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Prologo

Escribir este libro fue un ejercicio de volver a mirar el cdlculo
con los ojos de quien lo descubre por primera vez. A lo largo
de los afios he visto cdémo muchos estudiantes se enfrentan a
sus conceptos con una mezcla de desconcierto y resignacion,
como si se tratara de un territorio reservado para unos pocos.
Sin embargo, cada idea fundamental del cdlculo a saber del
limite, la variacién, la continuidad, la derivada, nacid de pre-
guntas humanas muy profundas, de la necesidad casi intuitiva
de entender coOmo cambian las cosas. Esa historia, que suele
olvidarse en las aulas, devuelve al calculo una dimensidon cer-
cana y sorprendentemente accesible.

Durante la elaboraciéon de estas pdginas, me propuse recu-
perar esa esencia. No se trata solo de presentar definiciones
precisas o procedimientos bien estructurados, sino de ofrecer
una forma distinta de entrar en el tema: mas pausada, mds
visual, mas consciente de la importancia de la intuicién. El
cdlculo no se aprende a golpes de formulas, sino cuando el
estudiante logra ver en una grdfica, en un movimiento o en
una idea sencilla, aquello que luego la matematica formal logra
expresar con elegancia. Ese puente entre la vivencia y el rigor,
entre la curiosidad y la estructura, es el corazdn de este libro.

Mi deseo es que estas pdginas acompafien tanto a quienes
ensefian como a quienes aprenden. Que el docente encuentre
aqui recursos para renovar su manera de explicar y que el
estudiante descubra que el calculo no es un obstdculo, sino un
lenguaje para comprender el mundo con mdas profundidad. Si
este libro logra, aunque sea en una pequefia medida, desper-
tar ese interés genuino por pensar el cambio y la variacion,
entonces habrd cumplido su proposito.



Introduccion

Cdlculo de una variable: un enfoque conceptual, visual y
didactico del cambio es una obra que invita a redescubrir el
cdlculo desde su esencia mas profunda: la bUusqueda humana
por comprender el movimiento, la transformacién y la con-
tinuidad. Su autor plantea que el cdlculo no debe ser visto
Unicamente como una colecciéon de reglas o algoritmos, sino
como una forma de pensamiento que permite leer el mundo
en clave de cambio. A lo largo de sus capitulos, el libro recorre
los fundamentos historicos y conceptuales de esta disciplina,
desde las intuiciones de Arquimedes hasta la formalizacion
de Newton y Leibniz, revelando cé6mo la humanidad logro
traducir lo infinitamente pequefio en un lenguaje capaz de
describir lo continuo. Esta mirada no pretende simplificar el
rigor matematico, sino devolverle su sentido formativo, inte-
grando el razonamiento l6gico con la intuicion, la visualizacion
y la experiencia.

El autor propone un enfoque diddactico que une teoria y
practica, donde el aula se convierte en un espacio de explo-
racion intelectual. El cdlculo se ensefia aqui como una expe-
riencia cognitiva y estética, en la que los simbolos, las graficas
y las palabras se convierten en lenguajes complementarios
del pensamiento. A través de herramientas como GeoGebra,
Desmos y Python, el estudiante puede observar el cambio en
accién, manipular funciones, analizar variaciones y descubrir
patrones que antes permanecian ocultos. De esta manera, el
aprendizaje deja de ser una actividad pasiva para transfor-
marse en un proceso activo de construccidon de significado.
Cada capitulo ha sido disefiado para guiar al lector de forma
gradual: desde la comprension del limite como idea de apro-
ximacién, hasta la derivada como medida del cambio y la
integral como reconstruccion del todo, cerrando con una re-
flexion sobre coOmo ensefiar el calculo de manera significativa.

Escrito desde la experiencia docente y con una profunda
sensibilidad pedagdgica, este libro busca tender un puente
entre el conocimiento matemdatico y la vida cotidiana. La obra
invita a los profesores a ensefar desde la comprensién y a
los estudiantes a pensar el cdlculo como una forma de mirar
el mundo con ojos nuevos. En sus pdginas, la precision del



pensamiento se une con la emocion de descubrir, y la mate-
mdatica se presenta no como una barrera, sino como un camino
hacia la comprensién del cambio que sostiene la realidad.
En definitiva, este texto propone una educacion matematica
mas humana, reflexiva y creativa, en la que el cdlculo no solo
se aprende, sino que se vive como una experiencia de pensa-
miento, de belleza y de sentido.
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CarituLo I

Fundamentos del calculo y nocion
de limite

Introduccidon

El cdlculo constituye una de las creaciones intelectuales mdas
profundas de la humanidad. Su desarrollo no solo transformé
la matemdatica, sino también la manera en que comprendemos
los fendmenos naturales, el movimiento, el crecimiento y el
cambio. Desde la perspectiva didactica, ensefiar cdlculo implica
mucho mds que transmitir técnicas de derivacion o integracién:
significa guiar al estudiante hacia una comprensiéon dindmica
del mundo, donde las magnitudes se transforman de forma
continua y el pensamiento se orienta hacia la modelizacion de
lo real (Tall, 2009).

Historicamente, el cdlculo emergié como respuesta a pro-
blemas concretos: medir dreas curvas, describir trayectorias,
predecir velocidades. Sin embargo, su consolidacion tedrica
requirié siglos de evolucion conceptual, desde las ideas intuiti-
vas de Arquimedes hasta la rigurosa formalizacién de Cauchy
y Weierstrass. En este proceso, la nocién de limite se erigid

ISBN 978-9942-596-13-0 | 2025
https://editorial.risei.org



Fundamentos del calculo y nocién de limite

como el corazén del cdalculo: la frontera entre lo finito y lo infi-
nito, entre la experiencia empirica y la abstraccién matematica
(Boyer & Merzbach, 2011; Edwards, 1979).

Enla ensefianza contempordneaq, el estudio del limite y la con-
tinuidad exige un enfoque que combine la intuicion visual, la
interpretacion grdafica y la formalizacion simbélica. Comprender
el limite no se reduce a memorizar definiciones, sino a construir
esquemas mentales que relacionen la variacién, la aproximacién
y la estabilidad. Por ello, este capitulo busca ofrecer una mirada
integral de los fundamentos del cdlculo, situando al estudiante
ante las ideas que dieron origen a la ciencia del cambio.

El nacimiento del cdlculo: de Arquimedes a Newton y Leibniz
El origen del cdlculo puede rastrearse en los intentos de los an-
tiguos por medir lo inconmensurable. Arqguimedes, mediante su
meétodo de exhaucion, anticipd la nocidn de limite al aproximar
areas y volUmenes a través de figuras poligonales cada vez mas
pequefas (Boyer & Merzbach, 2011). En sus “Cuadraturas de la
pardbola” ya se percibe una intuicion del infinito, aunque aun
expresada con herramientas geométricas.

Durante el siglo XVII, la necesidad de describir el movimiento y
las leyes de la naturaleza condujo a una transformacidn profunda
del pensamiento matemdatico. Newton, en su Philosophiae Naturalis
Principia Mathematica, utilizd el cdlculo al que llamé método de
las fluxiones, explicar la gravitacién universal y el movimiento
planetario. Paralelamente, Leibniz desarrolld su propio enfoque,
introduciendo la notacién diferencial, que permitia expresar las
relaciones de cambio de manera simbdlica (Guicciardini, 2018).

dy
dx

Ambos compartieron una visién: el cdlculo debia servir para
traducir las leyes naturales al lenguaje de la razén. Sin embargo,
la falta de una definicidn rigurosa de los infinitesimales generd
criticas, especialmente de fildsofos como Berkeley, quien conside-
raba al cdlculo una “ficcion metafisica” (Edwards, 1979). Solo en el
siglo XIX, con los aportes de Cauchy y Weierstrass, la nocion de
limite dotd al cdlculo de su fundamento l6gico. Desde entonces,
el calculo se consoliddé como el lenguaje universal del cambio, in-
dispensable para la fisica, la ingenieria, la biologia y la economia.

Funcion y cambio: la relacion entre magnitudes variables
La funcién constituye el lenguaje del cambio. Desde su concep-
cion moderna, desarrollada por Leonhard Euler en el siglo XVIII,
una funcién expresa una correspondencia entre dos conjuntos,
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de modo que a cada valor de la variable independiente X le
corresponde un Unico valor de la variable dependiente y. Esta
idea, que puede parecer simple, transformd para siempre la
manera en que comprendemos los fendmenos naturales. A tra-
vés de ella, las variaciones del mundo: la caida de un cuerpo, el
crecimiento de una planta, la oscilacion de un péndulo o el flujo
de una corriente eléctrica; pudieron describirse y predecirse
con precision (Stewart, 2021).

Pero mas alld de su definicién formal, la funcidon debe enten-
derse como una forma de pensar el cambio, como una manera de
percibir la relacion entre magnitudes variables. En palabras de
Kaput (1994), aprender cdlculo significa “aprender a ver el mundo
en términos de relaciones cambiantes”. Esta afirmacidn resume
un giro epistemoldgico fundamental: el paso de un pensamiento
centrado en resultados estaticos a uno orientado al proceso, a la
variacion continua, al movimiento.

De la relacion algebraica al significado fenomenoldgico
Cuando se ensefia cdlculo Unicamente a través de expresiones
algebraicas, el concepto de funcion se reduce a un conjunto de re-
glas manipulables. Sin embargo, cada funcidon encierra una histo-
ria: un fendmeno, un proceso o una interaccidn entre magnitudes.

Ejemplo 1: La funcidon lineal no es solo una ecuacion, sino la
representacion de una relacién constante (Figura 1): cada incre-
mento de una unidad en X provoca un aumento de dos unidades
en y. Esta correspondencia puede modelar el costo de un servi-
cio con tarifa fija o el nivel del agua en un tanque que se llena a
ritmo constante. Comprender esa relacién como una forma de
variacion es el punto de partida para construir un pensamiento
verdaderamente funcional (Tall, 2009).

f(x) =2x+3

Figura 1.
Representacion de una relacion lineal

Nota. Elaboracion propia.
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Ejemplo2:en el movimiento de un cuerpo que cae bajo la ac-
cion de la gravedad (Figura 2), si se desprecia la resistencia del
aire, su altura en funcion del tiempo puede representarse como:

donde hg es la altura inicial y gla aceleracion de la gravedad.
Esta funcion cuadratica describe un cambio no uniforme, donde
la velocidad aumenta con el tiempo. Al graficarla, el estudiante
observa como la trayectoria parabdlica traduce el movimiento
real del cuerpo en un lenguaje matemdatico. Esa conexion entre
lo fisico y lo simbodlico es el puente cognitivo que permite com-
prender el cdlculo como una ciencia del cambio (Stewart, 2021).

Figura 2.
Caida de un cuerpo por accion de la gravedad

Nota. Elaboracion propia.

La mirada visual del cambio. aprender con los ojos
Comprender el vinculo entre funcién y cambio exige pasar de lo
simbdlico a lo visual. Como afirma Tall (2009), la grdafica de una
funcion no es solo una representacion, sino una “ventana cogni-
tiva” que permite ver como una cantidad responde a la variacion
de otra. La pendiente de una curva, por ejemplo, sintetiza el sen-
tido del cambio: una pendiente positiva indica crecimiento; una
negativa, decrecimiento; una horizontal, estabilidad.

Ejemplo 3:analizar el crecimiento de una planta. Si se miden
su altura h en funcion del tiempo t, los datos suelen ajustarse a
una funciéon logistica:
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donde L representa la altura maxima, k la tasa de crecimiento
y tg el punto de inflexion. Al graficar esta funcién, el estudiante
observa tres etapas: crecimiento lento inicial, desarrollo acele-
rado y estabilizacion. De esta manera, la funcién deja de ser un
objeto abstracto para convertirse en un modelo de la vida, donde
la matematica narra una historia bioldgica.

En el ejemplo (Figura 3) podemos observar que:

* Etapa inicial: la planta crece muy lentamente porque sus
procesos bioldgicos aun se estdn adaptando.

« Etapa intermedia: cerca t =ty = 10 de semanas, el creci-
miento es mas acelerado. Aqui la pendiente de la curva es
maxima.

« Etapa final: conforme se acerca al limite L = 100, el cre-
cimiento disminuye hasta estabilizarse, ya que la planta
alcanza su tamafo maduro.

Figura 3.
Caida de un cuerpo por accion de la gravedad
-
."-'-._
Hb
LTLY [t = i)
f Sk
Toemgen § [ wermenas ) n - = Etsps de crecimiants
i i
& 18 Cote remrai et Crecamneend i bento sl
% 1152 Ine ms ehed ahmarrcd ks
i &0 Puntn de sdlerdin: crecimiesdn missma
1% Ll Enapa de madurer: estasbiirscidn
! . I Saturatedn: crecemetndo Las ruko

Nota. Elaboracion propia.

Esta evolucion refleja como en la naturaleza el crecimien-
to no es lineal, sino que responde a limites fisioldgicos y
ambientales.

Como sefiala Blum y Ferri (2009), esta capacidad de tra-
ducir situaciones reales a modelos funcionales es una de las
competencias mds poderosas que ofrece la matemdtica, pues
permite comprender, explicar y predecir fendbmenos complejos.
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La funcion como herramienta de modelizacion

Desde la perspectiva de la educacién matematica, la funcion
debe ensefiarse no solo como un concepto, sino como una he-
rramienta para modelar la realidad. De acuerdo con Hiebert
y Carpenter (1992), la comprensién significativa de las mate-
maticas implica construir conexiones entre diferentes repre-
sentaciones de un mismo fenédmeno. Asi, cuando un estudiante
utiliza una funcidn para describir la velocidad de un automoévil,
estd coordinando ideas algebraicas, grdaficas, fisicas y verbales.
Por ejemplo, el movimiento rectilineo uniforme se representa
con la funcion:

s(t) =vt+sg

(Figura 4) donde y es la velocidad constante. Si v = 80km/h, la
grdficade s (t) muestra una linea recta que expresa una relacién
directa entre tiempo y distancia.

Figura 4.
Movimiento rectilineo uniforme de un automovil

M) = B2m //t ’
-

T

-~

Nota. Elaboracion propia.

Ejemplo 4: Supongamos un automovil que parte desde sg = 0
con velocidad constante v = 80km /h. En cada intervalo de tiem-
po igual, el moévil recorre distancias iguales.

En cambio, si el movimiento es acelerado, la funcién se vuel-
ve cuadrdtica y la curva se inclina progresivamente, reflejando
un cambio de ritmo. Supongamos un automovil que parte del
reposo vg = 0y acelera cona = 2m/s2. En este caso, la grafica
del movimiento rectilineo uniformemente acelerado muestra
cdémo la distancia recorrida por el automoévil no aumenta de
manera constante, sino cada vez mds rdpido a medida que
pasa el tiempo. Al inicio, el avance es lento, pero poco a poco
la curva se eleva con mayor inclinaciéon, lo que indica que el
vehiculo va ganando velocidad. La ecuacién s(t) =1t2 (Figura
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5) expresa esa aceleracién: si el tiempo se duplica, la distancia
se multiplica por cuatro. Esta relaciéon permite entender que
el movimiento no es uniforme, sino que estd marcado por un
cambio continuo de ritmo.

Figura 5.
Movimiento rectilineo uniformemente acelerado de un automovil

I| Tl f ]

Nota. Elaboracion propia.

Ejemplo 5: Al observar la grafica, el estudiante puede asociar el
crecimiento de la curva con la sensacion de un vehiculo que parte
desde el reposo y acelera, conectando asi la idea matematica
con una experiencia real y tangible del movimiento. En ambos
casos, el estudiante aprende a pensar en términos de variacioéon,
mas alld de la formula.

Esta concepcidén se concuerda con la idea de Kaput (1994) de
que el pensamiento funcional constituye una forma de razona-
miento dindmico que atraviesa toda la matematica. En su vision,
la funcion es la herramienta que permite pasar del andlisis de
situaciones discretas al estudio de procesos continuos, desarro-
llando una comprension profunda de la relacién causa-efecto.

Una vision cognitiva del cambio

Desde el punto de vista cognitivo, comprender una funcién impli-
ca coordinar varias formas de pensamiento. Segun Tally Vinner
(1981), los estudiantes construyen una “imagen conceptual” de
la funcién antes de dominar su definicion formal. Esa imagen se
nutre de ejemplos, graficos y metaforas que vinculan la matema-
tica con la experiencia. Cuando un estudiante observa el nivel del
agua subir en un recipiente y lo representa mediante una curva
creciente, estd activando un pensamiento funcional incluso sin
utilizar formulas.
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En este sentido, la ensefianza del cdlculo deberia centrarse
en promover la coherencia entre imdgenes, simbolos y signifi-
cados. El objetivo no es que el estudiante memorice ecuaciones,
sino que comprenda que toda funcidon expresa una historia de
cambio, una relacién entre dos realidades en movimiento. Como
plantea Duval (2006), el verdadero aprendizaje matemdatico
surge cuando el sujeto logra traducir entre diferentes registros
de representacién (grafico, numérico, verbal y algebraico) sin
perder el sentido del concepto.

Funcion, tecnologia y exploracion didactica
El uso de entornos dindmicos como GeoGebra permite que los
estudiantes manipulen funciones y observen cémo la variaciéon
de los pardmetros altera la grafica. Por ejemplo, al modificar el
coeficienteaeny = ax? se aprecia como la pardbola se abre o se
cierra, permitiendo visualizar la relacién entre forma y pardmetro.
Esta exploracion, defendida por Artigue (2009) como parte del
enfoque instrumental, potencia la construccion del conocimiento
al integrar la accién, la visualizacion y la reflexion.

Ejemplo 6: Un ejercicio ilustrativo consiste en representar el
movimiento de un proyectil lanzado con velocidad inicial vg y
dngulo O (Figura 6). Su trayectoria se describe mediante:

X2
f(x) = xtan(0) — m
Manipulando Vg y 0, los estudiantes pueden observar coémo
cambia el alcance maximo y la altura del proyectil, relacionando
las propiedades de la funcién con leyes fisicas. De este modo,
el aprendizaje se transforma en una experiencia exploratoria
gue combina razonamiento abstracto y experimentaciéon visual.

Figura 6.
Movimiento de un proyectil

0

HEN] ® BEl40 |
. 20 M cop'{8r)

Nota. Elaboracion propia.
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Pensar en movimiento. la funcion como forma de comprension
La funcion ensefia a pensar en movimiento. El cdlculo no solo
describe el cambio: ensefia a percibirlo, a cuantificarlo y a re-
presentarlo. Desde esta perspectiva, el aprendizaje de las fun-
ciones constituye un punto de inflexién en la formacién mate-
mdatica, pues introduce una forma de pensamiento relacional,
continuo y contextualizado. Como subraya Stewart (2021), el
cdlculo ayuda a “ver lo continuo en medio de lo discreto, y lo
infinito en lo finito”, una idea que conecta la razén matemdatica
con la sensibilidad filos6fica.

En la ensefianza universitaria, este enfoque puede traducirse
en experiencias didacticas donde el estudiante construye mode-
los de cambio reales: crecimiento poblacional, consumo energé-
tico, vibraciones sonoras o circulacién sanguinea. Cada modelo
es una puerta hacia la comprension profunda de la variaciéon y
hacia el reconocimiento del poder del pensamiento funcional
para interpretar el mundo.

Concepto de Iimite:interpretacion intuitiva, grdfica y algebraica
El concepto de limite es uno de los pilares del pensamiento ma-
tematico moderno. En torno a él se articula la posibilidad de
describir procesos de cambio continuo, analizar lo infinitesimal y
comprender la transicion entre lo discreto y lo continuo. El limite
es, por tanto, una idea fronteriza: permite acercarse al compor-
tamiento de una funciéon cuando los valores se aproximan a un
punto critico, incluso cuando el propio valor en ese punto no
existe. Como sostiene Stewart (2021), “la nocion de limite pro-
porciona el fundamento sobre el cual descansan todas las ideas
del cdlculo”.

El limite como intuicion del acercamiento
La idea de limite no nacidé en el aula ni en los manuales de
calculo, sino en la mente de los primeros pensadores que se
enfrentaron a problemas del movimiento y la variacién. Zendn
de Elea, ya en el siglo V a. C., planted sus célebres paradojas
sobre la imposibilidad del movimiento continuo, mostrando
que una distancia puede dividirse indefinidamente en partes
mdas pequehas. Detrds de su aparente contradiccidon se encon-
traba la pregunta esencial: 4jqué ocurre cuando una cantidad
cambia de forma incesante, pero dentro de margenes cada
vez mds pequefos?

Siglos después, Isaac Newton y Gottfried Leibniz tradujeron esa
intuicion filosdfica en un lenguaje simbdlico, introduciendo la idea
de la razon de cambio instantaneo. No hablaban alin de “limite”,
pero operaban con cantidades que tendian a cero, construyendo
asi la base conceptual del cdlculo diferencial (Grabiner, 1981).
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La nocidn moderna del limite, sin embargo, no se consolido
hasta el siglo XIX con Karl Weierstrass, quien reemplaz¢ las ideas
intuitivas de “infinitesimales” por una definicion rigurosa basada
en distancias: las famosas condiciones € — 0. Gracias a ellas, la
matematica logrd expresar la idea de “acercarse tanto como se
desee” con precision logica (Tall, 1980). No obstante, la ensefanza
del limite no deberia comenzar con esta definicion formal.

Ejemplo 7:si observamos la funcion, notamos que al sustituir
X = 1 el denominador se anula (Figura 7). Pero si analizamos
los valores proximos a 1(0.9,0.99,1.01,1.001), vemos que f(X) se
acerca cada vez mds a 2.

Aunque la funcion no estd definida en X =1, su comporta-
miento alrededor de ese punto si revela una tendencia clara.
Comprender esa tendencia constituye el primer paso para
captar la idea de limite.

Figura 7.
Comportamiento en la cercania de x = 1
! L
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Nota. Elaboracion propia.

Como destaca Cornu (1991), muchos estudiantes enfrentan
obstaculos al aprender este concepto porque su pensamiento
permanece anclado en el valor exacto, no en el comportamiento
cercano. Por ello, el proceso de ensefianza debe guiar al alumno
desde la observacion empirica de la aproximacion hasta la for-
malizacién progresiva.

La visualizacion del limite del trazo a la comprension
El pensamiento visual desempefa un papel esencial en la com-
prension del limite. La grdfica de una funcidon permite ver el pro-
ceso de aproximacion y reconocer el valor hacia el cual tienden
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los puntos de la curva. De hecho, la representacién visual pre-
cede a la formalizacion algebraica y ofrece un apoyo cognitivo
fundamental (Tall, 2009).

Ejemplo 8: Consideremos la funcion (Figura 8). Si se grafica
cercadel puntox = 0, la curva se aproxima a la altura 1 por ambos
lados del eje, aunque el valor en X = 0 no esté definido. Al observar
esta continuidad visual, el estudiante intuye que el limite debe ser 1.
Aqui, la grafica no solo representa el fendmeno: lo hace inteligible.

f(x) = sen(x)

X

Figura 8.
Comportamiento en la cercania de x = 0

| ]
Fil=i

“

Nota. Elaboracion propia.

Las herramientas tecnolégicas como GeoGebra, Desmos o
Grapher potencian esta comprension al permitir manipular di-
ndmicamente los valores y observar coémo la funcién responde.
La interactividad transforma la idea de limite en una experiencia
perceptiva. Seqgun Artigue (2009), esta exploracion digital favo-
rece el desarrollo del pensamiento funcional, pues el estudiante
deja de ver la funcién como un objeto estatico para concebirla
como un proceso vivo de cambio.

Ejemplo 9: modelar el enfriamiento de un liquido. Si la tempe-
ratura T(t) de una taza de café sigue la funcion donde T repre-
senta el tiempo en minutos, la grafica muestra como la tempe-
ratura desciende progresivamente hasta estabilizarse en 20 °C
(Figura 9). El limite de T(t) cuando T tiende al infinito es 20, lo
que corresponde ala temperatura ambiente. Aqui, el limite no solo
tiene un significado matematico: describe un fendmeno fisico de
equilibrio térmico.

De esta manera, el limite se convierte en un puente entre lo
abstracto y lo real. Como sefiala Kaput (1994), “la ensefanza
del cdlculo debe partir de experiencias de variacién y cambio
observables, para que las férmulas adquieran sentido y no se
perciban como artificios simbdlicos”.
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Figura 9.
Comportamiento cuando t tiende al infinito
\ [ -

!

Nota. Elaboracion propia.

El limite formal: rigor y lenguaje
La formalizacién algebraica del limite surge cuando necesitamos
expresar con precision lo que la intuicién y la observacion ya
habian anticipado. La definicion de Weierstrass traduce el acer-
camiento en términos de proximidad entre nUmeros.

Un nUmero real L es el limite de una funcion L cuando X tien-
de o se aproxima a Xg si y solo si para cualquier nUmero real
positivo g, por pequefio que seq, existe un nUmero real §, tal que
para todo X 75 Xo si la distancia entre X y Xg, es menor que 9,
entonces la distancia entre f(X) y L es menor que &.

Ime(X) =LeVe>0,36>0:0<|x—x0| <d—|f(x) —L| <ce
X—X
Esta formulacidén, aunque abstracta, tiene una belleza concep-
tual: elimina cualquier referencia al movimiento y conserva solo
la relacion entre dos distancias, € y 8. Stewart (2021) la presenta
como la culminacién del razonamiento sobre la continuidad,
mientras que Tally Vinner (1981) la interpretan como una defini-
cion formal que debe construirse sobre una imagen conceptual
previa.
Ejemplo 10: Demostrar aplicando la definicion de limite que

lim3x+1=7
x—2

Solucion.

Aplicando la definicién habrd que buscar 8(8), Ve > 0 tal que
0 < |x —2| < § Entonces |3x+ 1 — 7| < ¢ trabajando con esta
Ultima desigualdad, tenemos:

Bx+1 -7 <e.=[3x—6]=3]x—2|<c¢
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de donde |X— 2‘ < % Luego si hacemos § = = estariamos
garantizando que para todo radio 6 = % las imdagenes de f(X)

estarian dentro la franja de error €, por lo que lim3x+ 1 = 7.
x—2

Figura 10.
Comportamiento de f(a:) =3 +1enz =2

Nota. Elaboracion propia.

Es importante denotar que no es necesario que f este defi-
nida en el punto para que tenga limite en él (Figura 10). Esto
significa que al encontrar el limite de f(X) cuando X se apro-
xima a “@”, no se considera X = a. De hecho, f(X) no necesita
estar definida cuando X = a. Lo Unico que importa es como
se define f cerca de a.

En la mayoria de las situaciones practicas, encontrar el
0 (positivo) en funcidn del € el cual ha sido arbitraricmente
seleccionado, es muy dificil en general, por tanto, en nuestro
curso, no haremos énfasis en este procedimiento, es opcio-
nal por parte de los estudiantes, el estudio de este aspecto
en algun libro que el profesor le indique oportunamente. Por
lo que la definicion de limite no es una herramienta cémoda
para el calculo de limites como veremos a continuacién. Algo
verdaderamente importante en este contexto es, el hecho de
que el limite de existir es siempre Unico, y se resalta por el
teorema que sigue a continuacion.

Observe en las figuras siguientes que en el inciso c), f(a)
no esta definida y, en el inciso b), f(a) # L. Sin embargo, en
cada caso, independientemente de lo que sucede en a, es
cierto que. (Figura 1)
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Figura 11.
Comportamiento de f(x) cuando & tiende a a

a) b) c)

Nota. Elaboracion propia.

Propiedades fundamentales de los limites
El concepto de limite, ademds de su profundidad tedrica, posee
una estructura lébgica que le confiere coherencia dentro del sis-
tema matematico. Una vez comprendida su definicion intuitiva
y formal, surge la necesidad de estudiar sus propiedades funda-
mentales, aquellas que permiten operar con funciones sin perder
la consistencia del razonamiento. El limite no es un artificio ais-
lado, sino una extension natural de las propiedades aritméticas
al mundo del cambio y la aproximacion.

Como sefiala Stewart (2021), el célculo adquiere poder operativo
cuando las reglas que rigen los nUmeros reales se trasladan al and-
lisis de las funciones. Estas propiedades son las que hacen posible
calcular limites con rigor y simplicidad, evitando recurrir siempre a
la definicion € — 9§, aunque esta sea su fundamento légico.

Teorema: Si una funcién f tiene limite en un punto x g, entonces
este limite es Unico.

Este principio, aparentemente obvio, posee un profundo signi-
ficado epistemoldgico: afirma que el proceso de aproximacion de
una funcidén hacia un punto no puede conducir a dos resultados
distintos. Si los valores de f(X) se acercan simultaneamente a dos
numeros diferentes iy y Lig, no puede hablarse de limite. En otras
palabras, la tendencia que define al limite debe ser inequivoca.

Desde una perspectiva visual, este teorema se aprecia cuando
la grafica de una funcidn se aproxima a un solo valor en el eje y
al acercarse al punto Xg. Si desde la derecha y desde la izquierda
la funcidn converge al mismo valor, entonces ese es el limite. En
cambio, si la funcién tiende a valores distintos segUn la direccidon
de aproximacion, el limite no existe.

Ejemplo 11: la funcién

1, six<0
2, six>0
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no posee limite en X = 0, pues los valores laterales difieren. La
grafica muestra un salto que simboliza precisamente la ruptura
de la unicidad (Figura 12).

Figura 12.
Comportamiento alrededor de x = 0

Nota. Elaboracion propia.

Este teorema es esencial porque establece la determinacion
del comportamiento funcional, evitando ambigUedades que ha-
rian imposible definir continuidad o derivacion. Desde una lectura
pedagodgica, este principio también refuerza la idea de que el
limite es un comportamiento global, no una simple sustitucion
numeéerica.

Propiedades algebraicas del limite y Limites laterales
Comprendida la unicidad, el siguiente paso es reconocer como
los limites se comportan frente a las operaciones basicas. Si dos
funciones poseen limites definidos en un mismo punto, entonces
su suma, su producto o su cociente (cuando el denominador no se
anula) también los tienen. Estas propiedades son las que otorgan
al célculo su capacidad de generalizacion.

“Sean f y & dos funciones tales que existen los limites:

limf(x) = L; y limg(x) = Ly entonces:

X—X X—X

1. lim (f(X) + g(x)) =L;+ Ly

X—X(

2. 11_>1’1’1 f(X)g(X) =Li1Ly
X—X0

5. lim 58 = £} i L £0

4. lim (af(x) + Bg(x)) = aLj + Ly (Linealidad)
X—X(
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5. lim [f(x)]” = L}

X—X
o fim VA = VI

Otras propiedades sobre los limites son las siguientes:

« Siuna funcion £ es positiva para todo X de una vecindad
reducida de un punto Xg y el existe el limite de f en dicho
punto entonces el limite L es también positivo.

« Sidos funciones f y g satisfacen cierta relacion de des-
igualdad para todo X de una vecindad reducida de un
punto Xp, f(x) < g(x) entonces si los limites de ambas
existen se cumple que Lj < L.

« Sean f, g, h tres funciones tales que cumplen:
f( ) < h( ) ( ) para todo X de cierta vecindad redu-
cida de un punto X(. Entonces si existen los limites de f y
g en dicho punto y supongamos es igual a L, entonces el
limite de h también es L en dicho punto. (En algunos textos
esta propiedad se le denomina “emparedado”, “sandwich”
o propiedad de “intercalaciéon”

Estas reglas pueden demostrarse rigurosamente a partir de
la definicion formal, pero también se entienden intuitivamente
si se considera que el limite preserva la estructura aritmética de
las operaciones. Es decir, el comportamiento de las funciones al
aproximarse a un punto imita el comportamiento de los nUmeros
a los que tienden. Larson y Edwards (2022) sefialan que este
conjunto de propiedades transforma el limite en una herramien-
ta manipulativa: una “aritmética del cambio” que hace posible
operar con expresiones complejas sin necesidad de reconstruir
el razonamiento desde cero.

En ocasiones ocurre que, para analizar la existencia del limite
en un punto, tenemos necesidad de analizar el comportamiento
tanto por la derecha como por la izquierda de dicha funcién en
la vecindad reducida de dicho punto para poder arribar a la
conclusion de si existe o no el limite en dicho punto, este andlisis
lo haremos bajo el acdpite de Limites laterales.

Por tanto, el concepto de limites laterales es de vital impor-
tancia para el andlisis de la existencia del limite de la funcion en
un punto. Los limites laterales derecho e izquierdo del punto se
denotan por y

lim g(x) = Ly

X—X(
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Teorema:

“El limite de una funcion f en un punto x0 existe, siy solo si,
existen y son iguales los limites laterales respecto a dicho punto”.

El limite general existe Unicamente si ambos limites laterales
existen y son iguales:

limf(x) =L < limf(x) = limf(x) =L

X—Xg X—)xar XX,

Ejemplo 12: Sea la funciéon
x + 1, six <2
3x — 2, six>2

Al evaluar los limites laterales en X = 2 (Figura 13),

f(x) =

lim f(x) =3y limf(x) =4
x—27F

X—2~

Los valores son distintos, por lo que el limite no existe.

Figura 13.
Comportamiento alrededor de € = 2

|

Nota. Elaboracion propia.

Limites de funciones algebraicas

El estudio de los limites de funciones algebraicas constituye
un punto de partida fundamental para comprender el com-
portamiento de las expresiones matematicas mdas comunes
en el andlisis. Estas funciones aparecen con frecuencia en
problemas de fisica, economia, ingenieria o biologia, y su
andlisis permite describir fendmenos de crecimiento, equili-
brio o tendencia.
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Desde el punto de vista formal, las funciones algebraicas se
caracterizan por estar formadas por operaciones finitas de suma,
resta, multiplicacion, division y potencias de la variable inde-
pendiente. A diferencia de las funciones trascendentes (como
las trigonométricas o exponenciales), las algebraicas poseen un
comportamiento mds predecible y, en muchos casos, su limite
puede determinarse mediante una simple evaluaciéon directa.

Sin embargo, mas alld de su aparente sencillez, el cdlculo de
sus limites permite al estudiante afianzar los principios de con-
tinuidad, simplificacion y aproximacién que sustentan todo el
razonamiento del cdlculo diferencial.

Como sefialan Larson y Edwards (2022), las funciones alge-
braicas son el “laboratorio natural del limite”: en ellas se aprende
areconocer cudndo una funcién se comporta de manera continua
y cudndo las operaciones algebraicas requieren ser ajustadas
mediante factorizacién o racionalizacion.

a. Funciones polinomiales: Para calcular el limite en un punto

Xp de una funcion polindmica de la forma:

P(x) =ag+aix+ax? +asx® +... tayx", a, #0ya

reales o complejos, basta evaluar la funcién en dicho punto,
es decir,

lim P(x) = P(xq)

X—X(

b. Funciones racionales: Para calcular el limite en un punto x0
de una funcion racional

F(X) = P(X) _  apta;X+apX?+asX’+.. . +a, X"
T Q(X) T bot+biX+boX2+byX3+. . +by, X™

n,mEN,an#Oybm#O

basta evaluar cada polinomio de dicha funcién, es decir:

limF(x) = o)
X—Xg 0
c. Funciones trigonométricas, exponenciales logaritmicas e
hiperbodlicas: En todos los casos para calcular el limite en
un punto Xp de una cualquiera de estas funciones, basta
evaluar la funcion correspondiente en el punto Xp.
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d. Funciones en la forma, f(X)g(X). Para calcular el limite de
una funcion de este tipo basta expresarla en la forma ex-
ponencial, a saber:

f(x) 8(x) _ og(x) In(f(x)

y calcular el limite del exponente:
g(x) In(f(x)),

teniendo en cuenta que el resultado final es igual a: “€”
elevado a dicho valor obtenido.

Comprender el sentido del infinito en el calculo lim f(X) = +o0
X—X(

El estudio de los Iimites infinitos marca un punto de inflexién en
la formacién conceptual del estudiante de cdlculo, pues introduce
una de las ideas mas abstractas y poderosas de las matematicas:
el comportamiento de una funcién cuando crece o decrece sin
limite. No se trata de “alcanzar” el infinito, sino de describir una
tendencia, un modo de comportamiento de la funcién cuando
la variable independiente se aproxima a un determinado valor
(Stewart, 2021).

En palabras simples, un limite infinito permite expresar que
los valores de una funcién pueden aumentar o disminuir indefi-
nidamente a medida que nos acercamos a cierto punto, aunque
la funcion no esté definida en ese punto. Es una manera formal
de decir que la funcion “se dispara” hacia arriba o hacia abajo,
lo cualtiene unainterpretacidn visual muy concreta: la existencia
de una asintota vertical.

Ejemplo 13: consideremos la funcién

Si observamos su comportamiento alrededor de X = 3, notamos
que los valores de f(X) aumentan sin limite cuando X se aproxima
a 3 por la derecha, y disminuyen sin limite cuando se aproxima
por la izquierda (Figura 14). De este modo:

lim f(x) = —oo y lim f(x) = +o0.
x—3~ x—3+
En consecuencia, la rectaX = 3 es una asintota vertical de la funcién.
Este fendmeno aparece con frecuencia en modelos de la na-
turaleza, como en la ley de Coulomb, donde la intensidad del
campo eléctrico crece indefinidamente al acercarse a una carga
puntual (Thomas et al., 2024).
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Figura 14.

Comportamiento alrededor de € = 3
1 I

Nota. Elaboracion propia.

Sea f una funcion definida por ambos lados de a, excepto
posiblemente en la misma a, entonces

limf(x) = oo
x—a
significa que los valores de f(X) pueden ser arbitrariamente gran-
des (tan grandes como queramos), tomando X suficientemente
cerca de @, pero no igual a “a”.
Sea f una funcién definida por ambos lados de a, excepto
posiblemente en la misma a, entonces

limf(x) = —o0
X—a
significa que los valores de f(X) pueden ser negativos arbitra-
riamente grandes (tan grandes como queramos), tomando X
suficientemente cerca de a, pero no igual a “a”.(Tabla 1)
La recta X = a se llama asintota vertical de la curva 'y = f(X)
si al menos una de las siguientes afirmaciones es verdadera:

Tabla 1.
Limites infinitos y limites laterales de una funcién

limf(x) = oo lim f(x) = o0 lim f(x) = o0
x—a x—a~ x—at

limf(x) = —o0 lim f(x) = —o0 lim f(x) = —o0
x—a xX—a~ x—at

Nota. Elaboracion propia.
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Los limites infinitos también pueden definirse de manera
precisa:

Definicién: Sea f una funcién definida sobre algUn intervalo
abierto que contiene al nUmero “Q”, excepto posiblemente en
“a@” misma. Entonces

limf(x) = oo

x—a
significa que para todo numero positivo M existe un nUmero &
positivo tal que si 0 < ‘X — a‘ < § entonces f(x) > M.

Esta formulaciéon, presentada con precision en los textos cla-
sicos de andlisis de Apostol (1967) revela que los limites infinitos
no representan valores alcanzados, sino comportamientos asin-
toticos, un tipo de acercamiento sin llegada, caracteristico del
pensamiento infinitesimal.

Apoyo diddctico: En la enseffianza del cdlculo, los limites infini-
tos cobran sentido cuando se visualizan. El uso de herramientas
como GeoGebra o Desmos permite representar el crecimiento
o decrecimiento abrupto de las funciones

Ejemplo 14: si graficamos

f(X) = (X—11)2 ’

observamos que la curva se eleva hacia el infinito tanto por la
izquierda como por la derecha de X = 1, mostrando una simetria
vertical. Esto se expresa como:

lim f(x) = lim f(x) = 4o00.
x—1- x—1*
Por tanto, la recta x=1es una asintota vertical (Figura 15).

Figura 15.
Comportamiento alrededor de x = 1

Nota. Elaboracion propia.
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Comportamientos similares muestran otras funciones como
se muestra a continuacion:

Figura 16.
Comportamiento alrededor de & = 4

Nota. Elaboracion propia

Figura 17.
Indeterminaciones para f(a:) = tan(x

.)
:

A
_q{‘. =
\
~
A

Nota. Elaboracion propia

Desde una perspectiva analitica, los limites infinitos permiten
describir fendmenos de crecimiento o decrecimiento no acotado
y establecer condiciones de existencia de derivadas e integrales
impropias. Por ejemplo, en el cdalculo integral, cuando el drea bajo
una curva se extiende hacia una asintota vertical, se recurre @
los limites infinitos para definir correctamente el valor del drea
(Thomas et al,, 2024).

Asimismo, la mediacién visualy simbdlica ayuda a superar las
concepciones ingenuas de infinito como “el nUmero mds grande”,
permitiendo comprenderlo como una idea limite, un proceso
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gue nunca se completa. Este cambio cognitivo, conocido como
“reconceptualizacion del infinito”, es un hito en la transicion al
pensamiento matematico avanzado (Hiebert & Grouws, 2007).
Limites infinitos en el infinito
Cuando en cdlculo hablamos de limites infinitos en el infinito, nos
referimos al comportamiento de una funcién cuando la variable
independiente X crece o decrece indefinidamente. En otras pala-
bras, gueremos entender qué ocurre con f(X) cuandoX — +00 0
X — —00.En este contexto, el término “infinito” ya no representa
un punto inaccesible en el eje de las ordenadas, sino una direcciéon
de avance ilimitado sobre el eje de las abscisas (Stewart, 2021).
Asi, cuando decimos que
lim f(x) = +o0

X—+00
significa que los valores de f(X) aumentan indefinidamente a
medida que X crece sin limite. De forma similar,

lim f(x) = —o00
X——00
expresa que la funcidon decrece indefinidamente cuando X toma
valores negativos muy grandes.

En ambos casos, se analiza la tendencia de la funcién en los
extremos del dominio, lo cual resulta fundamental para com-
prender fendbmenos de crecimiento y decrecimiento ilimitado,
asi como el comportamiento global de modelos polinomiales,
exponenciales, racionales y logaritmicos (Thomas et al,, 2024).

También pueden considerarse los planteamientos siguientes:

lim f(x) = 400, lim f(x) = —00 y lim f(x) = —c0

X——00 X——00 X—-+00

Es facil estudiar el comportamiento en el infinito de la funcién
polinomial de grado NS:

P(x) = ag +a;x +asx? +agx® +... +ayx®, a, #0ya

reales o complejos

400 sia, >0
—o0 st ap, <0

lim P(x) = lim xn(ﬂ+ S +...+an) = {

n -
x—+00 X——00 x x*

Es decir, que el comportamiento en +00 dependerda del signo
del coeficiente principal.
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Por otra parte el limite en el infinito de funciones racionales
de la forma:

f(X) _ PX) _ agta;X+aX24azX3+...+a, X"
T Q(X) T bet+biX+beX2+bsX3+. . . +by X™m

donde
nmeN, a,#0yby#0

depende de los grados de los polinomios en el numerador (1) y

el denominador (1M).

Tabla 2.
Limites en el infinito segun grado de los polinomios

Casos lim f(X) Justificacidn

X—00

Grado del numera- 0 El denominador cre-
dor es menor que el ce mds rapido que el
grado del denomina- numerador.
dorn<m
Grado del numera- 2n Los términos de

. bm .
dor es igual grado mayor grado domi-
del denominador nan; el resto se hace
n=m despreciable.
Grado del numera- X0 —&0 El numerador crece

dor es mayor que
grado del denomina-
dorn >m

(dependiendo
del signo de los
coeficientes)

mas rapido que el
denominador; no hay
limite finito.

Nota. Elaboracion propia.

Ejemplo 15:

Ji 53

x2+1 =0

Grado del numerador es menor que el grado del denominador

n <m (Figura18)

Formas indeterminadas

En el estudio de los limites, la nocion de forma indeterminada ocu-
pa un lugar esencial porque representa una situacidn en la que los
procedimientos algebraicos convencionales no permiten obtener
directamente un resultado. Una forma indeterminada surge cuan-
do, al sustituir un valor en una funcién, se obtiene una expresion
ambigua que no define un limite Unico, como por ejemplo:
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X 0-00, 1®° 0% o0—00
(09]

Figura 18.
Limites en el infinito con grado del numerador menor que el denominador

-
| " |
| i 1
Fix)
s
R

Nota. Elaboracion propia

Estas expresiones son “indeterminadas” porque el resultado
final depende del comportamiento especifico de las funciones
involucradas al aproximarse al punto de interés. Asi, la misma
forma simbdlica puede conducir a distintos valores numéricos
del limite, segun el contexto (Stewart, 2021).

El término “indeterminada” no significa que el limite no exis-
ta necesariamente, sino que no puede determinarse median-
te una simple sustitucion. En estos casos, es necesario aplicar
transformaciones algebraicas, razonamiento analitico o reglas
especificas, como la Regla de L'Hopital, para resolver la ambigUe-
dad. Desde una perspectiva analitica, las formas indeterminadas
surgen de la interaccion entre funciones que, al aproximarse a
un mismo punto o al infinito, tienden simultGneamente a valo-
res extremos o nulos. Esto genera una tensién conceptual: jqué
doming, el crecimiento o la disminucion? (Thomas et al., 2024).

Las formas indeterminadas mds comunes pueden agrupadrse
segun su estructura:

1. Cocientes indeterminados:

0
0 oo

Son las mds frecuentes y se resuelven aplicando factoriza-
ciones, racionalizaciones o la Regla de L'Hopital.
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2. Productos indeterminados: 0 - 00. Requieren transformar
el producto en un cociente para poder aplicar técnicas de
limites.

3. Diferencias indeterminadas: 00 — 00. Suelen aparecer en
funciones racionales o radicales y demandan la bUsqueda
de una forma comun de comparacion entre las tasas de
crecimiento.

4. Potencias indeterminadas:1%°, 0%, 00° Representan una
competencia entre la base y el exponente: una cantidad que
tiende a 1 pero elevada a una potencia muy grande, o una
base que tiende a O pero con exponente variable.

Estas categorias no son arbitrarias, sino que reflejan las dife-
rentes maneras en que se puede producir una indeterminaciéon
entre magnitudes infinitesimales o infinitas  (Apostol, 1967).

Ejemplo 16: Calcular

. x2—-4
lim =4

Responde a una forma del tipo % que luego de factorizar y
simplificar eliminamos la indeterminacién. (Figura 19)

Figura 19. 0
Indeterminaciones del tipo 4

ty .

Nota. Elaboracion propia

Ejemplo 17: Calcular

lim 2x%43x _ 2

X300 DX2—x+4 5

El crecimiento de numerador y denominador es comparable
(Figura 20). Dividiendo ambos entre x2.
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El resultado final depende del cociente de los coeficientes
principales.

Figura 20.
Indeterminaciones del tipo

ol

Nota. Elaboracion propia

Desde el punto de vista analitico, las formas indetermina-
das muestran que el cdlculo diferencial e integral no se limita
a sustituir valores, sino a comprender comportamientos de
tendencia. Son un espacio donde la matemdtica deja de ser
estdtica y se convierte en una disciplina del cambio, del acer-
camiento progresivo y del andlisis de la magnitud relativa de
dos procesos (Tall, 2019).

Apoyo diddctico: las formas indeterminadas ofrecen una opor-
tunidad privilegiada para vincular lo algebraico con lo concep-
tual. En el aula, el estudiante puede experimentar la frustracion
inicial de no obtener un resultado definido, pero con la guia ade-
cuada puede transformar esa incertidumbre en un proceso de
indagacion y descubrimiento. De este modo, el docente fomenta
el pensamiento analitico y la autonomia en la resolucién de pro-
blemas (Hiebert & Grouws, 2007).

Limites fundamentales

Los limites fundamentales son la piedra angular del cdlculo,
porque representan los comportamientos mds simples, pero a
la vez mads reveladores, de las funciones en torno a un punto.
Comprenderlos implica reconocer que el cdlculo no es una
coleccion de reglas para manipular expresiones, sino un len-
guaje del cambio.

Através de los limites fundamentales, aprendemos a describir
procesos que se aproximan, se transforman y tienden a una esta-
bilidad dindmica. Son los primeros escenarios donde el estudiante
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observa coémo lo infinitamente pequefio y lo infinitamente grande
se relacionan con lo finito, dando sentido matematico al cambio
continuo (Stewart, 2021).

En la historia del pensamiento matematico, estos limites fue-
ron el punto de encuentro entre la intuicidn geométrica de los
griegos y el rigor analitico de Newton y Leibniz. Lo que en la
antigledad se concebia como una aproximacidén o “razonamien-
to por exceso y defecto”, hoy se formula con precisién como un
limite: una tendencia que nunca se completa, pero que se puede
describir con exactitud (Apostol, 1967).

El dominio de los limites fundamentales permite al estu-
diante anticipar resultados sin recurrir a métodos complica-
dos. Son expresiones que condensan leyes de comportamien-
to universal de las funciones y que aparecen reiteradamente
en derivadas, integrales, ecuaciones diferenciales y mode-
laciones cientificas.

Figura 21.
Limite fundamental trigonométrico
i | &
‘I..I T ll'
LY 1
——————— B —-r—_'_;.-l-*—-_-_‘:_‘:‘:——————————
_._'_'_.l'---"-r- -\1-“-"-\.'-_\-\-‘_ 1
—

Nota. Elaboracion propia

a. El limite del seno sobre su argumento

lim <2 — 1.

x—0 *
Este limite expresa una verdad geométrica: cuando el an-
gulo es muy pequefio, el arco y la cuerda de un circulo son
practicamente iguales. (Figura 21).
En términos visuales, el seno de un dngulo medido en radia-
nes se comporta como la funcion identidad cerca del origen.

b) El imite exponencial que define el nUmero

e. lim (1-|— %)X:e

X—00
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Este limite describe un proceso de crecimiento continuo.

A medida que el nUmero de incrementos por unidad de tiempo
aumenta sin limite, la cantidad resultante tiende a estabilizarse
en el nUmero €. (Figura 22)

Figura 22.
Limite exponencial

Nota. Elaboracién propia

Este resultado, que emerge del andlisis del interés compuesto,
es un puente entre la matemdatica y la economia, entre el tiempo
discreto y el continuo. Stewart (2021) lo llama “el limite que tra-
duce el ritmo natural del crecimiento de la vida”.

c. Limite exponencial en el origen

lim<=Lt =1
x—0 *

Este resultado es la contraparte del anterior. Mientras que
el exponencial describe un crecimiento ilimitado, el logaritmo
refleja un proceso de desaceleracion infinita (Figura 23).
Juntos, ambos limites expresan la dualidad entre expansion y
compresion, o entre lo multiplicativo y lo aditivo (Apostol, 1967).

Figura 23.
Comportamiento exponencial alrededor del origen

Nota. Elaboracion propia
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d. Limite logaritmico

lim 20 —
x—0

Este resultado (Figura 24) es la contraparte del anterior.
Mientras que el exponencial describe un crecimiento ili-
mitado, el logaritmo refleja un proceso de desaceleracion
infinita. Juntos, ambos limites expresan la dualidad entre
expansion y compresion, o entre lo multiplicativo y lo aditivo
(Apostol, 1967).

Figura 24.
Comportamiento logaritmico alrededor del origen

y =

In{l 4 x
flo) = 122

Nota. Elaboracion propia

Ademads del limite

lim *20) — 1

x—0

)

existe otro de igual relevancia:

Este limite explica la concavidad de la funcién coseno en tor-
no al origen. En la ensefianza, este caso ofrece la posibilidad de
introducir la idea de aproximacion cuadratica: a medida que X
se hace pequefio, el coseno se aproxima a la pardbola

XZ
y=1-%.

lo que anticipa el estudio de las series de Taylor.
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Apoyo diddctico: los limites fundamentales cumplen una fun-
cién de anclaje cognitivo. Al trabajar con ellos, el docente puede
construir puentes entre lo intuitivo y lo formal.

Por ejemplo, al analizar el limite

sen(x)

)

X

el profesor puede pedir a los estudiantes que observen qué su-
cede con el trigngulo inscrito en un circulo unitario a medida que
el dngulo disminuye. De este modo, la nocién abstracta de limite
se transforma en una experiencia tangible y visual.

Hiebert y Grouws (2007) sostienen que los aprendizajes signi-
ficativos en matematicas ocurren cuando el estudiante percibe la
coherencia entre los procedimientos y las ideas. Los limites funda-
mentales, ensefiados con este enfoque, dejan de ser simples formu-
las para convertirse en herramientas de comprension del cambio.
Infinitésimos equivalentes
En el estudio del cdlculo, los infinitésimos equivalentes represen-
tan una de las herramientas mds elegantes y conceptualmente
profundas para comprender el comportamiento de las funciones
en las cercanias de un punto. Estos permiten comparar el grado
de “pequefez” de dos magnitudes que tienden a cero, simpli-
ficando el andlisis de limites, derivadas y desarrollos locales.
Aunque su origen se remonta a los razonamientos intuitivos de
Newton y Leibniz, su formalizacién moderna se encuentra en
el andlisis asintético y en el lenguaje de los limites, lo que los
convierte en un puente entre la intuicion geométrica y el rigor
analitico (Stewart, 2021; Apostol, 1967).

Cuando dos expresiones f(x) y g(x) se anulan al aproximarse X
aun cierto valor g, pero lo hacen a un ritmo tan similar que su co-
ciente tiende a uno, decimos que son infinitésimos equivalentes.

Formalmente:

f(x) ~ g(x) siy solo si lim & — 1.
x—a 8(%)

Esta relacion no solo indica que ambas funciones tienden a
cero, sino que sus “velocidades de anulacion” son prdacticamen-
te indistinguibles en el limite. Como sefala Spivak (1994), “los
infinitésimos equivalentes nos permiten sustituir lo complicado
por lo esencialmente igual, sin alterar el valor del limite” (p.123).

Por ejemplo, cuando

X2

x— 0 sen(x)~x, tan(x)~x, 1-cos(x)~ .
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En estos casos, las funciones de la izquierda pueden reem-
plazarse por sus equivalentes en cdlculos de limites sin alterar
el resultado final.

Apoyo diddctico: introducir los infinitésimos equivalen-
tes no debe limitarse a un formalismo algebraico. Es fun-
damental que el estudiante visualice cOémo dos curvas se
aproximan tan estrechamente en torno a un punto que sus
graficas parecen coincidir. En términos visuales, decir que
Si sen(x) ~ X, significa que ambas funciones son casi indis-
tinguibles cerca de x = 0.

Continuidad y tipos de discontinuidades

La continuidad es una idea que une el pensamiento geométrico,
analitico y fenomenolégico del calculo. Representa la posibili-
dad de describir procesos sin interrupciones, donde el cambio
ocurre de manera suave Yy progresiva. En términos sencillos,
una funcién es continua si su grafica puede dibujarse sin le-
vantar el lapiz del papel; sin embargo, esta imagen intuitiva
se formaliza mediante el lenguaje de los limites: una funcidon
f(X) es continua en un punto X = a si cumple tres condiciones
esenciales (Stewart, 2021):

1. f(a) estd definida (esto es, a estd en el dominio de f)

2. limf(x)existe
X—a

3. limf(x) = f(a)
X—a

Este triple criterio, consolidado por Cauchy y Weierstrass,
asegura que el comportamiento de la funcidon no se vea inte-
rrumpido ni por huecos ni por saltos en la grafica, ofreciendo
una herramienta rigurosa para modelar fendmenos naturales
y técnicos.

Ejemplo 18: la funcidon f(X) = 3x + 2 es continua para todo
numero real, pues es un polinomio, y los polinomios segin
Larson y Edwards (2022), son funciones continuas en todo su
dominio. Sitomamos X = 1, se verifica que y que f(l) = 5; por
tanto, no existe ruptura ni ambigledad en su comportamiento.
(Figura 25)
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Figura 25.
Continuidad de la funcién f(:l:) enx =1

Nota. Elaboracion propia

En contraste, la funcién racional

presenta un punto problematico en x = 1 (Figura 26). Al sustituir
directamente, se obtiene una indeterminacion L. No obstante, al
simplificarla como f(x) =x+1 (para x 75 1), observamos que
el limite

limf(x) = 2.
x—1
Aunque el valor de la funcién no esta definidoen x = 1, el limi-

te si existe; por tanto, se trata de una discontinuidad removible,
gue puede eliminarse redefiniendo f(l) = 2.Este ejemplo ilustra
como el andlisis de continuidad no se limita a detectar errores
algebraicos, sino que invita a reflexionar sobre el significado
mismo de “suavidad” en el comportamiento funcional.

Figura 26.
Discontinuidad removible en x = 1
I .-__.-". &
- .-.__.-""' Hy = 21
I =l
o

Nota. Elaboracion propia
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Para eliminarla, se redefine la funcidon asignando el valor del
limite en ese punto: f(l) = 2, de modo que la nueva funcién

x+1, x#1
f(x):{2 x=1

es continua en todo su dominio, ya que se ha “rellenado” el vacio
del graficoenx = 1.

Otro tipo de ruptura ocurre en las discontinuidades de salto,
donde los limites laterales existen, pero son distintos.

Ejemplo 19: Un ejemplo clasico es la funciéon por tramos

2x+1, x<0
f =
(x) {xz, x>0

Al aproximarse a X = 0, se obtiene

limf(x) =1y limf(x) =0

x—0~ x—07F
Como ambos limites difieren, existe un salto vertical de una uni-
dad (Figura 27). Esta discontinuidad se observa con claridad al
graficarla, y al discutirla en el aula permite que los estudiantes
comprendan cémo el cambio en la definicién de una funcidon
afecta su continuidad. Apostol (1967) enfatiza que estas discon-
tinuidades modelan situaciones reales donde hay un cambio re-
pentino, como una variacion de voltaje o un cambio de velocidad
en un sistema mecanico.

Figura 27.
Discontinuidad de salto en € = 0

Nota. Elaboracion propio.

Un tercer tipo es la discontinuidad infinita, que se produce
cuando la funcion crece sin limite en las cercanias de un punto
(Figura 28). Por ejemplo, f(X) = % tiene una discontinuidad in-
finita en x = 0, ya que al acercarse desde la derecha, los valores
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se disparan hacia +00 y desde la izquierda, hacia —00. La gré-
fica muestra dos ramas que nunca se tocan, separadas por una
asintota vertical.

Figura 28.
Discontinuidad infinita en @
-
1
e — ] ] 1 i ]

Nota. Elaboracion propia

Existen también discontinuidades oscilatorias, menos comunes,
pero conceptualmente ricas. Por ejemplo, la funcion

f(x) = sen (<)

X

no tiene limite cuando X tiende a O, ya que sus valores oscilan
indefinidamente entre -1y 1. (Figura 29) No hay tendencia defi-
nida, sino una vibracién infinita que impide la continuidad.

Figura 29.
Discontinuidad oscilatoria

Nota. Elaboracion propia
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Este caso, analizado por Tall (1992), ayuda a los estudiantes
a percibir que no todas las irregularidades se deben a rupturas
visibles: algunas surgen del propio comportamiento interno de
la funcion, mas alld de la ausencia de definicion puntual.

Un caso interesante es la funcién

_ 1
f(x) = xsen(1),
gue aunqgue oscila indefinidamente cuando X tiende a cero, lo
hace con una amplitud decreciente. (Figura 30)

Figura 30.
Discontinuidad oscilatoria

Nota. Elaboracion propia

En consecuencia, el limite existe y vale cero. Este ejemplo,
analizado en textos como el de Stewart (2021), resulta especial-
mente Util en la ensefianza porque demuestra que una funcion
puede conservar un comportamiento oscilatorio sin perder la
continuidad. En el plano conceptual, este tipo de funciones ayu-
dan a los estudiantes a visualizar como la multiplicacidon por un
factor atenuante (en este caso, X) “suaviza” la vibraciéon del seno,
haciendo visible la convergencia hacia un punto estable.

Apoyo diddctico: Desde un enfoque pedagdgico, ensefar la
continuidad y las discontinuidades de funciones trascendentes
requiere fomentar la comprension visual, intuitiva y experimental,
antes que la aplicacion mecdanica de reglas. (Figura 31)

Figura 31.
Representacion grdafica en Geogebra

Nota. Elaboracion propia
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El uso de herramientas digitales como GeoGebra o Desmos
favorece que los estudiantes “vean” el comportamiento de las
funciones cuando se aproximan a puntos criticos, comprendiendo
la nocion de limite desde la experiencia. Por ejemplo, al manipular
un deslizador en la funcién exponencial

f(x) = ex

se observa como los valores crecen abruptamente cuando X
tiende a cero por la derecha, mientras que tienden a cero por la
izquierda. Este contraste visual permite entender una discontinui-
dad infinita asimétrica, tipica en funciones de tipo exponencial
inversa (Stewart, 2021).

Del mismo modo, la funcién logaritmica f(X) = ln(X) ofrece
una experiencia significativa al acercarse a X — 0. Enla grafica
se percibe una caida pronunciada hacia el infinito negativo, lo
que posibilita discutir con los estudiantes coémo la continuidad
depende del dominio natural de la funcion (Figura 32).

Figura 32.
Representacion grafica en Geogebra

Nota. Elaboracion propia

Tall (1992) seAala que este tipo de visualizaciones facilita cons-
truir lo que denomina una imagen conceptual del limite, en la
que el alumno deja de pensar en la continuidad como “dibujar
sin levantar el lapiz” y la comprende como un fenédmeno de es-
tabilidad del comportamiento funcional.

Dimension pedagdgica: enseiar el imite desde la experiencia
Ensefiar el concepto de limite representa uno de los mayores de-
safios del cdlculo diferencial. Su naturaleza abstracta, vinculada
alaidea de aproximacion infinita, suele generar en los estudian-
tes confusion conceptual y resistencia cognitiva. No obstante,
cuando el limite se aborda desde la experiencia, es decir, desde
la observaciéon del cambio y la tendencia en fenédmenos reales
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o simulados, el aprendizaje se transforma en una vivencia de
descubrimiento, en la que la intuicidén se articula con la formali-
zacion. En esta dimension pedagdgica, el limite deja de ser una
definicién estdtica para convertirse en una relacion dindmica
entre valores que se aproximan (Cornu, 19971; Tall, 2013).

El concepto de limite constituye una de las ideas mds pro-
fundas y formativas del pensamiento matematico. Ensefarlo
desde la experiencia implica asumir que su comprensién no
se reduce a una definicién formal, sino que emerge de una
vivencia intelectual y sensorial del cambio. En este sentido, la
ensefianza del limite debe propiciar que el estudiante experi-
mente la aproximacion, observe la tendencia y razone sobre
lo que ocurre “cuando nos acercamos indefinidamente” a un
valor. Este proceso vivencial convierte la abstracciéon mate-
matica en una forma de percepcion refinada de la realidad
(Cornu, 1991; Tall, 2013).

Comprender el imite como experiencia de aproximacion

El limite no puede ensefarse como una férmula aislada; requie-
re que el estudiante perciba como una magnitud se aproxima
a un valor sin necesariamente alcanzarlo. Esta vivencia de
“aproximarse sin llegar” se convierte en el nUcleo cognitivo
del concepto. Como sefala Tall & Vinner (1981), muchos errores
en la comprensiéon del limite provienen de ensefiar su defini-
cion antes de que el alumno haya construido la intuicién de
la tendencia.

Por ejemplo, cuando se observa una secuencia como
1,01,0.01,0.001,..1,0.1,0.01,0.001, el estudiante puede experimentar
que los términos “se acercan” a cero, aunque nunca lleguen a ser
exactamente cero. Esta experiencia perceptiva es la base sobre
la cual puede mas tarde comprender que

lim 1—(1)11 = 0.
X—00

Aqui el limite deja de ser una operacién mecdnica para con-
vertirse en una manera de pensar el infinito como proceso.

Stewart (2021) sostiene que el limite es la idea que permite
pasar de lo finito a lo infinitesimal, de la medida al cambio. Su
comprension surge cuando el estudiante descubre que “el li-
mite no es un punto al que se llega, sino un valor hacia el cual
se tiende” (p. 89). Esta diferencia entre llegar y tender, entre
alcanzar y aproximarse, constituye la frontera conceptual que
debe recorrerse en la ensefianza del cdlculo.
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La nocion de Iimite como proceso y no como resultado

Uno de los obstdculos mds comunes es concebir el limite
como un numero final, un resultado estdtico. Sin embargo,
su esencia radica en el proceso de acercamiento. Tall (1992)
advierte que el pensamiento matemdtico avanzado requiere
superar la vision operacional para acceder a una vision es-
tructural, donde el limite se entiende como relacién dindmica.
Por ejemplo, al estudiar

lim sen(x) ’

x—0

el foco no debe situarse en obtener “1” como respuesta, sino
en observar como la razdn se estabiliza alrededor de 1 cuando
X se aproxima a O. La experiencia visual y numérica permite
gue el estudiante vea como la funcidon se autoajusta a un valor
constante. En ese instante, comprende que el limite expresa una
estabilidad en medio del cambio.

El limite no representa solo un destino, sino una tendencia
continua que revela la regularidad del fendmeno. Artigue
(2009) subraya que ensefnar el limite exige reconstruir el
sentido del movimiento y del acercamiento, pues “la nocidn
de limite implica una mirada sobre el proceso, no sobre el
punto final” (p. 174).

La vivencia del Iimite a través de la continvidad

La experiencia del limite se hace tangible cuando se relacio-
na con la idea de continuidad. El estudiante puede observar
que, en una funcién continua, los valores de la variable inde-
pendiente se aproximan sin saltos ni interrupciones, y que el
limite en un punto coincide con el valor de la funcién. Pero
mds alla del formalismo, lo esencial es que perciba la suavi-
dad del cambio.

Ejemplo 20: al analizar en un simulador el comportamiento
de la funcién

cuando X se aproxima a 1, el estudiante nota que, aunque
el punto x = 1 esta “vacio”, los valores de f(X) alrededor de
¢l se agrupan en torno a 2. Comprende entonces que el li-
mite existe incluso si el valor de la funcidn no estd definido
en ese punto.

Esa observacién lleva a una conclusion profunda: el limite no
pertenece necesariamente al dominio de la funcién; es una cons-
truccion del pensamiento, una predicciéon sobre lo que ocurriria si
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el proceso continuara (Tall, 2013). Esta interpretaciéon transforma
el limite en una herramienta epistémica que permite pensar lo
inexistente como posible.

La experiencia del Iimite en el movimiento

El limite adquiere sentido pleno cuando se vincula con el mo-
vimiento, una de las fuentes historicas de su creacién. Newton
y Leibniz lo concibieron como una manera de describir lo que
ocurre instantdneamente en procesos de cambio continuo. Asi,
el limite surge de la necesidad de expresar lo que ocurre “cuan-
do el tiempo se reduce infinitamente” o “cuando la distancia se
vuelve infinitesimal”.

Una estrategia pedagdgica efectiva consiste en utilizar experi-
mentos de movimiento real o simulado. Por ejemplo, medir co6mo
varia la velocidad promedio de un objeto en trayectos cada vez
mds cortos alrededor de un punto. El estudiante descubre que,
aunque el intervalo temporal tiende a cero, la razdén de cambio
se aproxima a un valor constante: la velocidad instantdnea. En
ese momento, la definicion formal del limite:

i1y FHR) ()
h—0 h ’

ya no aparece como un artificio algebraico, sino como una tra-
duccién simbodlica de una experiencia vivida.
El Il'mite como experiencia cognitiva del infinito
Ensefiar el limite desde la experiencia implica también acom-
pafiar al estudiante en su primer contacto significativo con el
infinito. No un infinito estatico o metafisico, sino un infinito dindmi-
co, representado en la sucesiéon interminable de acercamientos.
Cornu (1991) describe este trdnsito como el “choque cognitivo
del infinito”, una etapa donde el estudiante debe reconciliar dos
ideas opuestas: la imposibilidad de alcanzar un valor y la certeza
de poder aproximarse indefinidamente a él.

Esta vivencia exige que el docente fomente la reflexion
metacognitiva:

* Por qué nunca se llega al valor?
* ¢Por qué aun asi decimos que el limite “existe”?

Estas preguntas permiten descubrir que el limite no depende
del punto alcanzado, sino del comportamiento del proceso. En
palabras de Tall (2013), el limite es “una vision del infinito domes-
ticado por el razonamiento” (p. 91).
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Ensefar el imite como pensamiento relacional

Desde una perspectiva pedagdgica profunda, ensefiar el limite
desde la experiencia implica guiar al estudiante hacia la com-
prension de que el limite es una relacion entre variables, no un
valor aislado. Su sentido surge en la interacciéon entre lo que
cambia y lo que permanece. En este contexto, la ensefanza del
limite se vuelve una oportunidad para desarrollar el pensamiento
relacional, una forma de razonamiento que trasciende la mani-
pulacion simbdlica para situarse en la comprension estructural.

Conclusiones

El recorrido por los fundamentos del cdlculo y la nocién de limite
nos permite comprender que esta rama de la matematica no es
solo un conjunto de férmulas o reglas, sino una forma profunda
de pensar el cambio y la continuidad. A lo largo del capitulo se
mostré coémo el limite se convierte en la idea central del razo-
namiento matematico moderno, porque nos ensefia a entender
procesos que se aproximan, crecen o decrecen sin llegar ne-
cesariamente a un punto final. El cdlculo, en este sentido, nos
ofrece una mirada mas precisa y al mismo tiempo mas sensible
del mundo, al permitir describir fendmenos naturales, fisicos o
sociales desde la l6gica de la variacion. Comprender el limite es,
en esencia, aprender a razonar sobre lo infinitamente pequefio
y lo infinitamente grande, sobre lo que se acerca sin alcanzarse
y, aun asi, puede medirse y explicarse con rigor.

Desde una perspectiva pedagdgica, este capitulo deja claro
que ensefar cdlculo no debe reducirse a repetir procedimientos,
sino a generar experiencias de comprension. Cuando el estu-
diante logra visualizar cémo una funcién se aproxima a un valor,
coémo un cambio se estabiliza o cdmo una curva se suaviza, el
aprendizaje adquiere sentido y profundidad. El uso de recursos
grdficos, tecnolégicos y ejemplos cercanos a la realidad favorece
que el limite deje de ser una idea abstracta y se convierta en una
experienciaintelectual concreta. En Ultima instancia, este capitulo
invita a mirar el cdlculo como una forma de pensamiento que
une razdn e intuicion, precision y asombro, ayudando a formar
una mente capaz de interpretar el cambio con claridad, l6gica
y sensibilidad.
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CarituLo II

Derivada: analisis del cambio y
variacion de las funciones

Introduccidon

La nocidén de derivada marca un punto de inflexion en la his-
toria del pensamiento matematico, pues transforma la idea
de cambio en un objeto cuantificable. Mientras el concepto de
limite proporciona las bases para comprender la continuidad,
la derivada permite estudiar coOmo varia una magnitud en un
instante determinado. Su desarrollo fue una respuesta a pre-
guntas que la humanidad se habia hecho durante siglos: jcdmo
medir la velocidad de un cuerpo en movimiento?, jcomo de-
terminar el punto mas alto o mas bajo de una curva?, jcdmo
describir la variaciéon instantdnea de un fendmeno natural
o social? Desde las reflexiones geométricas de Fermat y los
razonamientos infinitesimales de Newton y Leibniz, el cdlculo
diferencial se ha convertido en un lenguaje universal para ana-
lizar el cambio, ofreciendo modelos que explican la dindmica
del mundo fisico, biolégico y tecnoldgico.
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El estudio de la derivada en este capitulo se organiza a par-
tir de su fundamento conceptual y su interpretacién geomé-
trica. Se inicia con la definicion de la derivada como limite del
cociente incremental, para luego explorar su representacion
como pendiente de la recta tangente y su relacién con la di-
reccion del cambio de una funcion. Posteriormente, se abordan
las reglas bdsicas de derivacion y su aplicacion a funciones
algebraicas y trascendentes, asi como las derivadas de orden
superior, que permiten analizar comportamientos mas comple-
jos como la curvatura o la aceleracién. Cada apartado busca
articular el razonamiento algebraico con la comprension visual,
de modo que el estudiante no solo apligue procedimientos,
sino que comprenda el sentido del cambio y su relacién con
la forma y el crecimiento de las funciones.

Desde una perspectiva didactica, este capitulo propone
integrar la exploracién grafica y simbdlica con el uso de he-
rramientas tecnoldgicas como GeoGebra o Desmos, que fa-
cilitan la visualizacién de la derivada y su interpretaciéon en
contextos reales. La derivada deja de ser vista Unicamente
como un algoritmo para transformarse en un concepto que
explica fendmenos de la vida cotidiana: el aumento o dismi-
nucion de una poblacién, la velocidad de un vehiculo, la ren-
tabilidad de una inversion o la propagacion de una sefal. De
esta manera, se fomenta una comprensiéon profunda, dindmica
y significativa del cdalculo, orientada no solo a la resolucidon
de problemas, sino también a la construccidon de una mirada
critica sobre el cambio y la variacién en los distintos campos
del conocimiento.

La derivada como limite del cociente incremental

La derivada surge de la necesidad de medir con precision el
cambio instantdneo, una idea que marcd uno de los mayores
logros del pensamiento matemdatico. Mientras el dlgebra permite
calcular variaciones entre puntos distantes, el cdlculo diferencial
busca capturar lo que ocurre en un instante infinitesimal: el mo-
mento exacto en que algo crece, decrece o se transforma. Esta
nocion se formaliza a través del limite del cociente incremental,
expresion que representa la razdén de cambio promedio entre
dos puntos cada vez mads cercanos sobre una curva. Asi, si una
funcion f(X) describe un fendmeno continuo, la derivada en un
punto X = a se define como

f'(a) = iﬁw
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siempre que dicho limite exista (Figura 1). Esta formulacién ex-
presa la pendiente de la recta tangente a la curva en el punto
(a,f(a)). y constituye el corazon del andlisis del cambio. En pa-
labras de Stewart (2021), la derivada no solo mide la rapidez con
que una cantidad varia, sino que revela la estructura interna del
movimiento, la direccién del crecimiento y la sensibilidad de una
funcién ante pequefias modificaciones en su variable.

Figura 1.
Limite del cociente incremental de f(x)en r=a

¥

Nota. Elaboracion propia

El concepto de derivada tiene raices histéricas profundas.
Fermat, en el siglo XVII, explord métodos para hallar maximos
y minimos sin conocer aun la nocion de limite, mientras que
Newton y Leibniz, de manera independiente, formalizaron el
cdlculo infinitesimal para estudiar el movimiento de los cuer-
pos celestes y los fendmenos naturales (Boyer, 2011). Newton
concibié la derivada como una razdn de velocidades, vincula-
da al cambio en el tiempo, mientras que Leibniz la interpretd
como una relacion entre diferenciales infinitesimales, lo que
dio origen a la notacién alun utilizada.

dy

dx
Estas visiones convergieron en una misma intuicién: el cam-
bio continuo puede ser descrito matemdaticamente mediante
un limite, una idea que siglos mds tarde seria rigurosamen-
te formulada por Cauchy y Weierstrass. Larson y Edwards
(2022) sefalan que esta evolucidon histérica demuestra como
la derivada no nacié de una definicion formal, sino de una
necesidad intelectual: comprender el comportamiento de
la naturaleza a través de sus variaciones. Comprender la
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derivada como limite implica, por tanto, entenderla como una
transicion conceptual: se pasa de una razén promedio a una
razén instantdnea. (Figura 2)

Figura 2.
Limite del cociente incremental de f(ai)en T =a

Nota. Elaboracion propia

Ejemplo 1: consideremos la funcién f(X) = x2. Si se analiza
la variacion de f(x) entre los puntos x =2y x =2+ h, el co-
ciente incremental es

£(2+h)—£(2 2+h)*—4 2_
(})1():(}1) = A4 g4y

Al hacer h cada vez mas pequefio, el término h tiende a
cero, y el limite resulta ser 4. Asi, la derivada de f(x) = x2, lo
que indica que la pendiente de la tangente en ese punto es
4. Este valor expresa el ritmo exacto de cambio de la funcién
en ese instante, mostrando coémo la derivada actua como un
“microscopio matemdatico” que revela la variacién puntual de
una magnitud (Thomas et al., 2024).

Definicion funcion derivable
Sea f una funcion definida en un intervalo abierto y Xg un punto
de ese intervalo. Se dice que f es derivable en dicho punto Xy
si existe el limite:

lim f(X0+AAX)—f(X)
Ax—0 X ’

y en este caso se denomina derivada de f en X y se denota por:
f'(xq).
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Otra notacién usada en la prdctica es Notacion de Leibniz

dy
dx

X=Xy

Sif es derivable en un punto X, la derivada de f en dicho punto,
gue denotaremos por f'(Xg), es igual al valor de la pendiente de
la recta tangente a la curva definida pory = f(x) en dicho punto
Xp. Por tanto la ecuacion de la recta tangente viene dada por:

y — f(x0) = £'(x0) (x — x0).

Ejemplo 2: Podemos calcular la derivada de f(X) en

un punto por ejemplo (3,- 6) donde f(X) se defina como:
f(x) =x% — 8x + 1. (Figura 3)

Sea a = 3 la abscisa de P(3 ,- 6), entonces:

. f(a+h)—f(a . (a+h)2—8(a—|—h)+1 —[a2—8a—|—1]
Fa) = lim T iy [ )+ ]

— 1:.. a2+2ah+h%?—8a—8h+1—a%+8a—1
— bt

— lim 22040°8h — fi (94 4 h — 8) = 2a— 8
h—0 h—0

por tanto f’(3) = —2 de ahique la recta en el punto P tiene
pendiente -2.

Figura 3.
Derivada de f(x) en un punto (3,- 6)

Nota. Elaboracion propia
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En la practica, este razonamiento se extiende a multiples
contextos. En fisica, la derivada de la posicion respecto al
tiempo define la velocidad instantdnea; en economia, la deri-
vada del costo o del ingreso respecto a la cantidad producida
permite estudiar la productividad marginal; en biologia, la de-
rivada de una funcién de crecimiento celular describe el ritmo
de reproducciéon en un instante especifico. Asi, la derivada se
convierte en un instrumento de lectura del cambio, capaz de
conectar las leyes del movimiento, el crecimiento y la optimiza-
cion con su representaciéon matematica. Apostol (1967) afirma
que la potencia del cdalculo radica en su universalidad: el mismo
razonamiento que explica la aceleracién de un cuerpo sirve
para analizar el comportamiento de una funcién logistica o el
flujo de informacién en un circuito electrénico.

Apoyo diddctico: ensefiar la derivada como limite del co-
ciente incremental exige un enfoque visual y experimental. Es
fundamental que el estudiante observe cOmo la secante entre
dos puntos de una curva se convierte progresivamente en una
tangente al acercar ambos puntos entre si. GeoGebray Desmos
permiten visualizar este proceso dindmicamente, mostrando
como la pendiente promedio se transforma en una pendiente
instantdanea. Tall (1992) sugiere que este trdnsito de lo intuitivo
a lo formal es decir de la percepcion del cambio a su expre-
sion simbdlica, es esencial para desarrollar una comprension
profunda del cdlculo.

Interpretacion geométrica: pendiente, tangente y direccion de
cambio
El concepto de derivada, piedra angular del cdlculo diferencial,
alcanza su comprensién mds profunda cuando se interpreta
geométricamente. Desde la perspectiva visual, la derivada de
una funcidn en un punto expresa la pendiente de la recta tan-
gente a su grdafica en ese lugar. Esta idea, aparentemente senci-
lla, contiene la esencia misma del cdlculo: cuantificar codmo una
magnitud cambia en un instante infinitesimal. Asi, el estudio de
la pendiente y la tangente no es una cuestion meramente alge-
braica, sino una ventana hacia la comprension del movimiento, el
crecimiento, la oscilacion y la transformacién de los fendmenos
naturales y sociales (Stewart, 2021).

Cuando se observa una funcién en el plano cartesiano, la
forma de su curva revela su historia de cambio. Si una fun-
ciéon crece, su pendiente es positiva; si decrece, es negativa;
si se mantiene constante, la pendiente es cero. La derivada
f’(xo) expresa precisamente esa inclinacién en el punto Xy,
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es decir, la direccién y magnitud del cambio instantdneo. En
términos geométricos, la pendiente puede definirse como el
limite del cociente incremental:

Esta definicion permite pasar del cdlculo de una razén media
de cambio a unarazdén instantdnea, lo que equivale a reempla-
zar la secante por la tangente, que representa el comportamien-
to de la funcion en un Unico punto. Como explica Apostol (1967),
esta transicion es un acto conceptual: el paso de lo finito a lo
infinitesimal, del intervalo al punto, de la variacion al instante.

Apoyo diddctico: visualizar esta relacion es esencial para
el aprendizaje del cdlculo. Artigue (2009) subraya que la ense-
fianza tradicional del limite y la derivada suele quedar atrapa-
da en la manipulacion simbodlica, mientras que los estudiantes
comprenden de forma mas natural el cambio si pueden repre-
sentarlo graficamente y observar como las rectas secantes se
transforman en tangentes. Por ello, la interpretacion geomé-
trica no solo refuerza la comprension conceptual, sino que
propicia una experiencia cognitiva del cambio: ver c6mo una
funcién “se mueve” en torno a un punto y cémo la pendiente
se convierte en el indicador mas preciso de esa dindmica.

La direccion de cambio se manifiesta en la orientacion de la
tangente: ascendente cuando la funcidn aumenta, descendente
cuando disminuye. La magnitud de esa inclinacion mide la inten-
sidad del cambio. Cuando la derivada es grande, el fendmeno
varia rapidamente; cuando es pequefia, el cambio es lento o casi
nulo. Este enfoque permite comprender la derivada como un
lenguaje geométrico universal para describir procesos de la rea-
lidad: velocidad en fisica, crecimiento en biologia, productividad
marginal en economia o intensidad de respuesta en ingenieria.

Para comprender mds profundamente esta relacién entre
pendiente, tangente y direccion de cambio, resulta especial-
mente enriquecedor analizar funciones trascendentes, pues
ellas exhiben comportamientos no lineales que desafian la
intuiciéon inicial del estudiante y lo obligan a construir signifi-
cados mas elaborados.

Ejemplo 3:1a funcién f(X) = e* representa el paradigma del
crecimiento continuo. Su derivada, f’(X) =e* , indica que la
pendiente de la tangente en cada punto coincide exactamente
con el valor de la funcion. (Figura 4)

Geométricamente, esto significa que la direccion de cambio
crece d la misma velocidad con que la funcion se eleva. En el
plano, las tangentes a la curva son cada vez mds inclinadas a
medida que se avanza hacia la derecha: lo que comienza como
un ascenso moderado se convierte en una elevacion casi vertical.
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Figura 4.
Crecimiento continuo de f(a:)

fi{w) &=

Fi=) o

Nota. Elaboracion propia

Este comportamiento tiene implicaciones fenomenolégicas
profundas: en biologia modela el crecimiento poblacional sin
limites; en economia, el interés compuesto; en fisica, el aumen-
to exponencial de una reaccidén en cadena.

En contraste, la funcidn f(X) = ln(x) ilustra el comportamien-
to opuesto. Su derivada

expresa un crecimiento cada vez mas lento a medida que
aumenta X (Figura 5). Geométricamente, las tangentes en
los puntos cercanos a X = 1 son inclinadas, pero conforme la
funcion avanza hacia la derecha, se aplanan gradualmente. La
direccién de cambio sigue siendo positiva, pero la pendiente
se reduce hasta acercarse a cero.

Figura 5.
Comportamiento aplanado de f’(x)

i

Nota. Elaboracion propia
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Esta funcion encarnala nocién de rendimientos decrecientes:
al principio, el cambio es rapido, pero con el tiempo los incre-
mentos se vuelven minimos. En contextos reales, este patron
describe procesos de aprendizaje, saturacion o amortiguacion.
Didacticamente, permite explorar cémo una derivada positiva
no siempre implica un crecimiento notable, y coémo el valor de
la pendiente traduce visualmente la intensidad de la variacién
(Biza et al,, 2018). El estudiante comprende asi que la pendiente
no solo sefiala direccion, sino también ritmo, y que el cambio
puede volverse casi imperceptible sin dejar de ser positivo.

El caso de la funcion f(X) = Sen(X) ofrece una interpretaciéon
geomeétrica especialmente rica. Su derivada, f'(X) = COS(X),
muestra que la pendiente oscila entre -1y 1. La curva del seno
sube y baja periddicamente, y las tangentes acompafan ese
movimiento con inclinaciones que cambian continuamente
de signo. Cuando el seno alcanza un maximo o un minimo, la
tangente es horizontal (pendiente cero); cuando cruza el eje
X, la pendiente es maxima o minima.

Esta relacion entre funcién y derivada (Figura 6) revela una
sincronia geométrica: el coseno estd siempre adelantado un
cuarto de ciclo respecto al seno. En el plano cartesiano, ello
se traduce en una correspondencia dindmica entre posicion
y velocidad.

Figura 6.
Comportamiento oscilatorio de la pendiente

¥ = |

s fiz) = 2 senfz), 0=z =<Fnm)

-'--.'I-i-'- i T T O LT T .

f'(x) = cos(x)

Nota. Elaboracion propia

Apoyo diddctico: esta dualidad no solo tiene valor mate-
mdtico, sino que constituye un modelo conceptual del cambio
periddico, presente en los movimientos ondulatorios, las os-
cilaciones eléctricas o las vibraciones mecdnicas. Segun Tall
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(1993), el estudio del seno y el coseno es una oportunidad pe-
dagdgica para conectar la derivada con la intuicién fisica del
cambio, permitiendo que los estudiantes asocien las nociones
de pendiente, velocidad y direccion con experiencias visuales.

Ademds, la funcidn seno ejemplifica que el cambio no es
siempre progresivo ni acumulativo, sino reversible y ciclico. En
cada punto de la curva, la pendiente indica no solo cudnto se
modifica la magnitud, sino hacia dénde se orienta ese cambio.
Esta dimension direccional de la derivada permite extender
el razonamiento a fendmenos donde la variacién implica al-
ternancia, equilibrio o ritmo, aspectos fundamentales para la
comprension del mundo natural.

La funcién f(X) = tan(x) constituye un caso fascinante para
explorar la nocidon de direccién de cambio extrema (Figura 7).
Su derivada, f'(x) = sec2(x), se hace cada vez mayor conforme
X se aproxima a los puntos de discontinuidad

%-I—an

Geomeétricamente, esto significa que las pendientes de las tan-
gentes se incrementan sin limite, volviéndose practicamente ver-
ticales. La funcion expresa asi un comportamiento en el que el
cambio instantdneo se descontrola, aproximandose a la infinitud.

Figura 7.
Comportamiento infinito de las pendientes de la tangente

Flz) = sec?(x)

gixe) = tgix)

Nota. Elaboracion propia
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Visualizar esta situacion en el plano permite discutir con los
estudiantes la idea de pendiente infinita y su relacidon con las asin-
totas verticales. No se trata de una nocidn trivial: implica aceptar
que una funcién puede cambiar tan rapidamente que su direccion
de cambio deja de ser mensurable en términos finitos. Apostol
(1967) explica que esta propiedad fue una de las motivaciones
histéricas para formalizar el concepto de limite. En este sentido, la
funcidn tangente no solo ensefia cdlculo, sino que recrea su origen
historico: la necesidad de comprender lo inabarcable.

Apoyo diddctico: Tall (1993) y Artigue (2009) coinciden
en que la comprension del cdlculo se consolida cuando el es-
tudiante transita del pensamiento operacional (centrado en
reglas y algoritmos) al pensamiento estructural (capaz de
visualizar el cambio como una forma). En este transito, la in-
terpretacion geométrica actla como puente cognitivo entre
el simbolo y la experiencia. Herramientas tecnoldgicas como
GeoGebray Desmos potencian este enfoque, ya que permiten
experimentar el cambio en tiempo real: ver cobmo la recta tan-
gente se desplaza, coémo su pendiente variay cémo el nUmero
derivado cobra sentido visual y narrativo.

El aprendizaje de la derivada, por tanto, no se agota en cal-
cular pendientes. Supone desarrollar una sensibilidad geomé-
trica para percibir la direccidon del cambio en el espacio y en
el tiempo. Cuando el estudiante logra asociar una funcion
con su comportamiento grafico, y la pendiente con la historia
de su variaciéon, ha dado un paso esencial en el dominio del
pensamiento matematico avanzado. La derivada se convierte
entonces en un modo de mirar el mundo: un lenguaje visual y
conceptual del cambio continuo, capaz de explicar la armonia
entre las leyes matematicas y los procesos de la realidad.

Reglas bdsicas de derivacion y derivadas de funciones alge-
braicas y trascendentes
El paso desde la comprensidon conceptual de la derivada hacia su
dominio técnico requiere reconocer que cada regla de derivacion
encierra una logica del cambio. Las reglas no son simples rece-
tas algoritmicas, sino expresiones condensadas de propiedades
estructurales del limite. Como sefiala Stewart (2021), derivar una
funcién equivale a analizar como el cambio en una magnitud
afecta el comportamiento de otra dentro de una relacién fun-
cional. De esta manera, el cdlculo se convierte en una gramatica
simbodlica del movimiento y de la variacién.

En el dmbito didactico, ensefiar las reglas de derivacion impli-
ca promover un aprendizaje que vaya mdas alld de la mecaniza-
cion. Artigue (2009) advierte que muchos estudiantes aprenden
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a derivar sin comprender, porque asocian la derivada con una
secuencia operativa y no con una construccién tedrica basada
en el limite. En consecuencia, es indispensable que las reglas
sean presentadas como manifestaciones del concepto de razén
de cambio y no como férmulas independientes. En otras pala-
bras, derivar debe entenderse como pensar el cambio dentro
de una estructura formal coherente.

La regla de la potencia y la intuicion del crecimiento
La regla de la potencia es una de las mas fundamentales y, al
mismo tiempo, una de las mas reveladoras desde el punto de vista
delaprendizaje. Sif(x) = x" conn € R, entonces f'(x) = nx™ L.

Esta formula encierra una verdad geométrica: la pendiente
dela curvay = x" en cada punto depende proporcionalmente
de la potenciainmediata inferior. En términos visuales, cuanto
mayor es el exponente, mdas rdpido crece la pendiente confor-
me uno se aleja del origen.

Ejemplo 4: en f(X) = x3, la derivada f’(X) = 3x? indica que
la inclinacion aumenta cuadrdaticamente con x; mientras que
en f(x) = x!/2 | la derivada

f'(x) = 2\1&

revela que la pendiente disminuye conforme X crece, tendiendo
a infinito cuando X se aproxima a cero (Figura 8) .

Figura 8.
Regla de la potencia

Nota. Elaboracion propia

Esta dualidad permite reflexionar sobre el ritmo del cambio:
unas funciones se aceleran, otras se desaceleran, pero todas
obedecen la misma ley estructural.
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Larsony Edwards (2022) destacan que la regla de la poten-
cia, por su simplicidad, es una puerta de entrada para com-
prender el comportamiento local de las funciones. A través de
su aplicacién a polinomios, el estudiante aprende que cada
término de una funcién puede analizarse por separado y que
el cambio total se obtiene como la suma de los cambios par-
ciales. Esta observacién, que parece trivial, encierra el prin-
cipio de superposicién del cambio, un concepto que reapare-
cerd en el estudio de la integral como suma de variaciones
infinitesimales.

La regla del producto y la regla del cociente: interaccion y
compensacion
Cuando dos funciones dependen simultdneamente de la mis-
ma variable, sus variaciones se entrelazan. De alli surgen
las reglas del producto y del cociente, que revelan cémo el
cambio en una funcién afecta a la otra. La regla del producto
se expresa como:

& [f®)gx)] = f'(x)g(x) + f(x)g'(x).

Esta relacion puede interpretarse geométricamente como la
suma de dos efectos: el cambio de la primera funcién cuando la
segunda se mantiene fija, y el cambio de la segunda cuando la
primera se mantiene constante. En modelos fisicos o econdmicos,
este principio traduce la interaccién entre factores: el cambio to-
tal es la suma de los cambios parciales ajustados por los valores
actuales de las variables.

De manera andloga, la regla del cociente expresa una dina-
mica de compensacion:

pag
™
Na
aq\
—
X
e

i[@} _ f®)ex)—f
dx | g(x) g(x)

Aqui, el signo negativo del numerador muestra que cuando
el numerador y el denominador cambian en el mismo sen-
tido, su efecto en la razédn puede atenuarse o incluso inver-
tirse. Esta estructura refleja una intuicion de equilibrio: los
cambios proporcionales en el numerador y el denominador
pueden neutralizarse. Tall (1993) sugiere que este tipo de re-
laciones son cognitivamente desafiantes para el estudiante,
porque implican coordinar dos procesos de variacion simul-
taneos, algo que requiere una comprension relacional mas
que aritmética.
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La regla de la cadena. la estructura profunda del cambio
Entre todas las reglas de derivacion, la regla de la cadena re-
presenta la forma mds pura de la dependencia funcional. Si una
variable y depende de otra u, y esta a su vez depende de X, en-
tonces el cambio total de y con respecto a x es el producto de
los cambios intermedios:

ax [f(g())] = £'(g(x))g' (x).

Ejemplo 5: si f(x) = e la derivada f'(x) = 2xe*’
El exponente %2 actta como un mediador: el cambio en x se am-
plifica por la derivada del exponente, y luego se proyecta sobre la
derivada de la funcién exponencial. Desde una visidn geométrica,
la regla de la cadena describe cdmo un estiramiento o contrac-
cion del eje x se traduce en una deformacién proporcional en la
pendiente de la curva.

Artigue (2009) subraya que esta regla no solo tiene un
valor algebraico, sino epistemoldgico: introduce al estudiante
en el pensamiento funcional jerdrquico, donde cada nivel de
dependencia genera un efecto sobre los demas.

Comprender la regla de la cadena es comprender que el

cambio no ocurre en aislamiento, sino dentro de sistemas in-
terconectados. (Figura 9)

Figura 9.
Regla de la cadena

Nota. Elaboracion propia
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Derivadas de funciones algebraicas. el cambio modelado por
la forma
Las funciones polinomiales permiten visualizar el cambio como
una construccién acumulativa. Cada término apX", aporta una
contribucidn especifica al ritmo global de variacién. Por ejemplo, si

f(X) = 2x* — 3x2 +x — 5 entonces f(X) =2x* - 3x24+x-5.

La derivada es también un polinomio, pero de grado inferior,
lo cual sugiere que el cambio es siempre menos complejo que
la forma original: la variacion “simplifica” la estructura, elimi-
nando una capa de crecimiento.

Este fendmeno, sefialado por Stewart (2021), ilustra la idea
de que el cdlculo no destruye la forma, sino que la interpreta
a otro nivel.

En el caso de las funciones racionales, la derivada incorpora
la nocion de compensacion.

Ejemplo 6: Si
2x(x3+2) — (x2+1) (3x2)

(x3+2)°

f(x) = izi; , entonces fI(X) =
La complejidad del resultado refleja la interaccidén entre el
crecimiento del numerador y el del denominador (Figura 10).
Geométricamente, este tipo de funciones muestran regiones
donde la direccién del cambio puede invertirse, fendmeno que
en el aula resulta valioso para discutir el concepto de monoto-
nia y el comportamiento asintotico de las funciones.

Figura 10.
Comportamiento asintético de f(:c)

[ ] -

Nota. Elaboracion propia
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Derivadas de funciones trascendentes. la geometria del cambio
en la naturaleza

Las funciones trascendentes introducen una nueva forma de
pensar la derivada: no como una simple pendiente numeérica, sino
como una expresion de ritmo, direccién y naturaleza del cambio.
En ellas, la derivada se convierte en una narrativa del compor-
tamiento del fendmeno representado: unas funciones crecen sin
limite (exponenciales), otras se estabilizan (logaritmicas o hiperbd-
licas), y otras oscilan (trigonométricas), cada una describiendo pa-
trones que se repiten en los sistemas fisicos, bioldgicos y sociales.

Tabla 1.
Derivadas de funciones trascendentes
‘ 5 3 Derivada Interpretacic?n ‘
Tipo de funcion Funcion f(x) geométrica / signi-
f’(x) . .
ficado del cambio
Exponencial e® e® La pendiente en
natural cada punto coinci-
de con el valor de
la funcién; el cam-
bio crece de forma
proporcional a su
magnitud actual.
Exponencial a*,a>0,a#1 a*In(a) La pendiente es
general proporcional al
valor de la funcion,
escalada por In(a).
Logaritmica In(x),x >0 % El cambio es po-
natural sitivo pero decre-
ciente; la funcion
crece cada vez mas
lentamente.
Logaritmica log,(x),a>0,a # 1 xlnl(a) Similar a la anterior,
general pero el ritmo de-
pende de la base a.
Seno sen(x) cos(x) La pendiente
alterna entre posi-
tiva y negativa; el
cambio es ciclico y
periddico.
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Coseno

cos(x)

— sen(x)

El cambio tiene sig-
no opuesto al seno;
la funcién descien-
de cuando el seno
asciende.

Tangente

tan(x)

sec?(x)

La pendiente au-
menta sin limite
cerca de las asinto-
tas; el cambio pue-
de volverse infinito.

Cotangente

cot(x)

—csc?(x)

Disminuye conti-
nuamente; refleja
una variacion in-
versa respecto a la
tangente.

Secante

sec(x)

sec(x) tan(x)

La pendiente se
amplifica segun la
combinacion de la
funcioén y su razén
tangencial.

Cosecante

csc(x)

— csc(x) cot(x)

Cambio negativo
y proporcional al
producto con su
cotangente.

Seno
hiperbdlico

senh(x)

cosh(x)

Crece exponencial-
mente sin periodici-
dad; modela curvas
de suspension o
hipérbolas.

Coseno
hiperbdlico

cosh(x)

senh(x)

Aumenta continua-
mente; su cambio
refleja simetria
hiperbodlica.

Tangente
hiperbdlica

tanh(x)

sech?(x)

Su pendiente tien-
de a cero al aproxi-
1; cambio
autorregulado.

marse a

Nota. Elaboracion propia.

En la enseffanza del cdalculo, Stewart (2021) y Larson y
Edwards (2022) coinciden en que estas funciones deben ser
presentadas a través de su dimensién visualy fenomenoldgica,

76



Reinoso Sanchez Miguel Angel / Saquinaula Brito José Luis

de modo que el estudiante pueda vincular la forma de la curva
con el sentido de su variacién. Tall (1993) subraya que el apren-
dizaje de las derivadas trascendentes favorece el desarrollo
de un pensamiento analitico superior, capaz de reconocer la
regularidad en el cambio.

Razones de cambio
Comprender la idea de razdn de cambio significa adentrarse en
el corazdn mismo del cdlculo diferencial. En su sentido mas pro-
fundo, este concepto traduce la intuicion humana del movimiento,
la transformacion y el crecimiento en un lenguaje matemdtico
capaz de describir la dindmica del mundo. La razéon de cambio
expresa como una magnitud se modifica respecto a otra, y su for-
mulacién moderna constituye uno de los logros intelectuales mas
importantes de la historia de la ciencia. En palabras de Stewart
(2021), el calculo “proporciona la gramatica de la naturaleza”,
pues convierte en expresion formal aquello que percibimos como
variacion: la velocidad de un cuerpo, la pendiente de una curva
o la aceleracion de un proceso bioldgico.

El estudio de las razones de cambio hunde sus raices en la
necesidad humana de medir la transformaciéon. Ya los filoso-
fos griegos reflexionaban sobre el cambio, pero carecian de
un lenguaje cuantitativo para describirlo. Zenon de Eleaq, en
sus célebres paradojas, se preguntaba cémo era posible que
Aquiles alcanzara a la tortuga si el movimiento podia dividirse
infinitamente; sin embargo, ese problema no pudo resolverse
hasta la aparicion del concepto de limite. Con Galileo Galilei,
el pensamiento cientifico dio un paso decisivo: al estudiar la
caida libre, introdujo la nocién de velocidad promedio como
razén entre espacio y tiempo, reconociendo que la velocidad
no era constante, sino cambiante. Aunque su método era em-
pirico, Galileo senté las bases del razonamiento diferencial
al asociar la variacion fisica con una proporcion matematica
(Boyer & Merzbach, 2011).

El salto conceptual definitivo llegd con Isaac Newton y
Gottfried Wilhelm Leibniz en el siglo XVII. Ambos compren-
dieron que el cambio continuo podia representarse mediante
relaciones infinitesimales. Newton lo llamoé “fluxion”: la velo-
cidad a la que fluye una cantidad en el tiempo. Leibniz, en
cambio, introdujo la notacidn diferencial

dy
dx’

que ha perdurado hasta hoy. Esta escritura condensaba una idea
revolucionaria: que el cambio de una magnitud podia entender-
se como el cociente de dos incrementos infinitesimales. Como

77



Derivada: analisis del cambio y variacién de las funciones

explica Kline (1990), esta intuicion fue mucho mds que un avance
técnico; representd una nueva forma de pensar la naturaleza
como un conjunto de procesos en lugar de entidades estaticas.

En términos sencillos, una razdén de cambio promedio mide
cdbmo varia una cantidad con respecto a otra a lo largo de un
intervalo. Si un movil recorre una distancia s en un tiempo t,
su razén de cambio promedio se expresa como

As __ 5378y
At~ Tt

Este cociente indica el ritmo de variacién en un lapso de-
terminado. En fisica, representa la velocidad media; en eco-
nomia, el costo medio; en biologia, la tasa de crecimiento
promedio de una poblacién. Pero la ciencia moderna no se
conformo con conocer el promedio del cambio: buscd medirlo
en un instante. Surge entonces la razén de cambio instantd-
nea, entendida como el limite del cociente incremental cuando
el intervalo tiende a cero:

. As
v = lim &2
At—0 At

El paso del cambio promedio al cambio instantdneo no es
solo un proceso algebraico, sino también un salto cognitivo.
Seqgun Tally Vinner (1981), los estudiantes tienden a concebir el
cambio como algo observable y discreto, por lo que necesitan
reconstruir mentalmente la idea de variacion continua. La razén
de cambio actUa entonces como un puente entre la percepcion
empirica y la abstraccion formal: permite comprender como una
pendiente tangible se transforma en una nocidn infinitesimal. En
la ensefianza del cdlculo, esta transicion constituye una de las
experiencias intelectuales mds significativas, pues representa
el paso de lo visible a lo conceptual.

Ejemplo 7: Consideremos la funcion f(x) = x

Si se calcula la razon de cambio promedio entrex =2 yx =3
, se obtiene:

2

Este valor indica que, en promedio, la funcién crece 5 unida-
des de y por cada unidad que aumenta X en ese intervalo. Sin
embargo, si deseamos conocer la razén de cambio en el punto
exacto x =2, debemos hacer que el incremento tienda a cero:

2 o2 9
£1(2) = lim B =2° _ g5, 4hih® g
(2) hoo b hoo B
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Asi, la pendiente instantdnea en ese punto es 4 (Figura 11).
Lo que comienza como una comparacion entre dos puntos se
convierte, al limite, en una observacion del comportamiento
local de la funcion.

Figura 11.
Razon de cambio promedio de f(a:) entrex =2yx =3

'E!'I

T ——

Nota. Elaboracion propia

El significado de la razdén de cambio trasciende el dmbito
matematico. En biclogia, la tasa de crecimiento de una pobla-
cion P(t) se modela mediante la funcién logistica

P(t) - %

donde K es la capacidad maxima, A una constante y T la tasa
de crecimiento. La derivada

! rAe ™K

P/(t) = K
muestra como el crecimiento es rapido al inicio, luego se des-
aceleray finalmente se estabiliza. Murray (2002) sefiala que
esta funcion describe fielmente procesos bicldgicos como la
difusion de enfermedades o el crecimiento de poblaciones,
y que su interpretacion depende directamente de la razon
de cambio.

79



Derivada: andlisis del cambio y variacién de las funciones

Ejemplo 8: En un laboratorio de microbiologia, un grupo
de investigadores estudia el crecimiento de una colonia de
bacterias en un medio con nutrientes limitados. Al inicio del
experimento, se colocan 50 bacterias en una placa de cultivo.
Con el paso de los dias, las bacterias se reproducen, pero el
crecimiento no puede mantenerse de forma indefinida, ya que
los recursos del medio comienzan a agotarse.
Los cientificos estiman que la poblacién maxima que puede
alcanzar el cultivo, antes de que los nutrientes se agoten com-
pletamente, es de 10 000 bacterias. Ademas, determinan que

la tasa intrinseca de crecimiento es de 0.6 por dia.
A partir de estas condiciones (Figura 12), el crecimiento se

modela mediante la funcién logistica

P(t) = Trigee e

Figura 12.
Comportamiento del crecimiento de la funcion logistica P(t)
=

' |
[

| o

I' P .

Nota. Elaboracion propia

En economia, la razén de cambio se conoce como tasa mar-
ginal y constituye la base del andlisis econdmico diferencial.
Si C(x) representa el costo total de producir X unidades, la
derivada C’(x) indica el costo adicional de producir una uni-
dad mas: el costo marginal. Esta informacion es esencial para
determinar precios, maximizar beneficios y equilibrar recur-
sos (Chiang & Wainwright, 2005). La economia matemdtica,
como sefala Blitzer (2022), es impensable sin el concepto de
razdn de cambio, pues toda decision racional implica compa-

rar variaciones.
En la fisica moderna, las razones de cambio son el lengua-

je mismo de las leyes naturales. La velocidad es la razén de
cambio de la posicion respecto al tiempo, y la aceleracion, la
razén de cambio de la velocidad. En electromagnetismo, la ley
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de Faraday establece que la fuerza electromotriz inducida en
un circuito es proporcional a la razén de cambio del flujo mag-
nético. Incluso la teoria de la relatividad de Einstein se apoya
en derivadas que expresan coOmo cambian las magnitudes
espacio-temporales con respecto a los sistemas de referencia.

Desde un punto de vista mas abstracto, la razén de cambio
introduce la idea de dependencia funcional. Como afirma Duval
(2017), pensar matematicamente significa comprender las rela-
ciones entre variables y no solo los valores que adoptan. En este
sentido, la razén de cambio ensefia a mirar el mundo como un
sistema de interacciones: cada fenédmeno depende de otro y su
comportamiento se expresa en la tasa con que uno afecta al otro.

Esta vision relacional también tiene profundas implicaciones
didacticas. Artigue (2009) sostiene que la enseffianza tradicio-
nal del cdlculo suele centrarse en la aplicacién mecdanica de
reglas de derivacion, sin propiciar una comprension conceptual
del cambio. En cambio, un enfoque basado en las razones de
cambio invita a los estudiantes a explorar graficamente el com-
portamiento de las funciones, a observar como la pendiente de
la secante se transforma en tangente, y a interpretar el valor
de la derivada en términos del fendmeno que representa. Las
herramientas digitales como GeoGebra o Desmos ofrecen un
entorno idoneo para esta experiencia, al permitir visualizar el
cambio de manera dindmica y manipulable.

Hiebert y Carpenter (1992) agregan que el aprendizaje con
comprension requiere conectar las representaciones numeéricas,
algebraicas y graficas de un mismo concepto. En este sentido,
la razon de cambio actUa como eje articulador, porque une la
expresion algebraica

Ay
Ax

con la representacion geométrica de la pendiente y con la interpre-
tacion verbal de la variacién. Cuando el estudiante logra vincular
estas formas de representacion, el cdlculo deja de ser un procedi-
miento para convertirse en una forma de pensamiento relacional.

A nivel cognitivo, el estudio de las razones de cambio pro-
mueve lo que Tall (2013) denomina “pensamiento estructural™:
la capacidad de reconocer patrones de variacion en contextos
distintos. Un estudiante que entiende la razén de cambio en
una funcién polindbmica puede transferir ese conocimiento @
una funcidn exponencial o trigonométrica, porque ha interiori-
zado la légica del cambio mdas alld de la forma de la ecuacion.

Desde el punto de vista histérico, la consolidacion de la ra-
z6n de cambio como herramienta universal de andlisis marco
una revoluciéon epistemolégica. En el siglo XVIII, matemdticos
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como Euler y Lagrange formalizaron el calculo diferencial con
un rigor que permitid su expansién a la mecadnica, la astro-
nomia y la ingenieria. En el siglo XIX, Cauchy y Weierstrass
introdujeron la definicion € — & del limite, asegurando la con-
sistencia l6gica de las derivadas. Mds tarde, el pensamiento
de Leibniz se retomd en la teoria de funciones diferenciables,
en la geometria y en la fisica cuantica. Apostol (1967) subraya
que toda esta evolucién histérica puede interpretarse como
la bUsqueda constante de una descripcidn precisa del cambio.

En la practica educativa contempordnea, la nocidon de razén
de cambio es también una puerta de entrada a la interdisci-
plinariedad. Los proyectos de modelizacion matemdatica per-
miten que los estudiantes exploren fendmenos reales desde
el cdlculo: el crecimiento de una bacteria, el aumento de la
temperatura en un cuerpo, la depreciacién de un vehiculo o
el flujo de usuarios en una red social. Cada una de estas si-
tuaciones encarna una razén de cambio concreta que puede
representarse grdaficamente, analizarse algebraicamente y
explicarse verbalmente.

Seqgun Godino y Batanero (1998), ensefiar cdlculo requiere
integrar la “dimensidon semidtica” y la “dimensién fenome-
noldgica” del conocimiento. La primera se refiere al manejo
de simbolos y féormulas; la seqgunda, a la comprension de los
fenémenos que esos simbolos describen. La razén de cambio
actUa como punto de convergencia entre ambas dimensiones,
porque su significado no depende del nUmero obtenido, sino
del fendmeno al que se refiere.

Por ello, en la ensefianza de la derivada resulta fundamental
insistir en la lectura de grdaficos y en la interpretacién con-
textual de los resultados. Un estudiante debe poder decir no
solo que f/(2) = 4, sino qué implica eso en el problema: que
la temperatura aumenta cuatro grados por hora, que la po-
blacién crece cuatro individuos por unidad de tiempo o que
la ganancia se incrementa en cuatro dblares por producto
adicional. Esa interpretacion semantica del nUmero derivado
es lo que distingue la comprension instrumental de la com-
prensién conceptual.

La pedagogia del cdlculo, por tanto, no debe limitarse a la
transmision de técnicas, sino promover el desarrollo de una
sensibilidad matemdtica para interpretar la variacién. Esto
implica un enfoque que combine lo conceptual, lo histérico,
lo visualy lo aplicado. Como sugiere Artigue (2009), ensefiar
cdlculo es invitar a los estudiantes a construir modelos del
mundo, a reconocer regularidades y a traducirlas en relacio-
nes cuantitativas.
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En sintesis, las razones de cambio constituyen el nUcleo del
pensamiento diferencial. Representan la capacidad humana de
mirar el mundo no como una coleccidon de objetos, sino como
una red de procesos en transformacion. Comprender una ra-
z6bn de cambio es comprender una ley de comportamiento;
derivar una funcion es leer la historia de su movimiento. En el
aula, ensefiar este concepto es ensefiar a pensar en términos
de relacién, dependencia y continuidad. Cuando el estudiante
logra asociar una pendiente con una tendencia, un valor con
una variaciéon y una férmula con un fendmeno, ha alcanzado el
sentido profundo del cdlculo: la lectura matematica del cambio.

Aplicaciones de la derivada: crecimiento, decrecimiento y
optimizacion
El cdlculo diferencial constituye una de las creaciones intelec-
tuales mas influyentes en la historia del pensamiento humano.
Su aparicion transformé profundamente la forma de concebir el
movimiento, la variaciéon y el cambio, ofreciendo una herramienta
tedrica para comprender fendmenos que, hasta entonces, pare-
cian inabordables por la matematica clasica. En el centro de esta
revolucion se encuentra la derivada, cuya potencia conceptual
radica en medir el cambio instantdneo, en expresar con rigor
matematico como una magnitud se modifica con respecto a otra
(Stewart, 2021).

Las aplicaciones de la derivada en el andlisis de funciones
no solo permiten determinar donde una variable aumenta o
disminuye, sino también comprender los puntos en los que se
alcanza un equilibrio o una optimizacién. Dicho de otro modo,
el cdalculo traduce la idea de cambio en un lenguaje formal
que puede ser analizado, representado y predicho. Apostol
(1967) sefiala que “la derivada no es Unicamente una herra-
mienta computacional, sino un modo de interpretar la realidad
mediante relaciones de dependencia y continuidad” (p. 145).

En el dmbito educativo, esta capacidad interpretativa tiene
un valor pedagodgico incalculable. Ensefiar las aplicaciones de
la derivada es ensefiar a pensar el cambio desde distintas pers-
pectivas: la geométrica, la simbdlica, la numérica y la verbal.
Sequn Duval (2017), el pensamiento matematico se construye
precisamente a través de la coordinaciéon entre estos registros
de representacion, que permiten al estudiante conectar lo
abstracto con lo visual y lo simbélico con lo fenomenoldgico.
En consecuencia, el estudio de las aplicaciones de la derivada
se convierte en un espacio privilegiado para articular teoriaq,
visualizacién y practica contextualizada.
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Crecimiento y decrecimiento. la lectura del cambio
Analizar el crecimiento y decrecimiento de una funcién es com-
prender su dindmica interna. Una funcion f se dice creciente en
unintervalo lll cuando, alaumentar X, los valores de f(X) también
aumentan; de manera andloga, es decreciente cuando f(X) dis-
minuye a medida que X crece. Desde el punto de vista analitico,
el signo de la derivada determina este comportamiento:

s Si f/(X) > 0, la funcién crece.

.+ sif'(x) <0, la funcion decrece.

Este criterio constituye la base del estudio cualitativo de las
funciones. A diferencia del enfoque puramente algebraico, el
andlisis de crecimiento no busca calcular valores numeéricos,
sino describir tendencias: hacia dénde se dirige la funcién,
cudndo se detiene, cudndo cambia su ritmo o su direccién.
Stewart (2021) explica que el cdlculo se distingue precisamente
por su capacidad para pasar del valor puntual al comporta-
miento global, integrando la informacién local que aporta la
derivada.

Ejemplo 9: la funcién cUbica

f(x) = x® — 3x. Su derivada f'(x) = 3x% — 3,

se anula en X = 1 (Figura 13). Evaluando los signos, se concluye
que:

* Si f’(X) >0, parax < —1yx > 1 Iafuncién crece

s Si f/(X) < 0, la funcién decrece.

Esta descripcion simbdlica se traduce visualmente en una
grdfica con dos cambios de pendiente, donde la tangente pasa
de ascendente a descendente.

Figura 13.
Cambio de pendiente de la funcidn f(ZB)

Nota. Elaboracion propia
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Lo esencial no es el calculo en si, sino la interpretacion del
signo como expresion del comportamiento. Duval (2017) insis-
te en que esta interpretacion visual favorece la comprension
conceptual, pues permite que el estudiante “vea” la variacion
antes de formalizarla algebraicamente.

Desde el punto de vista historico, el estudio del crecimiento
y decrecimiento refleja la preocupacién de los matematicos por
describir la naturaleza. Para Newton, cada cambio observable
tenia su correspondencia en una tasa de variaciéon, mientras
que Leibniz concebia la derivada como la relacion entre di-
ferenciales infinitesimales. En ambos casos, el pensamiento
sobre el cambio se articulé como una bUsqueda de regularidad
en lo dinédmico (Apostol, 1967).

Apoyo diddctico:en la ensefianza actual, los entornos digita-
les como GeoGebra permiten hacer visible esta idea. Cuando
el estudiante manipula el punto que se mueve sobre la grdafica,
observa coémo el valor de la derivada representado como la
pendiente de la tangente, varia continuamente. Esta experien-
cia perceptiva refuerza el vinculo entre el concepto algebraico
y su representacién geométrica, lo que Tall (2013) denomina
el paso del mundo visual-sensorial a mundo simbédlico.

La interpretacion de crecimiento y decrecimiento también
ofrece oportunidades para la argumentacion. El docente puede
plantear preguntas deltipo: ; Qué ocurre con la pendiente cuando
la funcién alcanza su punto mas alto?, o ¢por qué el signo de la
derivada determina la direccion del cambio. Este tipo de razona-
miento heuristico fomenta la reflexidon y la metacognicién, pro-
moviendo una comprension profunda del concepto de variacion.

Extremos. equilibrio y estabilidad
Los extremos de una funcion representan estados de equilibrio.
Son los puntos donde la funcidn “se detiene” momentdneamente,
antes de cambiar su tendencia. Matematicamente, un punto Xg es
un extremo local si la derivada se anula o no existe, y la funcién
cambia de creciente a decreciente o viceversa.

El criterio de la primera derivada establece que:

s Si fI(X) pasa de positiva a negativa en Xg entonces f(Xo)

tiene un maximo local

* S f'(X) pasa de negativa a positiva, es un minimo local.

El criterio de la segunda derivada, por su parte, analiza la
concavidad: si f/(Xo) >0, el punto es un minimo (curvatura
hacia arriba); si f’(xo) < 0, un méximo (curvatura hacia abajo)
(Larson & Edwards, 2022).

Estos criterios pueden interpretarse intuitivamente median-
te la geometria. Una funcién con curvatura positiva se asemeja
a un “valle” (la tangente esta por encima de la curva), mientras
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qgue una con curvatura negativa se parece a una “colina”. De
este modo, la derivada segunda actUa como una “mirada de
segundo orden” sobre el cambio: no mide cudnto crece o de-
crece la funcion, sino codmo cambia el cambio.

Ejemplo 10: Sea f(x) = —x? + 6x — 5 (figura 14).Aqu

f'(x) = —2x+6

seanulaenXx = 3,y f"(X) = —2indica concavidad hacia abajo,
por tanto (3,4) es un maximo global.

Figura 14.
Representacion de concavidad hacia abajo de f(w)

Nota. Elaboracion propia

Este tipo de razonamiento resulta fundamental para com-
prender la nocion de estabilidad. En fisica, un cuerpo se en-
cuentra en equilibrio cuando la fuerza neta es cero, lo que
corresponde a un punto donde la derivada (la fuerza) se
anula. Si ademds la segunda derivada es positiva, el equili-
brio es estable (minimo de energia); si es negativa, inestable
(maximo de energia).

Apoyo diddctico: analizar los extremos mediante simula-
ciones dindmicas favorece la comprensién visual de la esta-
bilidad. Tall (2013) propone que el aprendizaje matemdatico
se consolida cuando el estudiante logra moverse entre repre-
sentaciones sin perder el sentido de la relacion. Ver coémo la
tangente “se aplana” en los extremos antes de cambiar de
signo ayuda a comprender la relacidon entre la pendiente y el
comportamiento global.
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A nivel pedagodgico, estos conceptos también pueden abor-
darse a través de problemas contextualizados. Por ejemplo,
determinar el punto en que una empresa alcanza su maxima
produccion sin incrementar el costo, o hallar la temperatura
ideal para maximizar la eficiencia energética. Estas situaciones
invitan al razonamiento interdisciplinar, integrando la matema-
tica con la fisica, la economia o la biologia.

Optimizacion: el calculo al servicio de la decision

El estudio de la optimizacién constituye la culminacién na-
tural del andlisis de la derivada. Optimizar implica encontrar
el valor maximo o minimo de una cantidad que depende de
una o mas variables, bajo ciertas condiciones o restricciones.
Este tipo de problemas surge de la vida real y encuentra en
el cdlculo un lenguaje formal para su resolucion.

Stewart (2021) subraya que la optimizacién no solo es una
técnica, sino una forma de pensamiento: busca el equilibrio en-
tre recursos y resultados. En ingenieria, se utiliza para disefiar
estructuras que resistan con el minimo material; en economia,
para maximizar utilidades; en biologia, para modelar procesos
de supervivencia eficiente.

Ejemplo 11: Se desea cercar completamente un terreno rec-
tangular utilizando 200 metros de malla (figura 15). ;Qué di-
mensiones maximizan el drea del terreno?

Figura 15.
Representacion de la funcion a maximizar A(x)

Alz) = 1 x — x*

Nota. Elaboracion propia

SeaXelanchoy “y” el largo del rectdngulo (ambos positivos).
La restriccion de perimetro es 2x + 2y = 200 despejando
se obtiene y = 100 — x. El 4rea o maximizar es A(X,y) = XYy.
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Con la restriccion:
A(x) = 100x — x2,0 < x < 100.

Ejemplo 12: Una empresa desea fabricar un envase cilindrico
de volumen fijo V = 500cm3 (figura 16) y necesita minimizar
el material utilizado. Si el radio es T y la altura h, el volumen
es V = nr2h, y el drea total (material) es A = 2ar? + 2xr.

Sustituyendo h = % obtenemos A(l‘) = 2nr? + @,1‘ > 0.

T

Figura 16.
Representacion de la funcién a maximizar A(T‘)

Nota. Elaboracion propia

Derivando,

A'(r) = 4nr — % Igualando a cero, 4nr® = 1000,
13
lo que dar = (@) .
T

Este resultado indica que la forma 6ptima es aquella donde
la altura y el didmetro son iguales, un principio recurrente en el
disefio de envases. Verificacion de minimo (segunda derivada)
Al calcular h se tiene:

2000
h =235, partir de aqui se obtiene A"(r) =4n + 3 .

nr?

Parar > 0= A"(r) > 0. De 4x1r® = 1000 = 2 - 500 se obtie-
ne h = 2r. El cilindro de menor area para volumen fijo cumple
altura = diagmetro.
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Ejemplo 13: Una empresa constructora disefia un pértico
triangular con base fija y lados iguales de 10 metros (Figura
17). El vértice superior puede desplazarse a lo largo de una
linea vertical, de manera que la altura h cambia y con ella el
area del trigngulo.

Figura 17.

Representacion de la funcion a maximizar
¥ e
B

Al =5 I:ITI A & ]

ru

Nota. Elaboracion propia

Sea A el punto medio de la base CD, y B el vértice superior
del tridngulo.

La base mide a, por lo que cada mitad de la base tiene
longitud

A(h) = hv100 — 12,

de donde al derivar e igual a cero obtenemos h = 5v/2h. De
aquiui el drea maxima es 50. (Figura 18)

Figura 18.
Representacion de la funcion a maximizar A(a)

d 2
UREY

M X=7.1

Nota. Elaboracion propia
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Apoyo diddctico: este tipo de problemas ofrece una opor-
tunidad significativa para conectar la teoria del cdlculo con
aplicaciones tangibles, permitiendo que el estudiante com-
prenda la derivada no solo como una operacién algebraica,
sino como un instrumento para razonar sobre la optimizacion
y la toma de decisiones. Tal como plantean Duval (2017) y Tall
(2013), la comprension profunda del concepto se fortalece
cuando el aprendizaje integra lo simbdlico, lo grafico y lo
conceptual, promoviendo un pensamiento matemdatico que
interpreta y transforma la realidad desde una perspectiva de
cambio continuo.

Visualizacion y andlisis grdfico mediante herramientas
tecnoldgicas
En el aprendizaje del calculo, la visualizacidon es una forma de
pensamiento que permite transformar la abstraccién en expe-
riencia perceptible. Los conceptos de limite, continuidad, deri-
vada e integral dejan de ser formulaciones algebraicas cuando
el estudiante los ve en accién, representados en un entorno
digital que hace tangible la idea de cambio. La tecnologia, en
este contexto, no sustituye la comprensién conceptual, sino
que la media y potencia (Artigue, 2009). La representacion
grafica interactiva, el andlisis de curvas y la experimentacion
con pardmetros se convierten en estrategias fundamentales
para que los estudiantes transiten del pensamiento estatico al
pensamiento dindmico caracteristico del calculo.

Visualizacion delcambio en funciones algebraicas y trascendentes
Uno de los aportes mds significativos de la tecnologia es la po-
sibilidad de comparar funciones algebraicas y trascendentes
desde su comportamiento grdfico. Las funciones polinomiales,
por ejemplo, permiten observar la relacion entre el grado del
polinomio y la forma de su grafica. En una funcién cUbica como
f(x)=x"3 , herramientas como GeoGebra o Desmos permiten
mover puntos criticos, analizar concavidades y mostrar como
la derivada indica los intervalos de crecimiento y decrecimiento
(Figura 19). Este tipo de andlisis favorece la comprensién de la
derivada como una funciéon asociada al cambio, no solo como un
numero calculado en un punto (Stewart, 2021).
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Figura 19.
Crecimiento acelerado de f(:lj)

=) = ='

Nota. Elaboracion propia

En contraste, las funciones muestran patrones de variacion
mas complejos. Por ejemplo, la funcidon exponencial f(X) =e*
se visualiza como un crecimiento acelerado cuya pendiente
coincide con el propio valor de la funcion.

La grdfica de su derivada, al superponerse, revela una pro-
piedad esencial: la derivada de €* es la misma funcién, lo que
convierte a esta curva en un modelo paradigmatico del cambio
proporcional. Las funciones logaritmicas, en cambio, crecen
cada vez mas lentamente, representando procesos de creci-
miento desacelerado como la difusién de informaciéon o la dis-
minucion de intensidad de una sefial (Larson & Edwards, 2022).

Las funciones trigonométricas ofrecen otro nivel de andlisis
visual. Al graficarlas junto a sus derivadas, el estudiante puede
observar la relacién armoénica entre sus cambios: cuando el seno
alcanza su maximo, la derivada (coseno) se anula, y viceversa
(Figura 20). Este patréon ciclico muestra cémo la variacion se
equilibra en un sistema periddico, lo que permite comprender
los fendmenos oscilatorios presentes en la fisica y laingenieria.

Figura 20.
Relacién armonica entre f(:l:) y f’(:E)

T @

g | f{x) = sen(=x) |

|I:h_| i.'lnl::'._l

Nota. Elaboracion propia
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Biza et al. (2018) destacan que este tipo de visualizaciones
contribuye a consolidar la unidad cognitiva entre el concep-
to y su representacion: el estudiante asocia la pendiente, la
curvatura y el ritmo de cambio con la forma de la funcién.

Exploracion visual del limite y la continuidad
Las herramientas digitales permiten representar la aproximacion
de valores de manera dindmica, facilitando la comprensién del
limite. Cuando el estudiante observa, por ejemplo, como

flz) =52

se aproxima a la medida que X tiende a O (Figura 21), se genera
una experiencia visual que refuerza la nocién de continuidad.
GeoGebra permite incluso animar el movimiento de puntos
sobre la curva, mostrando cémo los valores de la funcion se
acercan progresivamente a un mismo valor sin alcanzarlo.

Figura 21.
Representacién con Geogebra de la continvidad de f(a:)
i &
fix) senlx)
- i
al T
—— ..-—""-Ir H-""—-. =

Nota. Elaboracion propia

Esta capacidad de manipular y observar la funcién promueve
lo que Tall (1993) denomina imagen conceptual: una represen-
tacion mental donde el estudiante integra la observacién con
la comprension simbolica. De este modo, el limite deja de per-
cibirse como una simple sustitucion algebraica para asumirse
como un proceso de tendencia, de acercamiento controlado.

Artigue (2009) sugiere que el aprendizaje del limite debe
articular tres dimensiones: la simbdlica (manipulacion de ex-
presiones), la grdfica (representacion visual) y la numérica
(aproximacidon progresiva), y las herramientas tecnoldgicas son
el espacio ideal para integrar las tres en una sola experiencia.

Derivadas como pendientes y tasas de cambio en contextos reales
La comprension de las derivadas como pendientes y tasas de
cambio adquiere un sentido mas profundo cuando se conecta con
situaciones que los estudiantes reconocen en su vida cotidiana. Al
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analizar cdmo varia la altura de un objeto en movimiento, cémo
se modifica la temperatura a lo largo del dia o cémo crece el
caudal de un rio tras una lluvia intensa, la derivada deja de per-
cibirse como un procedimiento abstracto y se convierte en una
herramienta para interpretar la dindmica del mundo. Este enfoque
no solo favorece una lectura mas intuitiva de los grdéficos, sino que
también ayuda a que los estudiantes desarrollen la capacidad
de anticipar comportamientos, identificar tendencias y tomar
decisiones con base en informacion cambiante, lo que fortalece
la utilidad practica del cdlculo en contextos reales.
Ejemplo 14: al estudiar una funcidon de temperatura

f(t) = 25 + 10e %

(Figura 22), el estudiante puede observar como el calor
disminuye gradualmente en el tiempo, y cobmo su derivada
negativa refleja la velocidad de enfriamiento.

Figura 22.
Representacion de la funcién f(t)

' :. ﬂl

It 25 4+ 10 & ™F

Nota. Elaboracion propia

En contextos econdmicos, funciones del tipo
C(x) = 1000 + 50x — 0.1x>

permiten visualizar costos marginales y maximizacion de bene-
ficios mediante el andlisis de pendientes.

Estas simulaciones, cuando se presentan en plataformas
como GeoGebra o Wolfram Alpha, fomentan el razonamien-
to interpretativo: los estudiantes no solo calculan, sino que
explican como el signo de la derivada afecta la tendencia y
como los puntos criticos representan equilibrios o extremos.
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Este enfoque integrador, recomendado por Stewart (2021),
impulsa una comprensiéon funcional del calculo aplicada a los
fendmenos de la vida cotidiana.

El avance de las herramientas tecnologicas también permi-
te explorar funciones mas complejas, como las hiperbdlicas y
logisticas, que tradicionalmente se reservaban para niveles
avanzados. Las funciones hiperbélicas, tales como senh(x) y
cosh(x), pueden visualizarse como equivalentes suavizados de
las funciones trigonométricas, pero sin periodicidad. Su andlisis
ayuda a comprender fendmenos de crecimiento equilibrado y
geometria no euclidiana.

Ejemplo 15: las funciones logisticas, como
_ 1
f(x) = 7=

(Figura 23), representan procesos de crecimiento limitado, donde
la pendiente inicial es maxima y luego se estabiliza. En biologia,
economia y tecnologia, esta curva describe el comportamiento
de poblaciones, adopcién de innovaciones o difusion de infor-
macion (Larson & Edwards, 2022).

La ensefianza del cdlculo con recursos tecnoldgicos implica
reconocer que el conocimiento matematico es multirrepresen-
tacional. Duval (1999) sostiene que el aprendizaje significativo
requiere la coordinacion entre distintos registros semidticos: el
algebraico, el grdafico, el tabular y el verbal. Las herramientas
digitales permiten articular estos registros, de modo que el estu-
diante no solo vea la funcidon, sino que la interprete y la verbalice.

Figura 23.
Representacion de la funcién logistica f(w)

Nota. Elaboracion propia

En este sentido, la visualizacidn no es una actividad pasiva,
sino una forma activa de pensar y construir significados. La
interaccion entre el gesto (arrastrar un punto), la observacion
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(ver cOmo cambia la pendiente) y la explicacién verbal (inter-
pretar la relacién entre variables) convierte la experiencia en
un proceso cognitivo integral. De esta manera, la tecnologia
se transforma en un espacio de mediacion semiodtica, donde
los conceptos matematicos adquieren sentido a través de la
accion y la interpretacion (Artigue, 2009).

Conclusiones

El estudio de la derivada permitid comprender que el calculo
diferencial no es solo una herramienta para resolver proble-
mas, sino un modo de pensar la realidad desde el cambio, la
variacion y la continuidad. A lo largo del capitulo se mostro
que la derivada, concebida como limite del cociente incre-
mental, constituye la base para medir el ritmo y la direccion
de transformacién de cualquier fendmeno. Su interpretacion
geométrica como pendiente de la tangente, su aplicacién en
el andlisis del crecimiento y la optimizacién, y su uso en con-
textos fisicos, bioldgicos o econdmicos revelan su cardcter
interdisciplinar y formativo.

Tal como sostienen Stewart (2021), derivar una funcién
equivale a leer la dindmica interna de un proceso, desci-
frando las leyes que gobiernan su comportamiento. En este
sentido, la derivada actUa como un lenguaje universal que
traduce los movimientos de la naturaleza, las regularidades
del pensamiento y los equilibrios del mundo social en rela-
ciones cuantificables.

Desde una perspectiva pedagodgica, este capitulo enfatiza
que ensefiar la derivada requiere mds que dominio técnico:
implica desarrollar en los estudiantes una comprensién con-
ceptual y visual del cambio. Artigue (2009) y Tall (2013) coin-
ciden en que la construccién de este conocimiento demanda
una articulacion entre lo simbdlico, lo grafico y lo fenomeno-
l6gico. El uso de herramientas digitales como GeoGebra, junto
con estrategias de modelizacion contextual, permite que el
aprendizaje del cdlculo sea significativo, critico y creativo.
Comprender la derivada es, en Ultima instancia, comprender
la relacion entre lo estatico y lo dindmico, entre lo finito y lo
infinitesimal. Asi, el capitulo concluye afirmando que el cdlculo
diferencial, al analizar la variacion, forma una manera de pen-
sar que trasciende la matemdatica: una mirada interpretativa del
mundo basada en la razon, la visualizacién y la comprension
del cambio continuo.
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Carituro III

Integral: acumulacion, areay
reconstruccion del cambio

Introduccion

La nocidon de integral representa uno de los momentos mas signi-
ficativos en la historia del pensamiento matematico, pues surge
como respuesta al deseo de medir lo continuo, de comprender
como los pequefios fragmentos de la realidad pueden unirse
para formar un todo. Si en el estudio de la derivada aprendimos
a analizar el cambio en un punto, la integral nos invita a recorrer
el camino inverso: reconstruir el cambio a partir de sus variacio-
nes elementales. En este sentido, el cdlculo integral constituye
el complemento natural del cdalculo diferencial y expresa, con un
lenguaje preciso, la idea de acumulacion.

Desde los métodos intuitivos de Arquimedes hasta la formula-
cion rigurosa del Cdlculo por Newton y Leibniz, la integral ha esta-
do ligada al problema de encontrar dreas, voliUmenes y longitudes.
Sin embargo, su significado trasciende la geometria: en fisica
describe desplazamientos y energias acumuladas; en biologia, el
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https://editorial.risei.org



Reinoso Sanchez Miguel Angel / Saquinaula Brito José Luis

crecimiento poblacional;y en economia, la productividad o el cos-
to total. La integral permite, asi, representar procesos donde una
magnitud varia de forma continua, otorgando a las matematicas
un poder de sintesis excepcional entre lo infinitesimal y lo global.

Este capitulo explora la integral como suma infinita, el concep-
to de antiderivada, las propiedades y significado de la integral
definida, y el Teorema Fundamental del Calculo, que une elegan-
temente los dos grandes mundos del andlisis: derivar y reintegrar.
Finalmente, se presentan los métodos cldsicos de integracion y
sus aplicaciones prdcticas en la fisica, la geometria y la economia,
con el propdsito de que el lector no solo resuelva integrales, sino
que las interprete como un puente entre la razdén matemdatica y
la comprensién profunda del cambio en el mundo real.

La integral como suma infinita y aproximacion de dreas
Comprender la integral exige reconocer que las matemdticas no
solo cuantifican la realidad, sino que la reconstruyen mediante un
lenguaje de precision. La integral representa ese esfuerzo humano
por volver a unir lo que el andlisis infinitesimal habia fragmentado:
el cambio. En esencia, integrar es sumar lo infinitamente pequefio
para comprender lo grande, un gesto intelectual que combina
intuicion, razonamiento y abstraccion. Stewart (2021) explica que
el concepto deintegral no surge como una operacion aislada, sino
como una consecuencia natural del estudio de las funciones va-
riables y de la necesidad de medir la acumulacién de sus efectos
a lo largo de un intervalo. Si la derivada nos permite observar el
instante del cambio, la integral nos invita a contemplar la totalidad
del proceso, devolviendo continuidad y sentido al movimiento.

Desde una mirada historica, la idea de integrar antecede con
mucho al formalismo del cdlculo. Los babilonios y egipcios ya
buscaban métodos para calcular dreas y volUmenes aproximados,
aunque sin nocién de limite niinfinitésimo. Mas tarde, Arquimedes
desarrollé su célebre método de exhauscion, considerado el
precursor directo del cdlculo integral. Segun Boyer y Merzbach
(2011), Arquimedes demostrd que el area de un circulo podia
determinarse como el limite de dreas de poligonos inscritos,
anticipando la I6gica moderna de aproximaciones sucesivas. Su
intuicion consistia en reducir los errores geométricos mediante
una particion cada vez mas fina, un proceso que siglos después
seria descrito con el rigor analitico de Riemann.

Durante el Renacimiento, con el auge de la ciencia experimen-
tal, resurgid el interés por medir magnitudes que varian conti-
nuamente. Cavalieri, discipulo de Galileo, propuso su principio de
los indivisibles, segun el cual una figura geométrica se compone
de infinitas lineas o elementos de igual naturaleza. Aunque su
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propuesta carecia de formalidad matemdtica, fue el primer in-
tento moderno de concebir el drea como una suma infinita de
elementos infinitesimales (Kline, 1990).

El desarrollo del cdalculo diferencial e integral en los siglos XVII
y XVIII, con Newton y Leibniz como protagonistas, supuso un giro
radical. Leibniz introdujo el simbolo [, inspirado en la letra “S” de
summa, para denotar una suma continua de diferenciales infini-
tesimales f(x)dx. Newton, por su parte, concibié la integracién
como un proceso de reconstruccion del movimiento a partir de
sus velocidades instantdneas, denominando fluentes a las mag-
nitudes variables. Ambos coincidieron en que derivar e integrar
eran operaciones inversas, una relacion que mas tarde quedaria
consagrada en el Teorema Fundamental del Cdélculo. Como des-
taca Apostol (1967), esta conexion entre cambio y acumulacién
constituye el eje central del andlisis matematico moderno.

Geomeétricamente, la integral definida se interpreta como el limi-
te de una suma de Riemann (Figura 1), que aproxima el drea bajo
una curva através de rectangulos de base cada vez mas pequefia.

Figura 1.
Integral definida de f(:U) en [a; b]

Nota: Elaboracion propia.

Sea una funcién continua f(x) definida en el intervalo [a,b]; si
se divide dicho intervalo en n subintervalos de ancho Ax , el érea
aproximada se expresa como A, = Z?:l f(xi)Ax, y la integral
definida se obtiene como el limite cuando N — OC:

I () ax = Jim A = Jim 33 1) A

Esta formulacion, propuesta por Bernhard Riemann en el siglo
XIX, formaliza la nocion de acumulacion continua. Tal como ob-
serva Thomas et al. (2024), cada rectangulo representa una pe-
quefia contribucién al total, y la integral surge cuando el nUmero
de rectdangulos se vuelve infinito y su anchura tiende a cero. La
perfeccion de esta idea reside en que un nUmero infinito de ele-
mentos infinitesimales puede producir un valor finito, revelando
la armonia entre lo discreto y lo continuo.
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Apoyo diddctico: Ensefiar la integral como suma infinita impli-
ca superar la tendencia mecanicista que reduce el cdlculo a una
serie de algoritmos. Segun Duval (2017), comprender la integral
requiere transitar entre distintos registros de representacion, ya
que solo asi se construye una vision unitaria del concepto. En
esta lineqa, Artigue (2009) enfatiza la importancia de los pro-
cesos de visualizacién: ver cobmo los rectdngulos bajo la curva
se multiplican hasta llenar el drea promueve una comprensiéon
fenomenoldgica del limite. El aprendizaje, entonces, no se limita
a manipular simbolos, sino a experimentar la transicion desde la
aproximacion hacia la completitud.

La integral, sin embargo, no se agota en su interpretacion
geométrica. Representa también un modelo cognitivo para pen-
sar procesos de acumulacion temporal o espacial. En fisica, ex-
presa desplazamientos y energias; en biologia, el crecimiento de
una poblacién; en economia, la produccién total o el costo acu-
mulado. Cada caso responde al mismo principio: la integraciéon
cuantifica el efecto total de una magnitud que varia. Como afir-
ma Freudenthal (1991), la potencia educativa del cdlculo integral
reside en su capacidad para conectar los fendmenos naturales
con el pensamiento matematico, permitiendo al estudiante reco-
nocer que las leyes del cambio y la acumulacion son universales.

Por Ultimo, desde la perspectiva del pensamiento matema-
tico avanzado, la integral representa una forma de reconciliar
dos modos de razonamiento: el local, propio de la derivada, y el
global, caracteristico de la acumulacion. Tall (2013) sefiala que
esta dualidad requiere desarrollar lo que denomina flexibilidad
cognitiva, es decir, la habilidad para moverse entre la vision ins-
tantdnea y la vision total del fendmeno. Esta competencia cons-
tituye uno de los pilares de la comprension profunda del cdlculo
y, por extension, del pensamiento cientifico contempordaneo.

Integral indefinida y el concepto de antiderivada

El nacimiento del concepto de integral indefinida esta profun-
damente ligado a la historia del pensamiento sobre el cambio.
Desde los primeros intentos por medir magnitudes variables
hasta la formalizacién del calculo, la humanidad ha buscado
entender cobmo una cantidad puede reconstruirse a partir de su
variaciéon. La idea de antiderivada (Figura 2) surge precisamente
de esa necesidad: recuperar la funcidén original conociendo su
ritmo de cambio.
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Figura 2.
Antiderivadas de la funcién de f(:]:)

Nota: Elaboraciéon propia.

Origenes historicos del concepto
Apostol (1967) explica que esta relacion inversa fue la clave para
unificar la teoria del cambio. A partir de entonces, las matema-
ticas dejaron de ser solo una ciencia del equilibrio estatico para
convertirse en un lenguaje del movimiento y la transformacion.
Newton afirmaba que “el método de las fluxiones sirve tanto para
encontrar velocidades a partir de distancias, como distancias
a partir de velocidades”, sintetizando la esencia de la integral
indefinida.

La historia posterior, con aportes de Cauchy, Riemann y otros,
consolidé el rigor analitico del calculo. Sin embargo, el concep-
to intuitivo de recomponer una funcién a partir de su derivada
permanecié como una de las ideas mdas poderosas y formativas
de toda la matematica.

Fundamentacién formal y significado de la antiderivada

Desde un punto de vista formal, se dice que una funcién F(x)
es una antiderivada de f(x) si cumple que FI(X) = f(X). En este
caso, se define la integral indefinida como el conjunto de todas
las antiderivadas de f(x) : ff(x)dx = F(X) + C, donde C es
una constante de integracion. Esta constante representa el hecho
de que existen infinitas funciones que, al derivarse, producen
la misma funcion f(x). Thomas et al. (2024) sefalan que esta
caracteristica encierra una nocién de indeterminacion creativa:
alintegrar, no se obtiene una Unica solucidn, sino una familia de
funciones que comparten la misma estructura de cambio.

Geomeétricamente, la constante C corresponde a un despla-
zamiento vertical.

Ejemplo 1. Si graficamos las antiderivadas de una funcion,
como F(X) =x2+C para F(x) = 2x, obtenemos una familia de
pardbolas con igual forma pero distintas alturas. Cada una repre-
senta una version posible del mismo fendmeno, determinada por
una condicion inicial. En fisica, esa condicién inicial puede ser la
posicién de un cuerpo al tiempo t = 0; en economia, el capital
inicial, en biologia, la poblacién de partida.
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Stewart (2021) explica que este concepto de familia funcional
permite comprender la integral indefinida como una herramienta
de reconstruccion. Integrar no es solo calcular una expresion sim-
bolica, sino restituir el comportamiento general de una magnitud
a partir de su ritmo de variaciéon.

Interpretaciones geométrica y fisica
La interpretacién geométrica de la integral indefinida proviene
de la relacion entre la pendiente y el drea. La derivada de una
funcion mide la inclinacién de su grdafica en cada punto, mien-
tras que la integral indefinida busca la funcién cuya pendiente
coincide con la dada. Asi, integrar equivale a reconstruir la curva
original a partir de su campo de pendientes.

Si consideramos f(X) = COS(X), su antiderivada es
F(x) = sen(x) + C, porque % [Sen X)| = cos X). En la gréfica,
esto significa que la funcién seno es la curva cuya pendiente en
cada punto estd determinada por la funcién coseno. Este ejem-
plo, aparentemente simple, encierra un principio universal: la
antiderivada reconstituye la forma subyacente de un fendmeno
a partir de su variacién local.

En fisica, la integral indefinida se convierte en un modelo de
la acumulacion dindmica. Si conocemos la funcién de velocidad
v(t), su integral indefinida nos da la posicién s(t), salvo por una
constante que indica la posicion inicial. De modo similar, integrar
una funcién de aceleracion produce una familia de velocidades,
y una funcidn de densidad genera una magnitud total.

En contextos mas abstractos, la integral indefinida puede in-
terpretarse como un proceso de memoria funcional: cada antide-
rivada guarda el registro acumulado del cambio. Apostol (1967)
describe esta relacion como una “reversion del limite”, donde la
integracion reconstruye lo que la derivacion habia descompuesto.

Ejemplo 2: Si f(X) = 6X2, su integral indefinida es:
fﬁxzdx =23+ C

Geomeétricamente (Figura 3), esta expresién indica que todas
las funciones F(X) = 2x° + Ccomparten la misma tasa de va-
riacion cuUbica.

Cada pardmetro C representa un desplazamiento vertical de
la grafica. En el contexto fisico, podria interpretarse como el
volumen acumulado de un sélido cuya densidad varia propor-

cionalmente a x2.
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Figura 3.
Antiderivadas de la funcién de f(:]:)

Nota: Elaboraciéon propia.

Ejemplo 3:Sif(x) = COS(X),entonces:fcos(x)dx —sen(x) + C
.Del mismo modo, sif(X) = sen(x) : fsen(x)dx = —cos(x) +C
. (Figura 4)

Estas relaciones muestran el cardcter ciclico del cambio trigo-
nométrico: la derivada y la integral alternan sus papeles en un
proceso continuo. Tal simetria, como sefiala Stewart (2021), es
una expresion matematica de la periodicidad natural del movi-
miento, visible en las ondas, los ciclos bioldgicos y las oscilaciones
eléctricas.

Figura 4.
Ejemplo de antiderivadas de la funcion de f(x) = sen(:B)

Nota: Elaboraciéon propia.

Ejemplo 4: Consideremos un tanque que se llena de agua a
una velocidad variable V(t) = 3t2 litros por minuto (Figura 5).
Para encontrar el volumen total V(x) en funcién del tiempo, se
calcula la integral indefinida: V(t) = f3t2dt =t3+C.

Sialinicio (t = 02 el tanque contiene 10 litros, entonces C = 10.
Por tanto, V(t) =t + 10. Esto significa que el volumen aumenta
con el cubo del tiempo, reflejando un proceso de llenado acele-
rado. Este tipo de problemas permiten comprender la integral
como una acumulaciéon concreta de magnitudes.
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Figura 5.
Integral indefinida como acumulacién concreta de magnitudes

1 | e

Nota: Elaboraciéon propia.

Tal como indica Freudenthal (1991), la comprension profunda
surge cuando el estudiante logra conectar el simbolo con la ex-
periencia fisica o visual que representa.

Apoyo diddctico: Ensefiar la integral indefinida no se reduce
a memorizar féormulas, sino a construir significado. Duval (2017)
advierte que los estudiantes suelen comprender la derivada como
una accion directa (calcular), pero les resulta dificil concebir la
integracién como una reconstruccion inversa. Este obstaculo se
supera cuando se combinan representaciones multiples: graficas,
numeéricas y simbodlicas.

Artigue (2009) propone que el aprendizaje del cdlculo integral
debe guiarse por la ingenieria didactica, que promueve la explora-
cion activay elrazonamiento reflexivo. Por ejemplo, utilizar software
dindmico como GeoGebra permite que el estudiante observe coémo
la pendiente de una curva (su derivada) se traduce en la forma de
la antiderivada. Esa experiencia visual refuerza la comprension
conceptual del proceso y otorga sentido al signo de integracion.

Godino y Batanero (1998) destacan que el conocimiento matema-
tico se vuelve duradero cuando el estudiante reconoce las relaciones
estructurales entre los objetos matemdaticos. Asi, integrar deja de
ser una operacion mecanica para convertirse en una estrategia de
pensamiento: identificar patrones, reconstruir comportamientos y
comprender como lo infinitesimal compone lo global.

Desde un enfoque cognitivo, Tall (2013) sostiene que la integral
indefinida exige una “reconciliacién de mundos”: el simbdlico (la
notacién algebraica), el visual (la representacion geométrica) y el
conceptual (laidea de acumulacion). La comprension surge cuan-
do estos mundos se integran en una red coherente de significados.

Integral definida: propiedades y significado geométrico
La integral definida es, junto con la derivada, una de las nociones
mas profundas y reveladoras del cdlculo. En ella convergen siglos
de pensamiento sobre el cambio, la medida y la continuidad.
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Desde los métodos de exhauscién de Arquimedes hasta la for-
mulacién rigurosa de Riemann, la humanidad ha buscado repre-
sentar matemdticamente la suma infinita de pequefias variacio-
nes para comprender fendmenos reales. Como sostiene Boyer y
Merzbach (2011), el desarrollo del concepto de integral fue “una
de las hazafias intelectuales que transformaron la manera de
pensar el movimiento y la cantidad”.

Mientras la derivada captura el instante, la integral expresa la
totalidad: es el puente que une lo local con lo global. Esta ideq,
compartida por autores como Stewart (2021) y Apostol (1967),
muestra que el cdlculo no se reduce a procedimientos, sino que
encarna una vision unificadora de la naturaleza. En este senti-
do, entender la integral definida implica comprender cémo las
matematicas hacen visible el cambio acumulado y cuantifican
lo continuo.

La integral definida puede entenderse como el resultado de
sumar infinitas cantidades infinitamente pequefias. Esa paradoja
aparente se resuelve a través del limite, que permite transformar
la aproximacion discreta en una medida exacta. Segun Stewart
(2021), el proceso consiste en subdividir el intervalo [a,b] en sec-
ciones diminutas, calcular el valor de la funcién en cada punto
y multiplicarlo por el ancho de la particién. Cuando el nUmero
de particiones tiende a infinito, el resultado converge al valor
exacto de la integral.

Todos tenemos una idea intuitiva de lo que es el drea de una
region, pero parte del problema del drea es hacer que esta idea
intuitiva se precise dando una definicién exacta.

Para definir una recta tangente, primero obtuvimos una aproxi-
macion de la pendiente de la recta tangente para las pendientes
de rectas secantes y, a continuacién, tomamos el limite de estas
aproximaciones.

Para obtener una aproximacion de la region S, vamos a con-
siderar n - rectdngulos en este caso por debajo o por encima
de la pardbola (Figura 6). Se puede considerar el area de la re-
gién S como el limite de las dreas de los rectangulos cuando se
incrementa el nUmero de éstos cometiendo un error respecto al
valor exacto del drea de superficie S, este valor del error tiende
a disminuir cuando aumenta la cantidad de rectdngulos, signi-
ficando que puede ser aproximada dicha darea, por la suma de
las dreas de los rectdngulos inferiores y/o superiores, tal como se
muestra a continuacién:
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Figura 6.
Integral definida como drea bajo la curva concreta de magnitudes.

L3

Nota: Elaboraciéon propia.

A aproximar la i-ésima franja, Si, conun rectangulo de ancho
Ax y altura f(Xi), que es el valor de f en el punto extremo de la
izquierda, el drea del i -ésimo rectangulo es f(Xi)AX. (Figura 7)

Lo que concebimos de manera intuitiva como el drea de S se
aproxima con la suma de las dreas de estos n - rectadngulos

Ry ~ f(x1)Ax + f(x2)Ax + ... + f(x,)Ax

Figura 7.

Area bajo la curva por aproximaciones de dareas de rectangulos

Nota: Elaboraciéon propia.

Esta aproximacion parece mejorarse a medida que se incre-
menta la cantidad de franjas; es decir, cuando 1 — 0Q. Por consi-
guiente, definimos el drea A de la region S de la manera siguiente:

El drea A de la regién S que se encuentra bajo la grdafica de
la funcién continua f es el limite de la suma de las dreas de los
rectdngulos de aproximacion:

A=1mR, = lim [f()q)AX-I-f(Xz)AX-l- ce f(Xn>AX}
n—o0 n—oo
En general, formamos sumas inferiores (y superiores) mediante
la seleccion de los puntos muestra Xi* de manera que es f(xi*)
el valor minimo (y mdéximo) de f sobre el i-ésimo subintervalo. A
menudo se usa la notacidn sigma para escribir de manera mas
compacta las sumas de muchos términos.

Zf X |Ax =1 x; |Ax+f[xo |Ax+ ...+ x, | Ax
i=1
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Asi la expresion del drea quedaria como:
n

A = lim flx |Ax
n—o0 =1

A este limite le damos un nombre y una notacién especiales.

Integral definida: Si f es una funcién continua definida para
a < x <b, dividimos el intervalo [a, b] en “n” subintervalos de
igual ancho

(b—a)

n

Ax =

Sean Xo(: a), X1y X2« o ny Xn(Zb) los puntos extremos de estos
subintervalos y sean X1, X2y -+ Xy |os puntos muestras en estos
subintervalos, de modo que x_i"* se encuentre en el i-ésimo su-
bintervalo [Xifl,xi]. Entonces la integral definida de f, desde a
hasta b, es

b n
. *
/fxdx:hm flx |Ax
n—oo 4
a i=1
siempre que este limite exista y de el mismo valor para todas
las posibles elecciones de los puntos muestra. Si existe, decimos

que f es integrable sobre [a, b].

1. En la notacion b
/ f<x> dx, f(x)

se llamaintegrando,y ay b limites de integracién, a es el limite
inferior y b limite superior.

2. La dx indica simplemente que la variable independiente
es Xx.

3. La integral definida pb
/ f(x) dx
a

esun nUmero que no depende de x. De hecho, podria utilizarse
cualquier letra en lugar de x sin cambiar el valor de la integral:

/abf<x) dx:/abf(t> dt:/abf(r> dr

Apostol (1967) interpreta este proceso como una sintesis entre
lo algebraico y lo geométrico: la integral une la idea de suma
(propia del dlgebra) con la nocion de area (propia de la geome-
tria). Para él, “la integral representa el esfuerzo humano por medir
lo inmedible”, un intento de abarcar el infinito mediante el razo-
namiento. Leithold (1998) complementa esta visién subrayando
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el papel epistemoldgico de la integral: “Mientras la derivada se
ocupa de la velocidad del cambio, la integral se interesa por el
efecto acumulativo de dicho cambio”. Es decir, si derivar es des-
componer, integrar es reconstruir.

Ejemplo 5: Si un automovil acelera segun la funcién V(t) =4t
(en metros por segundo), durante los primeros 3 segundos el
desplazamiento total se obtiene integrando:

3 3
/ 4tdt = [2t*], =18
0

Figura 8.
Integral definida como suma de pequenos desplazamientos

Nota: Elaboracion propia.

Aqui, la integral recoge la suma infinita de pequefios despla-
zamientos instantdaneos. Lo que seria imposible calcular punto
por punto se logra a través del concepto de limite, que convierte
lo infinitesimal en medible (Figura 8).

Tall (2013) ofrece una interpretacién cognitiva de este proce-
so: “El paso de las sumas discretas al limite continuo constituye
una transicion del pensamiento elemental al pensamiento for-
mal”. Ensefiar la integral, en consecuencia, no es solo ensefar
un algoritmo, sino guiar al estudiante hacia una nueva forma de
concebir las relaciones entre cambio y totalidad.

Significado geomeétrico y comparaciones de enfoque
Geométricamente, la integral definida representa el area orienta-
da bajo la grafica de una funcion. Si f(X) > 0, el drea es positiva; si
f(x) < 0, es negativa. Esta convencién es clave para mantener la
coherencia entre el valor geométrico y el significado algebraico.
Segun Thomas et al. (2024), el caracter orientado de la integral
“garantiza que los resultados conserven informacion sobre la
direccion del cambio”, lo cual la diferencia del mero cdalculo de
areas.

Apostol (1967) y Stewart (2021) coinciden en que la interpre-
taciéon geomeétrica es el punto de partida mas natural para la
comprension del concepto. Sin embargo, sus enfoques difieren
en énfasis. Apostol propone comenzar desde la construccion
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axiomatica, introduciendo las sumas de Riemann con precision
formal. Stewart, en cambio, sugiere partir de la visualizacién del
area bajo la curvay posteriormente formalizar el procedimiento,
un enfoque que ha demostrado ser mas accesible didacticamente.

Ejemplo 6: Para ilustrar el sentido geométrico (Figura 9), con-
sideremos f(x) = sen(x) entre 0 y

21
2n,/ sen|{x|dx=0
0

Aunque hay dos regiones con drea : una positiva y otra nega-
tiva. El resultado neto es cero.

Figura 9.
Integral definida como acumulacion orientada

i T s o Fo il = § ‘

Nota: Elaboracion propia.

Este ejemplo evidencia que la integral no mide superficie, sino
acumulacion orientada. Como explica Blitzer (2018), “la integral
no mide cudnto espacio ocupa algo, sino cuanto se ha acumulado
en un proceso”.

Ejemplo 7: Imagina que una bomba alterna el flujo de agua,
enviando liquido hacia adelante y hacia atrds con intensidad
variable. Al principio, el movimiento es fuerte, pero poco a poco
va perdiendo energia. Sirepresentamos ese flujo con una funcion
matematica, podriamos escribirla como f(t) = e sen(t). Aqui,
el factor e % indica que la fuerza de la bomba disminuye con el
tiempo, mientras que el seno expresa las oscilaciones del flujo: a
veces el agua avanza (valores positivos) y otras veces retrocede
(valores negativos) (Figura 10).

Si observamos, notaremos que las “olas” se hacen mds pe-
quefias a medida que pasa el tiempo. Esto refleja un comporta-
miento fisico natural: el sistema tiende al equilibrio. Si calculamos
la integral definida de f(t) entret = 0y t = 2n obtendremos un
valor muy cercano a cero. En términos sencillos, aunque hubo
movimiento constante, la cantidad total de agua transferida hacia
un lado y hacia el otro se compensa.

Este sentido de equilibrio o compensacién es uno de los
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significados mas profundos de la integral definida. Nos permite
comprender fendmenos donde el cambio no es lineal ni cons-
tante, sino el resultado de muchas pequefas variaciones que se
contrarrestan entre si.

Figura 10.
Integral definida como como expresion de cambio no lineal

4 WL

Nota: Elaboraciéon propia.

Tal como sefialan Stewart (2021) la integral se convierte en
una herramienta para pensar en términos de acumulacion y
compensacion, mds que en simples sumas. Detrds de cada valor
integral hay una historia de fuerzas que actiuan, se equilibran y,
finalmente, dejan su huella neta en el sistema.

Propiedades esenciales. una comparacion de perspectivas
a) Linealidad
Las propiedades fundamentales de la integral definida con-
solidan su coherencia interna y su utilidad en la modelacién de
fendmenos reales:
b b

/b[clf(x) + cog(x)]dx = ¢ /f(x)dx + co /g(x)dx

a a

Esta propiedad garantiza que la integral respeta las combina-
ciones lineales. Stewart (2021) la presenta como una consecuen-
cia natural del caracter aditivo del drea, mientras que Leithold
(1998) la interpreta como una expresion de equilibrio entre lo
algebraico y lo geométrico. Apostol (1967) agrega que la lineali-
dad es la base del andlisis funcional moderno, ya que convierte
la integral en un operador lineal sobre un espacio de funciones.

b) Aditividad respecto al intervalo:
c b

/ £(x)dx = / () dx + / £(x)dx
b

a a
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En palabras de Thomas et al. (2024), esta propiedad traduce
la continuidad fisica del cambio: acumular por tramos equivale
a acumular en conjunto. En términos pedagodgicos, esta regla
puede ilustrarse facilmente mediante grdéficas o simulaciones de
trayectorias acumuladas.

c) Cambio de orientacion:

Tall (2013) relaciona esta propiedad con la nocidn cognitiva de
direccion: el signo de laintegral ayuda a representar no solo cudnto
se acumula, sino hacia dénde. Este enfoque favorece la comprension
del concepto de “érea orientada”, mas alld de la nocion de magnitud.

d) Constancia de la funcion:
b b

/M@mx:k/ﬂ@@

a a

Esta propiedad, que recuerda el cdlculo de dreas rectangulares,
actUa como punto de entrada intuitivo. Blitzer (2018) sugiere que
iniciar con funciones constantes ayuda al estudiante a construir
una base visual para el razonamiento integral.

Positividad: Si f(X) > 0, entonces

b

/ﬂ@@zo

a

Para Stewart (2021), esta propiedad vincula el razonamiento al-
gebraico con la percepcion geométrica: la integral no contradice la
experiencia visual del dreq, sino que la extiende con sentido l6gico.

Estas comparaciones entre autores revelan distintos modos de
entender la integral: como una construccion axiomdatica (Apostol),
como una experiencia visual (Stewart), o como un proceso cog-
nitivo de abstraccion (Tall). Integrar estos enfoques en la ense-
flanza permite abordar el cdlculo desde multiples dimensiones:
conceptual, simbdlicay visual, tal como sugiere Duval (2006) en
su teoria de los registros de representacion semiotica.

Teorema Fundamental del Cdlculo
El Teorema Fundamental del Calculo (TFC) es uno de los descu-
brimientos mds significativos de la historia de la matemdtica,
y quizas el que mejor simboliza la unidén entre el pensamiento
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geomeétrico y el pensamiento analitico. A través de él, se revela
una correspondencia profunda entre dos procesos aparente-
mente opuestos: la derivacion, que mide el cambio instantdneo,
y la integracion, que mide la acumulacion total de ese cambio.
En palabras de Stewart (2021), el TFC “no solo conecta las dos
grandes ideas del cdlculo, sino que las funde en un Unico principio
de coherencia matemdtica y natural”.

Apostol (1967) describe este teorema como una sintesis inte-
lectual que “une lo infinitesimal y lo global, el movimiento y la
forma, la velocidad y la distancia”. Desde entonces, su ensefian-
za y aplicacion se han convertido en la base para interpretar
fendmenos tan diversos como el crecimiento exponencial, la
oscilacion armoénica, la desintegracién radiactiva o la difusidon
del calor. Comprender el TFC, por tanto, no es solo dominar una
formula, sino acceder a una forma de pensamiento que une el
cambio con la totalidad, lo local con lo universal.

El Teorema Fundamental del Cdlculo se expresa en dos partes
complementarias que revelan la relacién inversa entre la derivada
y la integral:

Primera parte (TFC 1): Si f es continua sobre [a, b], entonces
la funcion definida por x

a < x <b es continua sobre [a,b] y derivable sobre (a,b), y
F'(x) = f(x)

Es decir, la derivada de la funcion acumulada F devuelve la fun-
cion original f. En otras palabras, la integral genera una funcién cuya
tasa de cambio instantdnea es precisamente la que se integro.

Segunda parte (TFC I1): Si F es una antiderivada de f en [a,b],
entonces b

Esta seqgunda parte transforma la integral definida, concebida
como un limite de sumas infinitas, en una operacién algebraica
sencilla: la diferencia de los valores de la antiderivada en los ex-
tremos. Segun Thomas et al. (2024), esta equivalencia “otorga
al cdlculo un cardcter de cierre l6gico, donde las operaciones
infinitas encuentran su expresién en una resta finita”.

El TFC posee una profunda interpretacién geométrica: el drea
bajo una curva y la pendiente de otra son manifestaciones del
mismo fenémeno. Si f(x) representa la altura de una curva, en-
tonces la funcion
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mide el drea acumulada bajo dicha curva desde a hasta x. La

. .. / .
derivada de esta funcién, F'(x), corresponde a la tasa de cambio
de esa drea acumulada, que resulta ser el valor de f(x).

Ejemplo 8: Si f(x) = x, entonces

X
2

F(x) = [ tdt = X?
0

y F'(X) =X = f(X). Geométricamente, significa que la pen-

diente de la pardbola
X2

2
en cada punto coincide con la altura de la recta Y = X (Figura
11). Tal relacién encarna, como dice Leithold (1998), “la simetria
perfecta entre forma y cambio™.

Figura 11.
Integral como simetria entre forma y cambio

*

*

Nota: Elaboraciéon propia.

Esta vision no solo tiene valor tedrico: al visualizar el drea acu-
mulada bajo f(x) con herramientas como GeoGebra o Desmos,
los estudiantes pueden observar como la pendiente de F(X) res-
ponde exactamente al comportamiento de la funcién generador

Esta vision no solo tiene valor tedrico: al visualizar el drea acu-
mulada bajo f(x) con herramientas como GeoGebra o Desmos,
los estudiantes pueden observar cémo la pendiente de F(x) res-
ponde exactamente al comportamiento de la funcidén generadora.
Stewart (2021) enfatiza que “visualizar el crecimiento del area es
comprender el calculo como un lenguaje del movimiento”.

La fuerza explicativa del TFC se manifiesta especialmente
cuando se aplica a funciones trascendentes, aquellas que tras-
cienden las operaciones algebraicas basicas y modelan fendme-
nos reales como el crecimiento, la oscilacién o el decaimiento.
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Aplicaciones con funciones trascendentes
La fuerza explicativa del TFC se manifiesta especialmente cuando
se aplica a funciones trascendentes, aquellas que trascienden las
operaciones algebraicas basicas y modelan fendmenos reales
como el crecimiento, la oscilacién o el decaimiento.

a) Funcion exponencial

Ejemplo 9: Sea f(X) =e* La integral definida en [a,b] es:

b
/ eXdx —eP — e?
a

Aqui, e* es su propia derivada y su propia antiderivada.
(Figura 12)

Figura 12.
Integral definida para describir los procesos de crecimiento
poblacional

Nota: Elaboracion propia.

Esto implica que la tasa de crecimiento de la funcién es pro-
porcional a su valor actual, una propiedad que describe con
exactitud los procesos de crecimiento poblacional, propagacion
viral o interés compuesto. Apostol (1967) considera este ejemplo
el paradigma del TFC: la funcién que se reproduce a si misma
en el cambio expresa la esencia del calculo continuo. Thomas et
al. (2024) subrayan que “en e”x la naturaleza revela su propio
lenguaje de crecimiento”.

b) Funcion logaritmica

1
Ejemplo 10: Sea f(x) = —, conx > 0 :
X
°1
—dx =In(e) —In(1) =1
| 5 =1 - 1) 1

La funcion logaritmica surge como la antiderivada de X, mos-
trando que el drea bajo la hipérbola 1/x entre 1y e es exactamente
1(Figura 13).
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Figura 13.
Integral definida como expresién de la acumulacion proporcional

Nota: Elaboracién propia.

Stewart (2021) lo describe como “una revelacién geométrica
del crecimiento relativo” mientras el exponencial representa el
crecimiento absoluto, el logaritmo mide la acumulacién propor-
cional. En términos fisicos, esta relacion aparece en procesos
donde la tasa de cambio depende inversamente del tamafio,
como la descarga de un condensador o la difusion térmica.

c) Funciones trigonométricas
Ejemplo 11: Sea
T
f(x) = sen(x) : sen(x) dx = [— cos(x)]y = 2
0
Aqui, el area bajo la curva seno desde O hasta @ es positiva,
representando la acumulacién neta de movimiento hacia arriba.
Si se integra en un ciclo completo,
21
sen(x)dx =0
0
el resultado es nulo, lo que refleja el equilibrio entre los des-
plazamientos positivos y negativos. Esta simetria, como sefala
Leithold (1998), muestra que el cdlculo no solo mide magnitudes,
sino también direcciones: “la integral no cuenta solo cudnto, sino
en qué sentido”.
En contextos fisicos, el TFC aplicado a funciones trigonométri-
cas permite calcular desplazamientos en movimientos armonicos,
o la energia promedio en un ciclo de oscilacion.

d) Funcién combinada trascendente

Ejemplo 12: Sea f(X) =e " COS(X). En este caso, la funcion com-
bina el decrecimiento exponencial con la oscilacién del coseno
(Figura 14). Si calculamos la integral definida entre 0 y T,
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Figura 14.
Integral definida como expresion de un movimiento amortiguado

4

Nota: Elaboraciéon propia.

Esta expresion representa un fendmeno muy comun en fisica:
el movimiento de un sistema amortiguado, como el de un resorte
que vibra cada vez con menor amplitud.

La parte exponencial e *reduce progresivamente la intensi-
dad de las oscilaciones, mostrando cémo la energia del sistema
se disipa con el tiempo. Tal como sefialan Thomas et al. (2024),
este tipo de integrales permiten describir cobmo el cambio se
modula bajo leyes simultdneamente exponenciales y periddicas.

El Teorema Fundamental del Cdlculo no es solo una relacion
entre operaciones, sino una vision sobre la continuidad del mun-
do. En él, la matematica se vuelve filosofia: toda acumulacion
nace del cambio, y todo cambio, acumulado, forma una totali-
dad. Apostol (1967) lo llama “el alma del andlisis”; Stewart (2021)
lo considera “la puerta entre los dos mundos del calculo”; y Tall
(2013) lo interpreta como “el puente entre la percepcién y el
pensamiento simbolico”.

Apoyo diddctico: desde una perspectiva educativa, el TFC re-
presenta un momento de sintesis conceptual. Segun Tall (2013),
aprender este teorema es “el paso en que el pensamiento ma-
tematico abandona lo aritmético y entra en el mundo de los
procesos infinitos”. Para que el estudiante lo comprenda, debe
experimentar el vinculo entre el drea y la pendiente, entre la
suma y el cambio.

Métodos de integracidon: sustitucion, partes y fracciones
parciales
La integracion representa el proceso inverso de la derivacion.
Mientras la derivada analiza la variacién local e instantdnea de
una funcion, la integral busca reconstruir el comportamiento
global acumulado de esa variacion. En este sentido, los métodos
de integracién son herramientas conceptuales que permiten
recuperar la funcidén original o encontrar el area, el volumen o el
cambio total asociado a una magnitud variable.
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Stewart (2021) explica que integrar “es reunir los infinitos
fragmentos en los que la derivada descompone una funcion”.
Desde un punto de vista epistemoldgico, la integracion traduce
la continuidad en medida, la fluidez en estructura, y el cambio
en acumulacion. Asi, los métodos de integracién no son meros
procedimientos algebraicos, sino formas de pensamiento que
permiten reconstruir lo continuo a partir de lo infinitesimal.

A lo largo de la historia del cdlculo, distintos métodos han
sido desarrollados para abordar integrales que no pueden re-
solverse directamente. Entre ellos destacan tres por su impor-
tancia y su valor formativo: el método de sustitucién o cambio
de variable, la integracion por partes, y la descomposicion en
fracciones parciales. Cada uno responde a una ldgica distinta
del pensamiento analitico: transformar, equilibrar y descomponer,
respectivamente.

La sustitucion. el arte de transformar
El método de sustitucion se basa en una idea profundamente
conceptual: toda funcién compuesta puede simplificarse si se
intfroduce una nueva variable que capture su estructura interna.
Formalmente, este método “revierte” la regla de la cadena en la
derivacion. Si (f(g(X)))/ = f'(g(X)) . g'(X), entonces, al integrar,
se busca una funcion que, al derivarse, produzca una composi-
cion semejante.

Si se define u = g(x), entonces du = g'(x) dx, y se cumple:

[ tete) dx = [t au

Esta transformacion convierte un problema complejo en otro
mds simple, trasladando la dificultad desde la funcién hacia el
cambio de variable.

Apostol (1967) sostiene que el cambio de variable no solo es un
recurso algebraico, sino una forma de “ajustar la mirada” sobre la
funcién, para descubrir en ella un patron de derivada oculta. En
el aula, esto significa guiar al estudiante a reconocer estructuras
derivativas dentro de expresiones aparentemente inabordables.

Ejemplo 13: Sea s
/3}c2eX dx

3

Se observa que la derivada de X" es 3X2, lo cual sugiere el

cambio u = x°, du = 3x%dx.
Asi: [e'du=¢e"+C = e*’ + C. El método simplifica el pro-

ceso y refuerza la comprensiéon de la relacion entre composicion
y derivacion inversa.
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sen(5x) d

Ejemplo 14: Pudiéramos calcular: fm X

Sea u = cos(bx),de modo que du = —5sen(5x)dx.
Sustituyendo:

[ gy — L fdu_ Lo

cos?(5x) 5J u? +C
Aqui la sustituciéon revela el patron subyacente y convierte una
funcién trascendente en una expresidn racional, unificando asi

dos mundos del andlisis.

B cos(bx) cos( 5x

Ejemplo 15: Calcular f1+2dx Si u-l—{—X entonces
du = 2x dx.

La integral se transforma en:
1 du _ 1 _ 1 2

El resultado expresa un vinculo entre las funciones racionales
y logaritmicas, reforzando la nocién de continuidad entre lo al-
gebraico y lo trascendente.

Desde la didactica, Tall (2013) sugiere que el método de sus-
titucion debe ensefiarse como una “metdafora del cambio de
perspectiva”: lo importante no es solo cambiar la variable, sino
aprender a ver una estructura de derivacién donde antes solo
habia complejidad. En la ensefianza visual, esta idea se puede
ilustrar con diagramas que muestran la “transformacion del eje”
de x a u, haciendo visible c6mo cambia la escala de acumulacion.

La integracion por partes. el equilibrio del cambio
El método de integracién por partes se apoya en la regla del
producto de la derlvodo
(uv) =u'v+uv’. Al integrar ambos lados, se obtiene:
fudV =uv — fvdu. Esta identidad revela una idea profunda:
el cdlculo no elimina el cambio, lo redistribuye. Si una parte se
complica al derivarla, puede compensarse con otra mds mane-
jable al integrarse.

Leithold (1998) considera este método una “metdafora del equi-
librio” dentro del calculo, donde las funciones cooperan simbo-
licamente. En contextos pedagdgicos, ayuda a comprender la
dualidad entre derivacion e integracion, mostrando que ambas
no se oponen, sino que se complementan.

Ejemplo 16: Producto algebraico-exponencial fXGQXdX Sea

u = x,dv = e**dx, entonces du = dx,v = %62

[ xe*dx = §e2x — %fezxdx = % (2x — 1) +C
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Esta relacion es tipica en modelos de crecimiento acelerado
o fendmenos de transferencia de calor.
Ejemplo 17: Producto algebraico - exponencial .
_ _ a2 _ _ 1 2x
Seau = Xx,dv = e“*dx., entonces du =dx,v = Ee .

1 2x

xe™dx = %eQx -3 e™dx = eT(2x —-1)+C.

Esta relacion es tipica en modelos de crecimiento acelerado
o fenédmenos de transferencia de calor.

Ejemplo 18: Aplicacién trigonométrica Xsen(X)dX
Sea u = x,dv = sen(x)dx,du = dx, v = —cos(x):

/ xsen(x)dx = —xcos(x) + / cos(x)dx = —xcos(x) + sen(x) + C.

Aqui la interaccién entre la funcién lineal y la oscilatoria refle-
ja la relacion entre movimiento uniforme y periddico, tipica en
fisica y mecdnica.

Para Tall (2013), ensefiar este método implica hacer visible
el razonamiento reversible del cdlculo: derivar y luego integrar,
integrando mientras se deriva. En ese ir y venir simbdlico, el es-
tudiante percibe el cdlculo no como una coleccion de féormulas,
sino como un lenguaje coherente del cambio.

Fracciones parciales. la descomposicion del cambio
Las fracciones parciales representan un método de andlisis es-
tructural: una funcién racional puede expresarse como suma de
términos mas simples, cada uno con una antiderivada conocida.
Este método, en apariencia algebraico, expresa un principio fi-
losdfico profundo: para comprender lo complejo, hay que des-
componerlo en partes elementales.

Stewart (2021) explica que “integrar una fraccion compuesta
es un acto de lectura estructural: se lee la funcién no como un
todo, sino como un sistema de relaciones”. En la ensefianza, esta
técnica promueve la comprensién analitica y refuerza la conexion
entre dlgebra e integracion.

El método de fracciones parciales es una técnica algebraica
utilizada para integrar funciones racionales, es decir, cocientes
de polinomios de la forma:

P(x)

de
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donde P(x) y Q(x) son polinomios y el grado (deg) de P(x) es
menor que el de Q(X) Si el grado de P(x) es mayor o igual al
de Q(X) primero se debe realizar una division polindmica para
obtener la siguiente igualdad

P(x R(x
() _ g 4 RO
Q(x) Q(x)
donde Sy R tambiéen son funciones polinomiales.
Este método convierte la fraccion compleja en una suma de

fracciones mdas simples, llamadas fracciones parciales, que se
pueden integrar con mayor facilidad.

Pasos método de Fracciones Parciales para Integracion de
Funciones Racionales

1. Verificar si se requiere division: Antes de aplicar el méto-
do, asegUrate de que: deg(P(x)) < deg(Q(x)). Si no es asi,
realiza la divisidon larga o sintética.

2. Factorizar el denominador Q(x) tanto como sea posible:
Descompon Q(X) en factores lineales y/o cuadrdticos irre-
ducibles. Cualquier polinomio Q(x) puede factorizarte
como como un producto de factores lineales (de la for-
ma ax+b) y factores cuadrdticos irreducible (de la forma

ax? + bx + ¢, dondeb? — 4ac < 0.

3. Expresar la funcion racional propia P(X)
Q(x)

como una suma de fracciones parciales de la forma :
o bien Ax+B (X—a)l
(ax? + bx + ¢’

Tipos de factores
Plantear la descomposicion: Segun los tipos de factores, se asig-
nan fracciones parciales especificas.

a) El denominador Q(x) es un producto de factores lineales
distintos:

Si Q(X) = (a1X + bl)(azx + bg) ce (akx + bk) ,donde no hay
factores repetidos (y ninguno factor es multiplo constante de
otro). En este caso existen constantes A1, Az, A3 ce Ak tales que:

P(X) . Al A2 Ak

Q(x) (arx+by) + (asx + by) Tt m(l)
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b) Q(x) es un producto de factores lineales, algunos de los
cuales se repiten:
Si Q(x) = (a;x + by)" entonces:
P(x Al A2 A
) _ + s+t ——— (1)
Q(x) (a1x + b1) (a1x + bq) (a1x + by)
c) Q(x) contiene factores cuadrdticos irreductibles, de los que
ninguno se repite:
Si Q(x)tiene el factor ax’ + bx + ¢, donde b? — 4ac < 0:
R(x)

Q(x)

tendr&dademas de las expresiones | y Il, un término de la forma

Ax+B I
ax?+bx+c

d) Q(x) contiene un factor cuadratico irrreductible repetido.
Si Q(x) tiene el factor (ax2 + bx + C) , donde b? — 4ac < 0:
entonces en lugar de una Unica fracciéon parcial tipo (111, la suma:

Aix+b; Aosx+by . A, x+b,
ax2+bx+c + (ax2+bx+c)2 + + (ax2+bx+c)" (IV)

entonces

ocurre en la descomposicion en fracciones parciales de cada
uno de los términos en (1V) puede integrarse utilizando una sus-
titucion o primero completando el cuadrado.

4. Resolver la integral a partir de la descomposicion obtenida
Ejemplo 19:

x+3
f x243x dx.
Se factoriza: x2 + 3x = x (x + 3)
x(x+3) = x x+3 -

Multiplicando por x(x + 3):x+ 3 = A (x + 3) + Bx.
Resolviendo se obtiene A=1yB =0

f(% X—i:,))dx:ln‘x‘—l—ln‘x—l—3‘—l-C

Ejemplo 20:
: P f x*—2x2+4x+1 dx
x3—x2—x+1

Paso 1: Verificar si la funcidn es racional propia

El grado del numerador es 4 y el del denominador es 3. Como
el numerador tiene mayor grado, se requiere realizar una divisién
polindbmica.
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4 2
x*—2x“+4x+1 4x
x—x2—x+1 x+1+ x3—x2—x+1

Paso 2: Factorizar eldenominador Q(x) tanto como sea posible
_ 3 2
Q(X) =x" — X" =X+ 1 g factorizar de obtiene:

¥-x—x+1=x-1)>*x+1)

Hemos obtenido una descomposicion de Q(x) en producto
de factores lineales de los cuales alguno se repite, de ahi que la
suma de fracciones parciales se obtiene de la siguiente manera:

Paso 3:Expresar la funcion racional propia como una suma de
fracciones parciales
4x _ _A + B C
X0 —x?—x+1 x-1 " (x-1)> * x*tl 55r tanto a partir de esta

igualdad
4x = (A + C)X2 + (B — 2C)X + (—A + B+ C) obtenemos el

sistema de ecuaciones siguiente:
A+C=0(1)
B —2C =14(2)
~A+B+C=0(3)

Resolviendo el sistema de ecuaciones se obtiene A =1, B =2
y C = —1de ahi que

Paso 4: Plantear la descomposicion y resolver la integral

ix 1 2 1
x3—x2—x+1 = x-1 +

(x-1)?  x+1
JEREt ax =[x+ 14 2 + 2 - fhr|ax

x3—x2—x+1 (x—1)*

~%4x-Zoh

|+ C

El estudio de los métodos de integracién revela algo mas pro-
fundo que su uso técnico: muestra como la matematica organiza
la complejidad a través de la estructura. En la sustituciéon, se
aprende a ver el cambio desde otro marco; en la integracion
por partes, se aprende a equilibrar procesos complementarios;
y en las fracciones parciales, a entender la totalidad desde sus
componentes.

Apostol (1967) insiste en que el poder del cdlculo reside en su
capacidad de representar procesos naturales (movimiento, flujo,
crecimiento, disipacidn) con simbolos que el pensamiento puede
manipular sin perder el significado fisico. Desde esta perspectiva,
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los métodos de integracién no son solo instrumentos, sino mode-
los cognitivos: maneras de pensar la transformacion.

Tall (2013) propone una vision “triagdica” del aprendizaje del
cdlculo: el estudiante debe articular tres mundos del pensamiento
matematico (el sensorial-geométrico, el simbdlico y el formal).
En esa linea, ensefar estos métodos no puede reducirse a la
practica mecdanica: requiere explorar su sentido geométrico y
su coherencia simbodlica.

Stewart (2021) y Thomas et al. (2024) coinciden en que el
dominio de las técnicas de integracion prepara al estudiante
para enfrentar problemas reales en fisica, ingenieria y economia,
donde las funciones modelan procesos acumulativos. Integrar es
comprender como los pequefios cambios, sumados infinitamente,
generan magnitudes finitas y observables.

A modo de conclusion, los métodos de integracion constituyen
una de las cumbres del pensamiento analitico. Cada uno de ellos
ofrece una metdfora del conocimiento: la sustitucién representa el
cambio de perspectiva; la integracion por partes, la reciprocidad
de los procesos; y las fracciones parciales, la comprensién de lo
complejo mediante lo simple.

Através de estos métodos, el cdlculo se revela como una cien-
cia del equilibrio: entre lo infinitesimal y lo total, entre el andlisis y
la sintesis, entre el simbolo y la realidad. Comprenderlos es aden-
trarse en una forma de razonamiento que, como dice Leithold
(1998), “no busca solo resolver, sino comprender el sentido del
cambio”.

Aplicaciones de la integral en el andlisis y la modelacion del
cambio
Comprender la integral, en sus formas definida e indefinida, im-
plica adentrarse en la estructura profunda del cdlculo: la relaciéon
entre acumulacion y cambio. Desde un punto de vista episte-
moldgico, la integral emerge como una respuesta al problema
de sumar una cantidad infinita de pequefias variaciones para
reconstruir una magnitud total. Newton y Leibniz, aunque des-
de perspectivas conceptuales distintas, coincidieron en que la
integracion es el proceso inverso de la diferenciacién: mientras
la derivada mide el cambio instantdneo, la integral mide la suma
acumulativa de esos cambios (Boyer y Merzbach, 2011).

Esta dualidad se formaliza en el Teorema Fundamental del
Cdlculo, el cual establece que si una funcién f es continua en un
intervalo [a,b] y F es su antiderivada, entonces:

b
flx|dx=F|[b ]| —F|a
J
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De esta relacion se desprenden las dos dimensiones esenciales
del cdlculo integral:

La integral indefinida, que busca funciones primitivas.

La integral definida, que cuantifica magnitudes acumuladas
entre limites.

Stewart (2021) sefiala que esta relacién no solo une dos pro-
cesos matemdticos, sino también dos maneras de interpretar
el mundo: el andlisis local del cambio y la sintesis global de la
acumulacion. En la educacion matemdatica, Duval (2006) agrega
que estas concepciones requieren ser traducidas entre distintos
registros semioéticos: el grdfico (area bajo la curva), el simbdlico
(notacion integral) y el verbal (interpretacion conceptual).

La integral indefinida se entiende como el conjunto de todas
las antiderivadas de una funcién f(x), donde F/(x) = f(x) y C
es una constante. u papel tedrico radica en revertir el proceso
de la derivacion. Este proceso de “reconstruccién” o “sintesis” del
cambio, segun Apostol (1967), es esencial para comprender coémo
una tasa de variacion puede originar una magnitud acumulada.

Desde una perspectiva cognitiva, Artigue (2009) subraya que
muchos estudiantes interpretan la integracidn como una opera-
cion mecdanica de aplicar féormulas, sin comprender su relacion
con el cambio. Por ello, es clave promover tareas que conecten
el significado de “tasa” con “acumulacion”.

Ejemplo 21: Supongamos que un automovil se mueve con una
velocidad variable V(t) = 3t2 + 2t, donde v esta en metros por
segundo y t en segundos (Figura 15). Se desea determinar la
posicion s(t) del automoévil en funcién del tiempo, sabiendo que
alinstante inicial t = 0 se encontraba a 5 metros del origen.

Para hallar la posicion s(t), se integra la velocidad:

s(t) = [(3t2+2t)dt = t* + ¢t + C

Aplicando la condicién inicial s(0) =5 se obtiene C=5
. Por tanto, la funcién posicién queda determinada como:

s(t) = t3 +t> +5.

Figura 15.

Integral como un proceso de reconstruccion del movimiento
f -

]
{

Nota: Elaboraciéon propia.
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Este resultado no solo es algebraico, sino también interpre-
tativo: la posicion se obtiene acumulando los desplazamientos
infinitesimales generados por la velocidad a lo largo del tiempo.
Tall (2013) sostiene que este tipo de ejemplo permite al estudian-
te visualizar la integral como un proceso de reconstruccion del
movimiento mds que como una simple manipulacion simbdlica.

En economia, el costo marginal CI(X) representa la variacion del cos-
to total por unidad adicional producida. Si el costo marginal esta dado
por C'(x) = 2x + 10, el costo total se obtiene mediante integracion:

C(x) = [(2x 4 10)dx = x* 4 10x + Co. (Figura 16)

Figura 16.
Integral como variacion del costo

Nota: Elaboraciéon propia.

Si el costo fijo inicial es de 100 unidades monetarias, entonces:

C(X) = x% + 10x + 100.

Este modelo ilustra la funcidn econémica de la integral inde-
finida: reconstruir magnitudes globales (costos, ingresos, bene-
ficios) a partir de tasas de variacion.

La integral definida como herramienta para medir, comparar
y predecir fendbmenos
La integral definida surge de la necesidad de calcular dreas, vo-
lUmenes o acumulaciones finitas. Riemann formuld su definicion
a partir del limite de sumas:

b
[flx|dx= lim > f(x; |Ax
a n—oo

Esta formulacion expresa el principio de acumulacion continua:
sumar infinitas pequefas contribuciones de la variable depen-
diente f(x) multiplicadas por un cambio infinitesimal dx.

Esta concepcion representa una de las mayores sintesis del
pensamiento cientifico: medir lo continuo mediante lo infinitesi-
mal. A través de la integral, se hace cuantificable el cambio que
no puede contarse, solo medirse.
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Ejemplo 22: Un joven decide invertir una cantidad de dinero
en un fondo que promete un crecimiento continuo a lo largo
del tiempo. El comportamiento de la rentabilidad se describe
mediante la funciéon r(t) = 0.08e%%% qonde r(1) representa la
tasa de ganancia instantdnea en el affio t (Figura 17). El objetivo
es conocer cudl sera el rendimiento total acumulado durante los
primeros cinco afos de inversiéon.

Figura 17.
Integral como crecimiento de la inversion

. ! 008 ™ = 0,42
n

Rid} = 008 L

Nota: Elaboraciéon propia.

Para determinarlo, se calcula la integral:

5
R = OfO.O8e0'02tdt = [0.08 - 50e%0%] = [4¢00%]

el 2~ 1.105170,
R = 4(1.105170 — 1) = 4(0.105170) ~ 0.42068

El resultado de esta integral muestra cudnto ha crecido la
inversion, considerando que el incremento no es lineal, sino ex-
ponencial, es decir, cada ganancia genera nuevads ganancias
sobre si misma. En términos practicos, la integral expresa como
el valor se acumula infinitesimalmente con el paso del tiempo.

Este tipo de modelos se utiliza con frecuencia en finanzas, bio-
logia o fisica, pues muchos procesos naturales siguen patrones
de crecimiento continuo. Stewart (2021) explica que la integral
exponencial es una herramienta esencial para describir fendme-
nos donde el cambio se produce de forma proporcional al valor
actual. A su vez, Artigue (2009) y Duval (2006) resaltan que
comprender este tipo de relaciones requiere una interpretaciéon
multiple: ver la integral no solo como un procedimiento algebrai-
co, sino como una representacion visual del cambio acumulado
que ocurre a lo largo del tiempo.

127



Integral: acumulacion, drea y reconstrucciéon del cambio

Aplicaciones de la integral definida en la fisica
La integral definida constituye una herramienta esencial para la
comprension de los fendmenos fisicos, pues permite cuantificar
magnitudes que varian de manera continua. En la fisica, muchas
relaciones entre variables se expresan como tasas de cambio: la
velocidad respecto del tiempo, la fuerza respecto de la posicion
o la densidad respecto del volumen. La integral, en consecuencia,
actUa como el proceso inverso de la derivacion, transformando
una magnitud diferencial en una acumulativa. Segun Stewart
(2021, la integral definida representa la suma de infinitos aportes
diferenciales que, en conjunto, describen una magnitud global
del sistema fisico.

En cinemdatica, la integral definida traduce la relacién entre velo-
cidad y posicién. Si la velocidad de un movil depende del tiempo,
v(t), el desplazamiento total entre t1 y 12 se determina mediante:

to

S= [v|t]|dt
t1
Figura 18.

Integral como relacion entre velocidad y posicion

Nota: Elaboracion propia.

Ejemplo 23: un objeto que se mueve con V(t) = 3t2m/s du-
rante 2 segundos recorre:

2
S = [3t3dt = t3(2] = 8m (Figura 18).
0

Este uso de la integral no solo permite determinar desplaza-
mientos, sino que también fundamenta el concepto de velocidad
media y acelera la comprensidn de la relacidon entre las graficas
v(t) y s(t).

La integral definida se emplea igualmente para calcular la
energia térmica transferida cuando el flujo de calor depende
del tiempo o de la temperatura. Si la potencia térmica Q'(t)
varia durante un proceso, el calor total transferido se determina
mediante:

Q:fQ'ta
t1
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La integral también permite determinar la energia total ge-
nerada o consumida por un sistema cuando la potencia varia
con el tiempo. Si la potencia instantanea P(t) describe la tasa
de trabajo o energia por unidad de tiempo, la energia total se
calcula mediante:

to
E= [Pt |dt

t1

Ejemplo 24: Un motor parte con una potencia de 100 W en
t = 0sy aumenta de forma lineal hasta 300 W ent = 10s. (Figura
19) ¢Cudnta energia (trabajo) entrega el motor durante esos 10s?

Figura 19.
Integral definida para calculo de energia (Trabajo)

Nota: Elaboraciéon propia.

Como elaumento es lineal, la potencia puede escribirse como
P(t) = Py + mt, donde m es la pendiente (cuanto crece la po-
tencia por segundo). Al hallar la pendiente tenemos:

_ Pw—Py __ 300-100 __ )
m = ——* = * 15 =20 W/s

Entonces P(t) = 100 + 20t
La energia entregada es el area bajo la curva de potencia:

10 10
E = f P(t) dt = f (100 + 20t)dt. Calculando se obtiene:
0 0

E = [100t + 10t2] "
E = (10010 + 10 - 10%) — (0)
E = 1000 + 1000 = 2000 J

El motor entrega 2000 joules en esos diez segundos. Como
la potencia crece de manera uniforme, el resultado coincide con
multiplicar el promedio de las potencias inicial y final por el tiem-
po, lo que confirma el cdlculo integral.

Desde una perspectiva tedrica, la integral definida unifica mul-
tiples conceptos fisicos bajo una misma estructura matematica:
la acumulacion de un cambio infinitesimal. Esta interpretacion,
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compartida por autores como Strang (2019) y Stewart (2021),
permite conectar la fisica experimental con el razonamiento
matematico, fortaleciendo la comprensiéon de coémo las leyes del
cambio se expresan cuantitativamente. Ademdas, su ensefianza
facilita que el estudiante perciba la integral como una herra-
mienta que traduce la variacion continua del mundo fisico en un
modelo matematico formal (Artigue, 2009).

Aplicaciones de la integral definida en economia

La integral definida desempefia un papel clave en el andlisis eco-
némico porque permite calcular el valor total de una magnitud que
cambia de manera continua. En términos simples, integra los efectos
acumulativos de pequefias variaciones a lo largo de un intervalo, lo
que la convierte en una herramienta esencial para interpretar fe-
némenos como la produccién, el costo, elingreso o el bienestar del
consumidor. Su utilidad radica en que muchas variables econdmicas
no permanecen constantes: cambian con el tiempo, con el nivel de
produccidn o con el precio, y la integral definida capta precisamen-
te esas variaciones en su totalidad (Chiang & Wainwright, 2005).

El costo total a partir del costo marginal

Cuando una empresa produce bienes, el costo marginal C (qg)
representa el incremento en el costo total por fabricar una uni-
dad adicional. Si se conoce como varia el costo marginal con la
cantidad producida, el costo total entre dos niveles de producciéon
puede calcularse mediante una integral definida:

q2
Claz ] —Cla :fC/ q |dq

Ejemplo 25: Supongamos que una fabrica de envases tiene un
costo marginal dado por C'(q) = 2q + 10, donde g representa
miles de unidades producidas (Figura 20). Sila empresa pasa de
producir O a5 miles de unidades, el aumento en el costo total es:

5
E)/“2q+10 = [¢® +10q]] = (25 +50) — 0 = 75.

Esto significa que el costo total se incrementa en 75 unidades
monetarias. El drea bajo la curva del costo marginal muestra
graficamente la acumulacién de los pequefios aumentos de costo
a lo largo de la produccion. Segun Varian (2019), este razona-
miento permite entender como los costos se distribuyen y como
una empresa puede estimar el punto en que la produccidén deja
de ser rentable.
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Figura 20.
Integral definida para calculo de costo marginal

"1
f

Nota: Elaboraciéon propia.

El ingreso total desde la funcion de precio

Cuando el precio de venta depende de la cantidad ofrecida, el
ingreso total no puede calcularse simplemente multiplicando pre-
cio por cantidad, ya que el precio cambia con el nivel de ventas.
En ese caso, el ingreso total se obtiene integrando la funcién de
precio p(a) respecto a la cantidad:

*

I= /Oq C'(q) dq

Esta integral representa el drea bajo la curva de la funcion de
precio, desde q = 0 hasta una cantidad q*. Cada pequefio in-
cremento dg multiplica el precio asociado P(q , acumulando asi
el valor total de los ingresos generados por todas las unidades
vendidas.

En términos econdmicos, esta formulacion permite capturar
las variaciones del precio a lo largo del rango de cantidades,
proporcionando una medida mds realista del ingreso total que
un cdlculo lineal o constante.

Ejemplo 26: Imaginemos una empresa que vende un producto
con funcién de demanda P(Q) =40 — 29, donde p es el precio en
délares y g la cantidad vendida (Figura 21). Si la empresa vende
hasta 10 unidades, el ingreso total es:

10
1= / (40 — 2q) dq = [40q — q?], " = 400 — 100 = 300
0

Esto significa que el ingreso total acumulado es de 300 ddlares.
El drea bajo la curva del precio representa los ingresos de
todas las unidades vendidas, incluso cuando el precio disminuye
por cada unidad adicional. Este tipo de cdlculo es comuUn en la
microeconomia para analizar los efectos de los precios variables
sobre los ingresos de una empresa (Nicholson & Snyder, 2018).
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Figura 21.
Integral definida para cdalculo de ingresos totales

-
I @

Nota. Elaboracion propia

El valor acumulado de un flujo continuo

En finanzas y macroeconomia, las integrales definidas se utilizan
para calcular flujos continuos de ingreso, gasto o inversién. Si una
empresa recibe un ingreso variable R(t) a lo largo del tiempo,
el ingreso total entre los tiempos t1 y t2 se obtiene mediante:

)
V= / R(t) dt
t1

Ejemplo 27:

Consideremos una empresa que obtiene ingresos segun la
funcion R(t) = 1000e % (Figura 22), donde t estd en afios y el
ingreso disminuye ligeramente con el tiempo debido a la reduc-
cién de la demanda.

Figura 22.
Integral definida para calculo de ingresos totales

F

Nota: Elaboracion propia.

El ingreso total durante los primeros 5 afios serd:

5
V= / 1000e 1t dt = [—10000e "] = —10000(e % — 1) ~ 3935
0

Esto significa que, durante ese periodo, la empresa obtiene un
ingreso acumulado de aproximadamente 3935 unidades mone-
tarias. Como sefiala Merton (1990), este tipo de integral permite
analizar cémo varia el valor de una inversion o flujo financiero
cuando la tasa de cambio no es constante.
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Meétodos de cdlculo de volimenes a partir de la integral definida
El estudio del volumen de los sélidos de revolucion constituye una de
las aplicaciones mas formativas y estéticamente significativas del
calculo integral. En ella confluyen tres dimensiones del pensamiento
matemdtico: la comprensidon conceptual del limite, la representacion
geométrica del cambio y la formalizacion simbdlica de la integral.
Diversos autores han coincidido en que este tema marca un punto de
inflexiéon en el aprendizaje del célculo, al permitir que el estudiante vea
como una forma bidimensional se transforma en una figura tridimen-
sional mediante un movimiento continuo (Stewart, 2021; Tall, 1993).

La vision geométrica: Stewart y la intuicion del cambio

James Stewart (2021) considera que el estudio de los sélidos de
revoluciéon es el ejemplo mas claro del poder del cdlculo para des-
cribir procesos de acumulacion. Segun él, la idea central no radica
Unicamente en “calcular” un volumen, sino en comprender cOmo una
funciéon genera espacio. Stewart propone imaginar la regién bajo una
curva que gira infinitesimalmente, creando capas que, al sumarse,
dan forma al solido.

La nocion de sélido de revolucidon hunde sus raices en la geometria
clasica. Cavalieri formuld en el siglo XVII su Principio de los indivisibles,
segun el cual dos cuerpos que poseen igual drea en todas sus seccio-
nes paralelas tienen el mismo volumen (Katz, 2009). Este principio
anticipa el concepto de integracién: medir un volumen como la suma
de infinitas secciones elementales. El cdlculo integral transformé este
principio en un procedimiento analitico riguroso, al reemplazar los
“indivisibles” por limites de sumas infinitesimales.

Posteriormente, Newton y Leibniz formalizaron la integral como
el limite de una suma de elementos infinitamente pequefios, per-
mitiendo deducir férmulas precisas para los voliUmenes de sélidos
generados por revolucion. Asi, la geometria del siglo XVII dio paso al
pensamiento analitico moderno, donde las formas se conciben como
procesos continuos de generacion. El principio bdsico que subyace
al volumen de revolucidn consiste en dividir una figura en secciones
infinitesimales (Figura 23), calcular el volumen de cada una y sumar
todas esas partes.

Figura 23.
Calculo de Volumen al rotar una region plana en el Eje x

Nota: Elaboraciéon propia.
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b
Asi,laintegral V. == [f(x)]2 dx representa el limite de la suma

donde [f(Xi)]Z expresa el drea del disco en la posicion Xj. Este
razonamiento traduce la continuidad geométrica en una acu-
mulaciéon analitica.

Apostol (1967) sefala que esta estructura es la esencia del
cdlculo: convertir el movimiento en una secuencia de estados
infinitesimales cuya suma expresa una magnitud total.

Desde una perspectiva geométrica, la rotacién de una regiéon
plana alrededor de un eje genera un volumen que puede interpre-
tarse como el recorrido de un drea que se desplaza en el espacio.
Esta concepcidn fue desarrollada por Cavalieri en el siglo XVII,
antes de la formalizacion del cdlculo, mediante su principio de
los indivisibles, segun el cual los cuerpos que tienen igual drea
en todas las secciones paralelas poseen el mismo volumen.

Método de los discos

El método de los discos se aplica cuando una regidn limitada por
una funcion ¥ = f(X)giro alrededor del eje x. Cada diferencial
infinitesimal dx produce un disco circular de radio f(x) y espesor
infinitesimal, de modo que el volumen total es la suma (integral)
de todas las secciones:

V=n /ab [f(x)]? dx

Cuando se aplica el cdlculo integral, ese principio se convierte en
una herramienta rigurosa. Cada seccién transversal del sélido (un
circulo o un anillo) constituye una “capa” que, alintegrarse, forma el
volumen total. Como explica Blitzer (2018), el método de los discos
es una forma moderna del principio de Cavalieri: en lugar de com-
parar secciones, se acumulan infinitos cortes de drea infinitesimal.

Desde una perspectiva educativa, el estudio de los sélidos de
revolucion constituye una oportunidad para integrar las repre-
sentaciones multiples del conocimiento matematico: visual, sim-
bolicay analitica (Duval, 2006). El uso de herramientas digitales
como GeoGebra, Desmos 3D o Maple, permite a los estudiantes
observar de manera dindmica coémo una regidén bidimensional
se transforma en un soélido tridimensional al rotarse.

Tall (1993) sostiene que este tipo de visualizacién favorece la
“encapsulacion de procesos”, es decir, el paso del razonamiento
operativo (girar, acumular, sumar) a la comprension estructural
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(el volumen como objeto matematico). Este cambio cognitivo es
esencial para el desarrollo del pensamiento analitico y la com-
prension profunda del cdlculo.

La visualizacion del sélido transparente con secciones discretas
(como la que se muestra en la imagen) permite interpretar la in-
tegral como un proceso fisico de construccion del volumen: cada
disco simboliza un estado instantdneo de la funcidon al girar, y la
totalidad del cuerpo representa la integraciéon del movimiento.

Este método visualiza el volumen como la acumulacion de
discos compactos. Segun Blitzer (2018), esta concepcién con-
vierte la abstraccién algebraica de la integral en una experiencia
geométrica tangible: cada disco representa una capa de realidad
que, al sumarse, configura el cuerpo entero.

Ejemplo 28:

Figura 24.
Calculo de Volumen al rotar una region plana en el Eje X

Nota: Elaboracion propia.

X
Si la funcién generadora es f(x) = 3 en el intervalo [0,6], su
revolucion alrededor del eje x produce un cono con radio T = 2
y altura h = 6 (Figura 24).

El volumen se obtiene mediante:
6

9 6 3
V=n i (E) dx:%/0 X2dX:g-6 = 8n

3

El resultado coincide con la formula cldsica del volumen del cono,

1
2
V= gnr h=28xn
lo que confirma la coherencia entre el enfoque geométrico
y el analitico. Esta correspondencia entre teoria y visualizacién
refuerza la comprension de la integral como herramienta de
medida del cambio acumulativo.
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Método de los anillos o lavadoras

Cuando el area estd comprendida entre dos curvas ¥ = f(x) y
y = g(x), con f(x) > g(x), el giro alrededor del eje x produce un
s6lido hueco. Cada corte transversal tiene forma de anillo (o lava-
dora), y su volumen se obtiene como la diferencia de dos discos:

v [ (0P - i) a

De acuerdo con Stewart (2021), este método muestra una idea
esencial del pensamiento matematico: medir no solo lo que estd
presente, sino también lo que estd ausente, puesincluso el vacio
tiene una estructura geomeétrica.

Ejemplo 29: Si f(x) = 2y g(x) = /X, en el intervalo [0,4], el
solido formado presenta un vacio central. El volumen sera:

4
V:n/ (4 —x)dx = 8rn
0

Asi, el cdlculo revela una simetria conceptual: tanto un cuerpo
macizo como uno hueco pueden tener el mismo volumen, depen-
diendo de su forma y limites de integracién.

Método de los cascarones cilindricos
El método de los cascarones cilindricos se utiliza cuando la ro-
tacion se realiza alrededor del eje y o cuando se desea trabajar
con funciones expresadas como y = f(y). En este caso, cada
rectdngulo genera un cilindro delgado cuya superficie lateral
tiene longitud 21X y altura f(x).

El volumen total se expresa como:

b
V= 27:/ xf(x)dx

Larson y Edwards (2022) destacan que este método resulta
especialmente intuitivo porqgue muestra el volumen como una
envoltura progresiva de capas cilindricas, lo que facilita la com-
prension del crecimiento radial.

Ejemplo 30: Sea y = X2 en [0,1], rotada alrededor del eje y

(Figura 25).
Entonces:

1 1
V:2n/ X(Xz)dX:21t/ x3dx = z
0 0 2
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Figura 25.
Calculo de Volumen al rotar una regién plana en el Eje Y

Nota: Elaboraciéon propia.

Este método permite observar el volumen como un proceso de
expansion radial, lo que resulta particularmente Util al modelar
fendmenos en fisica o ingenieria, como la distribucién de masa
o la generacion de flujos.

El estudio de los tres métodos ofrece mas que una herramienta de
cdlculo: constituye un modelo de pensamiento visualy analitico. Duval
(2006) explica que la comprension matematica profunda depende
de la capacidad para cambiar de registro de representacion, es decir,
pasar de la expresion simbdlica ala visual, de la formula al movimiento.

Cuando el estudiante utiliza software como GeoGebra 3D,
puede observar el proceso de rotacion, identificar las secciones
infinitesimales y comprender cémo el cdlculo integral traduce el
movimiento continuo en una magnitud cuantificable.

Artigue (2009) afiade que la ensefianza del cdlculo debe vin-
cular la formalizacion con la exploracion geométrica: antes de
memorizar formulas, el estudiante debe experimentar la forma-
cién del volumen, sentir la transformacién del plano al espacio.
Este enfoque experimental potencia la visualizacién del cambio
y fortalece el pensamiento geométrico.

Los métodos de discos, anillos y cascarones no son simples
procedimientos técnicos; representan tres miradas complemen-
tarias sobre la relaciéon entre forma, movimiento y medida. La
integral actUa como un lenguaje universal que describe como
el espacio se genera a partir del cambio continuo.

Como afirma Stewart (2021), “el cdlculo ensefa a pensar en pro-
cesos, no en objetos; en transformaciones, no en estados”. Esta pers-
pectiva hace del cdlculo integral una herramienta no solo para medir
volumenes, sino para comprender la geometria dindmica del mundo.

Conclusiones
El estudio de laintegral revela la belleza del cdlculo como una cien-

cia del equilibrio entre el cambio y la permanencia. Comprender
la integral no es solo dominar técnicas de antiderivacion o cdlculo
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de dreas, sino descubrir como los procesos de acumulacion des-
criben la continuidad del mundo. A lo largo del capitulo se mostro
que la integral expresa el retorno a la totalidad: permite recons-
truir, a partir de lo infinitesimal, los comportamientos globales de
un fendmeno. Esta idea, presente desde Arquimedes hasta los de-
sarrollos modernos, conecta la geometria, la fisica y la economia,
mostrando que la suma infinita es una forma de razonamiento
sobre la vida misma, donde cada pequefia parte contribuye a un
todo coherente. La integral se convierte asi en una herramienta
para interpretar, modelar y anticipar la dindmica de la naturaleza
y de los sistemas humanos, reafirmando el sentido formativo y
universal del calculo.

Desde una perspectiva didactica, este capitulo invita a ensefiar
la integral desde la experiencia visual y el razonamiento progre-
sivo. La comprensién emerge cuando el estudiante ve cdmo las
areas se forman, cdémo las magnitudes se acumulan o cémo el
cambio puede revertirse en estabilidad. Las herramientas tec-
nolégicas y los contextos reales potencian esta comprensién, al
permitir observar que la integral no es una operacion mecdanica,
sino un lenguaje del crecimiento y la reconstruccion. En defini-
tiva, aprender a integrar es aprender a mirar el mundo como
una totalidad en movimiento, donde cada instante, por pequefio
que parezca, contribuye a la forma final de los procesos que nos
rodean.
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CarituLo IV

Didactica del calculo y modelacion
del cambio

Introduccion

Ensefar cdlculo supone mucho mas que transmitir un conjunto de
técnicas; implica abrir una forma de mirar el mundo en términos
de variacion, continuidad y transformacion. Desde esta perspec-
tiva, el cdlculo se convierte en una herramienta para compren-
der la realidad y no solo para resolver problemas. Sin embargo,
el reto pedagdgico no reside en la complejidad del contenido,
sino en la manera en que este se representa, se experimenta y
se internaliza. La diddactica del cdlculo busca, por tanto, que el
estudiante construya significados antes que procedimientos, que
vea en una curva o en un limite no una abstraccion lejana, sino
la expresiéon visible del cambio en los fendmenos que lo rodean.

Comprender el cdlculo desde una mirada conceptual y visual
demanda una ensefianza que combine lo simbdlico con lo intui-
tivo. Los simbolos, las graficas y las palabras se transforman en
tres lenguajes complementarios del pensamiento variacional, y el
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https://editorial.risei.org
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aula se convierte en un laboratorio donde el estudiante explora,
conjetura y modela. En este sentido, la representacién multiple
del cambio constituye el eje articulador de un aprendizaje signi-
ficativo. Cuando una funcién cobra vida en la pantalla, cuando el
estudiante manipula pardmetros y observa cémo se transforma
la grafica, el cdlculo deja de ser una técnica abstracta para con-
vertirse en una experiencia cognitiva y estética.

Desde la diddactica contempordnea, ensefiar derivadas e in-
tegrales requiere articular la intuicién, el lenguaje simbdlico y
el pensamiento computacional. GeoGebra, Desmos y Python se
han consolidado como entornos que amplifican la capacidad de
exploracion y visualizacién del estudiante, permitiéndole descu-
brir regularidades y formular hipbtesis sobre la variaciéon. Estos
entornos no reemplazan la comprensidn tedrica, sino que la po-
tencian: facilitan el transito del cdlculo manual al razonamiento
estructural, del resultado al proceso. A su vez, la modelacion
matematica se erige como una estrategia central para dotar de
sentido a los conceptos, al conectar el aula con fenémenos reales
de la fisica, la economia o la biologia.

Finalmente, este capitulo propone un enfoque diddctico que
integra la comprensién conceptual con la tecnologia y la reflexiéon
pedagdgica. La ensefianza del cdlculo debe conducir al desarrollo
del pensamiento variacional, entendido como la capacidad de
reconocer y analizar patrones de cambio, y del razonamiento fun-
cional, que permite comprender cémo las variables se relacionan
y evolucionan en el tiempo. Formar en cdlculo, desde esta vision,
significa formar mentes que piensen dindmicamente, que sepan
traducir lo cambiante en estructuras comprensibles y que asuman
la matemdatica como una forma profunda de interpretar el mundo.

Ensefar cdlculo desde la comprension conceptualy visual
Ensefiar cdalculo como teoria del cambio y la acumulacién exige
algo mads que destrezas de coOmputo. Implica ayudar a que el
estudiantado construya significados estables y transferibles que
articulen definiciones, propiedades, representaciones y usos en
contextos variados. En esta clave, lo conceptual y lo visual no son
dos caminos paralelos. Son un mismo trayecto que se recorre
con diferentes recursos cognitivos y semioticos: palabras, sim-
bolos, grdficos, manipulaciones y simulaciones. La investigacion
en Diddctica de la Matematica coincide en que la coordinacién
entre registros de representacion y la reificacion progresiva de
procesos en objetos son condiciones para comprender profun-
damente nociones como limite, derivada e integral (Duval, 2006;
Sfard, 1991; Tall, 2013).
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Fundamentos tedricos. registros, imagenes de concepto y tran-
sito proceso-objeto
En cdlculo, comprender es poder coordinar definiciones, propieda-
des y usos a lo largo de varios reqgistros de representacion y, ade-
mds, convertir acciones en objetos. De acuerdo con Duval (2006),
el aprendizaje profundo exige conversion entre registros: verbal,
grdaficoy simbolico. En la practica, el estudiantado no solo “traduce”,
sino que verifica que lo visto en la grdfica coincide con lo que la
expresion declaray con lo que el enunciado describe. Cuando esta
verificacion no se busca, suelen consolidarse errores de lectura, por
ejemplo, confundir valor de la funcién con valor limite.

Tally Vinner (1981)

limf(x)
x—a

distinguen entre imagen de concepto y definicion de concepto.
En el limite, la imagen de concepto tipica asocia “acercarse” con
“sustituir”, lo que oculta la diferencia entre y f(a). Por eso convie-
ne disefar secuencias que hagan visible el desacople: funciones
con “agujeros”, saltos o redefiniciones puntuales que mantengan
el limite, pero cambien el valor de la funcion. El contraste explici-
to entre imagen y definiciéon es una estrategia de reduccion de
malentendidos persistentes (Cornu, 1991).

El transito cognitivo de procesos a objetos es clave.
b
f(x)dx
a

Sfard (1991) lo denomina reificacion y Gray y Tall (1994) hablan
de procepto para subrayar que expresiones como f’(a) o0 sonad
la vez un procedimiento y un objeto con propiedades. Cuando la
ensefianza se queda en el plano procedimental, la derivada se
reduce a reglas y la integral a antiderivacion mecdnica.
Finalmente, el marco de los tres mundos del pensamiento de Tall
(2013) ayuda a orquestar la progresion: lo corporal (intuiciones
de cambio y cercania en experiencias y simulaciones), lo simboli-
co-proceptual (operaciones con expresiones que se tratan como
objetos) y lo axiomatico-formal (definiciones y teoremas). La
planificacién equilibra estos mundos: primero se “ve” y se “dice”,
luego se “simboliza” y se “justifica”, y mas tarde se “depura” con
formalizaciéon apropiada al nivel.
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x2 -1
Ejemplo 1: Se muestra f(X) = 1 y se pide (Figura 1):
X p—
a) Estimar con una grdfica limf(x).
x—1

b) Redefinir (1) y explicar por qué el limite no cambia

c) Escribir una explicacion breve que use el lenguaje de “cer-
canias” y contraste con la definicion formal. La consigna obliga
a coordinar registros y a diferenciar imagen y definicion.

Figura 1.
Cdlculo de limite de f(ac) enelpuntox = 1
b : -

Nota: Elaboracion propia.

El limite y la derivada desde la visualizacion local: razon que
se estabiliza y linealizacion
La derivada se consolida cuando confluyen tres hilos: razén de
cambio, pendiente y linealizacion local. Zandieh (2000) propone
un marco de capas: razdn incremental
Ay
Ax
paso al limite y coordinacion multirregistro. Estas capas se pue-
den visualizar con secuencias que acerquen rectas secantes a la
tangente, que muestren tasas promedio sobre intervalos decre-
cientes y que pidan conjeturas antes del cdlculo exacto.
Ejemplo 2: Dada s(t) definida por (Figura 2):

s(t) = t3 — 6t2 + 9t
a) Estimar con tabla y gréfica la tasa promedio en [1,1 + hj

parah >0y h <0.
b) Observar la estabilizacion numérica al disminuir |h|

¢) Calcular Sl(t) =3t2—-12t+9 y justificar que s'(1) = 0 ex-
presa una pendiente nula y una linealizacion plana:

s(t) &~ s(1) +s'(1)(t — 1)

!/ . . .
d) Superponer sy s y narrar, en lenguaje comun, donde crece
y decrece la funcién y por qué.
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Figura 2.
Comprension de localidad del andlisis

Nota: Elaboraciéon propia.

El punto tedrico no es “ver para creer”, sino ver para conjeturar
y luego justificar. La visualizacién apoya la comprensién de la
localidad del andlisis: el comportamiento global puede engafiar,
pero al “hacer zoom” la tangente impone una lectura lineal. Este
paso conecta con la nocién de diferenciabilidad y prepara la
formalizacion con €y & como control del error entre funcion y su
aproximacion lineal en un entorno (Tall, 2013).

Riesgos y mitigaciones.

* Riesgo: Sobreconfiar en lo que “parece” en una pantalla.
Mitigacion: pedir una verificacion simbdlica minima y una
explicacion escrita que use el vocabulario de razén que se
estabiliza.

* Riesgo: Tratar la linealizacién como férmula. Mitigacion:
exigir siempre el relato local: qué cambia, qué permane-
ce invariante y por qué la recta tangente “gobierna” en el
entorno.

La integral definida como acumulacion. areas firmadas, funcio-
nes acumuladas y Teorema Fundamental
La integral definida debe instalarse primero como acumulacidn y
area firmada, no como “antiderivacion al revés”. Se parte de una
tasa r(t) significativa, se aproximan acumulaciones con sumas

de Riemann y se construye la funcion acumulada
t

A(t) = | r(u)du
to

El paso decisivo es leer A'(t) = r(t) como una relacion estruc-
turaly no como un truco de cdlculo. Asi, el Teorema Fundamental
del Cdlculo une dos narrativas: leer pendientes (derivada) y leer
areas (integral).

Ejemplo 3: El caudal instantdneo con que entra agua a un
tanque esta dado por r(t) = 2 + sen(t) (litros/minuto) durante
0<t<a minutos.
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a) Estimar n

r(t)dt
0

con rectangulos izquierdos, derechos y de punto medio, va-
riando el nUmero de subintervalos.

b) Graficar t

A(t) = r(u)du
0

y observar su crecimiento, sus concavidades y sus puntos
donde A’ (t) =1 (t) se anulo.

c) ColculorA(t) = 2t — cost + 1y comparar conlasestimaciones.

d) Discutir el signo como orientacién: si r(t) <0, el “area”
resta acumulacion.

Desde la teoria de los registros (Duval, 2006), esta secuencia
fuerza conversiones controladas y evita dos errores comunes:
pensar que toda “drea” es positivay creer que integrar es “aplicar
formulas”. Desde el enfoque proceso-objeto, la integral se con-
vierte en objeto manipulable: se acota, se compara, se compone
con funciones y se usa para modelar decisiones.

Riesgos y mitigaciones.

* Riesgo: Perder el sentido de limite al pasar de sumas a in-
tegral. Mitigacion: mantener visible el pardmetro “nUmero
de subintervalos™ y discutir convergencia y error.

* Riesgo:Reducir el TFC a recetas. Mitigacion: pedir siempre una
lectura semantica: qué significa A (t) =r (t) en el fendbmeno.

Disero didactico y evaluacion: ver, decir, simbolizar y justificar
Las decisiones metodolégicas deben sostener la coherencia entre
mundos (Tall, 2013) y la coordinacidon de registros (Duval, 2006).
Proponemos un ciclo estable:

1. Ver: Apertura con experiencia o simulacion que exponga
el rasgo conceptual: acercamientos al punto para limite,
secantes que se aproximan a la tangente, rectangulos que
aproximan acumulacion.

2. Decir:Formulacion de conjeturas en lenguaje natural. Se exi-
ge vocabulario de proximidad, tasa, acumulacion, orientacion.

3. Simbolizar: Traduccion a expresiones y procedimientos, con
control metacognitivo sobre la eleccién de técnicas.

4. Justificar: Argumentacion proporcional al nivel: desde equi-
valencias numéricas y desigualdades elementales hasta
argumentos € — 8 en casos prototipicos.

El valor pedagdgico de GeoGebra, Desmos u otras herramien-

tas no estd en la animacién por si misma, sino en cémo ha-
cen visible la idea que queremos discutir y en cédmo obligan a
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argumentar lo observado. La tecnologia debe estar al servicio de
tres acciones cognitivas: variar, comparar y justificar. Esta triada
conecta con elrol representacional de la tecnologia descrito por
Kaput, que subraya su potencia para vincular la matematica con
experiencias auténticas y manipulables (Kaput, 1994). Ademdas,
las herramientas dindmicas facilitan la coordinacion de registros
que demanda la comprension, tal como lo plantea la teoria se-
miodtica de Duval (2006), y permiten moverse entre los mundos
corporal, simbdélico y formal de Tall (2013) con mayor fluidez.

Como orquestar una exploracion tecnoldgica paso a paso
1. Foco conceptual explicito: Antes de abrir la aplicacién, enun-
cia el proposito con una frase corta: “Hoy vamos a mirar
coémo una razén promedio se estabiliza cuando el intervalo
se hace pequefio”.Este enunciado ancla la observacion a un
objeto conceptual y evita la navegacién sin rumbo.
2. Variacion controlada: Introduce uno o dos deslizadores per-
tinentes. Ejemplos:
* En Iimites: Punto a y ancho del intervalo h.
« En derivada: Posicion x y separacion Ax de la secante.
* Enintegral: NUmero de subintervalos ny punto de muestreo.
La variacion controlada permite ver qué cambia y qué permanece
invariante, idea central en la construccién de significado (Tall, 2013).
3. Comparaciones visibles: Superpone representaciones que
dialoguen:la curva f, su secante y la tangente; o la tasa r(t)
y la funcién acumulada A(t). Pide al estudiantado capturas
de pantalla anotadas con flechas y breves etiquetas. Las
anotaciones fuerzan la verbalizacién de lo que se ve, tal
como recomienda Arcavi sobre el papel de lo visual para
pensar matematicamente (Arcavi, 2003).
4. Preguntas guia que conducen a la justificacion:
* “:Qué observas cuando ‘h‘ se hace menor que 071,0.01,0.001?"
* “Si la secante ya casi coincide con la tangente, jqué afir-
macion simbolica respalda esta observacion?”
* “Enlagraficade A(t), ien qué puntos deja de crecer y cémo
se ve eso en r(t)?”
Estas preguntas ensefian a “leer” el grafico con un propdsito
y conectarlo con el registro simbdlico y verbal (Duval, 2006).
5. Verificacion cruzada obligatoria: Cada producto tecnold-
gico se acompafia de dos piezas breves:
a) Cdlculo esencial que verifica una conjetura.
b) Parrafo interpretativo de 6 a 8 lineas.
La verificacion cruzada reduce el riesgo de sobre interpretar
lo que “parece” y promueve el control metacognitivo sobre el
procedimiento elegido (Hiebert & Carpenter, 1992).
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6. Cierre que sube de nivel: Conecta lo observado con la idea
formal correspondiente: por ejemplo, desde la estabilizacion
de razones a la definicion de derivada como limite, o desde
sumas de Riemann al enunciado del Teorema Fundamental
del Cdlculo. Este puente consolida el transito del mundo
corporal al simbdlico y prepara la depuracion formal (Tall,
2013).

Buenas prdcticas concretas

* Un deslizador por idea clave. Demasiados controles
confunden.

* Capturas con comentarios. Sin comentario, la imagen no
evidencia comprension.

* Tiempo acotado para explorar y mds tiempo para explicar.
Explorar 10 minutos, explicar y justificar 20.

* Alternar conductor. Un momento lo guia la docencia, otro
lo conduce un equipo que explica sus hallazgos a la clase.

Riesgos comunes y cdmo mitigarlos

e FEfecto espectaculo. Mucho movimiento y poca matematica.
Solucidn: comenzar cada exploracién con una pregunta
matematica que luego deba contestarse por escrito.

e Dependencia del grdfico. Si la resolucion engafia, la conclu-
sién puede ser falsa. Solucidon: cotejar con valores numéricos
y una desigualdad o identidad clave.

* Procedimentalismo digital. Pulsar botones sin sentido.
Solucién: exigir que cada clic tenga un porqué expuesto
en la ficha de trabajo.

Rubricas y evaluacion formativa: evaluar conexiones, no solo
resultados

La evaluacién debe valorar la calidad de las conexiones entre
registros, la claridad del relato conceptual y el control del error,
por encima de la extension del cdlculo rutinario. Este enfoque
estden correspondencia con la necesidad de traducir y coordinar
registros que plantea Duval (Duval, 2006).

1. Conexion multirregistro

La conexion multirregistro se refiere a la capacidad que tienen
los estudiantes para relacionar distintos modos de representar
una idea matemdtica, como grdaficos, simbolos y lenguaje verbal.
Cuando esta habilidad estd muy desarrollada, el estudiante pue-
de pasar de un registro a otro con soltura, explicar qué aspectos
cambian y cudles permanecen constantes ante una variacion y,
ademds, detectar incoherencias si las hubiera. (Tabla 1)
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Enun nivel sélido, el estudiante ya consigue coordinar al menos dos
registros y reconocer algun elemento invariante, aunque su andlisis es
menos profundo. En cambio, cuando la habilidad estd en desarrollo,
suele usar solo uno o dos registros sin integrarlos entre siy su explica-
cién se queda en lo descriptivo, sin llegar a establecer relaciones que le
permitan interpretar de manera mas completa la situacion matematica.

Tabla 1.
Conexion multirregistro

Nivel Descripcion mejorada Indicadores observables

Excelente |Integra con consistencia | Identifica invariantes; dis-
grafico, simbdlico y ver- | tingue valor vs limite, razon
bal. Explica qué cambia y | promedio vs derivada, area
qué permanece invariante | firmada vs drea geométrica;
al variar un pardametro y | detecta contradicciones en-
verifica en ambos sentidos. | tre registros.

Sdlido Coordina al menos dos re- | Traduce de grdéfica a simbo-
gistros con coherencia y |lo o de simbolo a relato sin
nombra al menos un inva- | errores sustantivos; usa vo-
riante relevante. cabulario preciso.

En Usa uno o dos registros sin | Lectura literal de la grafica;
desarrollo | traducir entre ellos; expli- | confunde pendiente con al-
cacion descriptiva pero no | tura; no contrasta.

relacional.

Inicial Presenta un Unico registro | Igualacion de limite y valor;
y comete confusiones de | trata toda drea como positi-

base. va; ausencia de verificacion.
Nota: Elaboracion propia.

2. Relato conceptual
El relato conceptual (Tabla 2) describe la manera en que un
estudiante logra expresar con sus propias palabras la idea ma-
tematica central de un tema, mostrando que entiende no solo su
definicion, sino también su contexto, sus alcances y sus limites.
En un nivel excelente, el estudiante explica el concepto con clari-
dad, utiliza terminologia precisa y es capaz de ofrecer ejemplos
y contraejemplos que demuestran un dominio profundo.

Cuando el nivel es s¢lido, la explicacién sigue siendo correcta
y clara, aunque con menor riqueza conceptual. En cambio, cuan-
do la habilidad esta en desarrollo, el estudiante suele limitarse a
repetir definiciones ligeramente reformuladas, sin vincularlas a
la situacion que analiza. Finalmente, en el nivel inicial, el discur-
so se reduce a formulas o frases memorizadas sin comprension
real, lo que se evidencia en la falta de contexto, la ausencia de
interpretacion y un lenguaje casi telegrdfico.
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Tabla 2.

Relato conceptual

Nivel Descripcion mejorada Indicadores observables

Excelente | Define con sus palabras | Uso de términos como entor-
el foco conceptual, lo si- | no, cercania, estabilizacion,
tua en contexto y mues- | linealizacién, acumulacién,
tra alcances y limites con | orientacién del drea; preci-
ejemplo y contraejemplo | sion semantica.
correctos.

Sdlido Explica con claridad el | Terminologia casi sin ambi-
foco y lo ilustra con un | gledades; coherencia entre
ejemplo correcto. enunciado y ejemplo.

En Parafrasea definiciones | Mezcla de términos o ausen-

desarrollo | sin aplicarlas a la situa- | cia de contexto; definiciones
cién dada. genéricas.

Inicial Repite formulas sin senti- | No explicita condiciones ni
do conceptual. interpretaciones; lenguaje

telegrdfico.

Nota: Elaboraciéon propia.

3. Uso pertinente de tecnologia
El uso pertinente de la tecnologia (Tabla 3) se refiere a la capa-
cidad del estudiante para elegir y manejar herramientas digita-
les de manera que aporten sentido al razonamiento matemati-
co. En un nivel excelente, el estudiante selecciona la aplicacién
adecuada para el objetivo conceptual, ajusta con intencion los
deslizadores o capas que necesitay acompafia cada interaccion
con cdlculos o anotaciones que permiten entender qué observa
y por qué es relevante.

Cuando el nivel es sélido, la herramienta se utiliza de forma
coherente con el proposito y al menos se incluye una explicaciéon
bdsica que conecta la visualizacién con la idea matemdtica. En
los niveles en desarrollo, las capturas o acciones suelen centrar-
se mas en el aspecto visual que en el concepto, mostrando una
relacion débil con el cdlculo o con el andlisis que se pretende
realizar. Finalmente, en el nivel inicial se observa un uso desor-
denado y sin propoésito matematico, con clics aleatorios, escalas
mal ajustadas y resultados que no pueden vincularse con ninguna
conclusion clara.
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Tabla 3.

Uso de tecnologia

Nivel Descripcion mejorada Indicadores observables

Excelente | Selecciona la herramien- | Deslizadores con rangos aco-

L ! -,
ta por propdsito concep- | tados; capas f,f y funcion
tual; configura variacién | acumulada; anotaciones que
controlada y superposi- | explican lo que se ve y lo que
ciones Utiles; vincula cada | significa.
interaccién con cdlculo
verificable y mantiene
replicabilidad.

Sdlido Uso consistente con el | Escalas adecuadas; pequefias
objetivo y al menos una | inconsistencias que no afec-
anotacién explicativa. tan la conclusion.

En Capturas sin anotacidn | Interacciones irrelevantes o

desarrollo | o foco estético; conexion | excesivas; cambios de escala
débil con el cdlculo. no justificados.

Inicial Clics aleatorios sin prop6- | No hay trazabilidad del gra-
sito matematico; errores | fico a la conclusién; confusio-
de escala no reconocidos. | nes persistentes.

Nota: Elaboraciéon propia.

4. Control del error y de supuestos
El control del error y de los supuestos (Tabla 4) muestra hasta
qué punto un estudiante es capaz de reconocer las limitaciones
de sus procedimientos y justificar la fiabilidad de sus resultados.
En el nivel excelente, el estudiante no solo identifica el error de
aproximacion, sino que lo estima o lo acota, compara distintas
aproximaciones para valorar su convergencia y explica por qué
el método utilizado es adecuado, dejando claros los supuestos
que lo sustentan.

En un nivel s6lido, el andlisis es mds bdsico, pero aun asi reco-
noce donde se produce el error y compara al menos dos apro-
ximaciones, aunque no llegue a cuantificar una cota precisa.
Cuando la habilidad estd en desarrollo, el estudiante sabe que
existe un error, pero no lo analiza ni lo contrasta, lo que se re-
fleja en decisiones instrumentales tomadas sin un criterio claro.
Finalmente, en el nivel inicial se asume que todo es exacto o
simplemente se omite la discusiéon sobre errores y supuestos, lo
gue conduce a presentar resultados sin andlisis critico.
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Tabla 4.

Control del error y supuestos

Nivel Descripcion mejorada Indicadores observables

Excelente | Estima o acota el error de | Tabla n vs aproximacién y
aproximacién, compara | error; identifica sobre o sub-
tasas de convergencia, | estimacion; criterios para
justifica el método y expli- | elegir regla de Riemann o
cita supuestos del modelo. | método.

Sdlido Reconoce el error y|Sedala cudl sobrestima o
compara al menos dos |subestimay por qué, aun sin
aproximaciones. cuantificar cota.

En Admite que hay error | Eleccionesinstrumentales sin

desarrollo | pero no lo cuantifica ni lo | criterio; ausencia de andlisis
compara. de calidad.

Inicial Asume exactitud o ignora | No revisa supuestos; presenta
el tema. resultados sin discusion.

Nota: Elaboracion propia.

Representaciones simbdlicas, grdficas y verbales del cambio
La comprension del cdlculo como lenguaje del cambio exige ar-
ticular tres registros epistemoldgicamente complementarios: el
simbdlico, el grafico y el verbal. En primer lugar, la literatura ha
mostrado que la comprension profunda no depende de un regis-
tro dominante, sino de la conversién sistemdatica entre registros y
de la verificacién de coherencia interna entre lo que se ve, lo que
se escribe y lo que se explica. Esta tesis se sustenta en la teoria
de los registros semiodticos de Duval, que identifica la conversion
y el tratamiento como operaciones cognitivas indispensables
para la constitucion del significado matemdatico (Duval, 2006),
y se refuerza con los aportes de Arcavi sobre el papel de las re-
presentaciones visuales en la construccién de ideas matematicas
potentes (Arcavi, 2003).

En segundo lugar, desde un plano cognitivo, la imagen de
concepto del estudiantado debe formar con la definicion de
concepto mediante secuencias que hagan explicito el transito
desde intuiciones locales hacia enunciados formales, evitando
confusiones estructurales como igualar limite y valor o leer pen-
dientes como alturas (Tall & Vinner, 1981; Sierpi ska, 1994). En
tercer lugar, el cambio se aprende como proceso y se estabiliza
como objeto: el paso de operar con razones Yy sumas a operar
con derivadas e integrales como entidades manipulables es el
nucleo de la reificacion conceptual que describen Sfard y Gray
y Tall (Sfard, 1991; Gray & Tall, 1994).
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Limite y continuidad: traducir cercania en simbolos, graficos y
palabras
Conviene recordar que un enunciado de limite afirma control
de la cercania y, por tanto, control del error: para todo margen
deseado de aproximacién en los valores de f(x) alrededor de
L, existe un entorno de a que garantiza esa proximidad. Esta
semantica de precisiéon debe ser observable en la grdafica, re-
presentable en simbolos y enunciable con un [éxico de cercania,
entorno y estabilizacion. En coherencia con Duval (2006), la ac-
tividad de aprendizaje debe orquestar conversiones explicitas:
de narrativas verbales a notacién y de notacién a lectura visual
con zoom local. Asimismo, con base en Tally Vinner (1981), se ha
de contrastar la imagen de concepto de limite como “acercarse”
con la definicion en términos de control del error, para evitar
equivalencias espurias.

Ejemplo 4: Caso trigonométrico fundamental. lim % =1
(Figura 3) x—0
Figura 3.

Comprension de estabilizacion de la razén incremental

Nota: Elaboraciéon propia.

En el registro grafico, los acercamientos laterales exhiben que,
al reducir el dngulo, arco y cateto opuesto se equiparan a primer
orden; la curva sen(x) se confunde con la recta ¥ = X cerca del
origen.

En el registro simbdlico, la férmula condensa la idea de estabi-
lizacion de la razén incremental. En el registro verbal, se expre-
sa que la razon entre longitud curvilinea y proyeccion recta se
aproxima a 1 para dngulos pequefios. Por consiguiente, se justifica
la linealizacion sen (X) /A X en vecindades de 0 y se prepara la
lectura local de la derivada de sen(x) (Arcavi, 2003).

sen(x) 1

Ejemplo 5: Caso exponencial en el origen lim =
x—0 X
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Figura 4.
Linealizacién de la funcion exponencial en la cercania de cero

*

Nota: Elaboraciéon propia.

En el registro grafico (Figura 4), la tangente ¥ = 1+x apro-
xima con gran fidelidad €* cerca de 0. En el registro simbdlico,
la resolucién de la forma % afirma que el crecimiento relativo
unitario gobierna el comportamiento local.

En el registro verbal, se declara que por cada incremento in-
finitesimal de x el valor de €* cambia en magnitud comparable,
lo que sugiere €* & 1 4+ X en el origen.

Ejemplo 6: Caso logaritmico elemental

lim In(14+x)=0
x—0T
En la grafica (Figura 5),el In (1 + X) rozaay = Xen el origen;
en simbolos, se establece la equivalencia de primer orden; en
palabras, se afirma que un pequefio incremento porcentual se
traduce en un incremento casi equivalente en el logaritmo. En
términos diddcticos, este caso vehicula la nocion de cambio re-
lativo y prepara el uso de In (1 +h) ~ h.

Figura 5.

Linealizacién de la funcién logaritmo en la cercania de cero
a

Nota: Elaboraciéon propia.
Ejemplo 7: Caso de comparacién de tasas

lim xInx=0
x—0t+
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En la grafica (Figura 6), la curva desciende y se aplana hacia el
eje; en simbolos, se desambigua el producto 0 - (—OO) mostrando
que la velocidad de aproximacion de x a O domina la velocidad
de decrecimiento de xInx.: en palabras, se enfatiza la lectura
comparativa de magnitudes en competencia.

Figura 6.
Cdlculo de limite en la comparacion de tasas
- Y, =
d /
fi=) r Iz

Nota: Elaboraciéon propia.

Ejemplo 8: Caso de oscilacién sin estabilizacion | lim sen (%)
no existe. x>0

En la grdafica (Figura 7), el zoom sucesivo revela oscilaciones
sin asentamiento; en simbolos, se niega la existencia del limite;
en palabras, se explicita que no es posible controlar el error al-
rededor de ningUn candidato.

De este modo, se distribuye imagen de concepto y defini-
cion, remarcando que “acercarse” no basta sin estabilizacion
(Sierpinska, 1994;Tall & Vinner, 1981).

Figura 7.
Calculo de limite de oscilacion si estabilizacion

Nota: Elaboraciéon propia.

En sintesis, estos ejemplos consolidan la semantica del limite
como estabilizaciéon y habilitan el paso a la derivada, en cohe-
rencia con la progresion corporal-simbdlico-formal de los tres
mundos de Tall (2013).
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Derivada y linealizacion locales: razon que se estabiliza en ex-
ponenciales, logaritmicas, trigonomeétricas e hiperbolicas.
En segundo lugar, se establece que la derivada en a resulta del
limite de razones promedio y, simultGneamente, constituye el ob-
jeto que permite linealizar el comportamiento local de la funcién:

(f’ (a) =lim {ERT@) £ () o £ (a) + £ (a) (x — a))
h—0

De acuerdo con Sfard (1991) y Gray y Tall (1994), el simbolo
(f’ (a) es proceptual: designa a la vez un proceso y un objeto.
Por consiguiente, el aula debe articular una secuencia que haga
visibles los tres registros y su coherencia: ver secantes que se
transforman en tangente, escribir el limite que captura la estabi-
lizacién y decir con precision el sentido local de la recta tangente
y su error.

En simbolos, (ex)l = e*. En grdficas (Figura 8), la pendiente
coincide con la altura en cada punto. En palabras, se enuncia que
la tasa de cambio es proporcional al valor.

De esta forma, en a se escribe la linealizacidon

L(x)=e*+e*(x—a)

Figura 8.
Cdlculo de derivadas donde la pendiente coincide con la altura en
cada punto

——

Nota: Elaboracion propia.

En términos de lectura local, donde €* es grande, la funcién
cambia rapidamente, y donde es pequefia, cambia lentamente,
lo que da unidad semantica al par altura-pendiente.

Ejemplo 9: Exponencial general y factor regulador In (a)

En simbolos, (ax)l = In (a)a*. En graficas (Figura 9), las fami-
lias a* exhiben pendientes mas pronunciadas cuanto mayor es
a > 1,y pendientes negativassi 0 < a < 1.
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Figura 9.
Comportamiento de pendientes en funciones exponenciales

Nota: Elaboraciéon propia.

En palabras, se sostiene que In(a) regula la rapidez del cambio
por unidad de x, integrando la comparacion de tasas y el efecto
de un pardmetro.

Ejemplo 10: Logaritmo natural y desaceleracion

, | e

En simbolos, (ln (X)) = +- En grdficas, la curva presenta pen-

dientes muy altas cerca de O que se suavizan al crecer x (Figura 10).

Figura 10.
Comportamiento de la desaceleracion del logaritmo

#*

Nota: Elaboraciéon propia.

En palabras, se explicita que la ganancia marginal decrece, lo
que permite traducir la pendiente en razonamientos sobre elas-
ticidad y sensibilidad. En x =1, la linealizacién ln(l + h) ~h
hace tangible el nexo entre derivada y aproximacion local.

Ejemplo 11: Trigonométricas y desfasaje ritmo-posicion

En simbolos,(sen (x)) = cos (x)y(cos (x))' = — sen (x).En gra-
ficas, la sinusoide exhibe ritmo maximo en los cruces con el gje
y ritmo nulo en cimas y valles (Figura 11).
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Figura 11.
Comportamiento de desfasaje ritmo - posicion en funciones
trigonomeétricas

LI} s ]

Nota: Elaboracion propia.

En palabras, se interpreta el desfase de un cuarto de ciclo
entre posicion y velocidad, habilitando una lectura cualitativa
de crecimiento, decrecimiento y extremos mediante el signo de
la derivada.

Ejemplo 12: Hiperbdlicas y curvatura global

En simbolos,(senh (x))" = cosh (x)y(cosh (x))" = senh (x).

En graficas, cosh(x) es convexa con minimo en 0, mientras se
Senh(x) esimpary casilineal en vecindades del origen (Figura 12).

Figura 12.
Comportamiento de funciones hiperbdlicas

Nota: Elaboraciéon propia.

En palabras, se establece que la catenaria cosh(x) se curva
hacia arriba en todo punto, lo cual refuerza la lectura del signo
de la segunda derivada como diagndstico de concavidad.

Ejemplo 13: No diferenciabilidad en trascendentes con cuspides

Comportamiento de no diferenciabilidad en funciones con
cUspides

En simbolos, f(x) = ]sen (X)| no es diferenciable en x = kn
(figura 13). En grdficas, aparecen cUspides; en palabras, se ex-
plica que los cocientes incrementales laterales no convergen a
un valor comun (Figura 13). Desde un plano diddctico, se evita
aplicar reglas de derivacion sin analizar comportamiento local.
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Figura 13.
Grdfico de la Funcién Seno en Valor Absoluto y su Funcién Derivada

-

Nota: Elaboraciéon propia.

Ejemplo 14: Composicidon trascendente y lectura en cadenas

Para F (x) = %) en simbolos F! (x) = cos (x)e*™) £n gra-
ficas, es Util superponer F con sen(x) y cos(x) para leer zonas
de maximo crecimiento cuando cos(x) > 0y sen(x) es grande.
(Figura 14)

Figura 14.
Comportamiento de composicion de funciones trascendente

Nota: Elaboracion propia.

En palabras, se declara que la tasa combina el efecto del valor
de F con la orientacién del factor cos(x), lo que integra lectura
local y composicion.

A modo de conclusién, la derivada se instala como razén que
se estabiliza y como operador de linealizacion. Ello requiere ex-
plicitar, para cada ejemplo, un nUmero de verificaciéon, una figura
con tangente y un enunciado verbal con términos controlados,
con el fin de sincronizar accién simbdlica, evidencia visual y ar-
gumentacién metacognitiva (Zandieh, 2000; Gray & Tall, 1994).

Integral definida y acumulacion orientada: del rectangulo a la
estructura tasa-acumulacion
La integral definida modela acumulacién con orientacién como
limite de sumas de Riemann. Si se define A (t) = f: f (u)du, en-
tonces A (t) =T (t) hecho que instituye el vinculo entre cambio
instantaneo y saldo acumulado. Desde la perspectiva de Duval
(2006), estarelacion debe ser leida y traducida en los tres regis-
tros: el grafico que muestra rectangulos y firma el signo del area,
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el simbdlico que estabiliza la suma en el limite y el verbal que
nombra de forma precisa qué se acumula, con qué orientacidon
y bajo qué supuestos. Con base en Tall (2013), se asume gque el
significado no depende de disponer de antiderivadas cerradas,
sino de comprender la estructura tasa-acumulacién.
Acumulacidon exponencial

En simbolos,

A(t) = [ e"du = et — 1yA’ (t) = e’

En graficas, A replica la forma de e”tpero arranca en O. En pala-
bras, se afirma que la acumulacion crece a la misma tasa que la
funcién de entrada, lo cual hace visible el Teorema Fundamental
del Cdalculo como puente entre lectura de pendientes y lectura
de dreas.
Logaritmo como drea bajo 1/x
En simbolos, b

[ Ldx = In (b)
parab > 0.En graficas, el area firmada bajo 1/x crece lentamente
(Figura 15).

Figura 15.
Comportamiento de la semantica multiplicativa de la acumulacion

Nota: Elaboraciéon propia.

En palabras, se declara que el logaritmo mide acumulacion
relativa: duplicar b afiade la misma cantidad de dreq, con inde-
pendencia de la escala. Este caso instala una semantica multi-
plicativa de la acumulacion.

Sinusoide y saldo neto nulo
En simbolos,

f02n sen (x)dx =0,
En grdficas, las areas positiva y negativa se compensan. En pa-
labras, se precisa que el saldo es cero por orientacién opuesta,
aclarando que el resultado no implica nulidad de la “superficie
geomeétrica”. Desde un plano didactico, se corta de raiz la con-
fusién area neta igual a superficie.
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Funcion lineal con cambio de signo
En simbolos,

[2(x—1)dx =0,

En grdficas, aparecen dos tridngulos de igual drea con orienta-
cion opuesta.

Figura 16.
Comportamiento de la semantica multiplicativa de la acumulacion

-

Nota: Elaboracion propia.

En palabras, se declara que el saldo neto se anula por compen-
sacion. Este caso fortalece el argumento de que la orientaciéon es
una propiedad semantica esencial de la integral definida.

Resumidamente, la coordinacién de registros permite que el
cdlculo se viva como un lenguaje del cambio y no solo como un
repertorio de técnicas. Por un lado, en limite se instala la seman-
tica de cercania y la necesidad de estabilizacion como criterio
para decidir existencia.

Por otro lado, en derivada se organiza la lectura de la razéon
que se estabiliza y la linealizacion como gobierno local, incor-
porando ejemplos trascendentes que explicitan la relacion entre
valor y ritmo de cambio. Finalmente, en integral se afirma la acu-
mulacién orientada y su dependencia de la tasa, incluso cuando
no hay antiderivadas elementales.

Por consiguiente, la ensefianza debe hacer explicito el ciclo
ver-decir-simbolizar-justificar en cada actividad, con rUbricas
que valoren la calidad de las conexiones y el control del error por
encima del cdlculo rutinario. En coherencia con Duval y Arcavi,
y transitando por los mundos de Tall, se logra una comprensiéon
robusta, flexible y transferible del cambio que fundamenta el
cdlculo universitario.

Modelacion de fendmenos mediante funciones y simulaciones
digitales con GeoGebra, Desmos y Python
La idea de limite nacid para responder una pregunta elemental:
¢como describir con precision lo que cambia? La modelacion con
funciones permite fijar esa intuicién en una estructura matematica
que se puede analizar, calcular y, hoy, simular con tecnologia. Al
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formular un fenémeno como Y = f(x) elegimos qué variable expli-
ca y cudl responde, explicitamos supuestos y decidimos el rango
en el que el modelo tiene sentido. Esta traduccidon no es neutra:
delimita lo relevante y deja fuera lo accesorio. Como sefialan Blum
y Borromeo Ferri, modelar implica transitar por un ciclo que va
del problema real a su formulacion, resolucién, interpretacion y
validacién, con posibles refinamientos cuando la realidad resiste
la primera versién del modelo (Blum & Borromeo Ferri, 2009).

Desde el punto de vista cognitivo, el proceso exige coordinar
registros de representacién. Duval (2006) mostrdé que compren-
der matematicas requiere pasar y vincular registros : grafico,
simbdlico y verbal; sin confundirlos. En cdlculo, esta coordinacion
se vuelve decisiva: la grafica de una funcidn sugiere regularida-
des; el lenguaje verbal nombra supuestos, condiciones iniciales
y unidades; la notacién algebraica permite operar con limites,
derivadas e integrales. Las simulaciones digitales favorecen es-
tos pasajes, porque hacen visible lo invisible: iteran, acercan y
acumulan a velocidades que la mano no logra, pero conservan
el control conceptual en el usuario (Tall, 2013).

Estructuras funcionales para fendmenos de cambio
En un primer nivel, la modelacién funcional identifica patrones
simples.

1. Crecimiento lineal: Cuando el cambio por unidad es constan-
te, modelamos con f(X) = mx + b. Es el caso de un tanque
que se llena a caudal constante. Aqui el cdlculo interpreta m
como derivada constante y la integral como acumulacion
proporcional al tiempo.

2. Cambio exponencial: Si la tasa de variacion es proporcional
al valor presente, obtenemos f (X) = Ce** Modela radioac-
tividad, interés compuesto o crecimiento con reproduccion
continua. La derivada f’ (X) = kCe"™* ancla la lectura: la fun-
cion “se reproduce a si misma” y la constante k fija la rapidez
(Stewart, 2021). El hilo conductor es el mismo: derivadas
como tasas locales que explican cémo cambia el sistema y,
por dualidad, integrales como acumulaciones de esas tasas

Simulaciones como laboratorio de Iimites
La simulaciéon digital afiade un plano experimental a la modela-
cion. No sustituye a la demostracion; la complementa con eviden-
cia generada por procedimientos controlados (Winsberg, 2010).
Tres prdacticas son especialmente fértiles en el capitulo de limites.
1. Sumas de Riemann interactivas: Un deslizador que aumenta
el nUmero de subintervalos nnn permite observar cémo las
sumas inferiores, superior y por puntos medios se acercan
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lim S

a un mismo valor. El limite ;=-° =1 deja de ser una promesa
lejana y se vuelve un proceso t ng|ble GeoGebra o Desmos
facilitan mostrar la diferencia r f f dx‘ y coOmo de-
crece al refinar la particion .

2. Diferencias finitas y derivada: Para una funcién f se simula
la razéon f(x+h)—f(x)

h
con f decreciente. El comportamiento numérico revela dos
lecciones: la convergencia hacia f’(X) y la presencia de error de
redondeo cuando h es demasiado pequefio. Esta tension concreta
el concepto de limite y muestra por qué la notaciéon diferencial
es una idealizacién precisa, no un cdlculo a ojo (Stewart, 2021,
Tall, 2013).

3. Monte Carlo para drea: Generar puntos aleatorios en un
rectdngulo que contiene la regién bajo Y = f(X) y estimar
la fraccion que cae por debajo de la curva aproxima el area.
La ley de los grandes nUmeros se vuelve palpable y se in-
terpreta la integral como promedio ponderado de valores,
otra puerta conceptual a la acumulacion.

Estas experiencias articulan la triada de Duval: se manipulan
objetos graficos, se gobierna el proceso con lenguaje verbal y
se formaliza con expresiones simbodlicas. El resultado no es un
“truco de software” sino un puente entre intuicion y formalismo.

De la validacidon a la lectura critica

Todo modelo es una narrativa cuantitativa con alcance. Validar es
comparar lo que el modelo predice con lo que el sistema exhibe,
cuantificar discrepancias y comprender sus causas. El ajuste de
pardmetros por minimos cuadrados, las medidas de error relativo
o la inspeccion de residuos ayudan a decidir si un modelo lineal
basta o si se necesita curvatura (Giordano et al,, 2013).

En contextos educativos, conviene cultivar preguntas guia:
;qué supuestos permiten la linealidad?, ¢hay umbrales o capa-
cidades de carga que sugieran logistica?, ¢qué variable oculta
podria estar modulando la tasa®?

Las simulaciones favorecen la validacién incremental: se imple-
menta el modelo base, se confronta con datos, se registra donde
falla y se refina. Este ciclo desarrolla pensamiento variacional y
criterio para distinguir correlaciones aparentes de mecanismos
plausibles (Wilensky & Resnick, 1999).

Itinerarios diddcticos con herramientas digitales

En la ensefianza inicial del cdlculo, conviene diseAar secuencias
breves y cerradas que unan fenémeno, funcidn y limite.
Secuencia A.Renta y acumulacion: Se plantea un ingreso semanal
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constante y un gasto proporcional al saldo. Se construye el mo-
delo discreto Sk+1 =Sk+r— psk, se simula y se compara con
el continuo S'(t) =T — pS(t). Se discute estabilidad y tiempo de
convergencia. GeoGebra visualiza la trayectoria; Python permite
estimar pardmetros con datos sintéticos

Secuencia B. Enfriamiento de Newton: Se reqgistra la tempera-
tura de un liquido al ambiente y se ajusta T/(t) = —k(T — A).
La recta en la grdfica In ‘T — A‘ versus t revela k. Se introducen
derivada e integral con sentido fisico y se conversa sobre fuentes
de error de medicion.

Secuencia C. Trdfico y flujo: Con una funcién de densidad P(Xa t)
y una ley de flujo q(p), se simula un tramo de carretera en version
discreta: la cantidad que entra y sale por celdas contiguas. Aunque
sea un “pretexto” de una variable, la idea de conservacién prepara
el concepto de integral definida como balance neto.

En todas, el cierre conecta con el texto formal: se interpreta la
derivada como tasa instantdnea que modela como cambia el siste-
ma y la integral como acumulaciéon con orientacidon que conserva el
saldo (Stewart, 2021). La evaluaciéon privilegia explicaciones y de-
cisiones de modelacién mas que resultados numéricos perfectos.

Criterios para una modelacion responsable

1. Pertinencia: Que la forma funcional responda a un meca-

nismo verosimil, no solo a un buen ajuste.

2. Escala y unidades:Declarar rangos, dominios y niveles de medida.

3. Sensibilidad: Analizar cémo varian las conclusiones ante

cambios razonables de pardmetros.

4. Comprensibilidad: Preferir modelos interpretables para

construir significados, en vez de cajas negras que devuel-
ven numeros sin relato (Tall, 2013; Winsberg, 2010).

La modelacién con funciones, acompafiada de simulaciones di-
gitales, devuelve al cdlculo su vocacién original: pensar el cambio
con precision, sin perder la intuicion. El limite deja de ser un artificio
técnicoy se convierte en el corazédn que late en cada aproximacion,
en cada refinamiento y en cada decision de disefio de un modelo.

Disefo de tareas y evaluacion para los fundamentos del cdlculo
Este epigrafe organiza unatipologia de ejercicios de “Fundamentos
del cdlculo y nocidn de limite” y propone formas de evaluacion
coherentes con una ensefianza centrada en la comprensién con-
ceptual, el uso coordinado de representaciones y la resolucion
de problemas auténticos. El disefio se apoya en la alineacion
constructiva entre objetivos, actividades y evidencias de logro,
y en la evaluacion formativa como motor de aprendizaje (Biggs,
1996; Black & Wiliam, 1998).
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Principios de disefio
1. Alineacidn constructiva: Los ejercicios deben evidenciar exac-

tamente lo que se declara en los resultados de aprendizaje.

2. Coordinacion de registros: Cada tarea debe invitar a tradu-

cir entre lo grafico, lo simbdlico y lo verbal (Duval, 2006).

3. Razonamiento mds que receta: Se promueve el paso de res-

puestas imitativas a explicaciones con justificaciéon propia.

4. Retroalimentacion que requla el aprender: Criterios claros,

oportunidades de reintento y metacognicion .

5. Diversidad y autenticidad: Problemas contextualizados y

variadas formas de evidenciar comprensiéon, no solo prue-
bas tradicionales.

Tipologia de ejercicios
1. Reconocimiento y traduccidon de representaciones
Objetivo: Identificar propiedades locales del cambio y del
acercamiento al limite.
Tareas tipo:

Dado un grafico con una discontinuidad removible, explicar
si existe

limf(x)y y si f es continua.

X—a

A partir de una tabla de valores, conjeturar el limite e indicar
un margen de error. Evidencia esperada: enunciados verbales
precisos, uso correcto de notacién, control de error. Criterios: co-
herencia entre registro grdafico, tabular y simbdlico; justificacion.

2. Estimacion numérica y control de error
Objetivo: Aproximar limites y cuantificar precisién.
Tareas tipo:

sinx

Aproximar lim

x—0
el error.
Disefiar un algoritmo breve en Python o en la calculadora
grdafica que pare cuando el cambio relativo sea menor que
107", Criterios: eleccion adecuada de pasos, estimacion de
error y reporte reproducible.

con tabla de pasos decrecientes y acotar

3. Procedimientos simbdlicos fundamentales
Objetivo: Aplicar reglas y técnicas con sentido.
Tareas tipo:

Resolver limites con factorizacion, racionalizacion o equi-
valentes notables.

Detectar indeterminaciones y justificar el método elegido.
Criterios: correccion algebraica, seleccion del procedimien-
to y explicacion breve del porqué.
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4. Comprension tedrica y demostracion

Objetivo:rticular definiciones y argumentos.

Tareas tipo:

« Redactar una demostracion € — 8 de lim2x = 6proponien-
do un 5(8) y verificando la cadena dexi?r?plicociones.

* Probar que continuidad en [a,b] implica integrabilidad de
Riemann. Criterios: uso de cuantificadores, claridad légica,
cierre de implicaciones y control de hipdtesis (Tall, 2013).

5. Modelacion y simulacion del cambio

Objetivo: Construir funciones que representen fenémenos y
analizar su comportamiento local.

Tareas tipo:

* Amortiguacion de seﬁoles:ojustorf(t) = Ae_ktodotosg discutir

limf(t)

t—o0

* Transito vehicular: estimar una tasa de arribo con colas y
justificar el uso de promedios locales. Criterios: explicitar

supuestos, validar con datos, interpretar pardmetros, ana-
lizar sensibilidad.

6. Razonamiento variacional y conexiones tasa-acumulacion
Objetivo: Vincular limites, continuidad y la idea de drea orientada.
Tareas tipo: .

« Dado v(t) como grdafica, estimar ft ' V(t) dt por Riemann
y explicar la relacién con el desplazamiento. Criterios: co-
herencia fisica, eleccion de particiones, discusion del signo
y de la orientacion.

7. Diagndstico de concepciones y errores frecuentes

Objetivo: Hacer explicitas ideas previas.

Tareas tipo:

« ltems de opcién multiple con distractores focalizados: con-
fundir valor de la funcién con el limite, creer que “existe de-
rivada implica continuidad al revés”, etc. Criterios:justificar
la eleccién, identificar el supuesto erréneo y corregirlo.

Formas de evaluacidon y sus instrumentos

A. Diagndstica

* Qué: concepciones iniciales sobre limite, continuidad y
aproximacion.

+ CoOmo: breve cuestionario con items grdaficos y dos pregun-
tas abiertas.

* Instrumentos: lista de cotejo sobre lenguaje y registros.

* Uso: ajustar secuencias y grupos de trabajo.
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B.

Formativa

Qué: progreso en traduccion de registros y calidad de
explicaciones.

Como:tareas semanales de baja ponderacion, cuestionarios de
dos etapas (individual + equipo), miniproyectos de simulacion.
Instrumentos: rubricas analiticas con criterios visibles antes
de la tarea. Retroalimentacién orientada a metas y oportu-
nidad de reentrega.

Rubrica breve ejemplo: “Limite desde representaciones”

C.

D.

Interpretacion grafica correcta y consistente.

Uso preciso de notacién y lenguaje.

Justificacion del valor limite con control de error.
Coherencia entre reqistros.

Cada criterio con cuatro niveles: incipiente, bdsico, logrado,
sobresaliente.

Sumativa

Qué:sintesis de capacidades en contextos conocidos y nuevos.
Como: Prueba escrita con secciones balanceadas: represen-
tacion, técnica, explicacion tedrica, modelacion. Producto au-
téntico informe corto de modelacién con datos reales o simu-
lados, cddigo o hoja de cdlculo, y defensa oral de 5 minutos.
Instrumentos: rubrica para el informe (supuestos, ajuste,
validacién, interpretaciéon) y para la defensa (claridad, res-
puestas, vinculo con teoria).

Ponderacion sugerida: 50 % prueba, 30 % informe, 20 %
defensa. Ajustar a la malla y normativa.

Evaluacion entre pares y autorregulacion

Qué:juicio critico sobre soluciones y criterios de calidad
Como: calificaciéon calibrada de soluciones andnimas con
guias ejemplares.

Instrumentos: rUbrica simplificada y reflexion escrita breve.
Sentido: desarrolla agencia y metacognicién, claves para
un aprendizaje sostenible (Boud & Soler, 2016).

Conclusiones

Cerramos el capitulo con una idea simple y potente: ensefiar
cdlculo es acompafiar a los estudiantes en la construccién de
significados sobre el cambio. Esto exige trabajar de forma coor-
dinada los tres registros, simbdlico, grafico y verbal, y convertir
a la tecnologia en un soporte para explorar, conjeturar y com-
probar. GeoGebra, Desmos y Python ayudan a mirar de cerca
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lo que varia, a comparar aproximaciones y a documentar el
razonamiento. Lo esencial no es producir resultados aislados,
sino aprender a contar lo que se estd haciendo, por qué se elige
un método y qué tan confiable es la respuesta. Cuando las ta-
reas invitan a traducir entre reqgistros y a justificar decisiones, el
pensamiento variacionaly el razonamiento funcional se vuelven
visibles y ensefiables.

Desde esta perspectiva, la didactica se organiza alrededor de
la estructura tasa, acumulacion y sentido. La derivada se entien-
de como razén de cambio que permite linealizar lo local, la inte-
gral definida como saldo acumulado que emerge de sumas de
Riemann, y el Teorema Fundamental del Cdlculo como el puente
que articula ambas ideas. La evaluacion, en consecuencia, debe
premiar explicaciones claras, estimaciones de error, interpretacio-
nes de pardmetros y conexiones con contextos reales. Con secuen-
cias que combinan problemas guiados, modelacién con datos y
espacios de retroalimentacion oportuna, el aula se convierte en un
laboratorio para pensar con rigor y comunicar con precision, de
modo que los estudiantes puedan transferir lo aprendido a nuevas
situaciones y sostener su aprendizaje en el tiempo.
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