigonométricas), cada una describiendo pa-
trones que se repiten en los sistemas físicos, biológicos y sociales.

Tabla 1.
Derivadas de funciones trascendentes

Tipo de función Función f(x)
Derivada 

f’(x)

Interpretación 
geométrica / signi-
ficado del cambio

Exponencial 
natural

La pendiente en 
cada punto coinci-
de con el valor de 
la función; el cam-
bio crece de forma 
proporcional a su 
magnitud actual.

Exponencial 
general

La pendiente es 
proporcional al 
valor de la función, 
escalada por ln(a).

Logarítmica 
natural

El cambio es po-
sitivo pero decre-
ciente; la función 
crece cada vez más 
lentamente.

Logarítmica 
general

Similar a la anterior, 
pero el ritmo de-
pende de la base a.

Seno La pendiente 
alterna entre posi-
tiva y negativa; el 
cambio es cíclico y 
periódico.
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Coseno El cambio tiene sig-
no opuesto al seno; 
la función descien-
de cuando el seno 
asciende.

Tangente La pendiente au-
menta sin límite 
cerca de las asínto-
tas; el cambio pue-
de volverse infinito.

Cotangente Disminuye conti-
nuamente; refleja 
una variación in-
versa respecto a la 
tangente.

Secante La pendiente se 
amplifica según la 
combinación de la 
función y su razón 
tangencial.

Cosecante Cambio negativo 
y proporcional al 
producto con su 
cotangente.

Seno 
hiperbólico

Crece exponencial-
mente sin periodici-
dad; modela curvas 
de suspensión o 
hipérbolas.

Coseno 
hiperbólico

Aumenta continua-
mente; su cambio 
refleja simetría 
hiperbólica.

Tangente 
hiperbólica

Su pendiente tien-
de a cero al aproxi-
marse a ±1; cambio 
autorregulado. 

Nota. Elaboración propia.

En la enseñanza del cálculo, Stewart (2021) y Larson y 
Edwards (2022) coinciden en que estas funciones deben ser 
presentadas a través de su dimensión visual y fenomenológica, 
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de modo que el estudiante pueda vincular la forma de la curva 
con el sentido de su variación. Tall (1993) subraya que el apren-
diza je de las derivadas trascendentes favorece el desarrollo 
de un pensamiento analítico superior, capaz de reconocer la 
regularidad en el cambio. 

Razones de cambio
Comprender la idea de razón de cambio significa adentrarse en 
el corazón mismo del cálculo diferencial. En su sentido más pro-
fundo, este concepto traduce la intuición humana del movimiento, 
la transformación y el crecimiento en un lenguaje matemático 
capaz de describir la dinámica del mundo. La razón de cambio 
expresa cómo una magnitud se modifica respecto a otra, y su for-
mulación moderna constituye uno de los logros intelectuales más 
importantes de la historia de la ciencia. En palabras de Stewart 
(2021), el cálculo “proporciona la gramática de la naturaleza”, 
pues convierte en expresión formal aquello que percibimos como 
variación: la velocidad de un cuerpo, la pendiente de una curva 
o la aceleración de un proceso biológico.

El estudio de las razones de cambio hunde sus raíces en la 
necesidad humana de medir la transformación. Ya los filóso-
fos griegos reflexionaban sobre el cambio, pero carecían de 
un lengua je cuantitativo para describirlo. Zenón de Elea, en 
sus célebres paradojas, se preguntaba cómo era posible que 
Aquiles alcanzara a la tortuga si el movimiento podía dividirse 
infinitamente; sin embargo, ese problema no pudo resolverse 
hasta la aparición del concepto de límite. Con Galileo Galilei, 
el pensamiento científico dio un paso decisivo: al estudiar la 
caída libre, introdujo la noción de velocidad promedio como 
razón entre espacio y tiempo, reconociendo que la velocidad 
no era constante, sino cambiante. Aunque su método era em-
pírico, Galileo sentó las bases del razonamiento diferencial 
al asociar la variación física con una proporción matemática 
(Boyer & Merzbach, 2011).

El salto conceptual definitivo llegó con Isaac Newton y 
Gottfried Wilhelm Leibniz en el siglo XVII. Ambos compren-
dieron que el cambio continuo podía representarse mediante 
relaciones infinitesimales. Newton lo llamó “fluxión”: la velo-
cidad a la que fluye una cantidad en el tiempo. Leibniz, en 
cambio, introdujo la notación diferencial 

,

que ha perdurado hasta hoy. Esta escritura condensaba una idea 
revolucionaria: que el cambio de una magnitud podía entender-
se como el cociente de dos incrementos infinitesimales. Como 
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explica Kline (1990), esta intuición fue mucho más que un avance 
técnico; representó una nueva forma de pensar la naturaleza 
como un conjunto de procesos en lugar de entidades estáticas.

En términos sencillos, una razón de cambio promedio mide 
cómo varía una cantidad con respecto a otra a lo largo de un 
intervalo. Si un móvil recorre una distancia  en un tiempo , 
su razón de cambio promedio se expresa como 

Este cociente indica el ritmo de variación en un lapso de-
terminado. En física, representa la velocidad media; en eco-
nomía, el costo medio; en biología, la tasa de crecimiento 
promedio de una población. Pero la ciencia moderna no se 
conformó con conocer el promedio del cambio: buscó medirlo 
en un instante. Surge entonces la razón de cambio instantá-
nea, entendida como el límite del cociente incremental cuando 
el intervalo tiende a cero:  

El paso del cambio promedio al cambio instantáneo no es 
solo un proceso algebraico, sino también un salto cognitivo. 
Según Tall y Vinner (1981), los estudiantes tienden a concebir el 
cambio como algo observable y discreto, por lo que necesitan 
reconstruir mentalmente la idea de variación continua. La razón 
de cambio actúa entonces como un puente entre la percepción 
empírica y la abstracción formal: permite comprender cómo una 
pendiente tangible se transforma en una noción infinitesimal. En 
la enseñanza del cálculo, esta transición constituye una de las 
experiencias intelectuales más significativas, pues representa 
el paso de lo visible a lo conceptual.

Ejemplo 7: Consideremos la función  .
Si se calcula la razón de cambio promedio entre   y 

, se obtiene:

. 

Este valor indica que, en promedio, la función crece 5 unida-
des de y por cada unidad que aumenta  en ese intervalo. Sin 
embargo, si deseamos conocer la razón de cambio en el punto 
exacto , debemos hacer que el incremento tienda a cero:                        
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Así, la pendiente instantánea en ese punto es 4 (Figura 11). 
Lo que comienza como una comparación entre dos puntos se 
convierte, al límite, en una observación del comportamiento 
local de la función.

Figura 11.
Razón de cambio promedio de  entre   y 

 

Nota. Elaboración propia

El significado de la razón de cambio trasciende el ámbito 
matemático. En biología, la tasa de crecimiento de una pobla-
ción  se modela mediante la función logística

, 

donde  es la capacidad máxima,  una constante y  la tasa 
de crecimiento. La derivada 

. 

muestra cómo el crecimiento es rápido al inicio, luego se des-
acelera y finalmente se estabiliza. Murray (2002) señala que 
esta función describe fielmente procesos biológicos como la 
difusión de enfermedades o el crecimiento de poblaciones, 
y que su interpretación depende directamente de la razón 
de cambio. 
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Ejemplo 8: En un laboratorio de microbiología, un grupo 
de investigadores estudia el crecimiento de una colonia de 
bacterias en un medio con nutrientes limitados. Al inicio del 
experimento, se colocan 50 bacterias en una placa de cultivo. 
Con el paso de los días, las bacterias se reproducen, pero el 
crecimiento no puede mantenerse de forma indefinida, ya que 
los recursos del medio comienzan a agotarse.

Los científicos estiman que la población máxima que puede 
alcanzar el cultivo, antes de que los nutrientes se agoten com-
pletamente, es de 10 000 bacterias. Además, determinan que 
la tasa intrínseca de crecimiento es de 0.6 por día. 

A partir de estas condiciones (Figura 12), el crecimiento se 
modela mediante la función logística 

Figura 12.
Comportamiento del crecimiento de la función logística 

 

Nota. Elaboración propia

En economía, la razón de cambio se conoce como tasa mar-
ginal y constituye la base del análisis económico diferencial. 
Si  representa el costo total de producir  unidades, la 
derivada  indica el costo adicional de producir una uni-
dad más: el costo marginal. Esta información es esencial para 
determinar precios, maximizar beneficios y equilibrar recur-
sos (Chiang & Wainwright, 2005). La economía matemática, 
como señala Blitzer (2022), es impensable sin el concepto de 
razón de cambio, pues toda decisión racional implica compa-
rar variaciones.

En la física moderna, las razones de cambio son el lengua-
je mismo de las leyes naturales. La velocidad es la razón de 
cambio de la posición respecto al tiempo, y la aceleración, la 
razón de cambio de la velocidad. En electromagnetismo, la ley 



81

Reinoso Sánchez Miguel Ángel / Saquinaula Brito José Luis

de Faraday establece que la fuerza electromotriz inducida en 
un circuito es proporcional a la razón de cambio del flujo mag-
nético. Incluso la teoría de la relatividad de Einstein se apoya 
en derivadas que expresan cómo cambian las magnitudes 
espacio-temporales con respecto a los sistemas de referencia.

Desde un punto de vista más abstracto, la razón de cambio 
introduce la idea de dependencia funcional. Como afirma Duval 
(2017), pensar matemáticamente significa comprender las rela-
ciones entre variables y no solo los valores que adoptan. En este 
sentido, la razón de cambio enseña a mirar el mundo como un 
sistema de interacciones: cada fenómeno depende de otro y su 
comportamiento se expresa en la tasa con que uno afecta al otro.

Esta visión relacional también tiene profundas implicaciones 
didácticas. Artigue (2009) sostiene que la enseñanza tradicio-
nal del cálculo suele centrarse en la aplicación mecánica de 
reglas de derivación, sin propiciar una comprensión conceptual 
del cambio. En cambio, un enfoque basado en las razones de 
cambio invita a los estudiantes a explorar gráficamente el com-
portamiento de las funciones, a observar cómo la pendiente de 
la secante se transforma en tangente, y a interpretar el valor 
de la derivada en términos del fenómeno que representa. Las 
herramientas digitales como GeoGebra o Desmos ofrecen un 
entorno idóneo para esta experiencia, al permitir visualizar el 
cambio de manera dinámica y manipulable.

Hiebert y Carpenter (1992) agregan que el aprendiza je con 
comprensión requiere conectar las representaciones numéricas, 
algebraicas y gráficas de un mismo concepto. En este sentido, 
la razón de cambio actúa como eje articulador, porque une la 
expresión algebraica 

Δ   

con la representación geométrica de la pendiente y con la interpre-
tación verbal de la variación. Cuando el estudiante logra vincular 
estas formas de representación, el cálculo deja de ser un procedi-
miento para convertirse en una forma de pensamiento relacional.

A nivel cognitivo, el estudio de las razones de cambio pro-
mueve lo que Tall (2013) denomina “pensamiento estructural”: 
la capacidad de reconocer patrones de variación en contextos 
distintos. Un estudiante que entiende la razón de cambio en 
una función polinómica puede transferir ese conocimiento a 
una función exponencial o trigonométrica, porque ha interiori-
zado la lógica del cambio más allá de la forma de la ecuación.

Desde el punto de vista histórico, la consolidación de la ra-
zón de cambio como herramienta universal de análisis marcó 
una revolución epistemológica. En el siglo XVIII, matemáticos 
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como Euler y Lagrange formalizaron el cálculo diferencial con 
un rigor que permitió su expansión a la mecánica, la astro-
nomía y la ingeniería. En el siglo XIX, Cauchy y Weierstrass 
introdujeron la definición ε δ del límite, asegurando la con-
sistencia lógica de las derivadas. Más tarde, el pensamiento 
de Leibniz se retomó en la teoría de funciones diferenciables, 
en la geometría y en la física cuántica. Apostol (1967) subraya 
que toda esta evolución histórica puede interpretarse como 
la búsqueda constante de una descripción precisa del cambio.

En la práctica educativa contemporánea, la noción de razón 
de cambio es también una puerta de entrada a la interdisci-
plinariedad. Los proyectos de modelización matemática per-
miten que los estudiantes exploren fenómenos reales desde 
el cálculo: el crecimiento de una bacteria, el aumento de la 
temperatura en un cuerpo, la depreciación de un vehículo o 
el flujo de usuarios en una red social. Cada una de estas si-
tuaciones encarna una razón de cambio concreta que puede 
representarse gráficamente, analizarse algebraicamente y 
explicarse verbalmente.

Según Godino y Batanero (1998), enseñar cálculo requiere 
integrar la “dimensión semiótica” y la “dimensión fenome-
nológica” del conocimiento. La primera se refiere al manejo 
de símbolos y fórmulas; la segunda, a la comprensión de los 
fenómenos que esos símbolos describen. La razón de cambio 
actúa como punto de convergencia entre ambas dimensiones, 
porque su significado no depende del número obtenido, sino 
del fenómeno al que se refiere.

Por ello, en la enseñanza de la derivada resulta fundamental 
insistir en la lectura de gráficos y en la interpretación con-
textual de los resultados. Un estudiante debe poder decir no 
solo que , sino qué implica eso en el problema: que 
la temperatura aumenta cuatro grados por hora, que la po-
blación crece cuatro individuos por unidad de tiempo o que 
la ganancia se incrementa en cuatro dólares por producto 
adicional. Esa interpretación semántica del número derivado 
es lo que distingue la comprensión instrumental de la com-
prensión conceptual.

La pedagogía del cálculo, por tanto, no debe limitarse a la 
transmisión de técnicas, sino promover el desarrollo de una 
sensibilidad matemática para interpretar la variación. Esto 
implica un enfoque que combine lo conceptual, lo histórico, 
lo visual y lo aplicado. Como sugiere Artigue (2009), enseñar 
cálculo es invitar a los estudiantes a construir modelos del 
mundo, a reconocer regularidades y a traducirlas en relacio-
nes cuantitativas.
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En síntesis, las razones de cambio constituyen el núcleo del 
pensamiento diferencial. Representan la capacidad humana de 
mirar el mundo no como una colección de objetos, sino como 
una red de procesos en transformación. Comprender una ra-
zón de cambio es comprender una ley de comportamiento; 
derivar una función es leer la historia de su movimiento. En el 
aula, enseñar este concepto es enseñar a pensar en términos 
de relación, dependencia y continuidad. Cuando el estudiante 
logra asociar una pendiente con una tendencia, un valor con 
una variación y una fórmula con un fenómeno, ha alcanzado el 
sentido profundo del cálculo: la lectura matemática del cambio.

Aplicaciones de la derivada: crecimiento, decrecimiento y 
optimización
El cálculo diferencial constituye una de las creaciones intelec-
tuales más influyentes en la historia del pensamiento humano. 
Su aparición transformó profundamente la forma de concebir el 
movimiento, la variación y el cambio, ofreciendo una herramienta 
teórica para comprender fenómenos que, hasta entonces, pare-
cían inabordables por la matemática clásica. En el centro de esta 
revolución se encuentra la derivada, cuya potencia conceptual 
radica en medir el cambio instantáneo, en expresar con rigor 
matemático cómo una magnitud se modifica con respecto a otra 
(Stewart, 2021).

Las aplicaciones de la derivada en el análisis de funciones 
no solo permiten determinar dónde una variable aumenta o 
disminuye, sino también comprender los puntos en los que se 
alcanza un equilibrio o una optimización. Dicho de otro modo, 
el cálculo traduce la idea de cambio en un lengua je formal 
que puede ser analizado, representado y predicho. Apostol 
(1967) señala que “la derivada no es únicamente una herra-
mienta computacional, sino un modo de interpretar la realidad 
mediante relaciones de dependencia y continuidad” (p. 145).

En el ámbito educativo, esta capacidad interpretativa tiene 
un valor pedagógico incalculable. Enseñar las aplicaciones de 
la derivada es enseñar a pensar el cambio desde distintas pers-
pectivas: la geométrica, la simbólica, la numérica y la verbal. 
Según Duval (2017), el pensamiento matemático se construye 
precisamente a través de la coordinación entre estos registros 
de representación, que permiten al estudiante conectar lo 
abstracto con lo visual y lo simbólico con lo fenomenológico. 
En consecuencia, el estudio de las aplicaciones de la derivada 
se convierte en un espacio privilegiado para articular teoría, 
visualización y práctica contextualizada.
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Crecimiento y decrecimiento: la lectura del cambio
Analizar el crecimiento y decrecimiento de una función es com-
prender su dinámica interna. Una función  se dice creciente en 
un intervalo III cuando, al aumentar , los valores de  también 
aumentan; de manera análoga, es decreciente cuando  dis-
minuye a medida que  crece. Desde el punto de vista analítico, 
el signo de la derivada determina este comportamiento:

•	 	Si , la función crece.
•	 	Si , la función decrece.
Este criterio constituye la base del estudio cualitativo de las 

funciones. A diferencia del enfoque puramente algebraico, el 
análisis de crecimiento no busca calcular valores numéricos, 
sino describir tendencias: hacia dónde se dirige la función, 
cuándo se detiene, cuándo cambia su ritmo o su dirección. 
Stewart (2021) explica que el cálculo se distingue precisamente 
por su capacidad para pasar del valor puntual al comporta-
miento global, integrando la información local que aporta la 
derivada.

Ejemplo 9:  la función cúbica 

. Su derivada  ,  

se anula en  (Figura 13). Evaluando los signos, se concluye 
que:

•	 	Si , para  y , la función crece
•	 	Si , la función decrece.
Esta descripción simbólica se traduce visualmente en una 

gráfica con dos cambios de pendiente, donde la tangente pasa 
de ascendente a descendente. 

Figura 13.
Cambio de pendiente de la función 

 

Nota. Elaboración propia
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Lo esencial no es el cálculo en sí, sino la interpretación del 
signo como expresión del comportamiento. Duval (2017) insis-
te en que esta interpretación visual favorece la comprensión 
conceptual, pues permite que el estudiante “vea” la variación 
antes de formalizarla algebraicamente.

Desde el punto de vista histórico, el estudio del crecimiento 
y decrecimiento refleja la preocupación de los matemáticos por 
describir la naturaleza. Para Newton, cada cambio observable 
tenía su correspondencia en una tasa de variación, mientras 
que Leibniz concebía la derivada como la relación entre di-
ferenciales infinitesimales. En ambos casos, el pensamiento 
sobre el cambio se articuló como una búsqueda de regularidad 
en lo dinámico (Apostol, 1967).

Apoyo didáctico: en la enseñanza actual, los entornos digita-
les como GeoGebra permiten hacer visible esta idea. Cuando 
el estudiante manipula el punto que se mueve sobre la gráfica, 
observa cómo el valor de la derivada representado como la 
pendiente de la tangente, varía continuamente. Esta experien-
cia perceptiva refuerza el vínculo entre el concepto algebraico 
y su representación geométrica, lo que Tall (2013) denomina 
el paso del mundo visual-sensorial a mundo simbólico.

La interpretación de crecimiento y decrecimiento también 
ofrece oportunidades para la argumentación. El docente puede 
plantear preguntas del tipo: ¿Qué ocurre con la pendiente cuando 
la función alcanza su punto más alto?, o ¿por qué el signo de la 
derivada determina la dirección del cambio. Este tipo de razona-
miento heurístico fomenta la reflexión y la metacognición, pro-
moviendo una comprensión profunda del concepto de variación.

Extremos: equilibrio y estabilidad
Los extremos de una función representan estados de equilibrio. 
Son los puntos donde la función “se detiene” momentáneamente, 
antes de cambiar su tendencia. Matemáticamente, un punto  es 
un extremo local si la derivada se anula o no existe, y la función 
cambia de creciente a decreciente o viceversa.

El criterio de la primera derivada establece que:
•	 	Si  pasa de positiva a negativa en  entonces  

tiene un máximo local
•	 	Si  pasa de negativa a positiva, es un mínimo local.
El criterio de la segunda derivada, por su parte, analiza la 

concavidad: si  , el punto es un mínimo (curvatura 
hacia arriba); si , un máximo (curvatura hacia aba jo) 
(Larson & Edwards, 2022).

Estos criterios pueden interpretarse intuitivamente median-
te la geometría. Una función con curvatura positiva se asemeja 
a un “valle” (la tangente está por encima de la curva), mientras 
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que una con curvatura negativa se parece a una “colina”. De 
este modo, la derivada segunda actúa como una “mirada de 
segundo orden” sobre el cambio: no mide cuánto crece o de-
crece la función, sino cómo cambia el cambio.

Ejemplo 10: Sea  (figura 14).Aquí

 

se anula en , y  indica concavidad hacia abajo, 
por tanto (3,4) es un máximo global.

Figura 14.
Representación de concavidad hacia abajo de 

 

Nota. Elaboración propia

Este tipo de razonamiento resulta fundamental para com-
prender la noción de estabilidad. En física, un cuerpo se en-
cuentra en equilibrio cuando la fuerza neta es cero, lo que 
corresponde a un punto donde la derivada (la fuerza) se 
anula. Si además la segunda derivada es positiva, el equili-
brio es estable (mínimo de energía); si es negativa, inestable 
(máximo de energía).

Apoyo didáctico: analizar los extremos mediante simula-
ciones dinámicas favorece la comprensión visual de la esta-
bilidad. Tall (2013) propone que el aprendiza je matemático 
se consolida cuando el estudiante logra moverse entre repre-
sentaciones sin perder el sentido de la relación. Ver cómo la 
tangente “se aplana” en los extremos antes de cambiar de 
signo ayuda a comprender la relación entre la pendiente y el 
comportamiento global.
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A nivel pedagógico, estos conceptos también pueden abor-
darse a través de problemas contextualizados. Por ejemplo, 
determinar el punto en que una empresa alcanza su máxima 
producción sin incrementar el costo, o hallar la temperatura 
ideal para maximizar la eficiencia energética. Estas situaciones 
invitan al razonamiento interdisciplinar, integrando la matemá-
tica con la física, la economía o la biología.

Optimización: el cálculo al servicio de la decisión
El estudio de la optimización constituye la culminación na-

tural del análisis de la derivada. Optimizar implica encontrar 
el valor máximo o mínimo de una cantidad que depende de 
una o más variables, ba jo ciertas condiciones o restricciones. 
Este tipo de problemas surge de la vida real y encuentra en 
el cálculo un lengua je formal para su resolución.

Stewart (2021) subraya que la optimización no solo es una 
técnica, sino una forma de pensamiento: busca el equilibrio en-
tre recursos y resultados. En ingeniería, se utiliza para diseñar 
estructuras que resistan con el mínimo material; en economía, 
para maximizar utilidades; en biología, para modelar procesos 
de supervivencia eficiente.

 Ejemplo 11: Se desea cercar completamente un terreno rec-
tangular utilizando 200 metros de malla (figura 15). ¿Qué di-
mensiones maximizan el área del terreno?

Figura 15.
Representación de la función a maximizar A(x)

Nota. Elaboración propia

Sea  el ancho y “ ” el largo del rectángulo (ambos positivos). 
La restricción de perímetro es  despejando 

se obtiene . El área a maximizar es . 
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Con la restricción:

Ejemplo 12: Una empresa desea fabricar un envase cilíndrico 
de volumen fijo  (figura 16) y necesita minimizar 
el material utilizado. Si el radio es  y la altura , el volumen 
es π , y el área total (material) es  π π . 

Sustituyendo π  obtenemos π . 

Figura 16.
Representación de la función a maximizar 

 

Nota. Elaboración propia

Derivando,

π . Igualando a cero, π , 

lo que da π . 

Este resultado indica que la forma óptima es aquella donde 
la altura y el diámetro son iguales, un principio recurrente en el 
diseño de envases. Verificación de mínimo (segunda derivada) 
Al calcular  se tiene: 

π , a partir de aquí se obtiene π . 

Para . De π  se obtie-
ne . El cilindro de menor área para volumen fijo cumple 
altura = diámetro.
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Ejemplo 13: Una empresa constructora diseña un pórtico 
triangular con base fija y lados iguales de 10 metros (Figura 
17). El vértice superior puede desplazarse a lo largo de una 
línea vertical, de manera que la altura h cambia y con ella el 
área del triángulo.

Figura 17.
Representación de la función a maximizar 

 

Nota. Elaboración propia

Sea  el punto medio de la base , y  el vértice superior 
del triángulo. 

La base mide a, por lo que cada mitad de la base tiene 
longitud 

 , 

de donde al derivar e igual a cero obtenemos . De 
aquíuí el área máxima es 50. (Figura 18)

Figura 18.
Representación de la función a maximizar 

Nota. Elaboración propia
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Apoyo didáctico: este tipo de problemas ofrece una opor-
tunidad significativa para conectar la teoría del cálculo con 
aplicaciones tangibles, permitiendo que el estudiante com-
prenda la derivada no solo como una operación algebraica, 
sino como un instrumento para razonar sobre la optimización 
y la toma de decisiones. Tal como plantean Duval (2017) y Tall 
(2013), la comprensión profunda del concepto se fortalece 
cuando el aprendiza je integra lo simbólico, lo gráfico y lo 
conceptual, promoviendo un pensamiento matemático que 
interpreta y transforma la realidad desde una perspectiva de 
cambio continuo.

Visualización y análisis gráfico mediante herramientas 
tecnológicas
En el aprendiza je del cálculo, la visualización es una forma de 
pensamiento que permite transformar la abstracción en expe-
riencia perceptible. Los conceptos de límite, continuidad, deri-
vada e integral dejan de ser formulaciones algebraicas cuando 
el estudiante los ve en acción, representados en un entorno 
digital que hace tangible la idea de cambio. La tecnología, en 
este contexto, no sustituye la comprensión conceptual, sino 
que la media y potencia (Artigue, 2009). La representación 
gráfica interactiva, el análisis de curvas y la experimentación 
con parámetros se convierten en estrategias fundamentales 
para que los estudiantes transiten del pensamiento estático al 
pensamiento dinámico característico del cálculo.

Visualización del cambio en funciones algebraicas y trascendentes
Uno de los aportes más significativos de la tecnología es la po-
sibilidad de comparar funciones algebraicas y trascendentes 
desde su comportamiento gráfico. Las funciones polinomiales, 
por ejemplo, permiten observar la relación entre el grado del 
polinomio y la forma de su gráfica. En una función cúbica como 
f(x)=x^3  , herramientas como GeoGebra o Desmos permiten 
mover puntos críticos, analizar concavidades y mostrar cómo 
la derivada indica los intervalos de crecimiento y decrecimiento 
(Figura 19). Este tipo de análisis favorece la comprensión de la 
derivada como una función asociada al cambio, no solo como un 
número calculado en un punto (Stewart, 2021).
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Figura 19.
Crecimiento acelerado de 

 

Nota. Elaboración propia

En contraste, las funciones muestran patrones de variación 
más complejos. Por ejemplo, la función exponencial  
se visualiza como un crecimiento acelerado cuya pendiente 
coincide con el propio valor de la función.

 La gráfica de su derivada, al superponerse, revela una pro-
piedad esencial: la derivada de  es la misma función, lo que 
convierte a esta curva en un modelo paradigmático del cambio 
proporcional. Las funciones logarítmicas, en cambio, crecen 
cada vez más lentamente, representando procesos de creci-
miento desacelerado como la difusión de información o la dis-
minución de intensidad de una señal (Larson & Edwards, 2022).

Las funciones trigonométricas ofrecen otro nivel de análisis 
visual. Al graficarlas junto a sus derivadas, el estudiante puede 
observar la relación armónica entre sus cambios: cuando el seno 
alcanza su máximo, la derivada (coseno) se anula, y viceversa 
(Figura 20). Este patrón cíclico muestra cómo la variación se 
equilibra en un sistema periódico, lo que permite comprender 
los fenómenos oscilatorios presentes en la física y la ingeniería.   

Figura 20.
Relación armónica entre  y 

 

Nota. Elaboración propia
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Biza et al. (2018) destacan que este tipo de visualizaciones 
contribuye a consolidar la unidad cognitiva entre el concep-
to y su representación: el estudiante asocia la pendiente, la 
curvatura y el ritmo de cambio con la forma de la función.

Exploración visual del límite y la continuidad
Las herramientas digitales permiten representar la aproximación 
de valores de manera dinámica, facilitando la comprensión del 
límite. Cuando el estudiante observa, por ejemplo, cómo 

se aproxima a  medida que  tiende a 0 (Figura 21), se genera 
una experiencia visual que refuerza la noción de continuidad. 

GeoGebra permite incluso animar el movimiento de puntos 
sobre la curva, mostrando cómo los valores de la función se 
acercan progresivamente a un mismo valor sin alcanzarlo.

Figura 21.
Representación con Geogebra de la continuidad de 

 

Nota. Elaboración propia

Esta capacidad de manipular y observar la función promueve 
lo que Tall (1993) denomina imagen conceptual: una represen-
tación mental donde el estudiante integra la observación con 
la comprensión simbólica. De este modo, el límite deja de per-
cibirse como una simple sustitución algebraica para asumirse 
como un proceso de tendencia, de acercamiento controlado.

 Artigue (2009) sugiere que el aprendiza je del límite debe 
articular tres dimensiones: la simbólica (manipulación de ex-
presiones), la gráfica (representación visual) y la numérica 
(aproximación progresiva), y las herramientas tecnológicas son 
el espacio ideal para integrar las tres en una sola experiencia.

Derivadas como pendientes y tasas de cambio en contextos reales
La comprensión de las derivadas como pendientes y tasas de 
cambio adquiere un sentido más profundo cuando se conecta con 
situaciones que los estudiantes reconocen en su vida cotidiana. Al 
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analizar cómo varía la altura de un objeto en movimiento, cómo 
se modifica la temperatura a lo largo del día o cómo crece el 
caudal de un río tras una lluvia intensa, la derivada deja de per-
cibirse como un procedimiento abstracto y se convierte en una 
herramienta para interpretar la dinámica del mundo. Este enfoque 
no solo favorece una lectura más intuitiva de los gráficos, sino que 
también ayuda a que los estudiantes desarrollen la capacidad 
de anticipar comportamientos, identificar tendencias y tomar 
decisiones con base en información cambiante, lo que fortalece 
la utilidad práctica del cálculo en contextos reales.

Ejemplo 14: al estudiar una función de temperatura  

 

(Figura 22), el estudiante puede observar cómo el calor 
disminuye gradualmente en el tiempo, y cómo su derivada 
negativa refleja la velocidad de enfriamiento. 

Figura 22.
Representación de la función  

Nota. Elaboración propia

En contextos económicos, funciones del tipo

  

permiten visualizar costos marginales y maximización de bene-
ficios mediante el análisis de pendientes.

Estas simulaciones, cuando se presentan en plataformas 
como GeoGebra o Wolfram Alpha, fomentan el razonamien-
to interpretativo: los estudiantes no solo calculan, sino que 
explican cómo el signo de la derivada afecta la tendencia y 
cómo los puntos críticos representan equilibrios o extremos. 
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Este enfoque integrador, recomendado por Stewart (2021), 
impulsa una comprensión funcional del cálculo aplicada a los 
fenómenos de la vida cotidiana.

El avance de las herramientas tecnológicas también permi-
te explorar funciones más complejas, como las hiperbólicas y 
logísticas, que tradicionalmente se reservaban para niveles 
avanzados. Las funciones hiperbólicas, tales como senh(x) y 
cosh(x), pueden visualizarse como equivalentes suavizados de 
las funciones trigonométricas, pero sin periodicidad. Su análisis 
ayuda a comprender fenómenos de crecimiento equilibrado y 
geometría no euclidiana. 

Ejemplo 15: las funciones logísticas, como

(Figura 23),  representan procesos de crecimiento limitado, donde 
la pendiente inicial es máxima y luego se estabiliza. En biología, 
economía y tecnología, esta curva describe el comportamiento 
de poblaciones, adopción de innovaciones o difusión de infor-
mación (Larson & Edwards, 2022). 

La enseñanza del cálculo con recursos tecnológicos implica 
reconocer que el conocimiento matemático es multirrepresen-
tacional. Duval (1999) sostiene que el aprendizaje significativo 
requiere la coordinación entre distintos registros semióticos: el 
algebraico, el gráfico, el tabular y el verbal. Las herramientas 
digitales permiten articular estos registros, de modo que el estu-
diante no solo vea la función, sino que la interprete y la verbalice.

Figura 23.
Representación de la función logística 

 
Nota. Elaboración propia

En este sentido, la visualización no es una actividad pasiva, 
sino una forma activa de pensar y construir significados. La 
interacción entre el gesto (arrastrar un punto), la observación 
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(ver cómo cambia la pendiente) y la explicación verbal (inter-
pretar la relación entre variables) convierte la experiencia en 
un proceso cognitivo integral. De esta manera, la tecnología 
se transforma en un espacio de mediación semiótica, donde 
los conceptos matemáticos adquieren sentido a través de la 
acción y la interpretación (Artigue, 2009).

 
Conclusiones

El estudio de la derivada permitió comprender que el cálculo 
diferencial no es solo una herramienta para resolver proble-
mas, sino un modo de pensar la realidad desde el cambio, la 
variación y la continuidad. A lo largo del capítulo se mostró 
que la derivada, concebida como límite del cociente incre-
mental, constituye la base para medir el ritmo y la dirección 
de transformación de cualquier fenómeno. Su interpretación 
geométrica como pendiente de la tangente, su aplicación en 
el análisis del crecimiento y la optimización, y su uso en con-
textos físicos, biológicos o económicos revelan su carácter 
interdisciplinar y formativo.

 Tal como sostienen Stewart (2021), derivar una función 
equivale a leer la dinámica interna de un proceso, desci-
frando las leyes que gobiernan su comportamiento. En este 
sentido, la derivada actúa como un lengua je universal que 
traduce los movimientos de la naturaleza, las regularidades 
del pensamiento y los equilibrios del mundo social en rela-
ciones cuantificables.

Desde una perspectiva pedagógica, este capítulo enfatiza 
que enseñar la derivada requiere más que dominio técnico: 
implica desarrollar en los estudiantes una comprensión con-
ceptual y visual del cambio. Artigue (2009) y Tall (2013) coin-
ciden en que la construcción de este conocimiento demanda 
una articulación entre lo simbólico, lo gráfico y lo fenomeno-
lógico. El uso de herramientas digitales como GeoGebra, junto 
con estrategias de modelización contextual, permite que el 
aprendiza je del cálculo sea significativo, crítico y creativo. 
Comprender la derivada es, en última instancia, comprender 
la relación entre lo estático y lo dinámico, entre lo finito y lo 
infinitesimal. Así, el capítulo concluye afirmando que el cálculo 
diferencial, al analizar la variación, forma una manera de pen-
sar que trasciende la matemática: una mirada interpretativa del 
mundo basada en la razón, la visualización y la comprensión 
del cambio continuo. 
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Capítulo III

Integral: acumulación, área y 
reconstrucción del cambio

 

Introducción

La noción de integral representa uno de los momentos más signi-
ficativos en la historia del pensamiento matemático, pues surge 
como respuesta al deseo de medir lo continuo, de comprender 
cómo los pequeños fragmentos de la realidad pueden unirse 
para formar un todo. Si en el estudio de la derivada aprendimos 
a analizar el cambio en un punto, la integral nos invita a recorrer 
el camino inverso: reconstruir el cambio a partir de sus variacio-
nes elementales. En este sentido, el cálculo integral constituye 
el complemento natural del cálculo diferencial y expresa, con un 
lenguaje preciso, la idea de acumulación.

Desde los métodos intuitivos de Arquímedes hasta la formula-
ción rigurosa del Cálculo por Newton y Leibniz, la integral ha esta-
do ligada al problema de encontrar áreas, volúmenes y longitudes. 
Sin embargo, su significado trasciende la geometría: en física 
describe desplazamientos y energías acumuladas; en biología, el 
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crecimiento poblacional; y en economía, la productividad o el cos-
to total. La integral permite, así, representar procesos donde una 
magnitud varía de forma continua, otorgando a las matemáticas 
un poder de síntesis excepcional entre lo infinitesimal y lo global.

Este capítulo explora la integral como suma infinita, el concep-
to de antiderivada, las propiedades y significado de la integral 
definida, y el Teorema Fundamental del Cálculo, que une elegan-
temente los dos grandes mundos del análisis: derivar y reintegrar. 
Finalmente, se presentan los métodos clásicos de integración y 
sus aplicaciones prácticas en la física, la geometría y la economía, 
con el propósito de que el lector no solo resuelva integrales, sino 
que las interprete como un puente entre la razón matemática y 
la comprensión profunda del cambio en el mundo real.

La integral como suma infinita y aproximación de áreas
Comprender la integral exige reconocer que las matemáticas no 
solo cuantifican la realidad, sino que la reconstruyen mediante un 
lenguaje de precisión. La integral representa ese esfuerzo humano 
por volver a unir lo que el análisis infinitesimal había fragmentado: 
el cambio. En esencia, integrar es sumar lo infinitamente pequeño 
para comprender lo grande, un gesto intelectual que combina 
intuición, razonamiento y abstracción. Stewart (2021) explica que 
el concepto de integral no surge como una operación aislada, sino 
como una consecuencia natural del estudio de las funciones va-
riables y de la necesidad de medir la acumulación de sus efectos 
a lo largo de un intervalo. Si la derivada nos permite observar el 
instante del cambio, la integral nos invita a contemplar la totalidad 
del proceso, devolviendo continuidad y sentido al movimiento.

Desde una mirada histórica, la idea de integrar antecede con 
mucho al formalismo del cálculo. Los babilonios y egipcios ya 
buscaban métodos para calcular áreas y volúmenes aproximados, 
aunque sin noción de límite ni infinitésimo. Más tarde, Arquímedes 
desarrolló su célebre método de exhausción, considerado el 
precursor directo del cálculo integral. Según Boyer y Merzbach 
(2011), Arquímedes demostró que el área de un círculo podía 
determinarse como el límite de áreas de polígonos inscritos, 
anticipando la lógica moderna de aproximaciones sucesivas. Su 
intuición consistía en reducir los errores geométricos mediante 
una partición cada vez más fina, un proceso que siglos después 
sería descrito con el rigor analítico de Riemann.

Durante el Renacimiento, con el auge de la ciencia experimen-
tal, resurgió el interés por medir magnitudes que varían conti-
nuamente. Cavalieri, discípulo de Galileo, propuso su principio de 
los indivisibles, según el cual una figura geométrica se compone 
de infinitas líneas o elementos de igual naturaleza. Aunque su 
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propuesta carecía de formalidad matemática, fue el primer in-
tento moderno de concebir el área como una suma infinita de 
elementos infinitesimales (Kline, 1990). 

El desarrollo del cálculo diferencial e integral en los siglos XVII 
y XVIII, con Newton y Leibniz como protagonistas, supuso un giro 
radical. Leibniz introdujo el símbolo ∫, inspirado en la letra “S” de 
summa, para denotar una suma continua de diferenciales infini-
tesimales f(x)dx. Newton, por su parte, concibió la integración 
como un proceso de reconstrucción del movimiento a partir de 
sus velocidades instantáneas, denominando fluentes a las mag-
nitudes variables. Ambos coincidieron en que derivar e integrar 
eran operaciones inversas, una relación que más tarde quedaría 
consagrada en el Teorema Fundamental del Cálculo. Como des-
taca Apostol (1967), esta conexión entre cambio y acumulación 
constituye el eje central del análisis matemático moderno.

Geométricamente, la integral definida se interpreta como el lími-
te de una suma de Riemann (Figura 1), que aproxima el área bajo 
una curva a través de rectángulos de base cada vez más pequeña.

Figura 1.
Integral definida de  en 

Nota: Elaboración propia.

Sea una función continua  definida en el intervalo [a,b]; si 
se divide dicho intervalo en n subintervalos de ancho  , el área 
aproximada se expresa como , y la integral 
definida se obtiene como el límite cuando :

Esta formulación, propuesta por Bernhard Riemann en el siglo 
XIX, formaliza la noción de acumulación continua. Tal como ob-
serva Thomas et al. (2024), cada rectángulo representa una pe-
queña contribución al total, y la integral surge cuando el número 
de rectángulos se vuelve infinito y su anchura tiende a cero. La 
perfección de esta idea reside en que un número infinito de ele-
mentos infinitesimales puede producir un valor finito, revelando 
la armonía entre lo discreto y lo continuo.
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Apoyo didáctico:  Enseñar la integral como suma infinita impli-
ca superar la tendencia mecanicista que reduce el cálculo a una 
serie de algoritmos. Según Duval (2017), comprender la integral 
requiere transitar entre distintos registros de representación, ya 
que solo así se construye una visión unitaria del concepto. En 
esta línea, Artigue (2009) enfatiza la importancia de los pro-
cesos de visualización: ver cómo los rectángulos bajo la curva 
se multiplican hasta llenar el área promueve una comprensión 
fenomenológica del límite. El aprendizaje, entonces, no se limita 
a manipular símbolos, sino a experimentar la transición desde la 
aproximación hacia la completitud.

La integral, sin embargo, no se agota en su interpretación 
geométrica. Representa también un modelo cognitivo para pen-
sar procesos de acumulación temporal o espacial. En física, ex-
presa desplazamientos y energías; en biología, el crecimiento de 
una población; en economía, la producción total o el costo acu-
mulado. Cada caso responde al mismo principio: la integración 
cuantifica el efecto total de una magnitud que varía. Como afir-
ma Freudenthal (1991), la potencia educativa del cálculo integral 
reside en su capacidad para conectar los fenómenos naturales 
con el pensamiento matemático, permitiendo al estudiante reco-
nocer que las leyes del cambio y la acumulación son universales.

Por último, desde la perspectiva del pensamiento matemá-
tico avanzado, la integral representa una forma de reconciliar 
dos modos de razonamiento: el local, propio de la derivada, y el 
global, característico de la acumulación. Tall (2013) señala que 
esta dualidad requiere desarrollar lo que denomina flexibilidad 
cognitiva, es decir, la habilidad para moverse entre la visión ins-
tantánea y la visión total del fenómeno. Esta competencia cons-
tituye uno de los pilares de la comprensión profunda del cálculo 
y, por extensión, del pensamiento científico contemporáneo.

Integral indefinida y el concepto de antiderivada
El nacimiento del concepto de integral indefinida está profun-
damente ligado a la historia del pensamiento sobre el cambio. 
Desde los primeros intentos por medir magnitudes variables 
hasta la formalización del cálculo, la humanidad ha buscado 
entender cómo una cantidad puede reconstruirse a partir de su 
variación. La idea de antiderivada (Figura 2) surge precisamente 
de esa necesidad: recuperar la función original conociendo su 
ritmo de cambio.
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Figura 2.
Antiderivadas de la función de 

Nota: Elaboración propia.

Orígenes históricos del concepto
Apostol (1967) explica que esta relación inversa fue la clave para 
unificar la teoría del cambio. A partir de entonces, las matemá-
ticas dejaron de ser solo una ciencia del equilibrio estático para 
convertirse en un lenguaje del movimiento y la transformación. 
Newton afirmaba que “el método de las fluxiones sirve tanto para 
encontrar velocidades a partir de distancias, como distancias 
a partir de velocidades”, sintetizando la esencia de la integral 
indefinida.

La historia posterior, con aportes de Cauchy, Riemann y otros, 
consolidó el rigor analítico del cálculo. Sin embargo, el concep-
to intuitivo de recomponer una función a partir de su derivada 
permaneció como una de las ideas más poderosas y formativas 
de toda la matemática.

	 Fundamentación formal y significado de la antiderivada
Desde un punto de vista formal, se dice que una función  

es una antiderivada de  si cumple que . En este 
caso, se define la integral indefinida como el conjunto de todas 
las antiderivadas de , donde C es 
una constante de integración. Esta constante representa el hecho 
de que existen infinitas funciones que, al derivarse, producen 
la misma función . Thomas et al. (2024) señalan que esta 
característica encierra una noción de indeterminación creativa: 
al integrar, no se obtiene una única solución, sino una familia de 
funciones que comparten la misma estructura de cambio.

Geométricamente, la constante C corresponde a un despla-
zamiento vertical. 

Ejemplo 1: Si graficamos las antiderivadas de una función, 
como  para , obtenemos una familia de 
parábolas con igual forma pero distintas alturas. Cada una repre-
senta una versión posible del mismo fenómeno, determinada por 
una condición inicial. En física, esa condición inicial puede ser la 
posición de un cuerpo al tiempo ; en economía, el capital 
inicial; en biología, la población de partida.
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Stewart (2021) explica que este concepto de familia funcional 
permite comprender la integral indefinida como una herramienta 
de reconstrucción. Integrar no es solo calcular una expresión sim-
bólica, sino restituir el comportamiento general de una magnitud 
a partir de su ritmo de variación.

Interpretaciones geométrica y física
La interpretación geométrica de la integral indefinida proviene 
de la relación entre la pendiente y el área. La derivada de una 
función mide la inclinación de su gráfica en cada punto, mien-
tras que la integral indefinida busca la función cuya pendiente 
coincide con la dada. Así, integrar equivale a reconstruir la curva 
original a partir de su campo de pendientes.

Si consideramos , su antiderivada es 
, porque . En la gráfica, 

esto significa que la función seno es la curva cuya pendiente en 
cada punto está determinada por la función coseno. Este ejem-
plo, aparentemente simple, encierra un principio universal: la 
antiderivada reconstituye la forma subyacente de un fenómeno 
a partir de su variación local.

En física, la integral indefinida se convierte en un modelo de 
la acumulación dinámica. Si conocemos la función de velocidad 

, su integral indefinida nos da la posición , salvo por una 
constante que indica la posición inicial. De modo similar, integrar 
una función de aceleración produce una familia de velocidades, 
y una función de densidad genera una magnitud total. 

En contextos más abstractos, la integral indefinida puede in-
terpretarse como un proceso de memoria funcional: cada antide-
rivada guarda el registro acumulado del cambio. Apostol (1967) 
describe esta relación como una “reversión del límite”, donde la 
integración reconstruye lo que la derivación había descompuesto.

Ejemplo 2: Si , su integral indefinida es:
.

Geométricamente (Figura 3), esta expresión indica que todas 
las funciones comparten la misma tasa de va-
riación cúbica. 

Cada parámetro C representa un desplazamiento vertical de 
la gráfica. En el contexto físico, podría interpretarse como el 
volumen acumulado de un sólido cuya densidad varía propor-
cionalmente a .
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Figura 3.
Antiderivadas de la función de 

Nota: Elaboración propia.

Ejemplo 3: Si , entonces: 
. Del mismo modo, si 
. (Figura 4)

Estas relaciones muestran el carácter cíclico del cambio trigo-
nométrico: la derivada y la integral alternan sus papeles en un 
proceso continuo. Tal simetría, como señala Stewart (2021), es 
una expresión matemática de la periodicidad natural del movi-
miento, visible en las ondas, los ciclos biológicos y las oscilaciones 
eléctricas.

Figura 4.
Ejemplo de antiderivadas de la función de 

Nota: Elaboración propia.

Ejemplo 4: Consideremos un tanque que se llena de agua a 
una velocidad variable  litros por minuto (Figura 5). 
Para encontrar el volumen total  en función del tiempo, se 
calcula la integral indefinida: .

Si al inicio  el tanque contiene 10 litros, entonces . 
Por tanto, . Esto significa que el volumen aumenta 
con el cubo del tiempo, reflejando un proceso de llenado acele-
rado. Este tipo de problemas permiten comprender la integral 
como una acumulación concreta de magnitudes.
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Figura 5.
Integral indefinida como acumulación concreta de magnitudes

Nota: Elaboración propia.

Tal como indica Freudenthal (1991), la comprensión profunda 
surge cuando el estudiante logra conectar el símbolo con la ex-
periencia física o visual que representa.

Apoyo didáctico:  Enseñar la integral indefinida no se reduce 
a memorizar fórmulas, sino a construir significado. Duval (2017) 
advierte que los estudiantes suelen comprender la derivada como 
una acción directa (calcular), pero les resulta difícil concebir la 
integración como una reconstrucción inversa. Este obstáculo se 
supera cuando se combinan representaciones múltiples: gráficas, 
numéricas y simbólicas.

Artigue (2009) propone que el aprendizaje del cálculo integral 
debe guiarse por la ingeniería didáctica, que promueve la explora-
ción activa y el razonamiento reflexivo. Por ejemplo, utilizar software 
dinámico como GeoGebra permite que el estudiante observe cómo 
la pendiente de una curva (su derivada) se traduce en la forma de 
la antiderivada. Esa experiencia visual refuerza la comprensión 
conceptual del proceso y otorga sentido al signo de integración.

Godino y Batanero (1998) destacan que el conocimiento matemá-
tico se vuelve duradero cuando el estudiante reconoce las relaciones 
estructurales entre los objetos matemáticos. Así, integrar deja de 
ser una operación mecánica para convertirse en una estrategia de 
pensamiento: identificar patrones, reconstruir comportamientos y 
comprender cómo lo infinitesimal compone lo global.

Desde un enfoque cognitivo, Tall (2013) sostiene que la integral 
indefinida exige una “reconciliación de mundos”: el simbólico (la 
notación algebraica), el visual (la representación geométrica) y el 
conceptual (la idea de acumulación). La comprensión surge cuan-
do estos mundos se integran en una red coherente de significados.

Integral definida: propiedades y significado geométrico
La integral definida es, junto con la derivada, una de las nociones 
más profundas y reveladoras del cálculo. En ella convergen siglos 
de pensamiento sobre el cambio, la medida y la continuidad. 
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Desde los métodos de exhausción de Arquímedes hasta la for-
mulación rigurosa de Riemann, la humanidad ha buscado repre-
sentar matemáticamente la suma infinita de pequeñas variacio-
nes para comprender fenómenos reales. Como sostiene Boyer y 
Merzbach (2011), el desarrollo del concepto de integral fue “una 
de las hazañas intelectuales que transformaron la manera de 
pensar el movimiento y la cantidad”.

Mientras la derivada captura el instante, la integral expresa la 
totalidad: es el puente que une lo local con lo global. Esta idea, 
compartida por autores como Stewart (2021) y Apostol (1967), 
muestra que el cálculo no se reduce a procedimientos, sino que 
encarna una visión unificadora de la naturaleza. En este senti-
do, entender la integral definida implica comprender cómo las 
matemáticas hacen visible el cambio acumulado y cuantifican 
lo continuo.

La integral definida puede entenderse como el resultado de 
sumar infinitas cantidades infinitamente pequeñas. Esa paradoja 
aparente se resuelve a través del límite, que permite transformar 
la aproximación discreta en una medida exacta. Según Stewart 
(2021), el proceso consiste en subdividir el intervalo [a,b] en sec-
ciones diminutas, calcular el valor de la función en cada punto 
y multiplicarlo por el ancho de la partición. Cuando el número 
de particiones tiende a infinito, el resultado converge al valor 
exacto de la integral.

Todos tenemos una idea intuitiva de lo que es el área de una 
región, pero parte del problema del área es hacer que esta idea 
intuitiva se precise dando una definición exacta.

Para definir una recta tangente, primero obtuvimos una aproxi-
mación de la pendiente de la recta tangente para las pendientes 
de rectas secantes y, a continuación, tomamos el límite de estas 
aproximaciones. 

Para obtener una aproximación de la región S, vamos a con-
siderar n - rectángulos en este caso por debajo o por encima 
de la parábola (Figura 6).  Se puede considerar el área de la re-
gión S como el límite de las áreas de los rectángulos cuando se 
incrementa el número de éstos cometiendo un error respecto al 
valor exacto del área de superficie S, este valor del error tiende 
a disminuir cuando aumenta la cantidad de rectángulos, signi-
ficando que puede ser aproximada dicha área, por la suma de 
las áreas de los rectángulos inferiores y/o superiores, tal como se 
muestra a continuación:
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Figura 6.
Integral definida como área bajo la curva   concreta de magnitudes.

Nota: Elaboración propia.

A aproximar la i-ésima franja,  ,  con un rectángulo de ancho 
 y altura , que es el valor de f en el punto extremo de la 

izquierda, el área del i -ésimo rectángulo es . (Figura 7) 
 Lo que concebimos de manera intuitiva como el área de S se 

aproxima con la suma de las áreas de estos n - rectángulos 

Figura 7.
Área bajo la curva por aproximaciones de áreas de rectángulos

Nota: Elaboración propia.

Esta aproximación parece mejorarse a medida que se incre-
menta la cantidad de franjas; es decir, cuando . Por consi-
guiente, definimos el área A de la región S de la manera siguiente:

El área A de la región S que se encuentra bajo la gráfica de 
la función continua f es el límite de la suma de las áreas de los 
rectángulos de aproximación: 

En general, formamos sumas inferiores (y superiores) mediante 
la selección de los puntos muestra  de manera que  es 
el valor mínimo (y máximo) de f sobre el i-ésimo subintervalo. A 
menudo se usa la notación sigma para escribir de manera más 
compacta las sumas de muchos términos.
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Así la expresión del área quedaría como:

A este límite le damos un nombre y una notación especiales.

Integral definida: Si f es una función continua definida para 
, dividimos el intervalo [a, b] en “n” subintervalos de 

igual ancho

.

Sean  los puntos extremos de estos 
subintervalos y sean  los puntos muestras en estos 
subintervalos, de modo que x_i^* se encuentre en el i-ésimo su-
bintervalo . Entonces la integral definida de f, desde a 
hasta b, es

siempre que este límite exista y de el mismo valor para todas 
las posibles elecciones de los puntos muestra. Si existe, decimos 
que f es integrable sobre [a, b].

1.	 En la notación
, 

se llama integrando, y a y b límites de integración, a es el límite 
inferior y b límite superior.

2.	 La dx indica simplemente que la variable independiente 
es x.

3.	 La integral definida

es un número que no depende de x. De hecho, podría utilizarse 
cualquier letra en lugar de x sin cambiar el valor de la integral:

 

Apostol (1967) interpreta este proceso como una síntesis entre 
lo algebraico y lo geométrico: la integral une la idea de suma 
(propia del álgebra) con la noción de área (propia de la geome-
tría). Para él, “la integral representa el esfuerzo humano por medir 
lo inmedible”, un intento de abarcar el infinito mediante el razo-
namiento. Leithold (1998) complementa esta visión subrayando 
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el papel epistemológico de la integral: “Mientras la derivada se 
ocupa de la velocidad del cambio, la integral se interesa por el 
efecto acumulativo de dicho cambio”. Es decir, si derivar es des-
componer, integrar es reconstruir.

Ejemplo 5: Si un automóvil acelera según la función   
(en metros por segundo), durante los primeros 3 segundos el 
desplazamiento total se obtiene integrando:

Figura 8.
Integral definida como suma de pequeños desplazamientos

Nota: Elaboración propia.

Aquí, la integral recoge la suma infinita de pequeños despla-
zamientos instantáneos. Lo que sería imposible calcular punto 
por punto se logra a través del concepto de límite, que convierte 
lo infinitesimal en medible (Figura 8).

Tall (2013) ofrece una interpretación cognitiva de este proce-
so: “El paso de las sumas discretas al límite continuo constituye 
una transición del pensamiento elemental al pensamiento for-
mal”. Enseñar la integral, en consecuencia, no es solo enseñar 
un algoritmo, sino guiar al estudiante hacia una nueva forma de 
concebir las relaciones entre cambio y totalidad. 

Significado geométrico y comparaciones de enfoque
Geométricamente, la integral definida representa el área orienta-
da bajo la gráfica de una función. Si , el área es positiva; si 

, es negativa. Esta convención es clave para mantener la 
coherencia entre el valor geométrico y el significado algebraico. 
Según Thomas et al. (2024), el carácter orientado de la integral 
“garantiza que los resultados conserven información sobre la 
dirección del cambio”, lo cual la diferencia del mero cálculo de 
áreas.

Apostol (1967) y Stewart (2021) coinciden en que la interpre-
tación geométrica es el punto de partida más natural para la 
comprensión del concepto. Sin embargo, sus enfoques difieren 
en énfasis. Apostol propone comenzar desde la construcción 
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axiomática, introduciendo las sumas de Riemann con precisión 
formal. Stewart, en cambio, sugiere partir de la visualización del 
área bajo la curva y posteriormente formalizar el procedimiento, 
un enfoque que ha demostrado ser más accesible didácticamente.

Ejemplo 6: Para ilustrar el sentido geométrico (Figura 9), con-
sideremos  entre 0 y

π
π

Aunque hay dos regiones con área : una positiva y otra nega-
tiva. El resultado neto es cero.

Figura 9.
Integral definida como acumulación orientada

Nota: Elaboración propia.

Este ejemplo evidencia que la integral no mide superficie, sino 
acumulación orientada. Como explica Blitzer (2018), “la integral 
no mide cuánto espacio ocupa algo, sino cuánto se ha acumulado 
en un proceso”.

Ejemplo 7: Imagina que una bomba alterna el flujo de agua, 
enviando líquido hacia adelante y hacia atrás con intensidad 
variable. Al principio, el movimiento es fuerte, pero poco a poco 
va perdiendo energía. Si representamos ese flujo con una función 
matemática, podríamos escribirla como . Aquí, 
el factor  indica que la fuerza de la bomba disminuye con el 
tiempo, mientras que el seno expresa las oscilaciones del flujo: a 
veces el agua avanza (valores positivos) y otras veces retrocede 
(valores negativos) (Figura 10).

  Si observamos, notaremos que las “olas” se hacen más pe-
queñas a medida que pasa el tiempo. Esto refleja un comporta-
miento físico natural: el sistema tiende al equilibrio. Si calculamos 
la integral definida de f(t) entre  y π  obtendremos un 
valor muy cercano a cero. En términos sencillos, aunque hubo 
movimiento constante, la cantidad total de agua transferida hacia 
un lado y hacia el otro se compensa.

Este sentido de equilibrio o compensación es uno de los 
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significados más profundos de la integral definida. Nos permite 
comprender fenómenos donde el cambio no es lineal ni cons-
tante, sino el resultado de muchas pequeñas variaciones que se 
contrarrestan entre sí.

Figura 10.
Integral definida como como expresión de cambio no lineal

Nota: Elaboración propia.

Tal como señalan Stewart (2021) la integral se convierte en 
una herramienta para pensar en términos de acumulación y 
compensación, más que en simples sumas. Detrás de cada valor 
integral hay una historia de fuerzas que actúan, se equilibran y, 
finalmente, dejan su huella neta en el sistema.

Propiedades esenciales: una comparación de perspectivas
a) Linealidad
Las propiedades fundamentales de la integral definida con-

solidan su coherencia interna y su utilidad en la modelación de 
fenómenos reales:

Esta propiedad garantiza que la integral respeta las combina-
ciones lineales. Stewart (2021) la presenta como una consecuen-
cia natural del carácter aditivo del área, mientras que Leithold 
(1998) la interpreta como una expresión de equilibrio entre lo 
algebraico y lo geométrico. Apostol (1967) agrega que la lineali-
dad es la base del análisis funcional moderno, ya que convierte 
la integral en un operador lineal sobre un espacio de funciones.

b) Aditividad respecto al intervalo:



112

Integral: acumulación, área y reconstrucción del cambio

En palabras de Thomas et al. (2024), esta propiedad traduce 
la continuidad física del cambio: acumular por tramos equivale 
a acumular en conjunto. En términos pedagógicos, esta regla 
puede ilustrarse fácilmente mediante gráficas o simulaciones de 
trayectorias acumuladas.

	
c) Cambio de orientación:

Tall (2013) relaciona esta propiedad con la noción cognitiva de 
dirección: el signo de la integral ayuda a representar no solo cuánto 
se acumula, sino hacia dónde. Este enfoque favorece la comprensión 
del concepto de “área orientada”, más allá de la noción de magnitud.

d) Constancia de la función:

Esta propiedad, que recuerda el cálculo de áreas rectangulares, 
actúa como punto de entrada intuitivo. Blitzer (2018) sugiere que 
iniciar con funciones constantes ayuda al estudiante a construir 
una base visual para el razonamiento integral.

Positividad: Si , entonces

Para Stewart (2021), esta propiedad vincula el razonamiento al-
gebraico con la percepción geométrica: la integral no contradice la 
experiencia visual del área, sino que la extiende con sentido lógico.

Estas comparaciones entre autores revelan distintos modos de 
entender la integral: como una construcción axiomática (Apostol), 
como una experiencia visual (Stewart), o como un proceso cog-
nitivo de abstracción (Tall). Integrar estos enfoques en la ense-
ñanza permite abordar el cálculo desde múltiples dimensiones: 
conceptual, simbólica y visual, tal como sugiere Duval (2006) en 
su teoría de los registros de representación semiótica.

Teorema Fundamental del Cálculo
El Teorema Fundamental del Cálculo (TFC) es uno de los descu-
brimientos más significativos de la historia de la matemática, 
y quizás el que mejor simboliza la unión entre el pensamiento 
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geométrico y el pensamiento analítico. A través de él, se revela 
una correspondencia profunda entre dos procesos aparente-
mente opuestos: la derivación, que mide el cambio instantáneo, 
y la integración, que mide la acumulación total de ese cambio. 
En palabras de Stewart (2021), el TFC “no solo conecta las dos 
grandes ideas del cálculo, sino que las funde en un único principio 
de coherencia matemática y natural”.

Apostol (1967) describe este teorema como una síntesis inte-
lectual que “une lo infinitesimal y lo global, el movimiento y la 
forma, la velocidad y la distancia”. Desde entonces, su enseñan-
za y aplicación se han convertido en la base para interpretar 
fenómenos tan diversos como el crecimiento exponencial, la 
oscilación armónica, la desintegración radiactiva o la difusión 
del calor. Comprender el TFC, por tanto, no es solo dominar una 
fórmula, sino acceder a una forma de pensamiento que une el 
cambio con la totalidad, lo local con lo universal.

El Teorema Fundamental del Cálculo se expresa en dos partes 
complementarias que revelan la relación inversa entre la derivada 
y la integral:

Primera parte (TFC I): Si f es continua sobre [a, b], entonces 
la función definida por

 es continua sobre [a,b] y derivable sobre (a,b), y 

Es decir, la derivada de la función acumulada F devuelve la fun-
ción original f. En otras palabras, la integral genera una función cuya 
tasa de cambio instantánea es precisamente la que se integró.

Segunda parte (TFC II): Si F es una antiderivada de f en [a,b], 
entonces

Esta segunda parte transforma la integral definida, concebida 
como un límite de sumas infinitas, en una operación algebraica 
sencilla: la diferencia de los valores de la antiderivada en los ex-
tremos. Según Thomas et al. (2024), esta equivalencia “otorga 
al cálculo un carácter de cierre lógico, donde las operaciones 
infinitas encuentran su expresión en una resta finita”.

El TFC posee una profunda interpretación geométrica: el área 
bajo una curva y la pendiente de otra son manifestaciones del 
mismo fenómeno. Si  representa la altura de una curva, en-
tonces la función
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mide el área acumulada bajo dicha curva desde a hasta x. La 
derivada de esta función, , corresponde a la tasa de cambio 
de esa área acumulada, que resulta ser el valor de .

Ejemplo 8: Si , entonces

y . Geométricamente, significa que la pen-
diente de la parábola

en cada punto coincide con la altura de la recta  (Figura 
11). Tal relación encarna, como dice Leithold (1998), “la simetría 
perfecta entre forma y cambio”.

Figura 11.
Integral como simetría entre forma y cambio

Nota: Elaboración propia.

Esta visión no solo tiene valor teórico: al visualizar el área acu-
mulada bajo  con herramientas como GeoGebra o Desmos, 
los estudiantes pueden observar cómo la pendiente de  res-
ponde exactamente al comportamiento de la función generador

Esta visión no solo tiene valor teórico: al visualizar el área acu-
mulada bajo  con herramientas como GeoGebra o Desmos, 
los estudiantes pueden observar cómo la pendiente de  res-
ponde exactamente al comportamiento de la función generadora. 
Stewart (2021) enfatiza que “visualizar el crecimiento del área es 
comprender el cálculo como un lenguaje del movimiento”.

La fuerza explicativa del TFC se manifiesta especialmente 
cuando se aplica a funciones trascendentes, aquellas que tras-
cienden las operaciones algebraicas básicas y modelan fenóme-
nos reales como el crecimiento, la oscilación o el decaimiento.
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Aplicaciones con funciones trascendentes
La fuerza explicativa del TFC se manifiesta especialmente cuando 
se aplica a funciones trascendentes, aquellas que trascienden las 
operaciones algebraicas básicas y modelan fenómenos reales 
como el crecimiento, la oscilación o el decaimiento.

a) Función exponencial
Ejemplo 9: Sea  La integral definida en [a,b] es:

Aquí,   es su propia derivada y su propia antiderivada. 
(Figura 12)

Figura 12.
Integral definida para describir los procesos de crecimiento 
poblacional

 

Nota: Elaboración propia.

Esto implica que la tasa de crecimiento de la función es pro-
porcional a su valor actual, una propiedad que describe con 
exactitud los procesos de crecimiento poblacional, propagación 
viral o interés compuesto. Apostol (1967) considera este ejemplo 
el paradigma del TFC: la función que se reproduce a sí misma 
en el cambio expresa la esencia del cálculo continuo. Thomas et 
al. (2024) subrayan que “en e^x   la naturaleza revela su propio 
lenguaje de crecimiento”.

b) Función logarítmica

Ejemplo 10:  Sea , con   :

La función logarítmica surge como la antiderivada de , mos-
trando que el área bajo la hipérbola 1/x  entre 1 y e es exactamente 
1 (Figura 13). 
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Figura 13.
Integral definida como expresión de la acumulación proporcional

 Nota: Elaboración propia.

Stewart (2021) lo describe como “una revelación geométrica 
del crecimiento relativo”: mientras el exponencial representa el 
crecimiento absoluto, el logaritmo mide la acumulación propor-
cional. En términos físicos, esta relación aparece en procesos 
donde la tasa de cambio depende inversamente del tamaño, 
como la descarga de un condensador o la difusión térmica.

c) Funciones trigonométricas
Ejemplo 11: Sea

π
π

Aquí, el área bajo la curva seno desde 0 hasta π  es positiva, 
representando la acumulación neta de movimiento hacia arriba. 
Si se integra en un ciclo completo,

π

el resultado es nulo, lo que refleja el equilibrio entre los des-
plazamientos positivos y negativos. Esta simetría, como señala 
Leithold (1998), muestra que el cálculo no solo mide magnitudes, 
sino también direcciones: “la integral no cuenta solo cuánto, sino 
en qué sentido”.

En contextos físicos, el TFC aplicado a funciones trigonométri-
cas permite calcular desplazamientos en movimientos armónicos, 
o la energía promedio en un ciclo de oscilación.

d) Función combinada trascendente
Ejemplo 12: Sea . En este caso, la función com-

bina el decrecimiento exponencial con la oscilación del coseno 
(Figura 14). Si calculamos la integral definida entre 0 y π .
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Figura 14.
Integral definida como expresión de un movimiento amortiguado

 

Nota: Elaboración propia.

Esta expresión representa un fenómeno muy común en física: 
el movimiento de un sistema amortiguado, como el de un resorte 
que vibra cada vez con menor amplitud.

La parte exponencial  reduce progresivamente la intensi-
dad de las oscilaciones, mostrando cómo la energía del sistema 
se disipa con el tiempo. Tal como señalan Thomas et al. (2024), 
este tipo de integrales permiten describir cómo el cambio se 
modula bajo leyes simultáneamente exponenciales y periódicas.

El Teorema Fundamental del Cálculo no es solo una relación 
entre operaciones, sino una visión sobre la continuidad del mun-
do. En él, la matemática se vuelve filosofía: toda acumulación 
nace del cambio, y todo cambio, acumulado, forma una totali-
dad. Apostol (1967) lo llama “el alma del análisis”; Stewart (2021) 
lo considera “la puerta entre los dos mundos del cálculo”; y Tall 
(2013) lo interpreta como “el puente entre la percepción y el 
pensamiento simbólico”.

Apoyo didáctico: desde una perspectiva educativa, el TFC re-
presenta un momento de síntesis conceptual. Según Tall (2013), 
aprender este teorema es “el paso en que el pensamiento ma-
temático abandona lo aritmético y entra en el mundo de los 
procesos infinitos”. Para que el estudiante lo comprenda, debe 
experimentar el vínculo entre el área y la pendiente, entre la 
suma y el cambio.

Métodos de integración: sustitución, partes y fracciones 
parciales
La integración representa el proceso inverso de la derivación. 
Mientras la derivada analiza la variación local e instantánea de 
una función, la integral busca reconstruir el comportamiento 
global acumulado de esa variación. En este sentido, los métodos 
de integración son herramientas conceptuales que permiten 
recuperar la función original o encontrar el área, el volumen o el 
cambio total asociado a una magnitud variable.
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Stewart (2021) explica que integrar “es reunir los infinitos 
fragmentos en los que la derivada descompone una función”. 
Desde un punto de vista epistemológico, la integración traduce 
la continuidad en medida, la fluidez en estructura, y el cambio 
en acumulación. Así, los métodos de integración no son meros 
procedimientos algebraicos, sino formas de pensamiento que 
permiten reconstruir lo continuo a partir de lo infinitesimal.

A lo largo de la historia del cálculo, distintos métodos han 
sido desarrollados para abordar integrales que no pueden re-
solverse directamente. Entre ellos destacan tres por su impor-
tancia y su valor formativo: el método de sustitución o cambio 
de variable, la integración por partes, y la descomposición en 
fracciones parciales. Cada uno responde a una lógica distinta 
del pensamiento analítico: transformar, equilibrar y descomponer, 
respectivamente.

La sustitución: el arte de transformar
El método de sustitución se basa en una idea profundamente 
conceptual: toda función compuesta puede simplificarse si se 
introduce una nueva variable que capture su estructura interna. 
Formalmente, este método “revierte” la regla de la cadena en la 
derivación. Si ,  entonces, al integrar, 
se busca una función que, al derivarse, produzca una composi-
ción semejante.

Si se define , entonces , y se cumple: 

Esta transformación convierte un problema complejo en otro 
más simple, trasladando la dificultad desde la función hacia el 
cambio de variable.

Apostol (1967) sostiene que el cambio de variable no solo es un 
recurso algebraico, sino una forma de “ajustar la mirada” sobre la 
función, para descubrir en ella un patrón de derivada oculta. En 
el aula, esto significa guiar al estudiante a reconocer estructuras 
derivativas dentro de expresiones aparentemente inabordables.

Ejemplo 13: Sea

Se observa que la derivada de  es , lo cual sugiere el 
cambio , .

Así: . El método simplifica el pro-
ceso y refuerza la comprensión de la relación entre composición 
y derivación inversa.
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Ejemplo 14: Pudiéramos calcular: 

Sea ,de modo que . 
Sustituyendo:

.

Aquí la sustitución revela el patrón subyacente y convierte una 
función trascendente en una expresión racional, unificando así 
dos mundos del análisis.

Ejemplo 15: Calcular . Si , entonces 
.

La integral se transforma en:

El resultado expresa un vínculo entre las funciones racionales 
y logarítmicas, reforzando la noción de continuidad entre lo al-
gebraico y lo trascendente.

Desde la didáctica, Tall (2013) sugiere que el método de sus-
titución debe enseñarse como una “metáfora del cambio de 
perspectiva”: lo importante no es solo cambiar la variable, sino 
aprender a ver una estructura de derivación donde antes solo 
había complejidad. En la enseñanza visual, esta idea se puede 
ilustrar con diagramas que muestran la “transformación del eje” 
de x a u, haciendo visible cómo cambia la escala de acumulación.

La integración por partes: el equilibrio del cambio
El método de integración por partes se apoya en la regla del 
producto de la derivada:

. Al integrar ambos lados, se obtiene: 
. Esta identidad revela una idea profunda: 

el cálculo no elimina el cambio, lo redistribuye. Si una parte se 
complica al derivarla, puede compensarse con otra más mane-
jable al integrarse.

Leithold (1998) considera este método una “metáfora del equi-
librio” dentro del cálculo, donde las funciones cooperan simbó-
licamente. En contextos pedagógicos, ayuda a comprender la 
dualidad entre derivación e integración, mostrando que ambas 
no se oponen, sino que se complementan.

Ejemplo 16: Producto algebraico-exponencial . Sea 
, entonces .
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Esta relación es típica en modelos de crecimiento acelerado 
o fenómenos de transferencia de calor.

Ejemplo 17:  Producto algebraico - exponencial .

Sea , entonces .

Esta relación es típica en modelos de crecimiento acelerado 
o fenómenos de transferencia de calor.

Ejemplo 18: Aplicación trigonométrica 

Sea :

Aquí la interacción entre la función lineal y la oscilatoria refle-
ja la relación entre movimiento uniforme y periódico, típica en 
física y mecánica.

Para Tall (2013), enseñar este método implica hacer visible 
el razonamiento reversible del cálculo: derivar y luego integrar, 
integrando mientras se deriva. En ese ir y venir simbólico, el es-
tudiante percibe el cálculo no como una colección de fórmulas, 
sino como un lenguaje coherente del cambio.

Fracciones parciales: la descomposición del cambio
Las fracciones parciales representan un método de análisis es-
tructural: una función racional puede expresarse como suma de 
términos más simples, cada uno con una antiderivada conocida. 
Este método, en apariencia algebraico, expresa un principio fi-
losófico profundo: para comprender lo complejo, hay que des-
componerlo en partes elementales.

Stewart (2021) explica que “integrar una fracción compuesta 
es un acto de lectura estructural: se lee la función no como un 
todo, sino como un sistema de relaciones”. En la enseñanza, esta 
técnica promueve la comprensión analítica y refuerza la conexión 
entre álgebra e integración.

El método de fracciones parciales es una técnica algebraica 
utilizada para integrar funciones racionales, es decir, cocientes 
de polinomios de la forma:
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donde  y  son polinomios y el grado (deg) de  es 
menor que el de . Si el grado de  es mayor o igual al 
de , primero se debe realizar una división polinómica para 
obtener la siguiente igualdad

donde S y R también son funciones polinomiales. 
Este método convierte la fracción compleja en una suma de 

fracciones más simples, llamadas fracciones parciales, que se 
pueden integrar con mayor facilidad.

Pasos método de Fracciones Parciales para Integración de 
Funciones Racionales

1.	 Verificar si se requiere división: Antes de aplicar el méto-
do, asegúrate de que: . Si no es así, 
realiza la división larga o sintética.

2.	 Factorizar el denominador Q(x) tanto como sea posible: 
Descompón  en factores lineales y/o cuadráticos irre-
ducibles. Cualquier polinomio  puede factorizarte 
como como un producto de factores lineales (de la for-
ma ax+b) y factores cuadráticos irreducible (de la forma 

.

3.	 Expresar la función racional propia 

como una suma de fracciones parciales de la forma   
o bien

Tipos de factores
Plantear la descomposición: Según los tipos de factores, se asig-
nan fracciones parciales específicas.

a) El denominador Q(x) es un producto de factores lineales 
distintos:

Si  , donde no hay 
factores repetidos (y ninguno factor es múltiplo constante de 
otro). En este caso existen constantes   tales que:
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b) Q(x) es un producto de factores lineales, algunos de los 
cuales se repiten:

 Si  entonces:

c) Q(x) contiene factores cuadráticos irreductibles, de los que 
ninguno se repite: 

Si tiene el factor  , donde :

entonces 

tendrá además de las expresiones I y II, un término de la forma 

	

d) Q(x) contiene un factor cuadrático irreductible repetido.
Si  tiene el factor  , donde : 

entonces en lugar de una única fracción parcial tipo (III), la suma: 

ocurre en la descomposición en fracciones parciales de cada 
uno de los términos en (IV) puede integrarse utilizando una sus-
titución o primero completando el cuadrado.

4.	Resolver la integral a partir de la descomposición obtenida
Ejemplo 19:

.

Se factoriza: 
.

Multiplicando por : .
Resolviendo se obtiene  y 

Ejemplo 20: 

Paso 1: Verificar si la función es racional propia 
El grado del numerador es 4 y el del denominador es 3. Como 

el numerador tiene mayor grado, se requiere realizar una división 
polinómica.
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Paso 2: Factorizar el denominador Q(x) tanto como sea posible

 al factorizar de obtiene:

Hemos obtenido una descomposición de Q(x) en producto 
de factores lineales de los cuales alguno se repite, de ahí que la 
suma de fracciones parciales se obtiene de la siguiente manera:

Paso 3: Expresar la función racional propia como una suma de 
fracciones parciales

 por tanto a partir de esta 
igualdad

 obtenemos el 
sistema de ecuaciones siguiente:

Resolviendo el sistema de ecuaciones se obtiene 
y  de ahí que

Paso 4: Plantear la descomposición y resolver la integral

                            

El estudio de los métodos de integración revela algo más pro-
fundo que su uso técnico: muestra cómo la matemática organiza 
la complejidad a través de la estructura. En la sustitución, se 
aprende a ver el cambio desde otro marco; en la integración 
por partes, se aprende a equilibrar procesos complementarios; 
y en las fracciones parciales, a entender la totalidad desde sus 
componentes.

Apostol (1967) insiste en que el poder del cálculo reside en su 
capacidad de representar procesos naturales (movimiento, flujo, 
crecimiento, disipación) con símbolos que el pensamiento puede 
manipular sin perder el significado físico. Desde esta perspectiva, 
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los métodos de integración no son solo instrumentos, sino mode-
los cognitivos: maneras de pensar la transformación.

Tall (2013) propone una visión “triádica” del aprendizaje del 
cálculo: el estudiante debe articular tres mundos del pensamiento 
matemático (el sensorial-geométrico, el simbólico y el formal). 
En esa línea, enseñar estos métodos no puede reducirse a la 
práctica mecánica: requiere explorar su sentido geométrico y 
su coherencia simbólica.

Stewart (2021) y Thomas et al. (2024) coinciden en que el 
dominio de las técnicas de integración prepara al estudiante 
para enfrentar problemas reales en física, ingeniería y economía, 
donde las funciones modelan procesos acumulativos. Integrar es 
comprender cómo los pequeños cambios, sumados infinitamente, 
generan magnitudes finitas y observables.

A modo de conclusión, los métodos de integración constituyen 
una de las cumbres del pensamiento analítico. Cada uno de ellos 
ofrece una metáfora del conocimiento: la sustitución representa el 
cambio de perspectiva; la integración por partes, la reciprocidad 
de los procesos; y las fracciones parciales, la comprensión de lo 
complejo mediante lo simple.

A través de estos métodos, el cálculo se revela como una cien-
cia del equilibrio: entre lo infinitesimal y lo total, entre el análisis y 
la síntesis, entre el símbolo y la realidad. Comprenderlos es aden-
trarse en una forma de razonamiento que, como dice Leithold 
(1998), “no busca solo resolver, sino comprender el sentido del 
cambio”.

Aplicaciones de la integral en el análisis y la modelación del 
cambio
Comprender la integral, en sus formas definida e indefinida, im-
plica adentrarse en la estructura profunda del cálculo: la relación 
entre acumulación y cambio. Desde un punto de vista episte-
mológico, la integral emerge como una respuesta al problema 
de sumar una cantidad infinita de pequeñas variaciones para 
reconstruir una magnitud total. Newton y Leibniz, aunque des-
de perspectivas conceptuales distintas, coincidieron en que la 
integración es el proceso inverso de la diferenciación: mientras 
la derivada mide el cambio instantáneo, la integral mide la suma 
acumulativa de esos cambios (Boyer y Merzbach, 2011).

Esta dualidad se formaliza en el Teorema Fundamental del 
Cálculo, el cual establece que si una función f es continua en un 
intervalo [a,b]  y F es su antiderivada, entonces: 
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De esta relación se desprenden las dos dimensiones esenciales 
del cálculo integral:

La integral indefinida, que busca funciones primitivas.
La integral definida, que cuantifica magnitudes acumuladas 

entre límites.
Stewart (2021) señala que esta relación no solo une dos pro-

cesos matemáticos, sino también dos maneras de interpretar 
el mundo: el análisis local del cambio y la síntesis global de la 
acumulación. En la educación matemática, Duval (2006) agrega 
que estas concepciones requieren ser traducidas entre distintos 
registros semióticos: el gráfico (área bajo la curva), el simbólico 
(notación integral) y el verbal (interpretación conceptual).

La integral indefinida se entiende como el conjunto de todas 
las antiderivadas de una función , donde   y C 
es una constante. u papel teórico radica en revertir el proceso 
de la derivación. Este proceso de “reconstrucción” o “síntesis” del 
cambio, según Apostol (1967), es esencial para comprender cómo 
una tasa de variación puede originar una magnitud acumulada.

Desde una perspectiva cognitiva, Artigue (2009) subraya que 
muchos estudiantes interpretan la integración como una opera-
ción mecánica de aplicar fórmulas, sin comprender su relación 
con el cambio. Por ello, es clave promover tareas que conecten 
el significado de “tasa” con “acumulación”.

Ejemplo 21: Supongamos que un automóvil se mueve con una 
velocidad variable , donde v está en metros por 
segundo y t en segundos (Figura 15). Se desea determinar la 
posición  del automóvil en función del tiempo, sabiendo que 
al instante inicial  se encontraba a 5 metros del origen. 

 Para hallar la posición s(t), se integra la velocidad:

Aplicando la condición inicial  se obtiene 
. Por tanto, la función posición queda determinada como: 

.

Figura 15.
Integral como un proceso de reconstrucción del movimiento

 

Nota: Elaboración propia.
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Este resultado no solo es algebraico, sino también interpre-
tativo: la posición se obtiene acumulando los desplazamientos 
infinitesimales generados por la velocidad a lo largo del tiempo. 
Tall (2013) sostiene que este tipo de ejemplo permite al estudian-
te visualizar la integral como un proceso de reconstrucción del 
movimiento más que como una simple manipulación simbólica.

En economía, el costo marginal  representa la variación del cos-
to total por unidad adicional producida. Si el costo marginal está dado 
por , el costo total se obtiene mediante integración:

. (Figura 16)

Figura 16.
Integral como variación del costo

 

Nota: Elaboración propia.

Si el costo fijo inicial es de 100 unidades monetarias, entonces: 
.

 Este modelo ilustra la función económica de la integral inde-
finida: reconstruir magnitudes globales (costos, ingresos, bene-
ficios) a partir de tasas de variación.

La integral definida como herramienta para medir, comparar 
y predecir fenómenos
La integral definida surge de la necesidad de calcular áreas, vo-
lúmenes o acumulaciones finitas. Riemann formuló su definición 
a partir del límite de sumas: 

Esta formulación expresa el principio de acumulación continua: 
sumar infinitas pequeñas contribuciones de la variable depen-
diente  multiplicadas por un cambio infinitesimal dx.

Esta concepción representa una de las mayores síntesis del 
pensamiento científico: medir lo continuo mediante lo infinitesi-
mal. A través de la integral, se hace cuantificable el cambio que 
no puede contarse, solo medirse.
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Ejemplo 22: Un joven decide invertir una cantidad de dinero 
en un fondo que promete un crecimiento continuo a lo largo 
del tiempo. El comportamiento de la rentabilidad se describe 
mediante la función , donde r(t) representa la 
tasa de ganancia instantánea en el año t (Figura 17). El objetivo 
es conocer cuál será el rendimiento total acumulado durante los 
primeros cinco años de inversión.

Figura 17.
Integral como crecimiento de la inversión

 

Nota: Elaboración propia.

Para determinarlo, se calcula la integral: 

, 

El resultado de esta integral muestra cuánto ha crecido la 
inversión, considerando que el incremento no es lineal, sino ex-
ponencial, es decir, cada ganancia genera nuevas ganancias 
sobre sí misma. En términos prácticos, la integral expresa cómo 
el valor se acumula infinitesimalmente con el paso del tiempo.

Este tipo de modelos se utiliza con frecuencia en finanzas, bio-
logía o física, pues muchos procesos naturales siguen patrones 
de crecimiento continuo. Stewart (2021) explica que la integral 
exponencial es una herramienta esencial para describir fenóme-
nos donde el cambio se produce de forma proporcional al valor 
actual. A su vez, Artigue (2009) y Duval (2006) resaltan que 
comprender este tipo de relaciones requiere una interpretación 
múltiple: ver la integral no solo como un procedimiento algebrai-
co, sino como una representación visual del cambio acumulado 
que ocurre a lo largo del tiempo.
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Aplicaciones de la integral definida en la física
La integral definida constituye una herramienta esencial para la 
comprensión de los fenómenos físicos, pues permite cuantificar 
magnitudes que varían de manera continua. En la física, muchas 
relaciones entre variables se expresan como tasas de cambio: la 
velocidad respecto del tiempo, la fuerza respecto de la posición 
o la densidad respecto del volumen. La integral, en consecuencia, 
actúa como el proceso inverso de la derivación, transformando 
una magnitud diferencial en una acumulativa. Según Stewart 
(2021), la integral definida representa la suma de infinitos aportes 
diferenciales que, en conjunto, describen una magnitud global 
del sistema físico.

En cinemática, la integral definida traduce la relación entre velo-
cidad y posición. Si la velocidad de un móvil depende del tiempo, 

, el desplazamiento total entre t1  y t2 se determina mediante:

Figura 18.
Integral como relación entre velocidad y posición

 

Nota: Elaboración propia.

 Ejemplo 23: un objeto que se mueve con  du-
rante 2 segundos recorre:

 (Figura 18).

Este uso de la integral no solo permite determinar desplaza-
mientos, sino que también fundamenta el concepto de velocidad 
media y acelera la comprensión de la relación entre las gráficas 

 y .
La integral definida se emplea igualmente para calcular la 

energía térmica transferida cuando el flujo de calor depende 
del tiempo o de la temperatura. Si la potencia térmica  
varía durante un proceso, el calor total transferido se determina 
mediante:
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La integral también permite determinar la energía total ge-
nerada o consumida por un sistema cuando la potencia varía 
con el tiempo. Si la potencia instantánea  describe la tasa 
de trabajo o energía por unidad de tiempo, la energía total se 
calcula mediante:

Ejemplo 24: Un motor parte con una potencia de 100 W en 
 y aumenta de forma lineal hasta 300 W  en . (Figura 

19) ¿Cuánta energía (trabajo) entrega el motor durante esos 10 s ?

Figura 19.
Integral definida para cálculo de energía (Trabajo)

 

Nota: Elaboración propia.

Como el aumento es lineal, la potencia puede escribirse como 
, donde m es la pendiente (cuánto crece la po-

tencia por segundo). Al hallar la pendiente tenemos:
.

Entonces 
La energía entregada es el área bajo la curva de potencia:

. Calculando se obtiene:

  

El motor entrega 2000 joules en esos diez segundos. Como 
la potencia crece de manera uniforme, el resultado coincide con 
multiplicar el promedio de las potencias inicial y final por el tiem-
po, lo que confirma el cálculo integral.

Desde una perspectiva teórica, la integral definida unifica múl-
tiples conceptos físicos bajo una misma estructura matemática: 
la acumulación de un cambio infinitesimal. Esta interpretación, 
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compartida por autores como Strang (2019) y Stewart (2021), 
permite conectar la física experimental con el razonamiento 
matemático, fortaleciendo la comprensión de cómo las leyes del 
cambio se expresan cuantitativamente. Además, su enseñanza 
facilita que el estudiante perciba la integral como una herra-
mienta que traduce la variación continua del mundo físico en un 
modelo matemático formal (Artigue, 2009).

Aplicaciones de la integral definida en economía
La integral definida desempeña un papel clave en el análisis eco-
nómico porque permite calcular el valor total de una magnitud que 
cambia de manera continua. En términos simples, integra los efectos 
acumulativos de pequeñas variaciones a lo largo de un intervalo, lo 
que la convierte en una herramienta esencial para interpretar fe-
nómenos como la producción, el costo, el ingreso o el bienestar del 
consumidor. Su utilidad radica en que muchas variables económicas 
no permanecen constantes: cambian con el tiempo, con el nivel de 
producción o con el precio, y la integral definida capta precisamen-
te esas variaciones en su totalidad (Chiang & Wainwright, 2005).

El costo total a partir del costo marginal
Cuando una empresa produce bienes, el costo marginal C′(q) 
representa el incremento en el costo total por fabricar una uni-
dad adicional. Si se conoce cómo varía el costo marginal con la 
cantidad producida, el costo total entre dos niveles de producción 
puede calcularse mediante una integral definida:

 

Ejemplo 25: Supongamos que una fábrica de envases tiene un 
costo marginal dado por , donde q representa 
miles de unidades producidas (Figura 20). Si la empresa pasa de 
producir 0 a 5 miles de unidades, el aumento en el costo total es:

Esto significa que el costo total se incrementa en 75 unidades 
monetarias. El área ba jo la curva del costo marginal muestra 
gráficamente la acumulación de los pequeños aumentos de costo 
a lo largo de la producción. Según Varian (2019), este razona-
miento permite entender cómo los costos se distribuyen y cómo 
una empresa puede estimar el punto en que la producción deja 
de ser rentable.
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Figura 20.
Integral definida para cálculo de costo marginal

 

Nota: Elaboración propia.

El ingreso total desde la función de precio
Cuando el precio de venta depende de la cantidad ofrecida, el 
ingreso total no puede calcularse simplemente multiplicando pre-
cio por cantidad, ya que el precio cambia con el nivel de ventas. 
En ese caso, el ingreso total se obtiene integrando la función de 
precio  respecto a la cantidad:

Esta integral representa el área bajo la curva de la función de 
precio, desde  hasta una cantidad . Cada pequeño in-
cremento dq multiplica el precio asociado , acumulando así 
el valor total de los ingresos generados por todas las unidades 
vendidas.

En términos económicos, esta formulación permite capturar 
las variaciones del precio a lo largo del rango de cantidades, 
proporcionando una medida más realista del ingreso total que 
un cálculo lineal o constante.

Ejemplo 26:  Imaginemos una empresa que vende un producto 
con función de demanda , donde p es el precio en 
dólares y q la cantidad vendida (Figura 21). Si la empresa vende 
hasta 10 unidades, el ingreso total es:

Esto significa que el ingreso total acumulado es de 300 dólares.
El área ba jo la curva del precio representa los ingresos de 

todas las unidades vendidas, incluso cuando el precio disminuye 
por cada unidad adicional. Este tipo de cálculo es común en la 
microeconomía para analizar los efectos de los precios variables 
sobre los ingresos de una empresa  (Nicholson & Snyder, 2018).
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Figura 21.
Integral definida para cálculo de ingresos totales

 

Nota. Elaboración propia

El valor acumulado de un flujo continuo
En finanzas y macroeconomía, las integrales definidas se utilizan 
para calcular flujos continuos de ingreso, gasto o inversión. Si una 
empresa recibe un ingreso variable  a lo largo del tiempo, 
el ingreso total entre los tiempos  y   se obtiene mediante:

Ejemplo 27:
Consideremos una empresa que obtiene ingresos según la 

función  (Figura 22), donde t está en años y el 
ingreso disminuye ligeramente con el tiempo debido a la reduc-
ción de la demanda.

Figura 22.
Integral definida para cálculo de ingresos totales

 

Nota: Elaboración propia.

El ingreso total durante los primeros 5 años será:     

Esto significa que, durante ese periodo, la empresa obtiene un 
ingreso acumulado de aproximadamente 3935 unidades mone-
tarias. Como señala Merton (1990), este tipo de integral permite 
analizar cómo varía el valor de una inversión o flujo financiero 
cuando la tasa de cambio no es constante.
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Métodos de cálculo de volúmenes a partir de la integral definida
El estudio del volumen de los sólidos de revolución constituye una de 
las aplicaciones más formativas y estéticamente significativas del 
cálculo integral. En ella confluyen tres dimensiones del pensamiento 
matemático: la comprensión conceptual del límite, la representación 
geométrica del cambio y la formalización simbólica de la integral. 
Diversos autores han coincidido en que este tema marca un punto de 
inflexión en el aprendizaje del cálculo, al permitir que el estudiante vea 
cómo una forma bidimensional se transforma en una figura tridimen-
sional mediante un movimiento continuo (Stewart, 2021; Tall, 1993).

La visión geométrica: Stewart y la intuición del cambio
James Stewart (2021) considera que el estudio de los sólidos de 
revolución es el ejemplo más claro del poder del cálculo para des-
cribir procesos de acumulación. Según él, la idea central no radica 
únicamente en “calcular” un volumen, sino en comprender cómo una 
función genera espacio. Stewart propone imaginar la región bajo una 
curva que gira infinitesimalmente, creando capas que, al sumarse, 
dan forma al sólido.

La noción de sólido de revolución hunde sus raíces en la geometría 
clásica. Cavalieri formuló en el siglo XVII su Principio de los indivisibles, 
según el cual dos cuerpos que poseen igual área en todas sus seccio-
nes paralelas tienen el mismo volumen (Katz, 2009). Este principio 
anticipa el concepto de integración: medir un volumen como la suma 
de infinitas secciones elementales. El cálculo integral transformó este 
principio en un procedimiento analítico riguroso, al reemplazar los 
“indivisibles” por límites de sumas infinitesimales.

Posteriormente, Newton y Leibniz formalizaron la integral como 
el límite de una suma de elementos infinitamente pequeños, per-
mitiendo deducir fórmulas precisas para los volúmenes de sólidos 
generados por revolución. Así, la geometría del siglo XVII dio paso al 
pensamiento analítico moderno, donde las formas se conciben como 
procesos continuos de generación. El principio básico que subyace 
al volumen de revolución consiste en dividir una figura en secciones 
infinitesimales (Figura 23), calcular el volumen de cada una y sumar 
todas esas partes.

Figura 23.
Cálculo de Volumen al rotar una región plana en el Eje x

 

Nota: Elaboración propia.
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Así, la integral π ,representa el límite de la suma

π

donde  expresa el área del disco en la posición . Este 
razonamiento traduce la continuidad geométrica en una acu-
mulación analítica. 

Apostol (1967) señala que esta estructura es la esencia del 
cálculo: convertir el movimiento en una secuencia de estados 
infinitesimales cuya suma expresa una magnitud total. 

Desde una perspectiva geométrica, la rotación de una región 
plana alrededor de un eje genera un volumen que puede interpre-
tarse como el recorrido de un área que se desplaza en el espacio. 
Esta concepción fue desarrollada por Cavalieri en el siglo XVII, 
antes de la formalización del cálculo, mediante su principio de 
los indivisibles, según el cual los cuerpos que tienen igual área 
en todas las secciones paralelas poseen el mismo volumen.

Método de los discos 
El método de los discos se aplica cuando una región limitada por 
una función gira alrededor del eje x. Cada diferencial 
infinitesimal dx produce un disco circular de radio  y espesor 
infinitesimal, de modo que el volumen total es la suma (integral) 
de todas las secciones:

π

Cuando se aplica el cálculo integral, ese principio se convierte en 
una herramienta rigurosa. Cada sección transversal del sólido (un 
círculo o un anillo) constituye una “capa” que, al integrarse, forma el 
volumen total. Como explica Blitzer (2018), el método de los discos 
es una forma moderna del principio de Cavalieri: en lugar de com-
parar secciones, se acumulan infinitos cortes de área infinitesimal.

Desde una perspectiva educativa, el estudio de los sólidos de 
revolución constituye una oportunidad para integrar las repre-
sentaciones múltiples del conocimiento matemático: visual, sim-
bólica y analítica (Duval, 2006). El uso de herramientas digitales 
como GeoGebra, Desmos 3D o Maple, permite a los estudiantes 
observar de manera dinámica cómo una región bidimensional 
se transforma en un sólido tridimensional al rotarse.

Tall (1993) sostiene que este tipo de visualización favorece la 
“encapsulación de procesos”, es decir, el paso del razonamiento 
operativo (girar, acumular, sumar) a la comprensión estructural 
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(el volumen como objeto matemático). Este cambio cognitivo es 
esencial para el desarrollo del pensamiento analítico y la com-
prensión profunda del cálculo.

La visualización del sólido transparente con secciones discretas 
(como la que se muestra en la imagen) permite interpretar la in-
tegral como un proceso físico de construcción del volumen: cada 
disco simboliza un estado instantáneo de la función al girar, y la 
totalidad del cuerpo representa la integración del movimiento.

Este método visualiza el volumen como la acumulación de 
discos compactos. Según Blitzer (2018), esta concepción con-
vierte la abstracción algebraica de la integral en una experiencia 
geométrica tangible: cada disco representa una capa de realidad 
que, al sumarse, configura el cuerpo entero.

Ejemplo 28:

Figura 24.
Cálculo de Volumen al rotar una región plana en el Eje X 

 

Nota: Elaboración propia.

Si la función generadora es  en el intervalo [0,6] , su 
revolución alrededor del eje x produce un cono con radio  
y altura  (Figura 24). 

El volumen se obtiene mediante:

π
π π

π

El resultado coincide con la fórmula clásica del volumen del cono,

π π

lo que confirma la coherencia entre el enfoque geométrico 
y el analítico. Esta correspondencia entre teoría y visualización 
refuerza la comprensión de la integral como herramienta de 
medida del cambio acumulativo.
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Método de los anillos o lavadoras
Cuando el área está comprendida entre dos curvas  y 

, con , el giro alrededor del eje x produce un 
sólido hueco. Cada corte transversal tiene forma de anillo (o lava-
dora), y su volumen se obtiene como la diferencia de dos discos:

π

De acuerdo con Stewart (2021), este método muestra una idea 
esencial del pensamiento matemático: medir no solo lo que está 
presente, sino también lo que está ausente, pues incluso el vacío 
tiene una estructura geométrica.

Ejemplo 29: Si  y , en el intervalo [0,4] , el 
sólido formado presenta un vacío central. El volumen será:

π π

Así, el cálculo revela una simetría conceptual: tanto un cuerpo 
macizo como uno hueco pueden tener el mismo volumen, depen-
diendo de su forma y límites de integración.

Método de los cascarones cilíndricos
El método de los cascarones cilíndricos se utiliza cuando la ro-
tación se realiza alrededor del eje y o cuando se desea trabajar 
con funciones expresadas como . En este caso, cada 
rectángulo genera un cilindro delgado cuya superficie lateral 
tiene longitud π  y altura .

El volumen total se expresa como:

π

Larson y Edwards (2022) destacan que este método resulta 
especialmente intuitivo porque muestra el volumen como una 
envoltura progresiva de capas cilíndricas, lo que facilita la com-
prensión del crecimiento radial.

Ejemplo 30: Sea  en [0,1], rotada alrededor del eje y 
(Figura 25).

Entonces:

π π
π
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Figura 25.
Cálculo de Volumen al rotar una región plana en el Eje Y

 

Nota: Elaboración propia.

Este método permite observar el volumen como un proceso de 
expansión radial, lo que resulta particularmente útil al modelar 
fenómenos en física o ingeniería, como la distribución de masa 
o la generación de flujos.

El estudio de los tres métodos ofrece más que una herramienta de 
cálculo: constituye un modelo de pensamiento visual y analítico. Duval 
(2006) explica que la comprensión matemática profunda depende 
de la capacidad para cambiar de registro de representación, es decir, 
pasar de la expresión simbólica a la visual, de la fórmula al movimiento.

Cuando el estudiante utiliza software como GeoGebra 3D, 
puede observar el proceso de rotación, identificar las secciones 
infinitesimales y comprender cómo el cálculo integral traduce el 
movimiento continuo en una magnitud cuantificable.

Artigue (2009) añade que la enseñanza del cálculo debe vin-
cular la formalización con la exploración geométrica: antes de 
memorizar fórmulas, el estudiante debe experimentar la forma-
ción del volumen, sentir la transformación del plano al espacio. 
Este enfoque experimental potencia la visualización del cambio 
y fortalece el pensamiento geométrico.

Los métodos de discos, anillos y cascarones no son simples 
procedimientos técnicos; representan tres miradas complemen-
tarias sobre la relación entre forma, movimiento y medida. La 
integral actúa como un lenguaje universal que describe cómo 
el espacio se genera a partir del cambio continuo. 

Como afirma Stewart (2021), “el cálculo enseña a pensar en pro-
cesos, no en objetos; en transformaciones, no en estados”. Esta pers-
pectiva hace del cálculo integral una herramienta no solo para medir 
volúmenes, sino para comprender la geometría dinámica del mundo.

 
Conclusiones

El estudio de la integral revela la belleza del cálculo como una cien-
cia del equilibrio entre el cambio y la permanencia. Comprender 
la integral no es solo dominar técnicas de antiderivación o cálculo 



138

Integral: acumulación, área y reconstrucción del cambio

de áreas, sino descubrir cómo los procesos de acumulación des-
criben la continuidad del mundo. A lo largo del capítulo se mostró 
que la integral expresa el retorno a la totalidad: permite recons-
truir, a partir de lo infinitesimal, los comportamientos globales de 
un fenómeno. Esta idea, presente desde Arquímedes hasta los de-
sarrollos modernos, conecta la geometría, la física y la economía, 
mostrando que la suma infinita es una forma de razonamiento 
sobre la vida misma, donde cada pequeña parte contribuye a un 
todo coherente. La integral se convierte así en una herramienta 
para interpretar, modelar y anticipar la dinámica de la naturaleza 
y de los sistemas humanos, reafirmando el sentido formativo y 
universal del cálculo.

Desde una perspectiva didáctica, este capítulo invita a enseñar 
la integral desde la experiencia visual y el razonamiento progre-
sivo. La comprensión emerge cuando el estudiante ve cómo las 
áreas se forman, cómo las magnitudes se acumulan o cómo el 
cambio puede revertirse en estabilidad. Las herramientas tec-
nológicas y los contextos reales potencian esta comprensión, al 
permitir observar que la integral no es una operación mecánica, 
sino un lenguaje del crecimiento y la reconstrucción. En defini-
tiva, aprender a integrar es aprender a mirar el mundo como 
una totalidad en movimiento, donde cada instante, por pequeño 
que parezca, contribuye a la forma final de los procesos que nos 
rodean.
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Capítulo IV

Didáctica del cálculo y modelación 
del cambio

 

Introducción

Enseñar cálculo supone mucho más que transmitir un conjunto de 
técnicas; implica abrir una forma de mirar el mundo en términos 
de variación, continuidad y transformación. Desde esta perspec-
tiva, el cálculo se convierte en una herramienta para compren-
der la realidad y no solo para resolver problemas. Sin embargo, 
el reto pedagógico no reside en la complejidad del contenido, 
sino en la manera en que este se representa, se experimenta y 
se internaliza. La didáctica del cálculo busca, por tanto, que el 
estudiante construya significados antes que procedimientos, que 
vea en una curva o en un límite no una abstracción lejana, sino 
la expresión visible del cambio en los fenómenos que lo rodean.

Comprender el cálculo desde una mirada conceptual y visual 
demanda una enseñanza que combine lo simbólico con lo intui-
tivo. Los símbolos, las gráficas y las palabras se transforman en 
tres lenguajes complementarios del pensamiento variacional, y el 
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aula se convierte en un laboratorio donde el estudiante explora, 
conjetura y modela. En este sentido, la representación múltiple 
del cambio constituye el eje articulador de un aprendizaje signi-
ficativo. Cuando una función cobra vida en la pantalla, cuando el 
estudiante manipula parámetros y observa cómo se transforma 
la gráfica, el cálculo deja de ser una técnica abstracta para con-
vertirse en una experiencia cognitiva y estética.

Desde la didáctica contemporánea, enseñar derivadas e in-
tegrales requiere articular la intuición, el lenguaje simbólico y 
el pensamiento computacional. GeoGebra, Desmos y Python se 
han consolidado como entornos que amplifican la capacidad de 
exploración y visualización del estudiante, permitiéndole descu-
brir regularidades y formular hipótesis sobre la variación. Estos 
entornos no reemplazan la comprensión teórica, sino que la po-
tencian: facilitan el tránsito del cálculo manual al razonamiento 
estructural, del resultado al proceso. A su vez, la modelación 
matemática se erige como una estrategia central para dotar de 
sentido a los conceptos, al conectar el aula con fenómenos reales 
de la física, la economía o la biología.

Finalmente, este capítulo propone un enfoque didáctico que 
integra la comprensión conceptual con la tecnología y la reflexión 
pedagógica. La enseñanza del cálculo debe conducir al desarrollo 
del pensamiento variacional, entendido como la capacidad de 
reconocer y analizar patrones de cambio, y del razonamiento fun-
cional, que permite comprender cómo las variables se relacionan 
y evolucionan en el tiempo. Formar en cálculo, desde esta visión, 
significa formar mentes que piensen dinámicamente, que sepan 
traducir lo cambiante en estructuras comprensibles y que asuman 
la matemática como una forma profunda de interpretar el mundo.

Enseñar cálculo desde la comprensión conceptual y visual
Enseñar cálculo como teoría del cambio y la acumulación exige 
algo más que destrezas de cómputo. Implica ayudar a que el 
estudiantado construya significados estables y transferibles que 
articulen definiciones, propiedades, representaciones y usos en 
contextos variados. En esta clave, lo conceptual y lo visual no son 
dos caminos paralelos. Son un mismo trayecto que se recorre 
con diferentes recursos cognitivos y semióticos: palabras, sím-
bolos, gráficos, manipulaciones y simulaciones. La investigación 
en Didáctica de la Matemática coincide en que la coordinación 
entre registros de representación y la reificación progresiva de 
procesos en objetos son condiciones para comprender profun-
damente nociones como límite, derivada e integral (Duval, 2006; 
Sfard, 1991; Tall, 2013).
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Fundamentos teóricos: registros, imágenes de concepto y trán-
sito proceso–objeto
En cálculo, comprender es poder coordinar definiciones, propieda-
des y usos a lo largo de varios registros de representación y, ade-
más, convertir acciones en objetos. De acuerdo con Duval (2006), 
el aprendizaje profundo exige conversión entre registros: verbal, 
gráfico y simbólico. En la práctica, el estudiantado no solo “traduce”, 
sino que verifica que lo visto en la gráfica coincide con lo que la 
expresión declara y con lo que el enunciado describe. Cuando esta 
verificación no se busca, suelen consolidarse errores de lectura, por 
ejemplo, confundir valor de la función con valor límite.

Tall y Vinner (1981)

distinguen entre imagen de concepto y definición de concepto. 
En el límite, la imagen de concepto típica asocia “acercarse” con 
“sustituir”, lo que oculta la diferencia entre y . Por eso convie-
ne diseñar secuencias que hagan visible el desacople: funciones 
con “agujeros”, saltos o redefiniciones puntuales que mantengan 
el límite, pero cambien el valor de la función. El contraste explíci-
to entre imagen y definición es una estrategia de reducción de 
malentendidos persistentes (Cornu, 1991).

 El tránsito cognitivo de procesos a objetos es clave.

Sfard (1991) lo denomina reificación y Gray y Tall (1994) hablan 
de procepto para subrayar que expresiones como  o  son a 
la vez un procedimiento y un objeto con propiedades. Cuando la 
enseñanza se queda en el plano procedimental, la derivada se 
reduce a reglas y la integral a antiderivación mecánica. 
Finalmente, el marco de los tres mundos del pensamiento de Tall 
(2013) ayuda a orquestar la progresión: lo corporal (intuiciones 
de cambio y cercanía en experiencias y simulaciones), lo simbóli-
co-proceptual (operaciones con expresiones que se tratan como 
objetos) y lo axiomático-formal (definiciones y teoremas). La 
planificación equilibra estos mundos: primero se “ve” y se “dice”, 
luego se “simboliza” y se “justifica”, y más tarde se “depura” con 
formalización apropiada al nivel.
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Ejemplo 1: Se muestra  y se pide (Figura 1):

a) Estimar con una gráfica .

b) Redefinir  y explicar por qué el límite no cambia
c) Escribir una explicación breve que use el lenguaje de “cer-

canías” y contraste con la definición formal. La consigna obliga 
a coordinar registros y a diferenciar imagen y definición.

Figura 1.
Cálculo de límite de  en el punto 

Nota: Elaboración propia.

El límite y la derivada desde la visualización local: razón que 
se estabiliza y linealización
La derivada se consolida cuando confluyen tres hilos: razón de 
cambio, pendiente y linealización local. Zandieh (2000) propone 
un marco de capas: razón incremental

paso al límite y coordinación multirregistro. Estas capas se pue-
den visualizar con secuencias que acerquen rectas secantes a la 
tangente, que muestren tasas promedio sobre intervalos decre-
cientes y que pidan conjeturas antes del cálculo exacto.

 Ejemplo 2: Dada  definida por (Figura 2):

a) Estimar con tabla y gráfica la tasa promedio en  
para  y .

b) Observar la estabilización numérica al disminuir .

c) Calcular  y justificar que  ex-
presa una pendiente nula y una linealización plana:

d) Superponer s y  y narrar, en lenguaje común, dónde crece 
y decrece la función y por qué.
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Figura 2.
Comprensión de localidad del análisis

Nota: Elaboración propia.

El punto teórico no es “ver para creer”, sino ver para conjeturar 
y luego justificar. La visualización apoya la comprensión de la 
localidad del análisis: el comportamiento global puede engañar, 
pero al “hacer zoom” la tangente impone una lectura lineal. Este 
paso conecta con la noción de diferenciabilidad y prepara la 
formalización con ε y δ como control del error entre función y su 
aproximación lineal en un entorno (Tall, 2013).

Riesgos y mitigaciones.
•	 Riesgo: Sobreconfiar en lo que “parece” en una pantalla. 

Mitigación: pedir una verificación simbólica mínima y una 
explicación escrita que use el vocabulario de razón que se 
estabiliza.

•	 Riesgo: Tratar la linealización como fórmula. Mitigación: 
exigir siempre el relato local: qué cambia, qué permane-
ce invariante y por qué la recta tangente “gobierna” en el 
entorno.

La integral definida como acumulación: áreas firmadas, funcio-
nes acumuladas y Teorema Fundamental
La integral definida debe instalarse primero como acumulación y 
área firmada, no como “antiderivación al revés”. Se parte de una 
tasa  significativa, se aproximan acumulaciones con sumas 
de Riemann y se construye la función acumulada

El paso decisivo es leer  como una relación estruc-
tural y no como un truco de cálculo. Así, el Teorema Fundamental 
del Cálculo une dos narrativas: leer pendientes (derivada) y leer 
áreas (integral).

Ejemplo 3: El caudal instantáneo con que entra agua a un 
tanque está dado por  (litros/minuto) durante 

π   minutos.
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a) Estimar π

con rectángulos izquierdos, derechos y de punto medio, va-
riando el número de subintervalos.

b) Graficar

y observar su crecimiento, sus concavidades y sus puntos 
donde  se anula.

c) Calcular  y comparar con las estimaciones.
d) Discutir el signo como orientación: si  , el “área” 

resta acumulación.
Desde la teoría de los registros (Duval, 2006), esta secuencia 

fuerza conversiones controladas y evita dos errores comunes: 
pensar que toda “área” es positiva y creer que integrar es “aplicar 
fórmulas”. Desde el enfoque proceso-objeto, la integral se con-
vierte en objeto manipulable: se acota, se compara, se compone 
con funciones y se usa para modelar decisiones.

Riesgos y mitigaciones.
•	 Riesgo: Perder el sentido de límite al pasar de sumas a in-

tegral. Mitigación: mantener visible el parámetro “número 
de subintervalos” y discutir convergencia y error.

•	 Riesgo: Reducir el TFC a recetas. Mitigación: pedir siempre una 
lectura semántica: qué significa  en el fenómeno.

Diseño didáctico y evaluación: ver, decir, simbolizar y justificar
Las decisiones metodológicas deben sostener la coherencia entre 
mundos (Tall, 2013) y la coordinación de registros (Duval, 2006). 
Proponemos un ciclo estable:

1.	 Ver: Apertura con experiencia o simulación que exponga 
el rasgo conceptual: acercamientos al punto para límite, 
secantes que se aproximan a la tangente, rectángulos que 
aproximan acumulación.

2.	 Decir: Formulación de conjeturas en lenguaje natural. Se exi-
ge vocabulario de proximidad, tasa, acumulación, orientación.

3.	Simbolizar: Traducción a expresiones y procedimientos, con 
control metacognitivo sobre la elección de técnicas.

4.	Justificar: Argumentación proporcional al nivel: desde equi-
valencias numéricas y desigualdades elementales hasta 
argumentos ε δ en casos prototípicos.

El valor pedagógico de GeoGebra, Desmos u otras herramien-
tas no está en la animación por sí misma, sino en cómo ha-
cen visible la idea que queremos discutir y en cómo obligan a 
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argumentar lo observado. La tecnología debe estar al servicio de 
tres acciones cognitivas: variar, comparar y justificar. Esta triada 
conecta con el rol representacional de la tecnología descrito por 
Kaput, que subraya su potencia para vincular la matemática con 
experiencias auténticas y manipulables (Kaput, 1994). Además, 
las herramientas dinámicas facilitan la coordinación de registros 
que demanda la comprensión, tal como lo plantea la teoría se-
miótica de Duval (2006), y permiten moverse entre los mundos 
corporal, simbólico y formal de Tall (2013) con mayor fluidez.

Cómo orquestar una exploración tecnológica paso a paso
1.	 	Foco conceptual explícito: Antes de abrir la aplicación, enun-

cia el propósito con una frase corta: “Hoy vamos a mirar 
cómo una razón promedio se estabiliza cuando el intervalo 
se hace pequeño”.Este enunciado ancla la observación a un 
objeto conceptual y evita la navegación sin rumbo.

2.	 Variación controlada: Introduce uno o dos deslizadores per-
tinentes. Ejemplos:

•	 En límites: Punto a y ancho del intervalo h.
•	 En derivada: Posición x y separación  de la secante.
•	 En integral: Número de subintervalos n y punto de muestreo.
La variación controlada permite ver qué cambia y qué permanece 

invariante, idea central en la construcción de significado (Tall, 2013).
3.	Comparaciones visibles: Superpone representaciones que 

dialoguen: la curva f, su secante y la tangente; o la tasa r(t) 
y la función acumulada . Pide al estudiantado capturas 
de pantalla anotadas con flechas y breves etiquetas. Las 
anotaciones fuerzan la verbalización de lo que se ve, tal 
como recomienda Arcavi sobre el papel de lo visual para 
pensar matemáticamente (Arcavi, 2003).

4.		Preguntas guía que conducen a la justificación:
•	 	“¿Qué observas cuando  se hace menor que 0?1, 0.01, 0.001?”
•	 	“Si la secante ya casi coincide con la tangente, ¿qué afir-

mación simbólica respalda esta observación?”
•	 	“En la gráfica de , ¿en qué puntos deja de crecer y cómo 

se ve eso en ?”
Estas preguntas enseñan a “leer” el gráfico con un propósito 

y conectarlo con el registro simbólico y verbal (Duval, 2006).
5.	 Verificación cruzada obligatoria: Cada producto tecnoló-

gico se acompaña de dos piezas breves:
a) Cálculo esencial que verifica una conjetura.
b) Párrafo interpretativo de 6 a 8 líneas.
La verificación cruzada reduce el riesgo de sobre interpretar 

lo que “parece” y promueve el control metacognitivo sobre el 
procedimiento elegido (Hiebert & Carpenter, 1992).
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6.	Cierre que sube de nivel: Conecta lo observado con la idea 
formal correspondiente: por ejemplo, desde la estabilización 
de razones a la definición de derivada como límite, o desde 
sumas de Riemann al enunciado del Teorema Fundamental 
del Cálculo. Este puente consolida el tránsito del mundo 
corporal al simbólico y prepara la depuración formal (Tall, 
2013).

Buenas prácticas concretas
•	 	Un deslizador por idea clave. Demasiados controles 

confunden.
•	 	Capturas con comentarios. Sin comentario, la imagen no 

evidencia comprensión.
•	 	Tiempo acotado para explorar y más tiempo para explicar. 

Explorar 10 minutos, explicar y justificar 20.
•	 	Alternar conductor. Un momento lo guía la docencia, otro 

lo conduce un equipo que explica sus hallazgos a la clase.

Riesgos comunes y cómo mitigarlos
•	 	Efecto espectáculo. Mucho movimiento y poca matemática. 

Solución: comenzar cada exploración con una pregunta 
matemática que luego deba contestarse por escrito.

•	 	Dependencia del gráfico. Si la resolución engaña, la conclu-
sión puede ser falsa. Solución: cotejar con valores numéricos 
y una desigualdad o identidad clave.

•	 	Procedimentalismo digital. Pulsar botones sin sentido. 
Solución: exigir que cada clic tenga un porqué expuesto 
en la ficha de trabajo.

Rúbricas y evaluación formativa: evaluar conexiones, no solo 
resultados
La evaluación debe valorar la calidad de las conexiones entre 
registros, la claridad del relato conceptual y el control del error, 
por encima de la extensión del cálculo rutinario. Este enfoque 
está en correspondencia con la necesidad de traducir y coordinar 
registros que plantea Duval (Duval, 2006).

1.	 Conexión multirregistro 
La conexión multirregistro se refiere a la capacidad que tienen 
los estudiantes para relacionar distintos modos de representar 
una idea matemática, como gráficos, símbolos y lenguaje verbal. 
Cuando esta habilidad está muy desarrollada, el estudiante pue-
de pasar de un registro a otro con soltura, explicar qué aspectos 
cambian y cuáles permanecen constantes ante una variación y, 
además, detectar incoherencias si las hubiera. (Tabla 1) 
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En un nivel sólido, el estudiante ya consigue coordinar al menos dos 
registros y reconocer algún elemento invariante, aunque su análisis es 
menos profundo. En cambio, cuando la habilidad está en desarrollo, 
suele usar solo uno o dos registros sin integrarlos entre sí y su explica-
ción se queda en lo descriptivo, sin llegar a establecer relaciones que le 
permitan interpretar de manera más completa la situación matemática.

Tabla 1.
Conexión multirregistro

Nivel Descripción mejorada Indicadores observables

Excelente Integra con consistencia 
gráfico, simbólico y ver-
bal. Explica qué cambia y 
qué permanece invariante 
al variar un parámetro y 
verifica en ambos sentidos.

Identifica invariantes; dis-
tingue valor vs límite, razón 
promedio vs derivada, área 
firmada vs área geométrica; 
detecta contradicciones en-
tre registros.

Sólido Coordina al menos dos re-
gistros con coherencia y 
nombra al menos un inva-
riante relevante.

Traduce de gráfica a símbo-
lo o de símbolo a relato sin 
errores sustantivos; usa vo-
cabulario preciso.

En 
desarrollo

Usa uno o dos registros sin 
traducir entre ellos; expli-
cación descriptiva pero no 
relacional.

Lectura literal de la gráfica; 
confunde pendiente con al-
tura; no contrasta.

Inicial Presenta un único registro 
y comete confusiones de 
base.

Igualación de límite y valor; 
trata toda área como positi-
va; ausencia de verificación.

Nota: Elaboración propia.

2.	 Relato conceptual 
El relato conceptual (Tabla 2) describe la manera en que un 
estudiante logra expresar con sus propias palabras la idea ma-
temática central de un tema, mostrando que entiende no solo su 
definición, sino también su contexto, sus alcances y sus límites. 
En un nivel excelente, el estudiante explica el concepto con clari-
dad, utiliza terminología precisa y es capaz de ofrecer ejemplos 
y contraejemplos que demuestran un dominio profundo. 

Cuando el nivel es sólido, la explicación sigue siendo correcta 
y clara, aunque con menor riqueza conceptual. En cambio, cuan-
do la habilidad está en desarrollo, el estudiante suele limitarse a 
repetir definiciones ligeramente reformuladas, sin vincularlas a 
la situación que analiza. Finalmente, en el nivel inicial, el discur-
so se reduce a fórmulas o frases memorizadas sin comprensión 
real, lo que se evidencia en la falta de contexto, la ausencia de 
interpretación y un lenguaje casi telegráfico.
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Tabla 2.
Relato conceptual

Nivel Descripción mejorada Indicadores observables

Excelente Define con sus palabras 
el foco conceptual, lo si-
túa en contexto y mues-
tra alcances y límites con 
ejemplo y contraejemplo 
correctos.

Uso de términos como entor-
no, cercanía, estabilización, 
linealización, acumulación, 
orientación del área; preci-
sión semántica.

Sólido Explica con claridad el 
foco y lo ilustra con un 
ejemplo correcto.

Terminología casi sin ambi-
güedades; coherencia entre 
enunciado y ejemplo.

En 
desarrollo

Parafrasea definiciones 
sin aplicarlas a la situa-
ción dada.

Mezcla de términos o ausen-
cia de contexto; definiciones 
genéricas.

Inicial Repite fórmulas sin senti-
do conceptual.

No explicita condiciones ni 
interpretaciones; lengua je 
telegráfico. 

Nota: Elaboración propia.

3.	Uso pertinente de tecnología 
El uso pertinente de la tecnología (Tabla 3) se refiere a la capa-
cidad del estudiante para elegir y manejar herramientas digita-
les de manera que aporten sentido al razonamiento matemáti-
co. En un nivel excelente, el estudiante selecciona la aplicación 
adecuada para el objetivo conceptual, a justa con intención los 
deslizadores o capas que necesita y acompaña cada interacción 
con cálculos o anotaciones que permiten entender qué observa 
y por qué es relevante.

Cuando el nivel es sólido, la herramienta se utiliza de forma 
coherente con el propósito y al menos se incluye una explicación 
básica que conecta la visualización con la idea matemática. En 
los niveles en desarrollo, las capturas o acciones suelen centrar-
se más en el aspecto visual que en el concepto, mostrando una 
relación débil con el cálculo o con el análisis que se pretende 
realizar. Finalmente, en el nivel inicial se observa un uso desor-
denado y sin propósito matemático, con clics aleatorios, escalas 
mal ajustadas y resultados que no pueden vincularse con ninguna 
conclusión clara.
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Tabla 3.
Uso de tecnología

Nivel Descripción mejorada Indicadores observables

Excelente Selecciona la herramien-
ta por propósito concep-
tual; configura variación 
controlada y superposi-
ciones útiles; vincula cada 
interacción con cálculo 
verificable y mantiene 
replicabilidad.

Deslizadores con rangos aco-
tados; capas  y función 
acumulada; anotaciones que 
explican lo que se ve y lo que 
significa.

Sólido Uso consistente con el 
objetivo y al menos una 
anotación explicativa.

Escalas adecuadas; pequeñas 
inconsistencias que no afec-
tan la conclusión.

En 
desarrollo

Capturas sin anotación 
o foco estético; conexión 
débil con el cálculo.

Interacciones irrelevantes o 
excesivas; cambios de escala 
no justificados.

Inicial Clics aleatorios sin propó-
sito matemático; errores 
de escala no reconocidos.

No hay trazabilidad del grá-
fico a la conclusión; confusio-
nes persistentes. 

Nota: Elaboración propia.

4.	Control del error y de supuestos 
El control del error y de los supuestos (Tabla 4) muestra hasta 
qué punto un estudiante es capaz de reconocer las limitaciones 
de sus procedimientos y justificar la fiabilidad de sus resultados. 
En el nivel excelente, el estudiante no solo identifica el error de 
aproximación, sino que lo estima o lo acota, compara distintas 
aproximaciones para valorar su convergencia y explica por qué 
el método utilizado es adecuado, dejando claros los supuestos 
que lo sustentan.

 En un nivel sólido, el análisis es más básico, pero aun así reco-
noce dónde se produce el error y compara al menos dos apro-
ximaciones, aunque no llegue a cuantificar una cota precisa. 
Cuando la habilidad está en desarrollo, el estudiante sabe que 
existe un error, pero no lo analiza ni lo contrasta, lo que se re-
fleja en decisiones instrumentales tomadas sin un criterio claro. 
Finalmente, en el nivel inicial se asume que todo es exacto o 
simplemente se omite la discusión sobre errores y supuestos, lo 
que conduce a presentar resultados sin análisis crítico.
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Tabla 4.
Control del error y supuestos

Nivel Descripción mejorada Indicadores observables

Excelente Estima o acota el error de 
aproximación, compara 
tasas de convergencia, 
justifica el método y expli-
cita supuestos del modelo.

Tabla n vs aproximación y 
error; identifica sobre o sub-
estimación; criterios para 
elegir regla de Riemann o 
método.

Sólido Reconoce el error y 
compara al menos dos 
aproximaciones.

Señala cuál sobrestima o 
subestima y por qué, aun sin 
cuantificar cota.

En 
desarrollo

Admite que hay error 
pero no lo cuantifica ni lo 
compara.

Elecciones instrumentales sin 
criterio; ausencia de análisis 
de calidad.

Inicial Asume exactitud o ignora 
el tema.

No revisa supuestos; presenta 
resultados sin discusión. 

Nota: Elaboración propia.

Representaciones simbólicas, gráficas y verbales del cambio
La comprensión del cálculo como lenguaje del cambio exige ar-
ticular tres registros epistemológicamente complementarios: el 
simbólico, el gráfico y el verbal. En primer lugar, la literatura ha 
mostrado que la comprensión profunda no depende de un regis-
tro dominante, sino de la conversión sistemática entre registros y 
de la verificación de coherencia interna entre lo que se ve, lo que 
se escribe y lo que se explica. Esta tesis se sustenta en la teoría 
de los registros semióticos de Duval, que identifica la conversión 
y el tratamiento como operaciones cognitivas indispensables 
para la constitución del significado matemático (Duval, 2006), 
y se refuerza con los aportes de Arcavi sobre el papel de las re-
presentaciones visuales en la construcción de ideas matemáticas 
potentes (Arcavi, 2003). 

En segundo lugar, desde un plano cognitivo, la imagen de 
concepto del estudiantado debe formar con la definición de 
concepto mediante secuencias que hagan explícito el tránsito 
desde intuiciones locales hacia enunciados formales, evitando 
confusiones estructurales como igualar límite y valor o leer pen-
dientes como alturas (Tall & Vinner, 1981; Sierpińska, 1994). En 
tercer lugar, el cambio se aprende como proceso y se estabiliza 
como objeto: el paso de operar con razones y sumas a operar 
con derivadas e integrales como entidades manipulables es el 
núcleo de la reificación conceptual que describen Sfard y Gray 
y Tall (Sfard, 1991; Gray & Tall, 1994).
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Límite y continuidad: traducir cercanía en símbolos, gráficos y 
palabras
Conviene recordar que un enunciado de límite afirma control 
de la cercanía y, por tanto, control del error: para todo margen 
deseado de aproximación en los valores de f(x) alrededor de 
L, existe un entorno de a que garantiza esa proximidad. Esta 
semántica de precisión debe ser observable en la gráfica, re-
presentable en símbolos y enunciable con un léxico de cercanía, 
entorno y estabilización. En coherencia con Duval (2006), la ac-
tividad de aprendizaje debe orquestar conversiones explícitas: 
de narrativas verbales a notación y de notación a lectura visual 
con zoom local. Asimismo, con base en Tall y Vinner (1981), se ha 
de contrastar la imagen de concepto de límite como “acercarse” 
con la definición en términos de control del error, para evitar 
equivalencias espurias.

Ejemplo 4: Caso trigonométrico fundamental. 
(Figura 3)

Figura 3.
Comprensión de estabilización de la razón incremental

Nota: Elaboración propia.

En el registro gráfico, los acercamientos laterales exhiben que, 
al reducir el ángulo, arco y cateto opuesto se equiparan a primer 
orden; la curva  se confunde con la recta  cerca del 
origen.

En el registro simbólico, la fórmula condensa la idea de estabi-
lización de la razón incremental. En el registro verbal, se expre-
sa que la razón entre longitud curvilínea y proyección recta se 
aproxima a 1 para ángulos pequeños. Por consiguiente, se justifica 
la linealización  en vecindades de 0 y se prepara la 
lectura local de la derivada de  (Arcavi, 2003).

Ejemplo 5: Caso exponencial en el origen 
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Figura 4.
Linealización de la función exponencial en la cercanía de cero

Nota: Elaboración propia.

En el registro gráfico (Figura 4), la tangente  apro-
xima con gran fidelidad  cerca de 0. En el registro simbólico, 
la resolución de la forma  afirma que el crecimiento relativo 
unitario gobierna el comportamiento local.

 En el registro verbal, se declara que por cada incremento in-
finitesimal de x el valor de  cambia en magnitud comparable, 
lo que sugiere  en el origen.

Ejemplo 6: Caso logarítmico elemental

En la gráfica (Figura 5),el  roza a  en el origen; 
en símbolos, se establece la equivalencia de primer orden; en 
palabras, se afirma que un pequeño incremento porcentual se 
traduce en un incremento casi equivalente en el logaritmo. En 
términos didácticos, este caso vehicula la noción de cambio re-
lativo y prepara el uso de .

Figura 5.
Linealización de la función logaritmo en la cercanía de cero

Nota: Elaboración propia.

Ejemplo 7: Caso de comparación de tasas
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En la gráfica (Figura 6), la curva desciende y se aplana hacia el 
eje; en símbolos, se desambigua el producto  mostrando 
que la velocidad de aproximación de x a 0 domina la velocidad 
de decrecimiento de ; en palabras, se enfatiza la lectura 
comparativa de magnitudes en competencia.

Figura 6.
Cálculo de límite en la comparación de tasas

Nota: Elaboración propia.

Ejemplo 8: Caso de oscilación sin estabilización  
no existe.

En la gráfica (Figura 7), el zoom sucesivo revela oscilaciones 
sin asentamiento; en símbolos, se niega la existencia del límite; 
en palabras, se explicita que no es posible controlar el error al-
rededor de ningún candidato. 

De este modo, se distribuye imagen de concepto y defini-
ción, remarcando que “acercarse” no basta sin estabilización 
(Sierpińska, 1994;Tall & Vinner, 1981).

Figura 7.
Cálculo de límite de oscilación si estabilización

Nota: Elaboración propia.

En síntesis, estos ejemplos consolidan la semántica del límite 
como estabilización y habilitan el paso a la derivada, en cohe-
rencia con la progresión corporal–simbólico–formal de los tres 
mundos de Tall (2013).
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Derivada y linealización locales: razón que se estabiliza en ex-
ponenciales, logarítmicas, trigonométricas e hiperbólicas.
En segundo lugar, se establece que la derivada en a resulta del 
límite de razones promedio y, simultáneamente, constituye el ob-
jeto que permite linealizar el comportamiento local de la función:

 

De acuerdo con Sfard (1991) y Gray y Tall (1994), el símbolo 
 es proceptual: designa a la vez un proceso y un objeto. 

Por consiguiente, el aula debe articular una secuencia que haga 
visibles los tres registros y su coherencia: ver secantes que se 
transforman en tangente, escribir el límite que captura la estabi-
lización y decir con precisión el sentido local de la recta tangente 
y su error.

En símbolos, . En gráficas (Figura 8), la pendiente 
coincide con la altura en cada punto. En palabras, se enuncia que 
la tasa de cambio es proporcional al valor. 

De esta forma, en a se escribe la linealización 

Figura 8.
Cálculo de derivadas donde la pendiente coincide con la altura en 
cada punto

Nota: Elaboración propia.

En términos de lectura local, donde  es grande, la función 
cambia rápidamente, y donde es pequeña, cambia lentamente, 
lo que da unidad semántica al par altura–pendiente.

Ejemplo 9: Exponencial general y factor regulador ln (a)
En símbolos, . En gráficas (Figura 9), las fami-

lias  exhiben pendientes más pronunciadas cuanto mayor es 
, y pendientes negativas si .
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Figura 9.
Comportamiento de pendientes en funciones exponenciales

Nota: Elaboración propia.

En palabras, se sostiene que ln(a) regula la rapidez del cambio 
por unidad de x, integrando la comparación de tasas y el efecto 
de un parámetro.

Ejemplo 10: Logaritmo natural y desaceleración
En símbolos, . En gráficas, la curva presenta pen-

dientes muy altas cerca de 0 que se suavizan al crecer x (Figura 10).

Figura 10.
Comportamiento de la desaceleración del logaritmo

Nota: Elaboración propia.

En palabras, se explicita que la ganancia marginal decrece, lo 
que permite traducir la pendiente en razonamientos sobre elas-
ticidad y sensibilidad. En  , la linealización  
hace tangible el nexo entre derivada y aproximación local.

 Ejemplo 11: Trigonométricas y desfasaje ritmo–posición
En símbolos, . En grá-

ficas, la sinusoide exhibe ritmo máximo en los cruces con el eje 
y ritmo nulo en cimas y valles (Figura 11).
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Figura 11.
Comportamiento de desfasaje ritmo – posición en funciones 
trigonométricas

Nota: Elaboración propia.

En palabras, se interpreta el desfase de un cuarto de ciclo 
entre posición y velocidad, habilitando una lectura cualitativa 
de crecimiento, decrecimiento y extremos mediante el signo de 
la derivada. 

Ejemplo 12: Hiperbólicas y curvatura global
En símbolos, .
En gráficas,  es convexa con mínimo en 0, mientras se 

 es impar y casi lineal en vecindades del origen (Figura 12).
 

Figura 12.
Comportamiento de funciones hiperbólicas

Nota: Elaboración propia.

En palabras, se establece que la catenaria  se curva 
hacia arriba en todo punto, lo cual refuerza la lectura del signo 
de la segunda derivada como diagnóstico de concavidad.

Ejemplo 13: No diferenciabilidad en trascendentes con cúspides
Comportamiento de no diferenciabilidad en funciones con 

cúspides
En símbolos,  no es diferenciable en π

(figura 13). En gráficas, aparecen cúspides; en palabras, se ex-
plica que los cocientes incrementales laterales no convergen a 
un valor común (Figura 13). Desde un plano didáctico, se evita 
aplicar reglas de derivación sin analizar comportamiento local. 



158

Didáctica del cálculo y modelación del cambio

Figura 13.
Gráfico de la Función Seno en Valor Absoluto y su Función Derivada

Nota: Elaboración propia.

Ejemplo 14: Composición trascendente y lectura en cadenas
Para  en símbolos . En grá-

ficas, es útil superponer F con  y  para leer zonas 
de máximo crecimiento cuando  y  es grande.
(Figura 14)

Figura 14.
Comportamiento de composición de funciones trascendente

Nota: Elaboración propia.

En palabras, se declara que la tasa combina el efecto del valor 
de F con la orientación del factor , lo que integra lectura 
local y composición.

A modo de conclusión, la derivada se instala como razón que 
se estabiliza y como operador de linealización. Ello requiere ex-
plicitar, para cada ejemplo, un número de verificación, una figura 
con tangente y un enunciado verbal con términos controlados, 
con el fin de sincronizar acción simbólica, evidencia visual y ar-
gumentación metacognitiva (Zandieh, 2000; Gray & Tall, 1994).

Integral definida y acumulación orientada: del rectángulo a la 
estructura tasa–acumulación
La integral definida modela acumulación con orientación como 
límite de sumas de Riemann. Si se define , en-
tonces , hecho que instituye el vínculo entre cambio 
instantáneo y saldo acumulado. Desde la perspectiva de Duval 
(2006), esta relación debe ser leída y traducida en los tres regis-
tros: el gráfico que muestra rectángulos y firma el signo del área, 
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el simbólico que estabiliza la suma en el límite y el verbal que 
nombra de forma precisa qué se acumula, con qué orientación 
y bajo qué supuestos. Con base en Tall (2013), se asume que el 
significado no depende de disponer de antiderivadas cerradas, 
sino de comprender la estructura tasa–acumulación.
Acumulación exponencial
En símbolos,

En gráficas, A replica la forma de e^tpero arranca en 0. En pala-
bras, se afirma que la acumulación crece a la misma tasa que la 
función de entrada, lo cual hace visible el Teorema Fundamental 
del Cálculo como puente entre lectura de pendientes y lectura 
de áreas.
Logaritmo como área bajo 1/x
En símbolos,

para . En gráficas, el área firmada bajo 1/x crece lentamente 
(Figura 15).

Figura 15.
Comportamiento de la semántica multiplicativa de la acumulación

Nota: Elaboración propia.

En palabras, se declara que el logaritmo mide acumulación 
relativa: duplicar b añade la misma cantidad de área, con inde-
pendencia de la escala. Este caso instala una semántica multi-
plicativa de la acumulación.
Sinusoide y saldo neto nulo
En símbolos,

π
,

En gráficas, las áreas positiva y negativa se compensan. En pa-
labras, se precisa que el saldo es cero por orientación opuesta, 
aclarando que el resultado no implica nulidad de la “superficie 
geométrica”. Desde un plano didáctico, se corta de raíz la con-
fusión área neta igual a superficie.
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Función lineal con cambio de signo
En símbolos,

,

En gráficas, aparecen dos triángulos de igual área con orienta-
ción opuesta.

Figura 16.
Comportamiento de la semántica multiplicativa de la acumulación

Nota: Elaboración propia.

En palabras, se declara que el saldo neto se anula por compen-
sación. Este caso fortalece el argumento de que la orientación es 
una propiedad semántica esencial de la integral definida.

Resumidamente, la coordinación de registros permite que el 
cálculo se viva como un lenguaje del cambio y no solo como un 
repertorio de técnicas. Por un lado, en límite se instala la semán-
tica de cercanía y la necesidad de estabilización como criterio 
para decidir existencia. 

Por otro lado, en derivada se organiza la lectura de la razón 
que se estabiliza y la linealización como gobierno local, incor-
porando ejemplos trascendentes que explicitan la relación entre 
valor y ritmo de cambio. Finalmente, en integral se afirma la acu-
mulación orientada y su dependencia de la tasa, incluso cuando 
no hay antiderivadas elementales. 

Por consiguiente, la enseñanza debe hacer explícito el ciclo 
ver–decir–simbolizar–justificar en cada actividad, con rúbricas 
que valoren la calidad de las conexiones y el control del error por 
encima del cálculo rutinario. En coherencia con Duval y Arcavi, 
y transitando por los mundos de Tall, se logra una comprensión 
robusta, flexible y transferible del cambio que fundamenta el 
cálculo universitario.

Modelación de fenómenos mediante funciones y simulaciones 
digitales con GeoGebra, Desmos y Python
La idea de límite nació para responder una pregunta elemental: 
¿cómo describir con precisión lo que cambia? La modelación con 
funciones permite fijar esa intuición en una estructura matemática 
que se puede analizar, calcular y, hoy, simular con tecnología. Al 
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formular un fenómeno como  elegimos qué variable expli-
ca y cuál responde, explicitamos supuestos y decidimos el rango 
en el que el modelo tiene sentido. Esta traducción no es neutra: 
delimita lo relevante y deja fuera lo accesorio. Como señalan Blum 
y Borromeo Ferri, modelar implica transitar por un ciclo que va 
del problema real a su formulación, resolución, interpretación y 
validación, con posibles refinamientos cuando la realidad resiste 
la primera versión del modelo (Blum & Borromeo Ferri, 2009).

Desde el punto de vista cognitivo, el proceso exige coordinar 
registros de representación. Duval (2006) mostró que compren-
der matemáticas requiere pasar y vincular registros : gráfico, 
simbólico y verbal; sin confundirlos. En cálculo, esta coordinación 
se vuelve decisiva: la gráfica de una función sugiere regularida-
des; el lenguaje verbal nombra supuestos, condiciones iniciales 
y unidades; la notación algebraica permite operar con límites, 
derivadas e integrales. Las simulaciones digitales favorecen es-
tos pasajes, porque hacen visible lo invisible: iteran, acercan y 
acumulan a velocidades que la mano no logra, pero conservan 
el control conceptual en el usuario (Tall, 2013).

Estructuras funcionales para fenómenos de cambio
En un primer nivel, la modelación funcional identifica patrones 
simples.

1.	 Crecimiento lineal: Cuando el cambio por unidad es constan-
te, modelamos con . Es el caso de un tanque 
que se llena a caudal constante. Aquí el cálculo interpreta m 
como derivada constante y la integral como acumulación 
proporcional al tiempo.

2.	 Cambio exponencial: Si la tasa de variación es proporcional 
al valor presente, obtenemos .Modela radioac-
tividad, interés compuesto o crecimiento con reproducción 
continua. La derivada  ancla la lectura: la fun-
ción “se reproduce a sí misma” y la constante k fija la rapidez 
(Stewart, 2021). El hilo conductor es el mismo: derivadas 
como tasas locales que explican cómo cambia el sistema y, 
por dualidad, integrales como acumulaciones de esas tasas 

Simulaciones como laboratorio de límites
La simulación digital añade un plano experimental a la modela-
ción. No sustituye a la demostración; la complementa con eviden-
cia generada por procedimientos controlados (Winsberg, 2010). 
Tres prácticas son especialmente fértiles en el capítulo de límites.

1.	 	Sumas de Riemann interactivas: Un deslizador que aumenta 
el número de subintervalos nnn permite observar cómo las 
sumas inferiores, superior y por puntos medios se acercan 
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a un mismo valor. El límite  deja de ser una promesa 
lejana y se vuelve un proceso tangible. GeoGebra o Desmos 
facilitan mostrar la diferencia  y cómo de-
crece al refinar la partición .

2.	 Diferencias finitas y derivada: Para una función f se simula 
la razón

    con f decreciente. El comportamiento numérico revela dos 
lecciones: la convergencia hacia  y la presencia de error de 
redondeo cuando h es demasiado pequeño. Esta tensión concreta 
el concepto de límite y muestra por qué la notación diferencial 
es una idealización precisa, no un cálculo a ojo (Stewart, 2021; 
Tall, 2013).

3.	Monte Carlo para área: Generar puntos aleatorios en un 
rectángulo que contiene la región bajo  y estimar 
la fracción que cae por debajo de la curva aproxima el área. 
La ley de los grandes números se vuelve palpable y se in-
terpreta la integral como promedio ponderado de valores, 
otra puerta conceptual a la acumulación.

Estas experiencias articulan la tríada de Duval: se manipulan 
objetos gráficos, se gobierna el proceso con lenguaje verbal y 
se formaliza con expresiones simbólicas. El resultado no es un 
“truco de software” sino un puente entre intuición y formalismo.

De la validación a la lectura crítica
Todo modelo es una narrativa cuantitativa con alcance. Validar es 
comparar lo que el modelo predice con lo que el sistema exhibe, 
cuantificar discrepancias y comprender sus causas. El a juste de 
parámetros por mínimos cuadrados, las medidas de error relativo 
o la inspección de residuos ayudan a decidir si un modelo lineal 
basta o si se necesita curvatura (Giordano et al., 2013). 

En contextos educativos, conviene cultivar preguntas guía: 
¿qué supuestos permiten la linealidad?, ¿hay umbrales o capa-
cidades de carga que sugieran logística?, ¿qué variable oculta 
podría estar modulando la tasa?

Las simulaciones favorecen la validación incremental: se imple-
menta el modelo base, se confronta con datos, se registra dónde 
falla y se refina. Este ciclo desarrolla pensamiento variacional y 
criterio para distinguir correlaciones aparentes de mecanismos 
plausibles (Wilensky & Resnick, 1999).

Itinerarios didácticos con herramientas digitales
En la enseñanza inicial del cálculo, conviene diseñar secuencias 
breves y cerradas que unan fenómeno, función y límite.
Secuencia A. Renta y acumulación: Se plantea un ingreso semanal 
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constante y un gasto proporcional al saldo. Se construye el mo-
delo discreto , se simula y se compara con 
el continuo . Se discute estabilidad y tiempo de 
convergencia. GeoGebra visualiza la trayectoria; Python permite 
estimar parámetros con datos sintéticos 

Secuencia B. Enfriamiento de Newton: Se registra la tempera-
tura de un líquido al ambiente y se a justa . 
La recta en la gráfica  versus t revela k. Se introducen 
derivada e integral con sentido físico y se conversa sobre fuentes 
de error de medición.

Secuencia C. Tráfico y flujo: Con una función de densidad ρ  
y una ley de flujo ρ , se simula un tramo de carretera en versión 
discreta: la cantidad que entra y sale por celdas contiguas. Aunque 
sea un “pretexto” de una variable, la idea de conservación prepara 
el concepto de integral definida como balance neto.

En todas, el cierre conecta con el texto formal: se interpreta la 
derivada como tasa instantánea que modela cómo cambia el siste-
ma y la integral como acumulación con orientación que conserva el 
saldo (Stewart, 2021). La evaluación privilegia explicaciones y de-
cisiones de modelación más que resultados numéricos perfectos.

Criterios para una modelación responsable
1.	 	Pertinencia: Que la forma funcional responda a un meca-

nismo verosímil, no solo a un buen a juste.
2.	 Escala y unidades: Declarar rangos, dominios y niveles de medida.
3.	 	Sensibilidad: Analizar cómo varían las conclusiones ante 

cambios razonables de parámetros.
4.		Comprensibilidad: Preferir modelos interpretables para 

construir significados, en vez de cajas negras que devuel-
ven números sin relato (Tall, 2013; Winsberg, 2010).

La modelación con funciones, acompañada de simulaciones di-
gitales, devuelve al cálculo su vocación original: pensar el cambio 
con precisión, sin perder la intuición. El límite deja de ser un artificio 
técnico y se convierte en el corazón que late en cada aproximación, 
en cada refinamiento y en cada decisión de diseño de un modelo.

	
Diseño de tareas y evaluación para los fundamentos del cálculo

Este epígrafe organiza una tipología de ejercicios de “Fundamentos 
del cálculo y noción de límite” y propone formas de evaluación 
coherentes con una enseñanza centrada en la comprensión con-
ceptual, el uso coordinado de representaciones y la resolución 
de problemas auténticos. El diseño se apoya en la alineación 
constructiva entre objetivos, actividades y evidencias de logro, 
y en la evaluación formativa como motor de aprendizaje (Biggs, 
1996; Black & Wiliam, 1998).
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Principios de diseño
1.	 Alineación constructiva: Los ejercicios deben evidenciar exac-

tamente lo que se declara en los resultados de aprendizaje.
2.	 	Coordinación de registros: Cada tarea debe invitar a tradu-

cir entre lo gráfico, lo simbólico y lo verbal (Duval, 2006).
3.	 Razonamiento más que receta: Se promueve el paso de res-

puestas imitativas a explicaciones con justificación propia.
4.		Retroalimentación que regula el aprender: Criterios claros, 

oportunidades de reintento y metacognición .
5.	 Diversidad y autenticidad: Problemas contextualizados y 

variadas formas de evidenciar comprensión, no solo prue-
bas tradicionales.

Tipología de ejercicios
1.	 Reconocimiento y traducción de representaciones
Objetivo: Identificar propiedades locales del cambio y del 

acercamiento al límite.
Tareas tipo:
•	 Dado un gráfico con una discontinuidad removible, explicar 

si existe
 y si f es continua.

•	 A partir de una tabla de valores, conjeturar el límite e indicar 
un margen de error. Evidencia esperada: enunciados verbales 
precisos, uso correcto de notación, control de error. Criterios: co-
herencia entre registro gráfico, tabular y simbólico; justificación.

2.	 Estimación numérica y control de error
Objetivo: Aproximar límites y cuantificar precisión.
Tareas tipo:
•	 Aproximar  con tabla de pasos decrecientes y acotar 

el error.
•	 Diseñar un algoritmo breve en Python o en la calculadora 

gráfica que pare cuando el cambio relativo sea menor que 
. Criterios: elección adecuada de pasos, estimación de 

error y reporte reproducible.

3.	 Procedimientos simbólicos fundamentales
Objetivo: Aplicar reglas y técnicas con sentido.
Tareas tipo:
•	 	Resolver límites con factorización, racionalización o equi-

valentes notables.
•	 	Detectar indeterminaciones y justificar el método elegido.

Criterios: corrección algebraica, selección del procedimien-
to y explicación breve del porqué.
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4.	Comprensión teórica y demostración
Objetivo:rticular definiciones y argumentos.
Tareas tipo:
•	 	Redactar una demostración ε δ proponien-

do un δ ε  y verificando la cadena de implicaciones.
•	 	Probar que continuidad en [a,b] implica integrabilidad de 

Riemann. Criterios: uso de cuantificadores, claridad lógica, 
cierre de implicaciones y control de hipótesis (Tall, 2013).

5.	 Modelación y simulación del cambio
Objetivo: Construir funciones que representen fenómenos y 

analizar su comportamiento local.
Tareas tipo:
•	 Amortiguación de señales: ajustar  a datos y discutir

•	 	Tránsito vehicular: estimar una tasa de arribo con colas y 
justificar el uso de promedios locales. Criterios: explicitar 
supuestos, validar con datos, interpretar parámetros, ana-
lizar sensibilidad.

6.	Razonamiento variacional y conexiones tasa–acumulación
Objetivo: Vincular límites, continuidad y la idea de área orientada.
Tareas tipo:
•	 	Dado v(t) como gráfica, estimar   por Riemann 

y explicar la relación con el desplazamiento. Criterios: co-
herencia física, elección de particiones, discusión del signo 
y de la orientación.

7.	 Diagnóstico de concepciones y errores frecuentes
Objetivo: Hacer explícitas ideas previas.
Tareas tipo:
•	 	Ítems de opción múltiple con distractores focalizados: con-

fundir valor de la función con el límite, creer que “existe de-
rivada implica continuidad al revés”, etc. Criterios: justificar 
la elección, identificar el supuesto erróneo y corregirlo.

Formas de evaluación y sus instrumentos
A. Diagnóstica
•	 Qué: concepciones iniciales sobre límite, continuidad y 

aproximación.
•	 Cómo: breve cuestionario con ítems gráficos y dos pregun-

tas abiertas.
•	 Instrumentos: lista de cotejo sobre lenguaje y registros.
•	 Uso: a justar secuencias y grupos de trabajo.
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B. Formativa
•	 Qué: progreso en traducción de registros y calidad de 

explicaciones.
•	 Cómo: tareas semanales de baja ponderación, cuestionarios de 

dos etapas (individual + equipo), miniproyectos de simulación.
•	 	Instrumentos: rúbricas analíticas con criterios visibles antes 

de la tarea. Retroalimentación orientada a metas y oportu-
nidad de reentrega.

Rúbrica breve ejemplo: “Límite desde representaciones”
•	 	Interpretación gráfica correcta y consistente.
•	 	Uso preciso de notación y lenguaje.
•	 	Justificación del valor límite con control de error.
•	 	Coherencia entre registros.
•	 Cada criterio con cuatro niveles: incipiente, básico, logrado, 

sobresaliente.

C. Sumativa
•	 	Qué: síntesis de capacidades en contextos conocidos y nuevos.
•	 	Cómo: Prueba escrita con secciones balanceadas: represen-

tación, técnica, explicación teórica, modelación. Producto au-
téntico informe corto de modelación con datos reales o simu-
lados, código o hoja de cálculo, y defensa oral de 5 minutos.

•	 	Instrumentos: rúbrica para el informe (supuestos, a juste, 
validación, interpretación) y para la defensa (claridad, res-
puestas, vínculo con teoría).

•	 	Ponderación sugerida: 50 % prueba, 30 % informe, 20 % 
defensa. Ajustar a la malla y normativa.

D. Evaluación entre pares y autorregulación
•	 Qué: juicio crítico sobre soluciones y criterios de calidad
•	 Cómo: calificación calibrada de soluciones anónimas con 

guías ejemplares.
•	 	Instrumentos: rúbrica simplificada y reflexión escrita breve.
•	 Sentido: desarrolla agencia y metacognición, claves para 

un aprendizaje sostenible (Boud & Soler, 2016).

Conclusiones

Cerramos el capítulo con una idea simple y potente: enseñar 
cálculo es acompañar a los estudiantes en la construcción de 
significados sobre el cambio. Esto exige trabajar de forma coor-
dinada los tres registros, simbólico, gráfico y verbal, y convertir 
a la tecnología en un soporte para explorar, conjeturar y com-
probar. GeoGebra, Desmos y Python ayudan a mirar de cerca 
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lo que varía, a comparar aproximaciones y a documentar el 
razonamiento. Lo esencial no es producir resultados aislados, 
sino aprender a contar lo que se está haciendo, por qué se elige 
un método y qué tan confiable es la respuesta. Cuando las ta-
reas invitan a traducir entre registros y a justificar decisiones, el 
pensamiento variacional y el razonamiento funcional se vuelven 
visibles y enseñables.

Desde esta perspectiva, la didáctica se organiza alrededor de 
la estructura tasa, acumulación y sentido. La derivada se entien-
de como razón de cambio que permite linealizar lo local, la inte-
gral definida como saldo acumulado que emerge de sumas de 
Riemann, y el Teorema Fundamental del Cálculo como el puente 
que articula ambas ideas. La evaluación, en consecuencia, debe 
premiar explicaciones claras, estimaciones de error, interpretacio-
nes de parámetros y conexiones con contextos reales. Con secuen-
cias que combinan problemas guiados, modelación con datos y 
espacios de retroalimentación oportuna, el aula se convierte en un 
laboratorio para pensar con rigor y comunicar con precisión, de 
modo que los estudiantes puedan transferir lo aprendido a nuevas 
situaciones y sostener su aprendizaje en el tiempo.
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