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Prologo

La palabra dlgebra proviene del drabe al-yabr, que significa
“recomponer” o “restaurar”. Este término aparecid por primera
vez en un libro escrito alrededor del afic 825 por el matema-
tico persa Al-dwarizmi, titulado Al-kitab al-mujtasar fi hisab al-yabr
wa-I-muqabala, que se traduce como El compendio sobre el cal-
culo por reduccién y comparaciéon. En esa obra, al-yabr se usaba
para describir la accion de mover términos negativos de un
lado al otro de la ecuacién para hacerlos positivos, mientras
que al-muqgabala se referia al proceso de simplificar y equilibrar
los términos semejantes.

Con el paso del tiempo, este libro fue traducido al latin en el
siglo XlI, lo que permitié que tanto las ideas como el término
“dlgebra” llegaran a Europa. Desde entonces, la palabra comen-
z6 a usdarse para nombrar el arte de resolver ecuaciones. Su
evolucion conceptual hizo que dejara de entenderse Unicamente
como un conjunto de técnicas aplicadas a ecuaciones simples,
para convertirse progresivamente en un campo mds abstracto y
estructurado dentro de las matemadticas. Este cambio marcd un
punto de inflexién en el desarrollo del pensamiento matematico
en la Edad Media y el Renacimiento.

En la actualidad, el algebra constituye una de las ramas fun-
damentales de las matematicas, pues no solo estudia la mani-
pulaciéon de ecuaciones, sino también expresiones algebraicas,
relaciones, estructuras y sistemas numéricos de gran comple-
jidad. Gracias a su capacidad de generalizacion y abstraccion,
el dlgebra se ha consolidado como una herramienta esencial
en dreas como la ciencia, la tecnologia, la economia y la inge-
nieria, donde permite modelar problemas, analizar situaciones
complejas y encontrar soluciones aplicables en la vida real.



Introduccion

El transito del dlgebra hacia las funciones trascendentes constitu-
ye uno de los viajes intelectuales mas profundos del aprendizaje
matematico: un recorrido que conduce desde la manipulacion
de simbolos hasta la interpretacion de fendmenos complejos
gue explican la naturaleza, la economia o el comportamiento
humano. Este libro, Del dlgebra a las funciones trascendentes: un
recorrido formativo, surge con el propdsito de acompafiar ese
trayecto, articulando el rigor conceptual con una mirada peda-
gobgica orientada a la comprensiéon y la exploracion.

En sus capitulos, el texto propone una secuencia que avanza
desde las ecuaciones e inecuaciones elementales hasta los mo-
delos funcionales que describen el crecimiento, la periodicidad
y la oscilacion. Cada secciéon busca construir puentes entre los
diferentes niveles de abstraccién, de modo que el estudiante
pueda reconocer la continuidad entre las operaciones bdsicas
del dlgebra y la l6gica delfi cambio que caracteriza al cdlculo.

La obra se apoya en tres pilares fundamentales: la riguro-
sidad conceptual, la coherencia didactica y la conexién con la
experiencia. Cada capitulo combina la exposicién tebrica con
ejemplos contextualizados, ejercicios de exploracién y reflexiones
pedagodgicas que permiten resignificar los contenidos. Las tec-
nologias digitales se incorporan no como accesorios, sino como
instrumentos para pensar, modelar y verificar.

En el capitulo inicial, el dlgebra se presenta como un lenguaje
universal que permite describir relaciones entre cantidades y es-
tructuras; posteriormente, el estudio de los sistemas, las funciones
algebraicas y las transformaciones graficas prepara el terreno
para adentrarse en el andlisis de las funciones trascendentes,
nucleo del cuarto capitulo.

Mas alla de la formalidad matemdtica, este libro propone una
mirada formativa. Ensefiar funciones trascendentes significa formar
pensamiento reversible, flexible y analitico; significa también com-
prender que detrds de cada ecuacién hay un modelo del mundo.
Cada capitulo culmina con una sintesis reflexiva que invita al didlogo
entre la teoriq, la practica y la diddctica. En Ultima instancia, Del al-
gebra a las funciones trascendentes busca que el lector reconozca
en la matemdatica un lenguaje vivo: un modo de mirar, de preguntar
y de construir sentido en un universo en constante transformacion.
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CarituLo I

Ecuaciones e inecuaciones
algebraicas

Introduccion

El estudio del dlgebra constituye uno de los pilares mas signifi-
cativos en la formacion del pensamiento matematico, pues en
ella convergen la abstraccion, la simbolizacién y la capacidad de
generalizar relaciones. Este primer capitulo, titulado Ecuaciones
e inecuaciones algebraicas, se propone guiar al lector desde
los fundamentos numeéricos hacia la comprensién profunda de
las igualdades y desigualdades, no como simples ejercicios de
cdlculo, sino como estructuras de razonamiento que modelan
situaciones reales y promueven el pensamiento l6gico. En este
sentido, comprender una ecuacidon o una inecuacién es apren-
der a traducir un problema verbal en un lenguaje simbdlico que
permite analizar, comparar y resolver con precision. Asi, las ope-
raciones algebraicas dejan de ser una manipulacién mecdanica
para convertirse en un modo de pensar, de descubrir patrones
y de formular conjeturas.
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Alo largo del capitulo, se desarrollan los conceptos esenciales
del sistema de los nUmeros reales, sus propiedades y subcon-
juntos, como punto de partida para abordar la resolucion de
ecuaciones e inecuaciones en diferentes niveles de complejidad.
La propuesta didactica no se limita a la exposicidén tedrica, sino
gue incorpora estrategias activas de ensefianza, ejercicios de
traduccién del lenguaje natural al algebraico y el uso de herra-
mientas tecnoldgicas como GeoGebra y Desmos, que permiten
visualizar las relaciones entre expresiones y grdaficas. Desde esta
perspectiva, el aprendizaje del dlgebra se concibe como un pro-
ceso de construccién de significados que articula los registros
simbodlico, grdafico y verbal, favoreciendo una comprension inte-
gral del fenébmeno matemdatico.

Este capitulo invita, ademads, a descubrir el valor cultural y
formativo del dlgebra. Comprender el origen histérico de las
ecuaciones, desde los aportes de Al-dwarizmi hasta la forma-
lizacién moderna con Viete y Descartes, permite reconocer
gue las matematicas son una creacién humana que evoluciona
al ritmo de las necesidades del pensamiento y la sociedad.
Resolver ecuaciones e inecuaciones es, en Ultima instancia, re-
solver problemas de la vida cotidiana, cientifica y tecnoldgica.
De ahi que la ensefianza de estos contenidos no deba reducir-
se a la memorizacién de reglas, sino orientarse a desarrollar
competencias para razonar, argumentar y aplicar. Este capitulo
sienta asi las bases de un recorrido que llevara al lector del
algebra elemental al universo de las funciones trascendentes,
donde el lenguaje simbdlico se transforma en una herramienta
para comprender la dindmica del cambio y la continuidad en
el mundo que nos rodea.

Conceptos fundamentales del digebra

El estudio de las ecuaciones e inecuaciones ocupa un lugar
central en la formacion matemdatica, ya que constituye la base
sobre la cual se construyen conceptos mds avanzados del
algebra y el andlisis. Resolver una ecuacion significa encon-
trar los valores que satisfacen una igualdad, mientras que en
las inecuaciones el objetivo es determinar los intervalos que
cumplen con una desigualdad. Estos procedimientos no son
meramente técnicos, sino que representan un proceso de mo-
delacion en el que los estudiantes aprenden a traducir situa-
ciones concretas en expresiones algebraicas. Como sefialan
Stewart (2016) y Blitzer (2018), el trabajo con ecuaciones e
inecuaciones permite desarrollar habilidades de razonamiento
l6bqgico, interpretar graficas y aplicar modelos matematicos en
diversos campos del conocimiento.
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Mas alld de su utilidad practica, las ecuaciones e inecuaciones
favorecen la adquisicion de competencias matematicas funda-
mentales como la comprensiéon conceptual, la fluidez procedi-
mental y el razonamiento adaptativo (Kilpatrick et al., 2001). Al
enfrentarse a problemas que involucran igualdades o desigualda-
des, los estudiantes no solo aplican algoritmos, sino que también
toman decisiones sobre el camino a sequir, validan sus resultados
y reflexionan sobre su coherencia en el contexto planteado. De
este modo, su estudio trasciende el aula y se proyecta hacia la
vida cotidiana, la ciencia y la tecnologia, consolidando al alge-
bra como un lenguaje esencial para describir y transformar la
realidad.

NUmeros reales y subconjuntos
El conjunto de los nUmeros reales (R) constituye el pilar sobre
el cual se edifica gran parte del pensamiento matematico con-
tempordneo, ya que abarca los nUmeros empleados tanto en la
vida diaria como en el dmbito cientifico. Representados grdafica-
mente en la recta real, permiten describir magnitudes discretas
y continuas, y se convierten en una herramienta fundamental
para modelar fenédmenos de diversa naturaleza. Dentro de este
amplio conjunto se organizan varios subconjuntos, cada uno con
propiedades especificas que, en su interaccion, conforman una
estructura numeérica coherente y de gran riqueza conceptual
(Stewart, 2016; Blitzer, 2018).

Entre ellos, los nUmeros naturales (N) se presentan como los
primeros que el ser humano utilizé para contar y ordenar objetos:
1,2,3,...Enciertas definiciones se incluye también el cero, lo cual
amplia su campo de aplicacion. Son el punto de partida para las
operaciones aritméticas bdasicas y la base sobre la cual se cons-
truyen sistemas numéricos de mayor complejidad (Sullivan, 2016).

A partir de los naturales surgen los nUmeros enteros (Z), que
incorporan tanto al cero como a los nUmeros negativos, con-
formando la secuencia ..., -3, -2, -1, 0, 1, 2, 3,.... Este subconjunto
resulta indispensable para representar situaciones que involu-
cran pérdidas, temperaturas bajo cero o posiciones relativas por
debajo de un punto de referencia, y marca un paso esencial en
la transicion de la aritmética hacia el razonamiento algebraico
(Stewart, 2016).

Mdas adelante aparecen los nUmeros racionales (Q), los cuales
guedan definidos a partir del cociente entre dos enteros con de-
nominador distinto de cero. Este conjunto incluye a los enteros
y se distingue porque sus expresiones decimales siempre son
finitas o peridédicas. Su utilidad es evidente en contextos prac-
ticos, como el trabajo con fracciones, proporciones y razones
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aplicadas en estadistica, economia o geometria. Ademdas, po-
seen la propiedad de densidad, lo que significa que entre dos
racionales siempre se puede encontrar otro, enriqueciendo asi
su estructura (Blitzer, 2018).

En contraste, los nUmeros irracionales (R\Q) no admiten
representacion como fraccion de enteros, y sus decimales son
infinitos y no periédicos. Entre los ejemplos mds conocidos se
encuentran m & 3.141592653... estrechamente ligado a la
geometria de los circulos; e ~ 2.718281828 ..., fundamental en
procesos de crecimiento continuo; y raices no exactas como
V2 7 1.414213562 . . . Estos numeros complementan a los racio-
nales para conformar el conjunto completo de los reales, cuya
importancia radica en la posibilidad de describir magnitudes
continuas y servir de base al andlisis matematico (Sullivan, 2016).

La clasificacion de los niUmeros reales (véase Figura 1) se suele
representar de manera jerdrquica: los naturales (N) corresponden
al conteo inicial; al agregar el cero y los negativos surgen los ente-
ros (Z); al introducir fracciones y decimales periddicos o finitos se
obtienen los racionales ; mientras que los irracionales R\ Q)
completan la estructura con sus decimales infinitos no periddicos.
Todos estos subconjuntos, integrados, conforman el universo de los
numeros reales (R), que encuentran su representacion en la recta real

Figura 1.
Clasificacion de los numeros reales

L "1 L

Nota: Elaboraciéon propia.

En conjunto, los nUmeros reales y sus subconjuntos forman un
sistema sélido y coherente que no solo sustenta los fundamentos
del dlgebra y el cdlculo, sino que también permite comprender
y describir fendmenos de la vida real en campos diversos como
resulta ser la fisica y economia, asi como tecnologia. De ahi que
su ensefianza en los primeros niveles de la formacion matemdatica
sea decisiva: constituyen la base conceptual desde la cual se cons-
truyen razonamientos mds complejos y se desarrollan habilidades
de pensamiento l6gico y abstracto (Stewart, 2016; Blitzer, 2018).

En ellenguaje matematico, ademas de los nUmeros, aparecen
las letras, a, b, ¢, x, y,..., que usamos para representar valores que
pueden variar. A estas representaciones se les llama variables.
Con ellas expresamos relaciones de igualdad o desigualdad: por
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ejemplo, si dos variables representan el mismo nUmero, escribi-
mos a = b, leido como “a esiguala b”; mientras que, si representan
valores distintos, utilizamos a # b, que se lee “a no es igual a b”.

Los nUmeros no se limitan a ser simples instrumentos de cal-
culo; también guardan historias y misterios que han fascinado a
generaciones de matematicos. Un caso representativo es el de
los nUmeros primos, descritos como los “dtomos” de la aritmética
porque no pueden descomponerse en otros mas pequefios: su
definicion es sencilla, solo son divisibles entre uno y ellos mis-
mos (Ribenboim, 2016). Sin embargo, su distribucion en la recta
numérica sigue siendo un enigma, pues a pesar de siglos de
estudio, no se ha encontrado un patréon definitivo que explique
coémo aparecen, lo que mantiene vivo un campo de investigacion
apasionante (Crandall & Pomerance, 2005). Mas alld de su impor-
tancia tedrica en la factorizacion de enteros, los nUmeros primos
cumplen hoy un papel esencial en la vida cotidiana: constituyen
la base de sistemas de criptografia que resguardan la seguridad
digital en la que confiamos constantemente.

Dentro de la teoria de nUmeros, los nUmeros perfectos ocupan
un lugar especial. Se llaman asi porque son aquellos cuya suma
de divisores propios, es decir, de todos excepto el nUmero mismo,
coincide exactamente con su valor. El ejemplo mas elemental es
el6,yaquel+2+3=06;0tro caso clasico esel 28, pues1+2+4
+ 7 +14 = 28. Desde tiempos antiguos, estas cifras fueron vistas
como simbolos de equilibrio y perfeccion (Stewart, 2016). Con el
avance de la matemadtica se descubriod su relacion con los primos
de Mersenne, lo que ha permitido, gracias a la potencia de las
computadoras modernas, identificar nUmeros perfectos cada vez
mas grandes. Aunque su utilidad prdactica se centra sobre todo en
la investigacion tedrica, constituyen un claro ejemplo de como la
matemdatica busca patrones profundos y armonias ocultas incluso
en los aspectos mas sencillos de la aritmética.

Finalmente, los llamados nUmeros amigos o amistosos mues-
tran una relacién todavia mdas singular y es que se trata de
pares de nUmeros enteros que cumplen la condicién de que
la suma de los divisores propios de uno coincide con el otro, y
viceversa. El caso mas conocido es el par (220, 284): la suma
de los divisores de 220 es 284, y la de los divisores de 284 es
220. Este tipo de nUmeros fue visto en la antigiedad como un
simbolo de amistad y cooperacién, por la reciprocidad que
encarnan (Burton, 2011).

En definitiva, ya sea a través de su utilidad prdactica o de las
curiosidades que encierran, los nUmeros muestran que detrds
de cada simbolo hay historias, problemas abiertos y conexiones
inesperadas. Esta riqueza conceptual prepara el terreno para
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adentrarse en el estudio de las ecuaciones e inecuaciones, donde
las letras y los nUmeros conviven para dar forma a un lenguaje
capaz de describir, con precisiéon y belleza, tanto la realidad como
los propios misterios de la matematica.

El Teorema fundamental de la aritmeética expresa que todo
numero entero mayor que 1 puede expresarse de manera Unica
como un producto de nUmeros primos, salvo el orden en que se
escriban los factores. Por ejemplo: 30 =2-3-5 y84 =22.3.7

El Teorema Fundamental de la Aritmética es una de esas ideas
gue ayudan a entender cémo estd construido el mundo de los
numeros. Sequn Hardy y Wright (2008), todos los nUmeros ente-
ros mayores que uno se pueden formar a partir de los nUmeros
primos, que son como los “ladrillos bdsicos” de la aritmética.
Dicho de otro modo, si uno descompone cualquier nUmero, siem-
pre llega a los mismos elementos primos, sin importar el orden
en que se los multiplique. Esta propiedad, que parece sencillg,
encierra una verdad profunda: todo nUmero tiene una estructura
interna que se sostiene en los primos.

Desde la ensefianza, este teorema puede ser una gran oportu-
nidad para trabajar la idea de que las matematicas no son una
lista de formulas, sino una forma de pensar. Al guiar a los estu-
diantes a descubrir por si mismos cdmo los nUmeros se descom-
ponen en factores primos, el aprendizaje se vuelve mds activo y
significativo. La experiencia de “construir” o “desarmar” nUmeros
refuerza la comprension de la multiplicaciéon, la divisibilidad y la
estructura del sistema numérico.

En el fondo, Hardy y Wright (2008) nos recuerdan que las
matemdaticas se parecen mucho a la vida:todo lo grande se com-
pone de cosas pequefias, y entender esas partes nos permite ver
el conjunto con mds claridad. Los nUmeros primos son, en cierto
modo, una metdafora del aprendizaje mismo: para entender lo
complejo, hay que empezar por lo esencial.

La propuesta se apoya en dos ideas esenciales: la existencia,
que asegura que siempre es posible descomponer un entero en
factores primos, y la unicidad, que afirma que esta factorizaciéon
solo puede darse de una forma, sin importar el orden de los fac-
tores (Apostol, 2013). La importancia de este resultado radica en
gue ofrece un marco de certeza y consistencia a toda la teoria
de nUmeros, pues sin €l no seria posible organizar de manera
sistemdtica la estructura de los enteros.}

Propiedades fundamentales en el Sistema de niumeros reales
El sistema de nUmeros reales posee una serie de propiedades
fundamentales que garantizan la coherencia de las operaciones
aritméticas y algebraicas. Entre ellas se encuentran:
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1. Propiedades de la adicion y multiplicacion: Incluyen
la conmutativa
(a+b=Db+a, ab=Dba)

la asociativa
((@a+b)+c=a+(b+c), (ab)c = a(bc))

y la existencia del elemento neutro (0O en la suma, 1 en la
multiplicacion).

2. Propiedades de inverso: Para cada nUmero real existe un
opuesto aditivo (a—l— (—a) = 0) y, salvo el cero, un inverso

multiplicativo
1
a-—=a
a

3. Propiedad distributiva: Relaciona suma y multiplicacién,
garantizando que a(b + ¢) = ab + ac.

4. Propiedad de orden:Los reales estdn totalmente ordenados,
es decir, para cualesquiera a y b, se cumple una y solo una
de estas condiciones:a < b, a=boa>b.

5. Propiedad de densidad: Entre dos nUmeros reales distintos
siempre existe al menos otro nUmero real.

6. Propiedad del supremo o completitud: Todo conjunto no
vacio de nUmeros reales acotado superiormente tiene un
minimo de sus cotas superiores (llamado supremo). Esta

propiedad distingue a R de los nUmeros racionales (Apostol,
2013).

Estas propiedades resultan esenciales en la construccion del
cdlculo diferencial e integral, pues permiten justificar la con-
tinuidad, los limites y la convergencia de sucesiones y series.
Ademas, tienen aplicaciones directas en el andlisis de funciones,
en la resolucidon de ecuaciones algebraicas y en el modelado de
fendmenos fisicos y sociales. Su aprendizaje no solo aporta a la
formacion matemdatica rigurosa, sino que también desarrolla la
capacidad de razonar logicamente y aplicar la matematica en
contextos diversos (Anton et al.,, 2013)

EJEMPLO 1 Uso de propiedades fundamentales

Una persona compra 3 paquetes de galletas que cuestan 2 doé-
lares cada uno, ademas de 2 litros de leche a 1,50 ddlares cada
litro. ¢ Cudl es el costo total de la compra®?

22



Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

Figura 2.
Modelo lineal del costo total

Nota: Elaboraciéon propia.

Solucidn:
Planteamiento de la operacion: (3-2) + (2 - 1.5)
* Transformacion:
+ Factorizando: 2(3 + 1.5)
+ Conmutativa y asociativa:
« 3+15=45
« 2:45=9

Respuesta: El costo total de la compra es 9 dblares.

Apoyo diddctico: Al costo depender de dos variables
C(X, y) = 2x + 1.9y (x: paquetes de galletas e y: litros de leche
), se sugiere orientar el debate en fijar una de ellas (litros de
leche) y obtener C(x) = 2x + 3.

EJEMPLO 2: Uso de propiedades fundamentales
Un inversionista deposita 1000 ddlares en una cuenta de ahorros
que ofrece un interés compuesto anual del 5 %. Si mantiene su
capital durante 2 afios sin realizar retiros ni depdsitos adicio-
nales, determine el monto acumulado al final del periodo utili-
zando la formula del interés compuesto (M = 1000(1 + 0.05)2)
.(véase Figura 3)

Figura 3.
Crecimiento exponencial del capital mediante interés compuesto.

£

Nota: Elaboraciéon propia.
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Solucion:
Planteamiento de la operacion: 1000(1 4+ 0.05)2
Transformacion: Aplicacion de propiedad distributiva y
potenciacion:
- (1+0.05)% = 1+ 2(0.005) + (0.005)*
. (140.05)2 =1+0.10 4 0.0025
.« (140.05)% =1.1025

Célculo final: M = 1000(1.1025) = 1102.5

Respuesta: El monto total es de 102,50 ddélares.

Apoyo diddctico: Se sugiere orientar el debate en términos de
que el interés compuesto genera un crecimiento exponencial del
capital, donde los intereses producen nuevos intereses, recomen-
ddandose elaborar una tabla.

Exponentes y radicales
Dentro del estudio del dlgebra, los exponentes y radicales consti-
tuyen dos nociones esenciales que permiten dar orden y claridad
a expresiones que, sin ellos, resultarian extensas o poco mane-
jables. El exponente, entendido como una notacién abreviada
para expresar la multiplicacion repetida de un nUmero por si
mismo, ha servido histéricamente para simplificar operaciones
y avanzar hacia un lenguaje matematico mds compacto y ex-
presivo (Stewart, 2016). Asi, cuando escribimos 2°, evitamos la
repeticién de 2:2-:2-2 -2, lo cual refleja la potencia de la no-
tacién algebraica para expresar con precisiéon ideas complejas
en forma concisa.

Los exponentes surgen como una forma abreviada de expre-
sar la multiplicacién repetida de un mismo nUmero. En términos
generales, si “a” es un nUmero realy “n” un nuUmero natural, la
potencia a” se define como el producto de “a” por si mismo “n”
veces:

a’=aXxaxaX...xan factores

Vv

Esta notaciéon, que a simple vista parece un recurso de eco-
nomia simbdlica, encierra una gran riqueza conceptual, pues
permite extender la nocion de potencia a exponentes enteros,
racionales e incluso reales. Stewart (2016) sefiala que la potencia
constituye una de las primeras herramientas de abstraccion en
algebra, ya que permite generalizar operaciones mas alla del
simple conteo aritmético.
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Tabla 1.

Propiedades de las potencias

Propiedad

Expresion general

Ejemplo

Producto de potencias | a™ - a® = a™™ 93 .94 _ 97 _ 198
con igual base

Cociente de potencias _m ) 5_6 _ 54 _ 695
con igual base n ’ 52 T

Potencia de wuna|(a™)" =a™" (32)4:38:6561
potencia
Potencia de wun|(ab)" =a"-b" (2-3)3:23~33:216
producto
Potencia de un| , ,a\n g 4\2 16
cociente (E) ~ b’ b#0 (g) ~ 95
Exponente cero a’=1,a+#0 =1

i 1 1
Exponentes negativos At — —, a £0 93 _ =

Nota. Elaboracion propia.

Ejemplo 3: Crecimiento de una poblacion de bacterias
En un laboratorio de biologia, un grupo de estudiantes investiga
el crecimiento de una poblacién de bacterias en condiciones
controladas. Se sabe que, en promedio, la poblacion se duplica
cada 3 horas. Alinicio del experimento, se cuentan 500 bacterias
en la muestra. La situacion se modela con la férmula del creci-

miento exponencial:

P(t)=Pg- 27, donde: P(t) es el nUmero de bacterias después
de t horas, Py la poblacion inicial (500) y 23 el factor de cre-
cimiento, al duplicarse cada 3 horas (véase Figura 4). ;Cudntas
bacterias habrd después de 12 horas?

Figura 4.

Crecimiento exponencial del capital mediante interés compuesto.

*

Nota: Elaboraciéon propia.

Solucién: P (12) =

-

500 - 2% = 500 - 2* = 500 - 16 = 8000.
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Apoyo diddctico: Se sugiere orientar el debate en términos del
reconocimiento de que, en solo medio diqg, la poblacién inicial se
multiplicd por 16. Este resultado permite a los estudiantes com-
prender cdmo los exponentes no son solo reglas abstractas, sino
herramientas para modelar fendmenos reales como el crecimiento
bioldgico. De esta forma, los estudiantes visualizan que las poten-
cias y sus propiedades son el lenguaje matemdatico que describe
procesos de la vida real: lo que antes era una multiplicacién repe-
tida, ahora se traduce en entender la rapidez de expansion de or-
ganismos vivos o incluso la propagacion de virus y contaminantes.

El conjunto de estas propiedades asegura que las potencias
no sean simples operaciones, sino un sistema coherente y
estructurado que se conecta con multiples areas de la mate-
mdatica. Desde el dlgebra elemental hasta el calculo avanzado,
las reglas de los exponentes permiten justificar transformacio-
nes, simplificar expresiones y resolver ecuaciones de diversa
indole. Apostol (2013) afirma que la consistencia de estas
propiedades refleja la naturaleza l6gica de la matematica:
cada nueva extension (exponentes negativos, fraccionarios
o reales) se fundamenta en la necesidad de mantener la co-
herencia interna del sistema.

Apoyo diddctico: En el plano pedagdgico, ensefiar exponentes
va mas allad de transmitir reglas mecanicas. Es necesario pro-
mover la comprension del “por qué” detrds de cada propiedad,
mostrando coémo se derivan unas de otras y cdmo encuentran
aplicacion en contextos reales como por ejemplo el cdlculo del
interés compuesto, el crecimiento de una poblacién bacteriana
o la reduccidn de contaminantes en procesos quimicos permiten
a los estudiantes conectar la teoria con situaciones significativas
de su entorno (Sullivan, 2016; Stewart, 2016).

En el marco del dlgebra elemental, los radicales representan la
operaciéon inversa a la potenciacion. Mientras que los exponentes
expresan la multiplicacion repetida de un nUmero, los radicales
permiten identificar qué valor, al ser elevado a cierta potencia,
reproduce el nUmero original. Formalmente, si a" = b, entonces
“a”es la raiz “n”- ésima de “b”, lo que se escribe como Vb = a. Asi,
los radicales extienden el campo de las operaciones aritméticas
y se convierten en una herramienta clave para la resolucidon de
ecuaciones y la simplificacion de expresiones algebraicas (Larson
& Edwards, 2019).

Elementos de un radical
Enla expresion V& se distinguen cuatro componentes esenciales:
1. Indice (n): indica el grado de la raiz. Cuando no aparece
explicito, se asume que es 2 (raiz cuadrada).
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2. Radicando (a): el nUmero o expresion de la cual se extrae
la raiz.

3. Signo radical (\/): simbolo que introduce la operacion.

4. Resultado (raiz): el valor que, al elevarse al indice, devuelve
el radicando.

Esta notacién se consolidé histéricamente en el siglo XVI, cuan-
do los matematicos europeos comenzaron a emplear el simbolo

de manera sistematica. Desde entonces, los radicales han
constituido un puente entre la aritmética bdsica y los desarrollos
posteriores del andlisis matemdatico (Burton, 2011). El trabajo con
radicales se apoya en un conjunto de propiedades que garantizan
la coherencia de las operaciones

Propiedades fundamentales de los radicales
1. Producto de radicales con igualindice:

\/5-\/52\/ab , a,b>0.

2. Cociente de radicales con igual indice:
Va  |a

=< b£0.
Vb b

3. Radical de un radical:

m‘/\n/azmna

4. Transformacion a exponente fraccionario:
vam =axr, a> 0.

Estas propiedades permiten simplificar expresiones algebraicas
complejas, resolver ecuaciones que involucran raices y conectar el
concepto de radical con el de exponente racional (Sullivan, 2016).

EJEMPLO 4:En una prdactica de laboratorio de Fisica (Véase
Figura 5), los estudiantes deben calcular la velocidad con la
que llega al suelo un objeto en caida libre desde una altura
determinada.
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Figura 5.
Aplicacion fisica de las propiedades de los radicales

e

Nota: Elaboraciéon propia.

La formula a utilizar es: v = 4/2gh donde 8= 9,8 m/52 y
h = v/216m es la altura desde la cual se deja caer el objeto.
Calcular la velocidad final aplicando las propiedades de los ra-
dicales en cada paso del procedimiento.

Solucion:

1. Altura inicial

h=+216=+v27-8=+v27-V/8=3-2=6m

2. Cdlculo de velocidad:

v(6)=+v2-9.8-6=v12-98=1+12-1/9.8 =2v3-19.8

/ / 9
pero como V9.8 = = 7—

por tanto: v (6) = 14T ~ 10.84 m/s.

Apoyo diddctico: La relevancia de exponentes y radicales se
observa también en su papel como puerta de entrada al cdélculo
diferencial e integral. Apostol (2013) destaca que gran parte de
las propiedades de limites y derivadas se apoyan en la manipu-
lacion de potencias y raices, lo que convierte a este epigrafe en
un peldafio fundamental para la formaciéon matemdatica superior.
En definitiva, su estudio permite transitar de la aritmética a un
pensamiento algebraico mdas abstracto, preparando el terreno
para comprender los fendmenos de cambio y continuidad que
se abordan en el cdlculo.

Ecuaciones e inecuaciones algebraicas
El origen de las ecuaciones se remonta a las civilizaciones an-
tiguas, mucho antes de que existiera la notacidon algebraica
moderna. Los babilonios (alrededor del 2000 a. C.) resolvian
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problemas de dreas y volUmenes que hoy traduciriamos en
ecuaciones cuadrdticas, aunque lo hacian mediante métodos
geomeétricos y procedimientos numeéricos. De manera similar,
los egipcios empleaban el llamado método de la falsa posiciéon
para resolver ecuaciones lineales en problemas relacionados
con repartos o calculos de granos y jornales (Katz, 2009).

Con la obra de Al-dwéarizmi en el siglo IX, particularmente su
tratado Al-kitab al-mujtasar fr hisab al-yabr wa-I-muqéabala, |a nocién
de ecuacion adquiridé una estructura sistemdatica. En este texto,
el matematico persa clasificé y resolvid ecuaciones cuadraticas
a través de métodos geométricos, marcando un punto de in-
flexion en la historia del dlgebra (Burton, 2011). Posteriormente,
con Francois Viéte en el siglo XVI y René Descartes en el XVII,
se consolidd el uso de letras para representar incdgnitas y pa-
rametros, lo que permitié formalizar la notacién algebraica que
utilizamos hasta hoy (Katz, 2009). De esta evolucién histérica
se desprende que la ecuacion no es solo una herramienta mate-
mdatica, sino también un producto cultural que refleja el avance
del pensamiento abstracto.

Trabajar con ecuaciones e inecuaciones no es solo “despejar
incbgnitas, es aprender a modelar relaciones, contrastar su-
puestos y decidir con base en evidencias simbodlicas y grdaficas.
Desde una perspectiva historica, las ecuaciones nacen como
respuesta a problemas concretos de reparto, medicidon y co-
mercio; mdas tarde se consolidan como lenguaje de la ciencia.

Una ecuacidon es una igualdad con una o mas incdgnitas
cuyo objetivo es determinar todos los valores que la hacen
verdadera. En forma general: f(X) = g(X) g f(X) — g(X) =0.
Esta observacion sita a resolver ecuaciones como un proble-
ma de ceros de funciones y, por tanto, enlaza directamente
con la interpretacion grafica y con técnicas analiticas y nu-
méricas (Sullivan, 2016; Stewart, 2016) (véase Figura 6).. En
el aula, resulta clave distinguir entre identidades (verdaderas
para todo x del dominio) y ecuaciones condicionales (verda-
deras solo para ciertos x) (Blitzer, 2018).

Al desarrollar la igualdad (x + 1)2 obtenemos x2 + 2x + 1
(véase Figura 7). La igualdad se cumple para todo X € R, tal y
como se muestra en las figuras siguientes:
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Figura 6.

Representacion de funcion cuadrdtica
1 |
1 |

Tia) = fus iy

Nota: Elaboraciéon propia.

Figura 7.
Representacién equivalente de la funcion f(z)

Nota: Elaboraciéon propia.

La ecuacién lineal 2x + 3 = 11 se transforma en 2x = 8 (véase
Figura 8) y tiene como solucion S = {4} Asimismo, la ecuacion
x? —5x+ 6 =0 se transforma en (x —2)(x —3) =0y tiene
como soluciones S = {2,3}.

Para transformar ecuaciones con sentido, se aplican prin-
cipios de equivalencia. Sumar o restar la misma expresion
a ambos lados, o multiplicar y dividir por una cantidad no
nula, preserva el conjunto de soluciones. Elevar ambos lados
a una potencia par o aplicar funciones no inyectivas puede
introducir soluciones extra. Por eso se valida al final susti-
tuyendo en la ecuacién original. (Larson & Edwards, 2019;
Stewart, 2016).
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Figura 8.
Representacion de funcion cuadrdtica

Nota: Elaboraciéon propia.

Tipos frecuentes de ecuaciones

1. Lineales:Se resuelven por agislamiento de la incégnita mediante
transformaciones elementales. Su interpretacion grafica como
rectas facilita el andlisis de existencia y unicidad de solucién.

Figura 9.
Representacion de la funcion lineal

Nota: Elaboracion propia.

Tabla 2.
Propiedades de las potencias

Forma general:ax +b =0a # 0

Ejemplo 3(2x—1)-5=2x+47
Estrategia Expandir, agrupar términos semejantes y aislar la
incégnita.

Resolucién 6x —3—-5=2x+7
=6x—8=2x+7
=4x =15
=x=14 =375

Comprobacién | Lado izquierdo: 3(2+3.75 — 1) — 5 = 14.5

Lado derecho:2-3.75 +7 =14.5

Nota. Elaboracion propia.
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2. Cuadradticas: Completar el cuadrado y la formula general no
son meros “trucos”. Son ventanas conceptuales que conec-
tan dlgebra y geometria a través de pardbolas, vértices y
ejes de simetria. La factorizaciéon, cuando es posible, ofrece
la via mas directa y conecta con el andlisis de signos para
inecuaciones asociadas.

Figura 10.
Representacion de la funcion cuadrdtica

Nota: Elaboracion propia.

Tabla 3.
Descripcion de la forma general de la ecuacion cuadrdtica

Forma general: ax? 4+ bx + ¢ = 0,a#0

Ejemplo 2X2 _3x—5=0
Fstrategia Aplicar la féormula general: X = —bi2—@
Completar el cuadrado con (X - %)2 = ‘11_2
Resolucion x = % :t%
x=23;x=-1

Comprobacién || 44, izquierdo: 2(—1)2 +3 (—1) +5=0
Lado derecho: O N

Lado izquierdo: 2(%) + 3 (%) +5=0
Lado derecho: 0

Nota. Elaboracion propia.

3. Racionales: Requieren identificar restricciones del dominio,
eliminar denominadores con cuidado y verificar raices “ex-
trafas”, “espurias” o no vdlidas. La representacién grdfica
con asintotas ayuda a anticipar el comportamiento y a in-

terpretar resultados.
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Figura 11.
Representacién de la funcion racional

Nota: Elaboraciéon propia.

Tabla 4.
Descripcion de la forma general de la ecuacion racional
P
Forma generaI:R (X) = QE{()) y Q (X) 7& 0
Ejemplo x+1
-9 — 3, X 75 2
Estrategia Identificar el dominio, eliminar denominado-
res y verificar soluciones “extrafas”.
Resolucién x+1=3 (X — 2)
x+1=3x—-6
—2x = -7
x=17/2=35.
Comprobacion Lado izquierdo:
st 3 9.2 _ 3
2T E T8
Lado derecho: 3

Nota. Elaboracion propia.

4. Radicales y con valores absolutos: Implican trabajar con
definiciones pieza a pieza. Al resolver [x al = b se abordan
dos ecuaciones lineales. Las radicales exigen aislar el radi-
caly elevar con cautela, validando al final.

Figura 12.
Representacion de la funcion radical

Nota: Elaboraciéon propia.
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Tabla 5.
Descripcion de la forma general de la ecuacion radical

Forma general:

v/ F(x) = G(X)
ay/F (x) + by/G (x) = H(x)
VA (x)+ v/B(x) =C(x)

Ejemplo vVx+l=x—-1;x>1

Estrategia Aislar el radical, considerar condiciones de existen-
cia y elevar al cuadrado con validacion final.
Resolucidn x+1=(x—-1)> =x2—-2x+1
x2—-3x=0
x(x—3)=0.

x = 0 (No cumple); x = 3 (Cumple)

Comprobacidén || 440 izquierdo: v/3 +1 =2
Lado derecho: 3 — 1 = 2
Nota: Elaboraciéon propia.

Valor absoluto. ‘ZX — 5‘ = 3 Desdoblar en dos ecuaciones lineales:
2x—5=3
Solucién: {1,4}.
2x —5=-3

Por otra parte, las ecuaciones polindmicas de grado superior a 2
amplian el horizonte de las lineales y cuadrdaticas porque articulan,
en un mismo objeto, estructura algebraica, comportamiento grafico
y técnicas de factorizaciéon y aproximacion. Ensefarlas no consiste
solo en “encontrar raices”, sino en promover una lectura estructural:
identificar patrones, reducir la complejidad, estimar cudntas solucio-
nes reales son plausibles y justificar los procedimientos de manera
transparente. Este enfoque integra dlgebra, andlisis y modelacién
(Apostol, 2013; Anton et al., 2013; Larson & Edwards, 2019).

Desde la historia, los métodos cerrados para cUbicas y cuarti-
cas fueron hitos renacentistas que culminaron en férmulas gene-
rales, mientras que los trabajos de Galois y Abel demostraron la
imposibilidad de una féormula por radicales para el grado cinco
en general. Comprender este arco histérico ayuda a situar el
valor pedagdgico de los métodos cualitativos y numéricos en el
aula contempordanea (Katz, 2009; Stillwell, 2010)
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Un polinomio P (x) = ayx™ + ... + ag con a, # 0 define una
ecuacion P (x) = 0. Por el Teorema Fundamental del Algebra,
toda ecuacidon polindmica de grado “n”posee “n”raices en el pla-
no complejo, contando multiplicidades. En R, puede haber desde
O hasta “n” raices reales. La multiplicidad regula el contacto de
la grdafica con el eje “x”: multiplicidad impar cruza, multiplicidad
par toca y regresa. Conjugacién compleja: si los coeficientes
son reales, las raices no reales aparecen en pares conjugados
(Apostol, 2013; Stewart, 2016).

Estrategias generales de resolucion

1.

2.

o

Factorizacion estructural: Buscar productos notables, ex-
traccion de factor comuin, agrupaciény uso de identidades.

Cambios de variable:Reducen la ecuacién a otra de menor

grado o mas simple: bicuadraticas (x* cosx?), ecuaciones

reciprocas o palindromas, simetrias del tipo tipo x® + —1;.

X

Teorema de la raiz racional y division sintética: Probar

candidatos 4 divisoresag y fgctorizar cuando funciona.
divisores a,

Regla de los signos de Descartes y cotas de raices: Estiman

numero de raices reales positivas/negativas y acotan su

tamafo; Util para decidir dénde buscar.

Métodos cerrados en casos especiales: CUbicas y cuar-

ticas admiten formulas; didacticamente conviene priori-

zar estructura y casos prototipicos antes que la técnica

completa.

Aproximacién numérica: Biseccion, Newton o secante para

raices reales, justificando existencia con continuidad y

cambio de signo.

Lectura grdfica y derivadas: Maximos, minimos y puntos

de inflexion dan claves sobre cantidad y localizacién de

raices reales (Stewart, 2016; Larson & Edwards, 2019).

Figura 13.
Representacion de funcion radical

Nota: Elaboraciéon propia.
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Tabla 6.
Estrategia de resolucion de polinomios
Ejemplo 2x3 — 3x2 —8x+12=10
Estrategia Buscar candidatos
+1, £2, £3, +4, +6, +1, £3
Resolucién x =2 anula = factor (x — 2)
2x% — 3x? — 8x + 12 = (x — 2) (2x® + x — 6)
2x2 +x— 6= (2X— 3)(x+2)
Solucién. x =2, 3 5, —2
Comprobacion Lado |qu|erdo
2(2)° —3(2)° - 8(2)+12=0
Lado |qu|erdo X
2(—1)> —3(-1)* - 8(-1)+12=0
Lado |§qU|erdo 9
2(3)"=3(3)"-8(3) +12=0

Nota. Elaboracion propia.

Inecuaciones algebraicas
Las inecuaciones forman parte esencial del desarrollo del pen-
samiento algebraico, pues permiten establecer comparaciones,
restricciones y condiciones de validez en multiples situaciones.
A diferencia de las ecuaciones, cuyo proposito es determinar los
valores exactos que satisfacen una igualdad, las inecuaciones
se centran en describir conjuntos de soluciones que cumplen
con una relacion de desigualdad, ya sea de tipo estricta (£, >)
o0 no estricta (£, 2). Esta caracteristica abre la posibilidad de
representar graficamente intervalos y regiones en la recta redl
o en el plano, lo cual constituye una herramienta fundamental
en la modelacién matemdtica (Larson & Edwards, 2019; Stewart,
2016).

El origen de las inecuaciones se vincula con la necesidad de
cuantificar limites y rangos.El concepto moderno de desigualdad
se consolidé en los siglos XVII y XVIII con el desarrollo del ana-
lisis matemadtico, especialmente con las contribuciones de Euler
y Cauchy, quienes establecieron desigualdades fundamentales
aplicables a series y funciones (Apostol, 2007).

Tipologia de inecuaciones

Las inecuaciones pueden clasificarse segun la naturaleza de las
expresiones involucradas:
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1. Lineales: se resuelven de manera similar a las ecuaciones
lineales, considerando el cambio de sentido al multiplicar
o dividir por un nUmero negativo.

2. Cuadrdticas y polinémicas:requieren factorizacién, identi-
ficacion de raices y andlisis de signos en intervalos.

3. Racionales: se analizan considerando tanto las raices
del numerador como las restricciones impuestas por el
denominador.

4. Con valor absoluto: se descomponen en casos o se inter-
pretan geométricamente como distancias en la recta real.

5. Exponenciales y logaritmicas:su resolucién se fundamenta

en la monotonia de estas funciones y en la restriccion de

sus dominios.

Trigonométricas: se trabajan en un periodo fundamental y

luego se generalizan debido a la periodicidad de las fun-

ciones (Sullivan, 2016).

o

Método clasico para resolver inecuaciones polinbmicas y
racionales
El método clésico para resolver inecuaciones polindbmicas y ra-
cionales es la tabla de signos, que consiste en:

1. Factorizar la expresion.

2. Determinar los puntos criticos (raices y discontinuidades).

3. Estudiar el signo de la expresion en cada intervalo.

4. Seleccionar los intervalos que cumplen la condicion de

desigualdad.

El estudio de las inecuaciones abre la puerta a una concep-
cién mas amplia del dlgebra, en la que no se busca una solucién
Unica, sino un espacio de posibilidades. Esta mirada es esencial
para comprender fendmenos del mundo real y para el desarrollo
posterior del cdlculo y el andlisis matematico. (véase Figura 14)

Como sefala Schoenfeld (1985) trabajar con inecuaciones
impulsa la formacion de heuristicas, la capacidad de generalizar
y la construccidon de un pensamiento matematico flexible.

Figura 14.
Representaciéon de funcion radical

Nota: Elaboraciéon propia.
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Tabla 7.
Estrategia de resolucion de inecuaciones polinbmicas raciones

Forma general: %Q(X) #0

Ejemplo x2-9
Estrategia Se determinan los ceros del numerador y del

denominador.

Estos puntos dividen la recta real en intervalos.
Se analiza el signo de la expresién racional en cada
intervalo.

Finalmente, se seleccionan los intervalos que cum-
plen la desigualdad planteada.

Resolucidn Puntos criticos: X = —3, 2, 3.

Solucion: (—3,2) U (3, +00)
Comprobacién | Analizar el comportamiento de los signos de f(X)

en la recta numérica
Nota: Elaboracion propia.

Resolucion de problemas con ecuaciones e inecuaciones
La resolucion de problemas que involucran ecuaciones e inecua-
ciones constituye un eje esencial en la formacién matemdatica, ya
que permite al estudiante aplicar los conocimientos adquiridos
para interpretar y transformar situaciones de la realidad. Sin em-
bargo, mas alld de esta estructura clésica, diversos autores han
destacado que la resolucidn de problemas es también un medio
para fomentar el pensamiento critico, la modelacion y el desarrollo
de competencias argumentativas. En este sentido, el proceso no
solo busca hallar una respuesta, sino también promover una ac-
titud investigativa y reflexiva frente al conocimiento matematico.

En el plano didactico, Schoenfeld (1985) sostiene que resolver
problemas no es un proceso lineal, sino una actividad de explora-
cion en la que intervienen heuristicas, control metacognitivo y la
disposicion del estudiante para perseverar ante la incertidumbre.
Asi, cuando un alumno enfrenta una ecuacion cuadrdética en un
contexto fisico o una inecuacidon racional en un problema eco-
némico, no solo activa algoritmos, sino que pone en juego estra-
tegias cognitivas y actitudes frente al desafio. En la misma lineaq,
Mason, Burton y Stacey (2010) subrayan que el acto de resolver
problemas debe entenderse como un proceso creativo, en el cual
la formulacion del problema y la reflexiéon sobre los resultados
son tan valiosas como la obtencién de la solucién numérica.
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En términos de aplicaciones, Stewart (2016) y Larson y
Edwards (2019) destacan que las ecuaciones y las inecua-
ciones son la base para la modelacion de fenémenos fisicos
y econdbmicos. Por ejemplo, la ecuacién exponencial describe
procesos de crecimiento poblacional o financiero, mientras que
una inecuacion puede delimitar el rango de factibilidad en un
problema de optimizacion industrial. Apostol (2013) recuerda
que la fuerza de las matemdticas no reside solo en resolver
operaciones, sino en traducir relaciones del mundo real a es-
tructuras abstractas y, posteriormente, en interpretar esas
abstracciones con sentido prdctico.

Desde un enfoque semidtico, Duval (2006) plantea que la com-
prension real de una ecuacién o inecuacién depende de la arti-
culacién entre diferentes registros de representacién: algebraico,
grdafico y tabular. Este planteamiento se traduce en la necesidad
de que el estudiante contraste sus soluciones algebraicas con
representaciones visuales mediante tecnologias digitales como
GeoGebra o Desmos, lo que permite validar los resultados y
fortalecer la intuicién. En efecto, la visualizacién grdéfica de una
inecuacion en el plano cartesiano facilita comprender por qué
ciertos valores son parte de la solucién y otros no, fortaleciendo
la idea de restriccion y dominio.

Por otro lado, Godino y Batanero (1998) insisten en que la
resolucion de problemas con ecuaciones e inecuaciones debe
concebirse como una practica cultural y social, ya que el cono-
cimiento matemdtico se construye en interaccion con el entorno
y no puede desligarse de sus contextos de uso. Esto implica que
el docente debe disefiar problemas significativos vinculados con
fendmenos ambientales, sociales o tecnolégicos, en lugar de
limitarse a ejercicios mecdnicos descontextualizados.

Autores como (Kilpatrick et al,, 2001) han argumentado que la
resolucion de problemas a través de ecuaciones e inecuaciones
fortalece las cinco dimensiones de la competencia matematica:
comprension conceptual, fluidez procedimental, estrategias de
resolucion, razonamiento adaptativo y disposiciéon productiva.
En otras palabras, un estudiante que trabaja con este tipo de
problemas no solo aprende a resolver, sino también a pensar
matemdaticamente, a justificar y a transferir conocimientos a
nuevas situaciones.

En este sentido, la resolucidon de problemas en el aula no
debe entenderse como una simple actividad cognitiva, sino
como una oportunidad para reflexionar sobre el mundo y trans-
formarlo. Resolver una inecuacidén, por ejemplo, puede con-
vertirse en una experiencia significativa cuando el problema
representa una situacién social concreta, como la distribucién
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desigual de recursos o las diferencias de oportunidades entre
comunidades. En ese proceso, el estudiante deja de ser un
receptor pasivo y se transforma en un sujeto critico que inter-
preta, cuestiona y propone.

Estrategias frecuentes para resolver problemas
En la prdactica educativa, las estrategias para resolver problemas
con ecuaciones e inecuaciones no se limitan a la aplicacién de
algoritmos, sino que constituyen procesos de pensamiento que
integran comprension conceptual, razonamiento l6gico y uso de
herramientas diversas. A continuacion, se profundiza en cada una
de las estrategias presentadas:

Modelacion algebraica: la modelacion algebraica es el paso
inicial para traducir una situacidon verbal en una expresién
simbdlica. Sequn Blum y Leiss (2007), modelar implica cons-
truir un puente entre el mundo real y el lenguaje matematico,
lo cual requiere identificar las variables, establecer relacio-
nes y formular la ecuacién o inecuaciéon correspondiente. Por
ejemplo, al expresar que “el doble de un nUmero menos cinco
es igual a siete”, el estudiante debe reconocer que el nUmero
desconocido es la variable “x”, y que la relacién se expresa
como2x—5=1T1.

Ellenguaje natural presenta diversas formas que los estudian-
tes deben aprender a interpretar:

1. Comparacionesy relaciones verbales:expresiones como “es
igual a”, “es mayor que” o “es menor que” corresponden a
los simbolos matemdticos =, > o <. Por ejemplo, “la edad de
Ana es mayor que la de Pedro” puede representarse como
a>p.

2. Operaciones implicitas: frases como “el doble de un nUme-
ro”, “la tercera parte de una cantidad” o “un nUmero aumen-
tado en cinco” se transforman en expresiones algebraicas
como 2X, %Xy 0X + 5. En este caso, la comprension de mul-
tiplicacion, division y suma se traduce desde estructuras
lingUisticas coloquiales.

3. Secuencias temporales o condicionales: enunciados como
“dentro de tres afios” o “si se descuenta un 10 %" se expre-
san como X + 300.9x. Aqui, el lenguaje cotidiano conlleva
transformaciones algebraicas que implican operaciones
sobre la variable.

4. Problemas narrativos: cuando el enunciado incluye una si-
tuacion mas extensa, como “la suma de dos nUmeros conse-
cutivos esigual a 20", el estudiante debe reconocer que los
nUmeros pueden representarse como XyX + 1, y formular

la ecuacion x + (x + 1) = 20.
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De esta manera, la modelacién algebraica, apoyada en el
andlisis del lenguaje natural, no solo fortalece la destreza de
traducir enunciados a expresiones, sino que también muestra al
estudiante que el dlgebra es un medio para representar fendme-
nos de su entorno cotidiano. Como sostiene Godino y Batanero
(1998), comprender las formas de representacion y los signifi-
cados institucionales y personales de los objetos matemdaticos
resulta clave para lograr aprendizajes significativos.

Andlisis grdfico: el andlisis grafico permite visualizar las solucio-
nes de ecuaciones e inecuaciones a través de la representaciéon
de funciones en el plano cartesiano.

Figura 15.
Representacion de funcion radical

Nota: Elaboracion propia.

Duval (2006) destaca que la conversion entre registros se-
miodticos es esencial para consolidar la comprension. En el caso
de una inecuacion cuadratica, la interpretacion del signo de la
pardbola asociada posibilita identificar intervalos de validez sin
necesidad de cdlculos extensos. Ademadas, la grdafica ofrece una
verificacion inmediata: el estudiante puede contrastar si los re-
sultados algebraicos corresponden con las zonas del plano que
satisfacen la condicién.

Métodos de factorizacion y sustitucion: La factorizaciéon es un
proceso importante en matemdaticas, puesto que se puede usar
para reducir el estudio de una expresion complicada al estudio
de varias expresiones mas sencillas. Por ejemplo, las propieda-
des del polinomio x? — 9 se pueden determinar al examinar los
factores (x — 3) (x + 3).

Estos métodos constituyen estrategias algebraicas que favore-
cen la simplificacién de expresiones y la resolucion de sistemas.
Segun Stewart (2016), la factorizacién no es solo una técnica
operativa, sino un procedimiento que revela la estructura interna
de los polinomios, facilitando la identificacién de raices.
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La sustitucién, por su parte, permite reducir problemas comple-
jos a expresiones mds simples, un recurso fundamental en sistemas
de ecuaciones o en expresiones que requieren pasos intermedios.
Su uso desarrolla en el estudiante la capacidad de reconocer pa-
trones y aplicar propiedades algebraicas con flexibilidad.

Suele ser dificil factorizar polinomios de grado mayor a 2. En
casos sencillos, pueden ser Utiles las siguientes féormulas para
factorizar.

Tabla 8.
Formulas de factorizacion

Férmula Ejemplos

Diferencia de dos cuadrados | 9a2 — 25 = (3a + 5) (3a — 5)
x?—y?=(x+y)(x—y)

Diferencia de dos cubos 27m? — 64 = (3m)® — 4% = (3m — 4) (9 + 12m + 16)
x* =y’ = (x—y) (x* +xy +y°)

530"103 de cubos , , 8a% + 125 = (2a)® 4 5% = (2a + 5) (4a® — 10a + 25)
x°+y =(X+y)(x —xy+y)

Nota. Elaboracion propia

Apoyo tecnoldgico: el uso de tecnologias digitales ampli-
fica las posibilidades de andlisis y verificacion. Herramientas
como GeoGebra o Desmos permiten representar graficamen-
te funciones, comprobar soluciones y explorar de manera in-
teractiva los efectos de variar pardmetros. Godino y Batanero
(1998) resaltan que el software no debe concebirse solo como
un medio de cdlculo, sino como un entorno para la experi-
mentacion y la construccion de significados. Al integrar tec-
nologia, el estudiante desarrolla habilidades de visualizacion
y adquiere confianza al constatar que sus procedimientos
algebraicos coinciden con la representacion grdafica.

Estas plataformas no solo permiten representar conceptos
de forma dindmica, sino que también invitan a experimentar,
conjeturar y comprobar ideas de manera auténoma. En este
sentido, Pierce y Stacey (2010) destacan que los programas
de andlisis matemadtico ofrecen oportunidades pedagdgicas
Unicas, ya que facilitan la exploraciéon de relaciones entre
expresiones algebraicas, graficas y numéricas, generando
un espacio de aprendizaje mas interactivo y significativo.
Integrar este tipo de recursos en el aula contribuye a for-
talecer la comprensién conceptual y la motivacion de los
estudiantes frente a la matemadatica.
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Figura 16.
Representacién en Geogebra de una suma al cuadrado

* -

'.I Laslpmal+ Ja=1

A 1
Nota. Elaboracion propia

La incorporacion de tecnologias digitales en la ensefianza de
las matemdaticas no consiste simplemente en trasladar los ejerci-
cios del papel a una pantalla. Supone, mas bien, repensar la forma
en que los estudiantes construyen y comunican sus ideas. En este
proceso, el rol del docente es decisivo, porque no se trata solo
de usar un programa, sino de guiar al estudiante hacia un uso
reflexivo y significativo de la herramienta. Laborde (2002) explica
que laintegraciéon tecnoldgica exige una mediacion pedagdgica
gue combine el conocimiento matematico con el conocimiento
instrumental, de modo que el software se convierta en un medio
para explorar, visualizar y comprender los conceptos,y no en un
fin en si mismo.

Ademds, investigaciones recientes muestran que los entornos
digitales estimulan la motivaciéon intrinseca y el aprendizaje
activo, en tanto sittan al alumno como protagonista en la ex-
ploracion y construccion de saberes (Pierce & Stacey, 2010).
La incorporacion de estas herramientas contribuye, asi, a una
educacion matemadtica mas significativa, que fomenta tanto la
comprension conceptual como la autonomia en la resolucion
de problemas.

Tipologia de ejercicios para ecuaciones e inecuaciones

La ensefianza de las ecuaciones e inecuaciones adquiere senti-
do cuando los ejercicios propuestos no se limitan a la repeticiéon
mecdnica, sino que se convierten en experiencias formativas que
movilizan distintas dimensiones de la competencia matemdtica.
La literatura especializada subraya que una tipologia diversa
de actividades permite transitar de lo simple a lo complejo, y de
lo cerrado a lo abierto, favoreciendo tanto el dominio técnico
como la capacidad de interpretar y modelar fendmenos reales
(Kilpatrick et al, 2001; Godino, Batanero & Font, 2007).
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1. Ejercicios de traduccion del lenguaje natural al algebraico
Los ejercicios de traduccidon del lenguaje natural al algebrai-
co son fundamentales porque ayudan al estudiante a pasar
de la intuicion verbal a la precisiéon simbodlica. En este tipo
de tareas, la persona debe identificar relaciones, cantidades
y condiciones dentro de una situacion descrita con pala-
bras, y luego expresarlas mediante expresiones, ecuaciones
o funciones.

Tabla 9.
Ejemplos de ejercicios de traduccion del lenguaje natural al algebraico

# Enunciado Expresion Variables
matemdtica

1 |La suma de tres|3X + 2y =20 (x, y): nuUmeros reales
veces un numero
y el doble de otro
numero es igual a

veinte.
2 |La edad de Anola+5=2h (a): edad de Ana; (h):
aumentada en cin- edad del hermano

co afios equivale al
doble de la edad
de su hermano.

3 | El triple de un nuU- 3X—4:X+8 (x): nUmero real
mero disminuido
en cuatro es igual
a ese nUmero au-
mentado en ocho.

4 | Siala mitad de un | = -|—7: 15 (x): nUmero real

2
numero le agrega-
mos siete, obtene-
mos quince.
5 | La diferencia entre X2 —6=x (x): nUmero real

el cuadrado de un
numero y seis es
igual a ese mismo

numero.
Nota. Elaboracion propia

Apoyo diddctico: Se sugiere al docente trabajar con ejercicios
de traduccion del lenguaje natural al algebraico para que los es-
tudiantes aprendan a identificar variables y relaciones presentes
en situaciones cotidianas y expresarlas en forma de ecuaciones
o0 inecuaciones.
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Esta practica favorece la comprensidon del dlgebra como un
lenguaje de representacién y modelacién, y no como un con-
junto de simbolos abstractos. Tal como sefiala Duval (2006), la
conversion entre registros verbales y algebraicos resulta clave
para superar las dificultades de comprension y dar significado
a los objetos matematicos.

2. Ejercicios procedimentales y algoritmicos

Los ejemplos de ejercicios procedimentales y algoritmicos son
importantes porque ayudan al estudiante a “ver” como se mueve
una idea matemdtica cuando pasa del papel a la accién. No se
trata solo de sequir pasos, sino de entender por qué cada mo-
vimiento tiene sentido y como ese proceso se convierte en una
herramienta que después puede aplicar en otras situaciones.
Ademas, estos ejercicios sirven como puente entre la teoria y la
prdctica: permiten que conceptos que a veces parecen abstractos
se vuelvan mds concretos, mdas cercanos y, sobre todo, mdas Utiles
en su propio aprendizaje.

Tabla 10.

Ejemplos de ejercicios procedimentales y algorimiticos
# Enunciado Expresion matemadtica Tipo
1 | Encuentra el nUmero 2X-|- =11 Lineal

que, al multiplicarlo
por 2 y sumarle 5, da
como resultado 11.

2 |Halla los valores de | x% — Bx +6=0 Cuadratica
(x) cuyo cuadrado, al
restarle 5 veces el nU-
mero y sumarle 6, da

cero.
3 | Determina los nUme- ‘x— 3| S 4 Valor
ros cuya distanciaal 3 absoluto

en la recta real no su-
pera 4 unidades.

4 | Encuentra los valores X3 — 2X2 —x+2=0(0 |Polinbmica
de (x) que anulan el
polinomio de tercer

grado dado.
5 | Resuelve para qué va- X_ﬁ >0 Racional
lores de (x) la fraccion *
ﬁresulto ositiva
x+1 P )

Nota. Elaboracion propia
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Apoyo diddctico: Se recomienda al profesor proponer ejerci-
cios procedimentales y algoritmicos que fortalezcan la destreza
en la manipulacion simbdlica y el dominio de reglas algebraicas.
Resolver ecuaciones lineales, cuadraticas o inecuaciones racio-
nales permite a los estudiantes afianzar la fluidez procedimental
necesaria para enfrentar problemas mdas complejos. Como des-
tacan Hiebert y Lefevre (1986), la practica sistemdtica de estos
procedimientos debe acompafarse de comprensién conceptual,
evitando que el aprendizaje se reduzca a la mera aplicacion
mecdnica de algoritmos.

3. Ejercicios de anadlisis grdfico y verificacion

Los ejercicios de andlisis grdafico y verificacion son fundamentales
porque permiten que el estudiante contraste lo que calcula con
lo que observa, creando una relacidn mds clara entre el proce-
dimiento algebraico y su representacion visual. Al detenerse a
revisar un grdfico, el estudiante confirma si su resultado tiene
sentido, si la pendiente coincide, si el punto realmente pertene-
ce ala curva o si el comportamiento de la funcion refleja lo que
esperaba.

Tabla 11.
Ejemplos de ejercicios de andlisis grafico

# Enunciado Expresion Tipo de ecuacidn
matemadtica

1 | Determina gré- |x2 —x — 6 > ( | Figura 17.
ficamente la o Representacion cuadratica

region donde la \ ;
pardbola esta ] ' T
por encima del

eje x.
. y
mn-. .f.
Nota: Elaboracién propia.
2 |[Representa|3x—2>14 Figura 18.
graficamente la Representacion lineal

recta y deter-
mina dénde su
valor es mayor
que 4.

Nota: Elaboracion propia.
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Analiza grafica- | x* —5x2+4 >0 | Figura 19.
mente cudndo Representacion polinomial
el polinomio de | | =
cuarto grado es | ' |
=] T i
no negativo. I\ - |
s
| / q\'"' |I
£y
II / h |
f } i
| §
& \ [
I'U" '.‘. lll
Nota: Elaboracién propia.
4 | Determina gra- 2X_—43 <0 Figura 20.
ficamente para X+ Representacion polinomial
qué valores de ) #
(x) la fraccion
es menor que ' i
cero.
Nota: Elaboracién propia.
5 |Representa ‘2x—|—1‘25 Figura 21.
graficamente Representacion valor
y determina la absoluto
solucién de la
inecuacion con
valor absoluto.
Nota: Elaboracién propia

Nota. Elaboracion propia

Apoyo diddctico: Se recomienda al profesor integrar ejercicios de
andlisis grafico y verificacion para que los estudiantes contrasten las
soluciones algebraicas con representaciones visuales. Al trabajar
con ecuaciones e inecuaciones en el plano cartesiano, se favorece la
validacion de resultados y se refuerza la comprensiéon conceptual al
articular distintos registros de representacion, como subraya Duval
(2006). De este modo, los alumnos no solo aplican procedimientos,
sino que aprenden a verificar y dar sentido a las soluciones obtenidas.

4. Ejercicios de aplicacion contextualizada

Los ejercicios de aplicacion contextualizada son valiosos porque
conectan la matematica con situaciones reales que el estudiante
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reconoce y comprende. Cuando un problema surge de un esce-
nario cercano el aprendizaje deja de ser Unicamente simbdlico
y se vuelve significativo.

Estos ejercicios permiten que el estudiante intuya para qué sirven
los conceptos, coOmo se usan y por qué es Util dominarlos. Ademas,
al enfrentarse a contextos mas abiertos y variados, desarrolla la ca-
pacidad de seleccionar estrategias, justificar decisiones y adaptar
los conocimientos matematicos a situaciones nuevas.

Tabla 12.
Ejemplos de ejercicios de aplicacion contextualizada
# Enunciado Expresion Tipo de
matemadtica ecuacion
1 |Una empresa produce | 20x = 15x + 200 Lineal

(x) articulos. Los ingre-
sos son I(x) =20x y los
costos C(x) = 15x + 200
.. Cudntos articulos debe
vender para que los ingre-
sos igualen a los costos?

2 | Laaltura de un objeto lan- | —=5t2 +20t = 0 Cuadrdtica
zado desde el suelo sigue
h(t) = -5t +20t. ¢En
qué momentos estd en el
suelo?

3 | Una cooperativa reparte
L , X
beneficios sequn 5

x ,
=z = 0.5 Racional
donde (x) son las aporta-
ciones en miles de délares.
¢Para qué valores de x el
beneficio es al menos 0,57

4 |La ganancia (en miles|x® —6x2+11x—6=10 Cubica
de USD) se modela por
G(x) =x3_—6x2+11x—6
¢Para qué niveles de ven-
tas la ganancia es cero
(puntos de equilibrio)?

5 | a poblacién de un pueblo | 5000 + 200t > 10000 Lineal
es 5000 y aumenta 200
personas por afio. ¢En qué
afio superarda los 10000
habitantes?

Nota: Elaboraciéon propia.
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Apoyo diddctico: Se sugiere al profesor proponer ejercicios
de aplicacion contextualizada que acerquen las ecuaciones e
inecuaciones a situaciones reales como cdlculos de costos, bene-
ficios o tiempos de proceso. Estos problemas, ademas de motivar,
favorecen la modelacién matematica y la comprensién concep-
tual, permitiendo que los estudiantes vean el valor del dlgebra
en contextos auténticos (Blum & Leiss, 2007; Godino, Batanero
& Font, 2007).

5. Ejercicios exploratorios y abiertos
Los ejercicios exploratorios y abiertos son esenciales porque
invitan al estudiante a pensar mas alld de una Unica respuesta
posible y a moverse con mayor libertad dentro de las ideas
matematicas. En lugar de sequir un camino ya marcado, estos
ejercicios le permiten probar, comparar, equivocarse, ajustar
y volver aintentar, desarrollando una forma de razonamien-
to mds flexible y creativa. Cuando el estudiante descubre
patrones por si mismo o encuentra diferentes maneras de
abordar una misma situacién, siente que la matematica no
es un conjunto rigido de reglas, sino un espacio donde puede
formular preguntas y tomar decisiones. Este tipo de tareas
despierta curiosidad, fomenta la autonomia intelectual y ayu-
da a construir una comprension mas profunda y personal de
los conceptos.

Apoyo diddctico: Se sugiere al docente incorporar en la
planificacion ejercicios exploratorios que permitan a los es-
tudiantes abordar un mismo problema desde diferentes enfo-
ques, fomentando asi la creatividad y el pensamiento flexible.
Este tipo de tareas no debe reducirse a la bUusqueda de una
Unica respuesta, sino que ha de propiciar la reflexidon sobre los
procedimientos empleados, la comparacién de estrategias y
la justificacion de decisiones. Como sefialan Mason, Burton y
Stacey (2010), los ejercicios abiertos estimulan la autonomia
intelectualy el razonamiento adaptativo, al invitar al alumno
a experimentar con distintas rutas de solucién y a construir
confianza en sus propias capacidades matematicas.
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Tabla 13.
Ejemplos de ejercicios exploratorios y abiertos

# Enunciado Expresion Tipo
matemadtica

1 |Encuentra todos los pares de nU- | x(x+ 1) = 72) | Cuadrdtica
meros consecutivos cuya multi-
plicacién sea igual a 72. ¢ Existen
distintas formas de comprobarlo?

2 | Propon distintos valores de (X)que | x> —2x <15 | Inecuacién
cumplan que la diferencia entre su cuadratica
cuadrado y el doble del nUmero
sea menor que 15. ;Qué estrate-
gias puedes usar para justificar tu

eleccion?

3 (x) =5 53 Inecuacion
Explora los valores de que ha- | 3 vacl
cen que la fraccion 2=Dsea mayor racional

que 3. ;Coémo puedes representarlo
numeérica o graficamente?

4 | Investiga qué valores de (%) cum- | VX + 3 =x — 1| Radical
plen que la raiz cuadrada de (x + 3)
seaiguala (x — 1). ¢Como verifica-
rias tus soluciones?

5 |Describe y representa los nUmeros | [x — 7| < 4 Valor
cuya distancia al 7 en la recta real absoluto

no supere 4 unidades. ;De qué ma-
neras diferentes se puede interpre-

tar esta condicion?
Nota: Elaboracion propia.

6. Ejercicios con apoyo tecnoldgico

Los ejercicios con apoyo tecnolégico ofrecen al estudiante una
forma mas dindmica y visual de interactuar con las ideas mate-
maticas. Al utilizar herramientas como GeoGebra, calculadoras
grdficas o simuladores, puede experimentar con paradmetros, ob-
servar cambios en tiempo realy comprobar rédpidamente si sus
conjeturas tienen sentido. Esta interaccién inmediata favorece la
comprensidon, ya que permite explorar situaciones que, de manera
tradicional, serian mas lentas o dificiles de representar. Ademds, la
tecnologia amplia las posibilidades de andlisis: ayuda a verificar
resultados, comparar métodos y visualizar comportamientos que
fortalecen la intuicidn matemdtica. De este modo, la tecnologia
no reemplaza el razonamiento, sino que actia como un medio
para profundizarlo y hacerlo mas accesible.
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Tabla 14.
Ejemplos de ejercicios con apoyo tecnoldgico

# Enunciado Ideas de solucidon / Preguntas guia
Caminos posibles

1 | Una empresa de men- | Algebra: resolver . Qué signifi-
sajeria cobra 7 dolares | 2x+ 7 =19 ca el punto de
de tarifa fijay 2 dolares | Grafico: in- interseccion?
por cada paquete. Si el | terseccién de . Qué ocurre si
presupuesto maximo y=2x+T7cony =19 |¢ presupuesto
es 19 dodlares, jcudn- cambia?
tos paquetes pueden
enviarse?

2| Una pelota si- | Factorizacion,comple- | ¢ Qué represen-
gue la trayectoria|tar el cuadrado, fér-|ta cada inter-
h(x) = x% — 5x + 6. mula general. Grdéfico | seccion con el
¢En qué distancias toca | de la pardbola y raices. | eje x? Como
el suelo? ¢Cbdmo cam- | Extensidon: usar desli- | se interpreta el
bia la pardbola si mo-|zadores en a, b, c. vértice?
dificas los coeficientes?

3 |Se estudia el indi-|Linea de signos: ana- | ;Porquéx = —3
ce de rendimiento |lizar raices y asintota.| no pertenece al
R(X) = %Determino Grafico: observar dén- | dominio? ;Qué
en qué intervalos elren- | de la curva estd sobre | intervalos gene-
dimiento es positivo. | el eje x. Extension: ge- | ran R(x) > 0?

neralizar a le

4 Un sensor mide|Algebra:elevar al ¢ Qué condicio-
d = v/x + 1y un planifi- | cuadrado, resolver y nes de dominio
cador prediceP:X—3 comprobar. Grafico: deben cumplir-
Encuentra los valores |interseccion de se? ¢Siempre
de x donde coinciden |y=+Xx+1cony=x—3.| hay solucién?
ambos modelos y veri-
fica raices extrafas.

5 | En una evaluacién de ’x— 8‘ < 0.6 Representa gra-

matemdaticas, la califi-
cacion objetivo es de
8/10. Se acepta una
tolerancia de hasta 6
décimas (:i:O, 6) para
considerar que el estu-
diante estd dentro del
rango esperado.

ficamente to-
das las califica-
ciones posibles
que cumplen
con este crite-
rio y determina
el intervalo de

aceptacion.

Nota: Elaboracion propia.
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Apoyo diddctico: Se recomienda al docente integrar recursos
tecnoldgicos como GeoGebra o Desmos no solo para agilizar
cdlculos, sino para promover espacios de experimentacion que
fortalezcan la comprensién conceptual y permitan validar resul-
tados de manera interactiva. Tal como sefialan Godino y Batanero
(1998), estas herramientas favorecen la construccion de signifi-
cados matemdticos, mientras que Duval (2006) destaca su valor
en la articulacién de distintos registros de representacién.

Conclusiones

El recorrido por este primer capitulo permite comprender que
el algebra no es solo una coleccion de reglas o procedimientos,
sino un modo de pensar que posibilita organizar, simbolizar y
comprender la realidad desde la |6gica de las relaciones. El es-
tudio de los nUmeros reales, sus propiedades, los exponentes y
radicales, asi como la resolucién de ecuaciones e inecuaciones,
sienta las bases para una comprension mas profunda del calculo
y de la modelacidon matemdtica.

De igual manera, la propuesta didactica que acompana el
desarrollo tedrico resalta la importancia de ensefiar el dlgebra
desde la comprensién y no desde la mera repeticion. Los ejem-
plos, las estrategias de resolucion y el uso de recursos tecnolo-
gicos permiten visualizar las ecuaciones e inecuaciones como
herramientas para interpretar y transformar el entorno. De esta
forma, el capitulo invita al docente y al estudiante a descubrir en
el dlgebra un camino hacia el razonamiento, la creatividad y la
reflexion critica, donde aprender a resolver es también aprender
a pensar con sentido.

Referencias

Apostol, T.M. (2007). Cdlculo. Volumen I: Cdlculo de una variable,
con introduccidon al dlgebra lineal (2.2 ed.). Wiley. (Trabajo
original publicado en 1967).

Apostol, T.M. (2013). Andlisis matematico (2.9 ed.). Addison-Wesley.

Blitzer, R. (2018). Algebra y trigonometria (6.2 ed.). Pearson.

Blum, W., & Leiss, D. (2007). Cémo los estudiantes y profesores
abordan problemas de modelizacion. En C. Haines, P. Galbraith,
W.Blum, & S. Khan (Eds.), Modelizacién matemdtica (ICTMA12):
Educacidon, ingenieria y economia (pp. 222-231). Horwood
Publishing.

Burton, D. M. (2011). Teoria elemental de nUmeros (7.2 ed.).
McGraw-Hill.

52



Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

Crandall, R., & Pomerance, C. (2005). NUmeros primos: Una
perspectiva computacional (2. ed.). Springer.

Duval, R. (2006). Un andlisis cognitivo de los problemas de
comprension en el aprendizaje de las matemdaticas. Educational
Studies in Mathematics, 61(1-2),103-131. hitps:/doi.org/10100//
s10649-006-0400-7

Godino, J. D., y Batanero, C. (1998). Significado institucional y
personal de los objetos matemdaticos. Universidad de Granada

Godino, J. D, Batanero, C., & Font, V. (2003). Fundamentos de la
ensefianza y el aprendizaje de las matemdaticas. Universidad
de Granada.

Godino, J. D, Batanero, C., & Font, V. (2007). The onto-semiotic
approach to research in mathematics education.

Hardy, G. H., & Wright, E.M.(2008). An introduction to the theory
of numbers (6th ed.). Oxford University Press.

Hiebert, J., & Lefevre, P. (1986). Conocimiento conceptual y
procedimental en matematicas: Un andlisis introductorio. En
J. Hiebert (Ed.), Conocimiento conceptual y procedimental:
El caso de las matematicas (pp. 1-27). Lawrence Erlbaum
Associates.

Katz, V. J. (2009). Historia de las matemdticas: Una introduccién
(3.2 ed.). Addison-Wesley.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Sumando
logros: Cémo aprenden matematicas los nifios. National
Academy Press.

Laborde, C. (2002). Integration of technology in the design of
geometry tasks with Cabri-geometry. International Journal of
Computers for Mathematical Learning, 6(3), 283-317. hitps:/
doi.org/10.10235/A:1013309/28825

Larson, R., & Edwards, B. H. (2019). Calculus of a single variable
(12th ed.). Cengage Learning

Mason, J., Burton, L., & Stacey, K. (2010). Pensar matemdticamente
(2.2 ed.). Pearson.

Pierce, R, & Stacey, K. (2010). Mapping pedagogical opportunities
provided by mathematics analysis software. International
Journal of Computers for Mathematical Learning, 15(1), 1-20.
hitos:/doi.org/101007//s10/58-010-9158-6

Ribenboim, P. (2016). The Book of Prime Number Records (5th
ed.). Springer.

Schoenfeld, A. H. (1985). Resolucion de problemas matematicos.
Academic Press.

Stewart, J. (2016). Cdlculo: Trascendentes tempranas (8.9 ed.).
Cengage Learning.

Stillwell, J. (2010). Mathematics and its History (3rd ed.). Springer.

Sullivan, M. (2016). Algebra y trigonometria (10.2 ed.). Pearson.

53


https://doi.org/10.1007/s10649-006-0400-z
https://doi.org/10.1007/s10649-006-0400-z
https://doi.org/10.1023/A:1013309728825
https://doi.org/10.1023/A:1013309728825
https://doi.org/10.1007/s10758-010-9158-6 

CarituLo II

Sistemas de ecuaciones e
inecuaciones algebraicas

Introduccion

En este segundo capitulo, dedicado a los sistemas de ecuaciones e
inecuaciones algebraicas, el estudiante se enfrenta al reto de analizar
situaciones donde varias condiciones actUan al mismo tiempo. No se
trata solo de resolver igualdades o desigualdades aisladas, sino de
descubrir como interactUan entre si para definir un punto comuin, una
region o un equilibrio. Este paso desde lo individual hacia lo relacional
representa un avance en la madurez algebraica: el pensamiento deja
de mirar ecuaciones por separado y aprende a verlas como parte de
un entramado de relaciones que modelan fendmenos del mundo real.

En este contexto, los sistemas se convierten en un lenguaje
para describir simultdneamente varias realidades: el cruce de
dos caminos, la interseccién de demandas y recursos, o el punto
donde se equilibran fuerzas opuestas. Resolverlos exige articular
razonamiento simbdlico, interpretacion grafica y sentido numéri-
co, combinando lo analitico con lo visual. Las estrategias clasicas
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(sustitucién, igualacién o reducciéon) cobran un nuevo valor cuando
se interpretan como expresiones de un mismo principio de cohe-
rencia: todo sistema busca un punto donde las condiciones se ar-
monizan. El apoyo de herramientas tecnoldgicas como GeoGebra
o Desmos permite, ademdas, visualizar esa convergencia, haciendo
tangible la idea de solucién como encuentro entre representacio-
nes distintas de una misma verdad matematica.

Este capitulo no pretende limitarse a la técnica, sino invitar al lector a
pensar el sistera como metdfora del propio conocimiento: un espacio
donde multiples caminos convergen para dar sentido a una misma rea-
lidad. Cada método, cada representacion y cada verificacion aportan
una mirada diferente, pero complementaria. De este modo, el estudio
de los sistemas de ecuaciones e inecuaciones se presenta como un
ejercicio de pensamiento integrador, que prepara el camino para los
capitulos siguientes, donde las funciones algebraicas y trascendentes
revelardn su poder para describir, con elegancia y precision, los pa-
trones y leyes que rigen la naturaleza y la sociedad.

Fundamentos conceptuales
El estudio de los sistemas de ecuaciones e inecuaciones constituye
un eje central en la formacién algebraica, ya que permite trabajar
con situaciones donde intervienen varias condiciones de manera
simultanea. En términos generales, un sistema de ecuaciones se
compone de dos o mds ecuaciones que deben resolverse al mismo
tiempo para encontrar los valores de las incognitas que satisfacen
todas ellas. De forma paralela, un sistema de inecuaciones esta for-
mado por desigualdades cuya solucidén corresponde a un conjunto
de valores o regiones que cumplen las condiciones establecidas.
Estos sistemas, como sefialan Stewart (2016) y Blitzer (2018), no solo
constituyen un recurso algebraico, sino también un lenguaje formal
para representar y analizar fendmenos complejos de la realidad.

En lo que respecta a su clasificacion, los sistemas se dividen
en lineales y no lineales. Los sistemas lineales se caracterizan
por la presencia de ecuaciones o inecuaciones de primer grado,
cuyas graficas corresponden a rectas en el plano o hiperplanos
en dimensiones superiores. Este tipo de sistemas resulta de gran
importancia porque ofrece soluciones que pueden interpretarse
como puntos de interseccion de rectas, vértices de poligonos
o regiones poligonales. Por otro lado, los sistemas no lineales
incluyen expresiones cuadraticas, cUbicas, radicales o de otro
tipo, cuyas soluciones adoptan formas mas complejas: curvas,
pardbolas, circunferencias o incluso superficies en el espacio
tridimensional. Esta diversidad de casos hace que los estudiantes
deban desarrollar tanto la destreza algoritmica como la capaci-
dad de interpretar graficas y regiones solucién (Sullivan, 2016).
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Otro aspecto clave en la comprension de los fundamentos es
la discusion sobre los tipos de soluciones. Un sistema puede ser:

* Compatible determinado, cuando presenta una Unica solu-
cién que satisface todas las condiciones;

e Compatible indeterminado, cuando tiene infinitas solucio-
nes que cumplen el sistema;

* Incompatible, cuando no existe ningUn valor que satisfaga
simultdneamente todas las expresiones.

Este andlisis es esencial, pues ayuda al estudiante a entender
que resolver un sistema no siempre implica encontrar un Unico
resultado numeérico, sino también reconocer situaciones de im-
posibilidad o de multiples soluciones (Anton et al., 2013).

La importancia de los sistemas en la modelacidn matematica se
evidencia en numerosos campos. En economia, los sistemas linea-
les permiten calcular el punto de equilibrio entre costos e ingresos;
en fisica, se aplican para determinar el punto de intersecciéon de
trayectorias o fuerzas; en biologia, ayudan a describir el crecimien-
to poblacional bajo restricciones; y en ingenieria, son la base de
modelos de optimizacion y programacion lineal. En este sentido
Kilpatrick et al. (2001) destacan que este tipo de problemas fa-
vorece el desarrollo integral de las competencias matemdticas, al
exigir comprension conceptual, fluidez procedimental, estrategias
de resolucién, razonamiento adaptativo y disposicién productiva.

En el dmbito educativo, comprender los fundamentos de los
sistemas de ecuaciones e inecuaciones supone, ademads, formar
en el pensamiento algebraico como herramienta de modelacién.
No se trata solo de manipular simbolos, sino de ofrecer a los
estudiantes la oportunidad de interpretar situaciones, plantear
modelos y validar sus soluciones en diferentes contextos. Asi,
los fundamentos conceptuales de este tema constituyen no solo
un contenido matemdtico, sino también una via para fortalecer
la autonomia intelectual, la capacidad critica y la transferencia
del conocimiento a escenarios de la vida real.

Definicion de sistemas de ecuaciones e inecuaciones
Un sistema de ecuaciones algebraicas puede entenderse como
un conjunto finito de ecuaciones en las que intervienen las mis-
mas incdgnitas y que deben cumplirse de manera simultdnea.
La resolucion de un sistema busca determinar los valores de las
variables que satisfacen todas las condiciones propuestas. Este
concepto se generaliza de forma natural a partir de la idea de una
sola ecuacién: mientras que en una expresién aislada se procura
identificar los valores que verifican una igualdad, en un sistema
se requiere encontrar las soluciones comunes a todas ellas. Segun
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Stewart (2016), esta interaccion simultanea convierte a los siste-
mas en una herramienta fundamental para modelar situaciones
reales que no pueden explicarse con una sola ecuacion.

La forma general de un sistema de ecuaciones lineales con “m”

€6 99

ecuaciones y “n”incodgnitas se puede expresar como:

a1;1x; +apXe + -+ +apxy = by
ag1X1 + agXa + -+ +agXy = by .

am1X1 +ameX2 + - + amnXy = bm

donde los coeficientes ajj y los términos independientes bij son
nUumeros reales. Este planteamiento, abordado de manera sis-
tematica por Blitzer (2018) y Anton et al. (2013), permite tratar
sistemas sencillos de dos variables hasta sistemas de mayor
dimension que se resuelven mediante métodos matriciales.

Por otra parte, un sistema de inecuaciones algebraicas se define
como el conjunto de desigualdades en las que aparecen las mismas
incoégnitas, y cuya solucion corresponde a los valores que satis-
facen simultdneamente todas las restricciones. Su forma general
puede escribirse como:

)<b
f2(X]_,X2,..., ) b

1
2
fm(x1,X2,...,%Xy) > by

IN

fl(Xl,X2, .. 9Xp
Xn

A%

donde cada fij es una expresiéon algebraica en varias variables.
Estas representaciones generan, en el plano o en el espacio,
regiones factibles que reflejan las soluciones posibles. Como
sefiala Sullivan (2016), la interpretacion grdafica de los sistemas
de inecuaciones es esencial, pues permite visualizar dareas de
validez que constituyen la base de la programacion lineal y de
multiples aplicaciones en ciencias econdmicas y de la ingenieria.

En sintesis, los sistemas de ecuaciones e inecuaciones alge-
braicas constituyen un marco conceptual amplio para trabajar
con situaciones en las que interactUan multiples condiciones. Su
estudio no solo fortalece las habilidades algebraicas, sino que
también impulsa competencias superiores, como el razonamiento
adaptativo y la capacidad de modelacién (Kilpatrick et al., 2001).

Clasificacion: lineales y no lineales

La clasificacion de los sistemas de ecuaciones e inecuaciones en
lineales y no lineales constituye un aspecto esencial del dlgebra,
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ya que determina tanto los métodos de resolucion como la for-
ma en que se interpretan las soluciones. Esta distincidon no es
meramente formal, sino que responde a la necesidad de organi-
zar y comprender los diferentes tipos de relaciones que pueden
establecerse entre variables. Como sefialan Anton et al.(2013),
reconocer si un sistema es lineal o no lineal permite elegir las
estrategias adecuadas de resolucion y facilita la transicion del
cdlculo simbdlico a la interpretacién geométrica y aplicada.

Un sistema lineal estd compuesto por ecuaciones en las que
las variables aparecen con exponente uno y no se multiplican
entre si. Su forma general en dos incdgnitas es:

a1Xx + bly = C1
asx + boy = ¢

donde al,az,bl,bz,cl,C2 € R. Graficamente, este sistema re-
presenta dos rectas en el plano, cuya interseccidn corresponde
a la solucién. Por ejemplo:

X+y=2>5
2x —y=1

La primera ecuacidn describe una recta que pasa por los pun-
tos (0,5) y (5,0), mientras que la segunda se representa como una
recta que cortaaleje “y” en (-1) y al eje “x” en (0.5) (véase Figura
1). Su punto de intersecciég. (2.3). constituye la solucidn Unica.

Figura 1. %, :
Representacion del siste, e

Nota: Elaboraciéon propia.

Segun Stewart (2016), este enfoque permite a los estudiantes
comprender que la resolucion de un sistema lineal equivale a
encontrar un punto comun que satisface ambas condiciones. En
contraste, un sistema no lineal incluye al menos una ecuacién o
inecuaciéon en la que las variables aparecen elevadas a expo-
nentes distintos de uno, o se presentan en productos, raices u
otras formas algebraicas. Un ejemplo clasico en dos variables es:
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x2 +y2 =25
xX+y=7
La primera ecuacién representa una circunferencia de radio
5 centrada en el origen, y la segunda una recta (véase Figura

2). La interseccion entre ambas curvas da como resultado dos
posibles soluciones: (3,4) y (4,3).

Figura 2.
Representacion de un sistema de ecuaciones no lineales

_

Nota: Elaboraciéon propia.

Este ejemplo ilustra lo sefialado por Blitzer (2018), quien sos-
tiene que los sistemas no lineales enriquecen la comprension
geométrica, ya que sus soluciones no siempre corresponden a
un Unico punto, sino a la interaccién de curvas con diferentes
formas y propiedades.

De manera andloga, en el caso de sistemas de inecuaciones, los
lineales delimitan regiones poligonales en el plano, como ocurre
en programacion lineal (véase figura 3). Por ejemplo:

x+y<6
x>0
y=>0

define un tridngulo en el primer cuadrante que representa la
regiéon factible de soluciones.

Figura 3.
Representacion de un sistema de ecuaciones lineales

Nota: Elaboraciéon propia.
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En cambio, un sistema no lineal de inecuaciones, como:
x2+y2<9
X>y

describe la interseccidon entre el disco de radio 3y el semiplano
superior respecto alarectaY = X lo que genera una regién curva
mas compleja (véase Figura 4). Sullivan (2016) enfatiza que estas
representaciones ayudan al estudiante a reconocer que resolver
un sistema de inecuaciones no consiste Unicamente en calcular
valores, sino en delimitar espacios de validez.

Figura 4.
Representacion de sistema de ecuaciones no lineales

Nota: Elaboraciéon propia.

En conclusion, la clasificacion de los sistemas en lineales y
no lineales proporciona un marco conceptual que organiza la
enseflanza y el aprendizaje del dlgebra. Mientras los sistemas
lineales ofrecen procedimientos estandarizados y soluciones
interpretables como intersecciones de rectas o planos, los no li-
neales introducen al estudiante en un terreno mds amplio, donde
la diversidad de formas y soluciones potencia la capacidad de
modelacién y razonamiento adaptativo (Kilpatrick et al.,, 20071).

Tipos de soluciones
El estudio de los tipos de soluciones en los sistemas de ecua-
ciones e inecuaciones es un componente fundamental en la for-
macion matemdatica, ya que permite comprender que la resolu-
cién no siempre conduce a un resultado Unico, sino que puede
derivar en diferentes escenarios. Identificar estos casos no solo
es relevante desde un punto de vista algebraico, sino también
pedagodgico, pues dota a los estudiantes de herramientas para
razonar de forma flexible y critica frente a distintos problemas
(Duval, 2006).

En esencia, un sistema de ecuaciones o inecuaciones busca
determinar los valores que satisfacen de manera simultdnea
todas las condiciones planteadas. Sin embargo, dependiendo
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de la naturaleza de las expresiones involucradas y de las re-
laciones entre ellas, los resultados posibles se agrupan en tres
categorias principales: sistemas compatibles determinados,
sistemas compatibles indeterminados y sistemas incompatibles
(Anton et al,, 2013).

Sistemas compatibles determinados

Un sistema es compatible determinado cuando existe una
Unica solucion que satisface todas las condiciones. En los
sistemas lineales de dos variables, este caso corresponde
graficamente al punto de interseccién de dos rectas no para-
lelas. Desde una perspectiva geométrica mdas amplia, se trata
del cruce Unico entre planos o hiperplanos en dimensiones
superiores.

Por ejemplo, el sistema:

2x+y=5
x—y=1

posee una Unica solucidon (X, y) = (2, 1). Este resultado refleja
que ambas rectas comparten un solo punto comuUn (véase
Figura 5).

Stewart (2016) sefala que este caso ejemplifica la unicidad
de las condiciones, lo que se interpreta en contextos aplicados
como un equilibrio exacto, por ejemplo, entre ingresos y gastos
en economia o entre fuerzas en mecanica.

Figura 5.
Representacion de sistemna compatible determinado

"-" &

Nota: Elaboraciéon propia.

Sistemas compatibles indeterminados

Un sistema es compatible indeterminado cuando existen infinitas
soluciones. En los sistemas lineales de dos variables, este caso
ocurre cuando ambas ecuaciones representan rectas coinciden-
tes, es decir, la misma recta expresada con formas algebraicas
distintas. Graficamente, todas las coordenadas de la recta comin
constituyen soluciones del sistema. En términos algebraicos, esta
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situacion revela que el sistema no esta suficientemente definido
para restringir una Unica respuesta, lo que genera un conjunto
infinito de posibilidades (Blitzer, 2018). Por ejemplo, el sistema:

2x +4y =8
x+2y=4

representa dos ecuaciones equivalentes (véase Figura 6); al
simplificar, ambas corresponden a la misma recta.

Figura 6.
Representacion de sistema compatible indeterminado

-

Nota: Elaboracion propia.

Este caso es especialmente interesante desde la modelacién,
pues refleja fendmenos donde multiples configuraciones cumplen
las condiciones. En programacién lineal, por ejemplo, las regiones
factibles infinitas muestran que existe una familia de soluciones
o6ptimas, lo cual exige utilizar criterios adicionales para selec-
cionar entre ellas (Sullivan, 2016).

Sistemas incompatibles

Un sistema es incompatible cuando no existe ningun valor que
satisfaga simultédneamente todas las ecuaciones o inecuaciones.
En los sistemas lineales de dos variables, esto ocurre cuando las
rectas son paralelas y distintas, de modo que nunca se intersecan
(véase Figura 7).

Figura 7.
Representacion de sistema incompatible

S

Nota: Elaboraciéon propia.
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Algebraicamente, esto equivale a encontrar contradicciones
como:

x+y=3
x+y=4

que claramente no pueden cumplirse al mismo tiempo. Este tipo de
resultados no debe interpretarse como un fracaso en el cdlculo, sino
como evidencia de lainconsistencia de las condiciones planteadas.
Apostol (2007) destaca que este escenario introduce en los estu-
diantes la nocién de imposibilidad matemdtica, Util para analizar
modelos en los que las restricciones resultan mutuamente exclu-
yentes, como sucede en ciertos problemas econdmicos o fisicos.
En contraste, los sistemas no lineales enriquecen de manera
significativa el panorama de los tipos de soluciones, ya que las
curvas involucradas (circunferencias, pardbolas, hipérbolas, elip-
ses, entre otras) permiten multiples configuraciones geométricas.
Un ejemplo clasico es la interseccién entre una recta y una
circunferencia (véase Figura 8):
* Puede haber dos soluciones, cuando la recta corta a la cir-
cunferencia en dos puntos.
* Puede haber una solucién Unica, cuando la recta es tangente
y toca la circunferencia en un solo punto.
* Puede no haber ninguna soluciéon, si la recta no toca la
circunferencia.

Figura 8.
Representacion de sistema incompatible

Nota: Elaaboracién propia.

Estos casos ejemplifican coémo el andlisis grafico proporciona
al estudiante una forma inmediata de visualizar la existencia y el
numero de soluciones sin necesidad de resolver algebraicamente
todo el sistema (Apostol, 2007).

De manera similar, la interseccién de dos pardbolas puede
generar hasta dos soluciones, mientras que la de una pardbola
con una hipérbola puede originar varias soluciones dependiendo
de sus posiciones relativas (véase Figura 9).
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Figura 9.
Representacién de varias soluciones

Nota: Elaboraciéon propia.

Stewart (2016) resalta que estos escenarios no lineales obli-
gan a desarrollar habilidades de anticipacidon y de razonamiento
visual, en tanto que los estudiantes deben prever el nUmero de
soluciones posibles antes de efectuar cdlculos detallados.

Importancia de los sistemas en la modelacion matemdtica
Los sistemas de ecuaciones e inecuaciones constituyen un nucleo
esencial en la modelacion matematica porque permiten repre-
sentar situaciones complejas en las que intervienen multiples
variables y restricciones de manera simultdnea. No se trata Unica-
mente de resolver expresiones algebraicas, sino de comprender
cdmo estas estructuras se convierten en un lenguaje universal
para traducir fendmenos reales en términos matematicos. Segun
Blum y Leiss (2007), la modelacién matematica es un proceso
ciclico que inicia en una situacién del mundo real, se transforma
en un modelo simbdlico, se resuelve con herramientas matema-
ticas y luego retorna al contexto, enriqueciendo la comprensiéon
y la toma de decisiones.

La representacion de la complejidad en contextos reales

Los sistemas de ecuaciones son herramientas privilegiadas
porque condensan interacciones entre magnitudes. Un ejemplo
clasico en economia es el cdlculo del punto de equilibrio entre
ingresos y costos:

7))
X

donde I(X) representa los ingresos por la venta de unidades
y C(x) los costos asociados. Resolver este sistema permite iden-
tificar el nivel de produccion en el cual no se generan pérdidas
ni ganancias, concepto central en la administracién de empresas
(Sullivan, 2016).

En la fisica, los sistemas lineales permiten calcular el punto
de encuentro entre trayectorias de particulas o determinar el
equilibrio de fuerzas en un cuerpo rigido. En biologia, se utilizan
para describir interacciones poblacionales como los modelos

64



Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

depredador-presa de Lotka y Volterra, que combinan ecuaciones
no lineales para anticipar ciclos de crecimiento y decrecimiento
en especies (Anton et al., 2013). En ingenieria, se aplican para la
optimizacién de recursos, el disefio de estructuras y la progra-
macién de procesos industriales.

Por su parte, los sistemas de inecuaciones se han consolidado
como la base de la programacion lineal, técnica utilizada para
maximizar beneficios o minimizar costos en contextos donde
existen restricciones. La reqgién factible generada por las inecua-
ciones delimita el espacio de posibles soluciones, dentro del cual
se localizan los valores 6ptimos. Stewart (2016) enfatiza que este
enfoque resulta indispensable en logistica, transporte, planifica-
cién de la produccidn o gestion de inventarios.

Mds alld del cdlculo: integracion de condiciones y restricciones
La importancia de los sistemas radica en su capacidad para
integrar diversas condiciones que, de forma aislada, serian in-
suficientes. Resolver un sistema significa encontrar el punto de
intersecciéon entre multiples exigencias, lo que se traduce geomé-
tricamente en intersecciones de rectas, planos o curvas, y con-
ceptualmente en soluciones que satisfacen simultdneamente
todas las restricciones planteadas (Larson & Edwards, 2019).

De esta maneraq, los sistemas de ecuaciones e inecuaciones sim-
bolizan un espacio de negociacion entre variables: en economia,
entre ofertay demanda; en fisica, entre fuerzas; en biologia, entre es-
pecies; en la vida cotidiang, entre recursos limitados y necesidades
crecientes. Apostol (2007) resalta que esta perspectiva dota a las
matematicas de un valor heuristico, pues no solo resuelven proble-
mas, sino que ayudan a plantear escenarios y prever consecuencias.

Ejemplo econdmico: Una empresa produce dos articulos, “x” y
“y”.Elingreso total estad dado por I = 20x + 15y, mientras que los
costos de produccidén se expresan como C=10x+ 12y + 500.
Resolver el sistema I = C permite encontrar combinaciones de
“x”y “y” donde la empresa no obtiene pérdidas ni ganancias
(véase Figura 10).

Figura 10.
Representacion de funciones ingreso total

Nota: Elaboraciéon propia.
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Punto de equilibrio: I = Cesdecir 20x + 15y = 10x + 12y + 500
con restricciones naturales:x > 0, y > 0. El punto de equilibrio esté
dado por todas las parejas (x,y) que satisfacen 10x + 3y = 500 con
X, y > 0.Debajo de esa recta hay pérdidas; por encima, hay ganancias.

Ejemplo fisico: Dos proyectiles lanzados desde distintos puntos
siguen trayectorias parabdlicas. Sus ecuaciones descritas en la
generan un sistema cuya resolucién indica si las trayectorias se
cruzan en el espacio-tiempo. (véase Figura 11).

Buscamos si las trayectorias se cruzan en el espacio-tiempo
(t,y), es decir, un mismo instante t con la misma altura “y”. Las
trayectorias se cruzan en t = 0.6s y 12.2 unidades de altura.

Figura 11.
Representacion del lanzamiento de dos proyectiles

Nota: Elaboraciéon propia.

Resolucion de sistemas de ecuaciones
La resoluciéon de sistemas de ecuaciones constituye un eje central
en el aprendizaje del dlgebra, pues permite comprender como
diferentes condiciones pueden cumplirse simultdneamente en un
mismo contexto. Desde una perspectiva historicay formativa, los
métodos de resolucion surgieron como respuesta a problemas
practicos de comercio, astronomia o ingenieria, y posteriormente
se consolidaron en un cuerpo tedrico que hoy resulta indispen-
sable en la ensefianza de la matematica (Katz, 2009).

Resolver un sistema implica determinar los valores de las incdg-
nitas que satisfacen de manera conjunta todas las ecuaciones plan-
teadas, lo que en términos geométricos se traduce en la bUsqueda
de intersecciones entre lineas, planos o curvas (Stewart, 2016). Esta
doble dimension, algebraicay geométrica, dota al estudio de los sis-
temas de una riqueza conceptual que favorece tanto el desarrollo de
habilidades analiticas como la construccion de una intuicion visual.

Métodos algebraicos. sustitucion, igualacion, reduccion, Gauss
y Cramer
El aprendizaje de los métodos algebraicos de resolucién de siste-
mas de ecuaciones es un paso decisivo en la formacion matemati-
ca, pues permite comprender como distintas condiciones pueden
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cumplirse de manera simultdnea. Estos procedimientos no deben
ser vistos Unicamente como técnicas rutinarias, sino como estra-
tegias de razonamiento que fortalecen la capacidad de andlisis y
la flexibilidad cognitiva (Godino, Batanero & Font, 2007). Entre los
mas utilizados en el dmbito escolar y universitario se encuentran
el método de sustitucion, el método de igualacion y el método de
reduccién, cada uno con caracteristicas propias que los hacen mas
adecuados segun el tipo de sistema y el contexto de aplicacién.

Método de sustitucion
El método de sustitucién se fundamenta en despejar una variable
en una de las ecuaciones y reemplazarla en las demas, reduciendo
gradualmente el nUmero de incégnitas hasta obtener una solucion.
Este procedimiento es especialmente intuitivo, pues el estudiante
logra visualizar cdémo una condicidn se integra en otra. Segun
Johnson y Riess (2018), la sustitucion fomenta la comprension del
concepto de “variable dependiente”, es decir, cobmo el valor de
una incégnita queda condicionado por otra dentro del sistema.
Ejemplo: Para comprobar el nivel de razonamiento de los es-
tudiantes de ensefianza General Basica, se aplicd una prueba de
razonamiento de 20 preguntas sobre contenidos resolucién de
sistemas de ecuaciones. Por cada respuesta correcta se asigna
tres puntos, y por cada incorrecta se restan dos. Si un estudian-
te obtiene 88 puntos, ¢cudntas preguntas respondié de manera
correcta y cudntas de manera incorrecta?
Solucion
+ Considerar a “x” como la cantidad de respuestas correctas
dadas por un estudiante.
* Considerar a “y”como la cantidad de respuestas incorrectas
dadas por un estudiante.
* Formalizar el sistema de ecuaciones de acuerdo a las exi-
gencias del problema.

x+y=20 (1)
6x — 2y =88 (2)

“Se despeja una variable en una de las ecuaciones y se sus-
tituye en la otra.”

Se sustituye X = 16 en la ecuacion (1) 16 +y = 20
obteniéndose asiy =4

Sustituir y = 20 — x en la ecuacién (2)
obteniendo: 6x — 2(20 — x) = 88 (3)

6x — 40 + 2x = 88

8x =128

para obtener x = 16
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Respuesta: El estudiante respondié de manera correcta 16
preguntasy 4 de manera incorrectay puede comprobar geomé-
tricamente el resultado (véase Figura 12)

Figura 12.
Representacion del sistema de ecuaciones

Nota: Elaboracion propia.

El método es recomendable cuando alguna ecuacién presenta
una variable con coeficiente 1 o -1, ya que simplifica el despeje
(Larson & Edwards, 2019).

Método de igualacidn

Este procedimiento consiste en despejar la misma incdégnita en
ambas ecuaciones y luego igualar los resultados obtenidos. El
valor pedagdgico del método radica en reforzar la nocion de
equivalencia algebraica, al mostrar que dos expresiones distintas
pueden representar el mismo valor de una variable (Aparicio &
Cantoral, 2015).

Si aplicamos el método de igualacion al sistema anterior:

x+y=20 (1)
6x — 2y = 88 (2)
Despejar x en las ecuaciones (1) y (2). Para obtener las ecua-
ciones (3) y (4).
x=20—y (3)

88+2
x==5" (4)

al igualar las ecuaciones (3) y (4) obtenemos la ecuacion (5)

88 + 2
20—y:% (5)

que al resolverla obtenemos y = 4 y al sustituir en (1) o en (2)
obtenemos x = 16.

De acuerdo con Blitzer (2018), este método es muy Util cuando

las dos ecuaciones son facilmente manipulables, ya que reduce el
sistema a una comparacion directa. Ademdas, permite desarrollar
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la capacidad de los estudiantes para reconocer cudndo dos re-
presentaciones algebraicas corresponden al mismo valor de una
incognita, lo que refuerza la idea de consistencia interna en el
sistema.

Método de reduccion

El método de reduccion, también llamado de eliminacién, se
apoyad en la combinacién de ecuaciones para cancelar una de las
incognitas. Implica multiplicar alguna de las ecuaciones por un
numero conveniente para obtener coeficientes opuestos y luego
sumar o restar. Este método constituye la base de técnicas mas
avanzadas como el uso de determinantes o el método de Gauss,
por lo que su ensefianza prepara el terreno para un estudio mas
abstracto de los sistemas lineales (Anton et al., 2013).

Ejemplo
x+y =% (1)

6x — 2y = 88 (2)

Se intenta eliminar una de las incdgnitas en el sistema de
ecuaciones para resolver inicialmente una ecuacién de primer
grado. Se multiplica por - 6 la ecuacion (1) para obtener el sis-
tema siguiente

—6x — 6y = —120 (3)

6x — 2y = 88 (4)
al sumar ambas ecuaciones obtenemos: —8y = —32, de donde
y = 4. Al sustituir y =4 en (1) se obtiene x =16.

Stewart (2016) indica que el método de reduccion resulta mas
sistemdtico que los anteriores, sobre todo cuando los coeficientes
no favorecen un despeje inmediato. Ademds, guarda una relacién
natural con el dlgebra matricial, lo que lo convierte en un recurso
idoneo para la transicion a cursos avanzados de matemdticas.

Métodos de Gauss y Cramer

La resolucion de sistemas de ecuaciones lineales ha sido uno
de los temas fundacionales del dlgebra y, posteriormente, del
algebra lineal. Con el crecimiento de las ciencias aplicadas y el
aumento en la complejidad de los problemas, surgié la necesidad
de contar con métodos mas estructurados que los tradicionales
de sustitucién, igualacion o reduccién. Entre los procedimientos
mads influyentes se encuentran el método de Gauss, también
conocido como eliminacién gaussiana, y la regla de Cramer, am-
bos con raices historicas profundas y una enorme vigencia en la
actualidad. Strang (2016) sefiala que el valor de estos métodos
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radica no solo en su poder de cdlculo, sino también en su ca-
pacidad para conectar ideas fundamentales de la matemdtica
como matrices, determinantes, independencia lineal y existencia
de soluciones.

El método de Gauss: sistematicidad y generalizacion
El método de Gauss se presenta como un algoritmo general que
transforma un sistema de ecuaciones en una matriz aumentada
sobre la que se aplican operaciones elementales por filas hasta
obtener una forma escalonada. Dichas operaciones (intercambiar
filas, multiplicarlas por un escalar o sumar multiplos de una fila
a otra) no alteran el conjunto de soluciones del sistema, lo que
garantiza la validez del procedimiento (Lay, 2016).
Mas alld de lo operativo, el método de Gauss permite clasificar
los sistemas lineales en:
e Compatibles determinados, cuando la matriz escalonada
conduce a una solucién Unica.
* Compatibles indeterminados, cuando quedan variables li-
bres que generan infinitas soluciones.
* Incompatibles, cuando aparece una contradiccién del tipo
0 =1

Este procedimiento no solo resuelve, sino que revela la estruc-
tura interna del sistema. Segun Anton et al. (2013), la eliminacion
gaussiana constituye la base de la ensefianza de dlgebra lineal,
pues conecta con conceptos como el rango de una matriz y la
nocién de consistencia de un sistema.

Ejemplo:

Resolver el sistema:
2x+y—z=1
x—y+2z=3

x+2y+z=4
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Tabla 1.
Descripcion del método de Gauss

Idea central

Transformar el sistema lineal AX = b en su matriz aumentada [A‘b] y
aplicar operaciones elementales por filas que no cambian el conjunto
de soluciones hasta obtener forma escalonada. Luego se resuelve por
sustituciéon regresiva. Este procedimiento es sistemdatico, escalable
y revela la estructura del sistema: pivotes, rango, compatibilidad y
numero de soluciones (Lay, 2016; Strang, 2016).

1. Operaciones elementales por filas

« Intercambiar dos filas: R; <> Rj.

* Multiplicar una fila por un escalar no nulo: Ri — kR1

* Sumar a una fila un multiplo de otra: Ri — Ri + kRj.

+ Estas operaciones preservan el conjunto de soluciones del sis-
tema (Anton et al., 2013).

2. Objetivo intermedio: forma escalonada (REF)
Una matriz estd en forma escalonada si:

* Toda fila no nula aparece sobre cualquier fila nula.

* El primer elemento no nulo de cada fila (pivote) queda a la

derecha del pivote de la fila superior.

* Debajo de cada pivote hay ceros.
Con la REF se hace sustitucion regresiva de arriba a abajo. Si ademads
se anulan los elementos encima de cada pivote y se normalizan pivo-
tes a1, se obtiene la forma escalonada reducida, que corresponde a
Gauss - Jordan. Para Gauss puro basta la REF (Lay, 2016).

3. Algoritmo prdctico con pivoteo parcial
Para robustez numérica se recomienda pivoteo parcial: en cada co-
lumna del pivote, seleccionar como fila pivote la que tenga mayor
|coeficiente| en esa columna y permutarla a la posicién actual. Esto
reduce errores de redondeo en codmputo y evita pivotes cercanos a
0 (Golub y Van Loan, 2013; Trefethen y Bau, 1997).

Bucle por columnas k = 1,...,n:
1. Elegir fila pivote “p” con INaX;>k |aik\ y permutar Ri — Rp Si
es necesario. aik
2. Para cada fila i>, calcular el multiplicador Mk = a_kk y hacer
Ri — Ri — mikRk con lo que se crean ceros debajo del pivote.
3. Repetir en la siguiente columna.
4. Con la REF, resolver hacia atrds.
Si aparece una fila del tipo [0 0 .0 c], con C 7é 0 el sistema es
incompatible. Si quedan menos pivotes que variables, hay infinitas
soluciones con variables libres (Strang, 2016).

Nota: Elaboracion propia.
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Tabla 2.
Descripcion paso a paso método de Gauss
Matriz aumentada > 1 4 1
1 -1 2
3 2 1 4
Paso 1. Pivote en columna 1 1 4 > 3

Conviene tener pivote Tarriba.
Intercambiamos R1 <~ Rz

3 2 1 4
Paso 2. Crear ceros debajo del 1 - > 3
pivote a11 = 1 3 5 5
R2 — R2 — 2R1 5 5 5
R3 — R3 - 3R,
Paso 3. Pivote en columna 2 y
anulacién.
Tomamos R2 como pivote
en columna 2. Eliminamos | |4 1 - 3
la entrada de Rg3. Para no 3 5 5
introducir fracciones, usa-
mos una combinacion: Para 0 -10 -10

no introducir fracciones,
usamos una combinacion:

R3 — 5R2 — 3R3

Paso 4. Sustituciéon regresiva | De la tercera fila:
—10z=-10=2z=1.
De la segunda:
Jy—5z=-5=y=0
De la primera:

Xx—y+2z=3=x=1

Solucién unica (X, Y, Z) = (1, 0, 1)

Nota: Elaboracion propia.

Deteccion rdapida de casos con Gauss
* Incompatible: Aparece una fila [0 0 ..0 c] con C 7é 0.
* Infinitas soluciones: Quedan menos pivotes que variables.
Parametrizar con variables libres.

« Unica solucién: Hay un pivote por cada variable.

Apoyo diddctico: El método de Gauss constituye un procedi-
miento sistematico para resolver sistemas de ecuaciones lineales,
basado en transformar la matriz aumentada mediante operacio-
nes elementales por filas hasta obtener una forma escalonada
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gue facilite la sustitucidn regresiva. Su valor radica en que no
solo permite hallar soluciones Unicas, sino también identificar
casos de sistemas incompatibles o con infinitas soluciones, lo que
fortalece la comprension estructural del problema (Lay, 2016).
Ademds, este método constituye la base de los algoritmos com-
putacionales utilizados en programas matemdaticos actuales y
conecta con nociones mds avanzadas como el rango, la indepen-
dencia lineal y la invertibilidad de matrices (Strang, 2016; Larson
& Edwards, 2019).

Tabla 3.
Descripcion método de Cramer

Idea central

La regla de Cramer, atribuida al matematico suizo Gabriel Cramer
(1704-1752), establece que un sistema de “n” ecuaciones lineales con
nnn incdgnitas tiene solucidén Unica si y solo si el determinante de la
matriz de coeficientes es distinto de cero. En ese caso, cada incognita
puede obtenerse como el cociente entre dos determinantes:

det(Ai)
Xi= T a0
det(A)

i=1,2,...,n
donde:

* Aesla matriz de coeficientes.
. Ai es la matriz que se obtiene al reemplazar la columna i de A
por el vector de términos independientes.

Si det(A) = 0, el sistema puede ser indeterminado o incompatible,
y la regla de Cramer no se aplica (Strang, 2016; Stewart, 2016).

Procedimiento paso a paso

1. Formar la matriz de coeficientes A con los coeficientes de las
incdgnitas.

2. Calcular el determinante det(A). Si det(A) = (0, detenerse: el
sistema no tiene solucion Unica.

Para cada incdgnita Xj:

* Reemplazar la columna i de A por el vector de términos
independientes.
* Llamar a esa nueva matriz Ai.

» Calcular det(Ai)

* Aplicar la formula:
det(Ai)
X = ———
det(A)

* Repetir para todas las incégnitas.
Nota: Elaboraciéon propia.
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Ejemplo:
Resolver el sistema:
x+2y—z=3
2x —y+z=1
x+y+z=4
Tabla 4.
Descripcion paso a paso método de Cramer
Paso 1. Matriz de coeficientes y 1 5 4
determinante
2 -1 1
1 1 1
Paso 2. Cdlculo de cada incodgnita
Para x:det(Al) = -7 3 5 q
A=
_ det(Ay) P : :
det(A) 4 1 1
Para y:det(A,) = —14 1 3 1
y— det(Az) o A2 - 2 1 1
det(A) 1 1 1
Para z: det(Ag) = _7 1 2 3
_ det(A3) 4 Ag = 2 1 1
det(A) 1 1 4
Solucidn unica (X, y,Z) = (1, 2, 1)

Nota: Elaboracion propia.

Apoyo diddctico: La regla de Cramer se convierte en un recur-
so pedagdgico valioso cuando se trabaja con sistemas de 2x2
y 3x3, ya que permite calcular soluciones de manera directa y
accesible. Su mayor aporte radica en reforzar la comprension
de la relacion entre determinantes, invertibilidad y existencia
de soluciones Unicas, lo que conecta la practica algebraica con
conceptos fundamentales del dlgebra lineal (Larson & Edwards,
2019). Aunque su aplicacién no resulta eficiente en sistemas de
gran tamafo, su enseflanza fomenta la articulaciéon entre pro-
cedimientos operativos y bases teodricas. En este sentido, como
advierte Apostol (2007), el determinante no solo funciona como
medida de escala en transformaciones lineales, sino que tam-
bién actUa como criterio que garantiza o limita la unicidad de
las soluciones.
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Método grdafico y andlisis geométrico
El método grdfico constituye una de las aproximaciones mas
intuitivas y formativas para la resolucion de sistemas de ecua-
ciones algebraicas. Su valor pedagodgico radica en que permite
a los estudiantes visualizar las soluciones como puntos de inter-
seccion de curvas, lo cual enlaza de manera directa el dlgebra
con la geometria. Desde esta perspectiva, resolver un sistema
no se reduce a manipular simbolos, sino a comprender que cada
ecuacion representa un conjunto de puntos en el plano (o en el
espacio) y que la solucién corresponde al lugar geométrico co-
mun a todas ellas.

En el caso de los sistemas lineales de dos variables, las ecua-
ciones representan rectas en el plano cartesiano (véase Figura
13). El andlisis grafico permite interpretar tres situaciones basicas:

* Una solucidn Unica: Las rectas se cortan en un punto, lo que

corresponde a un sistema compatible determinado.

* Infinitas soluciones: Las rectas coinciden, lo que refleja un

sistema compatible indeterminado.

* Ninguna solucidn: Las rectas son paralelas y no se intercep-

tan, lo que da lugar a un sistema incompatible.

Figura 13.
Representacion sistemas lineales de dos variables

i

Nota: Elaboraciéon propia.

Este enfoque fomenta en el estudiante la comprension de
que la existencia y naturaleza de las soluciones dependen de la
posicién relativa de las rectas y no Unicamente de los cdlculos
algebraicos. Como sefiala Stewart (2016), esta correspondencia
entre ecuaciones y grdficas constituye una poderosa herramienta
de razonamiento, pues vincula la abstraccion algebraica con la
representaciéon visual.

En sistemas no lineales, el método grafico adquiere mayor
riqueza. Resolver un sistema que involucra una pardbola y una
recta, o una circunferencia y una recta, implica analizar cudntos
puntos de interseccidén son posibles: ninguno, uno o dos, segun
la posicion relativa de las curvas. En contextos madas avanzados,
el encuentro entre curvas como pardbolas, hipérbolas o elipses
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lleva al estudiante a reconocer que las soluciones algebraicas no
solo son nUmeros, sino también coordenadas que tienen sentido
geomeétrico (Larson & Edwards, 2019).

El andlisis geométrico que acompafia al método grdafico am-
plia esta perspectiva, ya que no se limita a trazar curvas, sino a
estudiar sus propiedades y relaciones en el espacio cartesiano.
Asi, conceptos como pendiente, paralelismo, perpendicularidad,
vértices, focos o ejes de simetria enriquecen la interpretacion
de los sistemas. De este modo, el aprendizaje de los métodos
algebraicos (sustitucion, igualacion, reduccion) se complementa
con una vision estructural que integra el dlgebra simbdlica, la
geometria analitica y la intuicion visual (Anton et al.,, 2013).

En definitiva, el método grafico y el andlisis geométrico no son
simples recursos diddcticos, sino fundamentos esenciales para
comprender la naturaleza de los sistemas de ecuaciones. Su
integracion en el aula contribuye a formar un pensamiento alge-
braico solido, en el que la resolucion de problemas se entiende
como la interaccion entre distintos reqgistros de representacion:
simbodlico, geométrico y tecnoldégico (Duval, 2006).

Apoyo diddctico: En la practica educativa, el método grafi-
co resulta especialmente valioso en los niveles iniciales, pues
ayuda a construir la idea de solucién como interseccién, antes
de introducir procedimientos mds abstractos. Ademdas, con el
apoyo de tecnologias digitales como GeoGebra o Desmos,
los estudiantes pueden explorar dindmicamente cémo cam-
bian las soluciones al modificar parametros, lo que fortalece
la comprensién conceptual y promueve la experimentacion
(Hohenwarter & Jones, 2007).
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Tabla 5.
Sintesis comparativa de los métodos grafico y geométrico
Aspecto Método grdfico Andlisis Similitudes
geométrico

Definicion | Representacién | Estudio de las pro- | Ambos interpre-
visual de las ecua- | piedades estructu- | tan las ecuacio-
ciones para iden- | rales y relaciona- | nes como lugares
tificar la solucién | les de las curvas | geométricos en el
como punto(s) de | generadas por las | plano o el espacio.
interseccion. ecuaciones.

Objetivo|Encontrar solu- | Comprender por | Ambos buscan de-

principal ciones mediante | qué y coémo sur- | terminar las solu-
la interseccidn | gen esas solucio- | ciones comunes del
visible de las|nes, explorando | sistema.
grdaficas. propiedades como

pendiente, simetria
o tangencia.

Ambito de | Util en siste-|Valido para siste- | Ambos sirven de

aplicacién | mas sencillos | mas lineales y no | apoyo a la mode-
(dos incdgnitas). | lineales en dos o | lacién matemd-
Limitado para sis- | mds variables, in- | tica en diversas
temas de mayor | cluso en contextos | ciencias.
dimension o solu- | tridimensionales.
ciones exactas.

Valor pe-| Favorece la intui- | Promueve la com- | Ambos fortalecen

dagdgico |cion visual y la | prensién estructu- | el pensamiento al-
comprension ini- | ral, la capacidad | gebraico mediante
cial del concepto | de andlisis y el ra- | la conexién entre al-
de solucion. zonamiento critico. | gebra y geometria.

Tecnologia | Programas como | Las mismas herra- | En ambos casos, la

asociada GeoGebra o |mientas permiten |tecnologia actua
Desmos facilitan | explorar propie-|como un puente
la representacion | dades mds profun- | entre lo simbdlico
visual y la valida- | das de las curvasy | y lo grdfico.
cién inmediata. superficies.

Nota: Elaboracion propia.

Sistemas no lineales. cuadradticos y mixtos

El estudio de los sistemas no lineales constituye un punto de in-
flexion en la formacion algebraica, pues situa al estudiante frente
a problemas en los que la linealidad ya no es suficiente para
describir relaciones. A diferencia de los sistemas lineales, que se
representan mediante rectas o planos, los sistemas no lineales
involucran curvas mas complejas tales como como: pardbolas,
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circunferencias, hipérbolas, exponenciales, radicales y que re-
quieren un andlisis mas elaborado. Este transito, como sefialan
Larsony Edwards (2019), fomenta una comprension mas amplia
del dlgebra, vinculadndola directamente con la geometria y la
modelacion de fendmenos reales.

Sistemas cuadradticos

Los sistemas cuadraticos incluyen al menos una ecuaciéon de
segundo grado en dos variables. Sus soluciones se interpretan
como los puntos de intersecciéon entre rectas y curvas cuadraticas
(pardbolas, circunferencias, elipses, hipérbolas). La diversidad de
casos permite explorar multiples configuraciones geométricas, lo
que enriquece tanto el andlisis algebraico como el razonamiento
visual.

Por ejemplo, consideremos el sistema:
x? +y% =25
y=x+1
Aqui, la primera ecuacion describe una circunferencia de radio
5 centrada en el origen, y la segunda una recta de pendiente T

gue corta al eje y en (0,1) (véase Figura 14). Al resolver por sus-
titucion, obtenemos una ecuacién cuadrdtica:

X2+ (x+1)°=25=2x>+2x—24=0

Figura 14.
Representacion de sistemas cuadrdticos

Nota: Elaboraciéon propia.

La factorizacién conduce a dos soluciones: X =3y X = —4
. Sustituyendo en la recta, las soluciones completas son(3, 4) y
(—4, — 3). Desde la perspectiva grafica, se identifican claramente
los dos puntos de interseccién entre la circunferencia y la recta.

Segun Stewart (2016), este tipo de problemas ilustra de ma-
nera ejemplar cémo los métodos algebraicos y geométricos con-
vergen en un mismo resultado, fortaleciendo el pensamiento
multirrepresentacional del estudiante.
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En contraste, si la rzec’[o fuera ¥ = 6, al sustituir en la circun-
ferencia se obtiene X° + 36 = 25, lo que no admite soluciones
reales (véase Figura 15).

Figura 15.
Representacion de sistemas cuadrdticos

Nota: Elaboracion propia.

Geométricamente, esto significa que la recta no intercepta la
circunferencia. Este ejemplo evidencia coémo la inexistencia de
soluciones adquiere sentido a partir de la posicion relativa de
las graficas (Blitzer, 2018).

Sistemas mixtos

Los sistemas mixtos combinan ecuaciones de distinta natura-
leza: lineales con cuadrdaticas, exponenciales con racionales,
radicales con polindmicas, entre otros. Su riqueza radica en que
obligan a los estudiantes a integrar diferentes estrategias de
resolucién y, en ocasiones, a emplear aproximaciones numéri-
cas o graficas cuando las soluciones exactas son inaccesibles
(véase Figura 16).

Un ejemplo cldsico es el sistema:

y=vx+2

y=x—2

Figura 16.
Representacion de sistemas mixtos

Nota: Elaboraciéon propia.
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Al elevar al c2uodrodo, se obtiene una ecuaciéon cuadrdatica:
x+2 = (x —2)". Tras simplificar, surge x? — 5x 42 =0, cuyas

soluciones son
5417 1+ +/17
T2 2

X1 y X2 =

La recta Y = X — 2) corta una sola vez a la curva ¥ = VX + 2
(creciente, concava hacia abajo en [—2, OO) Por eso, tras descartar la
raiz extrinseca introducida al cuadrar, gueda una Unica interseccién.

La verificacién de soluciones en sistemas mixtos resulta un
aspecto pedagodgico clave, ya que no toda respuesta obtenida
mediante transformaciones algebraicas corresponde a una so-
lucion vdlida dentro del dominio de la funcion. Casos como la
elevaciéon al cuadrado o el trabajo con radicales suelen generar
raices extrinsecas que deben ser descartadas tras comprobar-
las en la ecuacion original. Este proceso, como sefialan Sullivan
(2016) y Larson y Edwards (2019), permite que los estudiantes
comprendan la diferencia entre manipulacién simbdlica y validez
matematica, promoviendo asi un aprendizaje reflexivo mas alla
del simple cdlculo mecanico.

Desde una perspectiva diddactica, el énfasis en la validaciéon
desarrolla en los estudiantes la capacidad critica y la autonomia
intelectual. Segun Duval (2006), pasar de lo simbdlico a lo grdafico
o alonumérico fortalece la comprensién al articular distintos re-
gistros de representacion. Ademds, trabajar con ejemplos donde
aparezcan soluciones espurias ayuda a los alumnos a distinguir
entre “resultado algebraico” y “solucién matemdtica aceptable”,
lo que Blum y Leiss (2007) consideran esencial para la mode-
lacién en contextos reales. En este sentido, el aula se convierte
en un espacio para pensar matematicamente (Mason, Burton &
Stacey, 2010), explorando, verificando y justificando cada paso
con coherencia conceptual.

Estrategias diddcticas y recursos tecnoldgicos para el apren-
dizaje de los sistemas de ecuaciones
El estudio de los sistemas de ecuaciones representa una
oportunidad diddctica privilegiada para articular los ra-
zonamientos algebraicos, geométricos y funcionales en la
ensefianza media y superior. Su tratamiento exige disefiar
ambientes de aprendizaje que integren actividades signifi-
cativas, tecnologias digitales y una evaluacién orientada a
la comprension conceptual mds que a la memorizacién de
procedimientos. A continuacién, se describen estrategias
que favorecen dicho proceso.
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Tipologia de ejercicios. procedimentales, graficos, contextuali-
zados y exploratorios
La seleccion y secuenciacion de ejercicios condiciona el tipo de
pensamiento algebraico que los estudiantes desarrollan. Segin
Rico (2018), una ensefianza reducida a la practica rutinaria re-
fuerza un pensamiento instrumental, mientras que la diversifi-
cacién de tareas amplia la comprension estructural del dlgebra.
En el caso de los sistemas de ecuaciones, se distinguen cuatro
tipos de ejercicios didacticamente complementarios:
* Procedimentales, centrados en el dominio de métodos al-
gebraicos como sustitucién, igualacién, reducciéon, Cramer
o Gauss, enfatizando la precisiéon y el orden légico del ra-
zonamiento simbdlico.
Ejemplo: Resolver el sistema por el método de sustitucion:

2x+y="T7
3x —2y =4

* Grdficos, orientados a la interpretacion del punto de inter-
seccion de rectas o curvas, favoreciendo el pensamiento

visual.
Ejemplo: Representar en GeoGebra las rectas:
3x —4
y=—-2x+4+17y= 5 observando el punto donde se cruzan.

* Exploratorios, abiertos a multiples soluciones o caminos, donde
los estudiantes elaboran conjeturas y verifican sus resultados.

y =2+ 0.5x (1)
y=1+0.7x (2)

Ejemplo: Dos servicios de transporte cobran tarifas diferen-
tes: uno tiene una tarifa base de $2 mas $0.5 por kilémetro, y
otro $1 mas $0.7 por kilbmetro. Plantee un sistema que permita
determinar a partir de qué distancia ambos servicios cuestan
lo mismo.

* Contextualizados, que vinculan los sistemas con situaciones
reales, como la comparacién de tarifas, mezclas quimicas
o0 modelos econdmicos.

2x+y=4(1)
dx + 2y = 10 (2)

Ejemplo: Disefie un sistema que no tenga solucidon y justifique
por qué.
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La combinacion equilibrada de estas tipologias permite avanzar
desde la prdactica algoritmica hacia la modelacién matematica y
la reflexion metacognitiva sobre los procedimientos empleados.

Uso de tecnologias digitales como GeoGebra y Desmos
Las herramientas tecnoldgicas ofrecen un medio privilegiado para
conectar las representaciones algebraicas y graficas de un sistema,
permitiendo que el estudiante observe como una expresion simbolica
toma forma en el plano. GeoGebra, por ejemplo, facilita este transito
al mostrar de manera simultdnea las ecuaciones que se estudian y
su comportamiento visual. Al mover un deslizador o modificar un
valor, el cambio se refleja de inmediato en la pantalla, lo que ayuda
a comprender mejor la relacidon entre pardmetros y resultados. Esta
dindmica vuelve el aprendizaje mas intuitivo, ya que el estudiante no
se limita a seguir pasos, sino que puede explorar y comprobar por si
mismo como interactUan las variables dentro del sistema.

Ademads, la posibilidad de visualizar puntos de interseccién, tra-
yectorias o transformaciones en tiempo real refuerza la compren-
sion funcional de los conceptos. Cuando el estudiante identifica de
manera clara dénde se cruzan las curvas o como se desplazan al
alterar algin elemento, la idea matemdatica deja de ser una abs-
traccion y se convierte en una experiencia observable. Esto no solo
fortalece la comprension conceptual, sino que también promueve
una actitud mas investigativa y auténoma frente al aprendizaje.
En este sentido, plataformas como GeoGebra se vuelven aliadas
potentes para desarrollar una mirada mas profunda, critica y sig-
nificativa sobre las matemadticas (Pardo & Gomez, 2019).

Figura 17.
Representacion grafica en Geogebra

Nota: Elaboracion propia.

Desmos, por su parte, se ha convertido en una herramienta
muy cercana para los estudiantes porque les permite experi-
mentar con las matematicas sin sentir la presion de instalar pro-
gramas o configurar entornos complicados. Basta con abrir una
pestafia del navegador para comenzar a mover pardmetros, ob-
servar cambios en grdficos y comprobar como se comportan las
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funciones en tiempo real. Esa inmediatez genera una sensacion
de descubrimiento que muchas veces resulta mdas motivadora
gue una explicacion tradicional, ya que el propio estudiante pue-
de comprobar qué ocurre cuando modifica un niUmero, ajusta un
deslizador o compara diferentes representaciones.

Ademas, su interfaz sencilla y visual hace que el aprendizaje
se sienta mas accesible, especialmente para quienes necesitan
apoyos concretos para comprender ideas abstractas. Desmos
no solo ayuda a ver el resultado final, sino también a explorar el
“camino” que sigue una funcién o una ecuacion, lo que favorece
la comprension profunda y la autonomia para investigar por
cuenta propia. En este sentido, la plataforma funciona como un
espacio sequro para equivocarse, probar alternativas y construir
intuiciones matemdticas que luego pueden trasladarse con ma-
yor seguridad al trabajo formal en clase.

Por ejemplo, al variar los coeficientes de dos rectas (véase
Figura 18), el estudiante puede observar en tiempo real coémo
cambia la posicion del punto de interseccion, comprendiendo el
concepto de dependencia lineal.

Figura 18.

Representacion grafica en Desmo
+ e -
E i al
o i

Nota: Elaboraciéon propia.

Estas plataformas fomentan lo que Drijversy Boon (2021) deno-
minan “pensamiento algebraico mediado por tecnologia”, donde
los entornos digitales se convierten en herramientas cognitivas
que amplian la capacidad de visualizacién y argumentacién del
estudiante. Ademds, el uso de Wolfram Alpha o Symbolab puede in-
tegrarse como apoyo para la verificaciéon y autoevaluacion, siem-
pre que el docente guie la reflexién sobre los pasos seguidos por
el programa y las posibles fuentes de error humano o algoritmico.

Conclusiones
El estudio de los sistemas de ecuaciones e inecuaciones permi-

te comprender coOmo distintas condiciones pueden cumplirse
al mismo tiempo en una misma situacién. Mas alla de resolver
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ecuaciones por rutina, se trata de aprender a interpretar como las
variables se relacionan entre si y cOmo esas relaciones pueden
representarse en el plano o en contextos reales. Resolver un sis-
tema no es solo encontrar niUmeros, sino entender el significado
de esas soluciones y su coherencia con el problema planteado.
Desde la ensefianza, este tema cobra valor cuando se com-
bina la explicacién tedrica con la experimentacién y el uso de
recursos visuales o tecnolégicos. Métodos como la sustitucion, la
reduccion o el de Gauss permiten ver el orden interno del dlgebra,
mientras que herramientas como GeoGebra o Desmos ayudan a
descubrir visualmente el punto donde las rectas o las curvas se
cruzan, haciendo mas tangible el concepto de solucién.
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Carituro III

Funciones algebraicas y sus
propiedades

Introduccion

Llegar al estudio de las funciones significa alcanzar un punto
de madurez en el pensamiento matemdtico. En este capitulo, el
lector se adentra en el mundo de las funciones algebraicas, donde
las relaciones dejan de ser simples ecuaciones para convertirse
en modelos que explican como una magnitud influye en otra.
Comprender una funcién es entender que detras de cada nUmero
hay una historia de dependencia y cambio, una manera de repre-
sentar los vinculos que existen entre los fendmenos del entorno.
De ahi que el estudio de las funciones no sea solo una cuestiéon
de cdlculo, sino una experiencia intelectual que invita a mirar la
realidad desde la l6gica de las relaciones y las transformaciones.

Las funciones algebraicas poseen una riqueza que combina pre-
cisién y belleza. Cada una describe un comportamiento particular: la
recta expresa la constancia, la pardbola refleja la simetria, los polino-
mios superiores muestran la complejidad del movimiento. Su andlisis
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ensefia a reconocer patrones, a anticipar tendencias y a conectar
el pensamiento algebraico con la interpretaciéon geométrica. En ese
proceso, el estudiante aprende que una grdfica no es una simple
curva, sino una forma de pensar visualmente, de interpretar coémo los
numeros dialogan entre si para dar sentido a una situaciéon concreta.

Este capitulo invita, ademads, a asumir una actitud explorato-
ria. Las herramientas tecnoldgicas, como GeoGebra o Desmos,
se convierten en aliados para descubrir, verificar y visualizar las
propiedades de las funciones, fortaleciendo la comprension y el
razonamiento. Mds que resolver ejercicios, se trata de aprender
a observar el comportamiento de las variables, a conjeturar y a
contrastar resultados. De esta manera, el estudio de las funciones
algebraicas se transforma en un espacio donde el rigor se com-
bina con la creatividad, preparando al lector para un nuevo nivel
de comprensiéon: el de las funciones trascendentes, en las que el
lenguaje del dlgebra se expande para describir los procesos mas
sutiles y fascinantes de la naturaleza y del pensamiento humano.

Concepto y representacion de las funciones

La idea de funcion, tan natural hoy para describir la dependen-
cia entre dos magnitudes, es el resultado de un largo proceso
historico en el que las matemdticas pasaron de observar rela-
ciones empiricas a formalizarlas en lenguaje simbdlico. En la
AntigUedad, las civilizaciones griega y babildnica ya reconocian
conexiones entre variables, por ejemplo, al relacionar la longitud
de una cuerda con el tono musical o el tiempo con la distancia
recorrida, aungue sin un concepto explicito de funcién (Katz,
2009). Estas primeras intuiciones se manifestaban mas como
proporciones geométricas o tablas de correspondencia que
como férmulas algebraicas.

Evolucion historica del concepto de funcion

Durante el siglo XVII, con el surgimiento del pensamiento moder-
no, el concepto comenzod a adquirir forma. René Descartes, en La
Géomeétrie (1637), establecié el vinculo entre el dlgebra y la geo-
metria al introducir el sistema de coordenadas cartesianas, lo que
permitio representar relaciones mediante ecuaciones. Su aporte
sentd las bases para concebir una funcidn como una relacion
entre variables expresable en forma analitica. Paralelamente,
Pierre de Fermat exploré ideas similares al estudiar curvas me-
diante ecuaciones, anticipando el uso funcional de la variable
independiente. Mas adelante, Gottfried Wilhelm Leibniz fue el
primero en emplear el término functio hacia 1692, al referirse a
cualquier cantidad dependiente de otra dentro de una expresion
matematica (Burton, 2011).
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El siglo XVIII consolidd el concepto gracias a la obra de Leonhard
Euler, quien en su Introductio in analysin infinitorum (1748) definié una
funcion como una expresion analitica formada por una o mas variables
independientes. Esta definicion, aunque aun restringida a expresiones
algebraicas y trascendentes continuas, marcd un punto de inflexidon
al integrar la notacién moderna f(x), que permanece vigente hasta
hoy. Joseph-Louis Lagrange amplié posteriormente laidea al estudiar
funciones derivables y sus expansiones en series, sentando las bases
del andlisis matematico clésico (Boyer & Merzbach, 2011).

Durante el siglo XIX, el desarrollo del andlisis riguroso y de
la teoria de conjuntos transformé profundamente la nocidn de
funcion. Dirichlet formuld en 1837 una definicion mas general y
abstracta: una funcién es una correspondencia que asigna a cada
elemento de un conjunto “x” un Unico valor “y”, sin necesidad de
gue exista una ley analitica explicita entre ellos. Esta concepcion
liberd el concepto de su dependencia con la geometria o la con-
tinuidad, y abrié paso a las funciones discontinuas, definidas por
tramos o mediante condiciones l6gicas. Posteriormente, Riemann
y Weierstrass formalizaron los criterios de continuidad y deri-
vabilidad, dotando al andlisis de una precision conceptual que
influyd en toda la matematica moderna (Apostol, 2013).

Ya en el siglo XX, el avance de la topologia, la teoria de conjuntos
y lainformdtica extendié ain mds el concepto. Las funciones pasaron
a entenderse como relaciones entre estructuras, no necesariaomente
numeéricas, y su estudio se proyectd en multiples campos: la fisica,
la economia, la estadistica y la programacion computacional. En la
educacién matemdtica, autores como Dubinsky y Harel (1992) desta-
caron que el aprendizaje del concepto de funcion implica un cambio
cognitivo profundo: el estudiante debe pasar de ver la funcion como
una férmula a comprenderla como una correspondencia general.

En sintesis, el concepto de funcién ha evolucionado desde una in-
tuicion geométricay empirica hasta convertirse en una herramienta
abstracta y universal para modelar relaciones de dependencia en
cualquier dmbito del conocimiento. Esta trayectoria historica no
solo refleja el progreso del pensamiento matematico, sino también
la capacidad del ser humano para reconocer patrones, formalizar
relaciones y construir significados cada vez mds complejos.

Definicion formal y correspondencia entre variables
Comprender el concepto formal de funcidn implica adentrarse en
una de las ideas mds poderosas de la matematica: la relacion de
dependencia entre magnitudes. Una funcién no es simplemente
una férmula o una ecuacion, sino un modo de expresar como
el cambio en una cantidad influye directamente sobre otra. En
términos generales, una funcidon es una correspondencia que, a
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cada elemento de un conjunto denominado dominio, le asigna un
Unico elemento de otro conjunto llamado codominio. Este princi-
pio de correspondencia Unica es lo que distingue a las funciones
de otras relaciones mas generales (Apostol, 2013; Stewart, 2016).

En notacion moderna, se escribe f : A — B, donde A representa
el dominio y B el codominio, de modo que para cada X € A existe
un Unico valor f(X) € B .Elconjunto de todos los valores obtenidos,
es decir, los resultados de aplicar la funcidn, se denomina rango o
imagen. Esta formalizacion, consolidada a partir de los trabajos de
Dirichlet y Cauchy en el siglo XIX, permitic unificar bajo un mismo
concepto las relaciones algebraicas, geométricas y analiticas que
anteriormente se consideraban separadas (Boyer & Merzbach, 2011).

Desde una perspectiva algebraica, la funcién puede enten-
derse como una regla de correspondencia que asocia valores
numeéricos siguiendo una ley determinada

Por ejemplo, en la funcion f(X) = 2x 4 3 (véase Figura 1), cada
valor de “x” genera uno y solo un valor de f(X). Aqui, la variable
independiente “x” actUa como punto de partida, mientras que la
variable dependiente ¥ = f(X)) expresa el resultado de aplicar
la ley de correspondencia.

Figura 1.
Representacion de la funciéon f(x) = 2x + 8

Nota: Elaboracion propia.

Sin embargo, esta aparente simplicidad esconde una gran
riqueza conceptual, pues detrds de cada funcidén existe una
estructura l6gica que modela fendmenos de crecimiento, movi-
miento, costo, probabilidad o cambio (Larson & Edwards, 2019).

El caracter funcional de las matemdticas se hace evidente
cuando se analiza como las variables interacttan. En la vida
cotidiana, casi todo fendmeno puede expresarse mediante una
relacion funcional: la distancia recorrida depende del tiempo,
la temperatura depende de la altitud, o la ganancia econdmica
depende del nUmero de productos vendidos. En todos estos ca-
sos, las matematicas ofrecen una manera precisa de describir y
predecir comportamientos, trasladando el lenguaje de la realidad
al lenguaje simbdlico.
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Didacticamente, la nocién de correspondencia entre varia-
bles se construye de manera progresiva. Los estudiantes suelen
iniciarse reconociendo patrones numéricos o graficos antes de
comprender el rigor formal de la definicion. Segun Duval (2006),
este proceso requiere transitar entre diferentes reqgistros de repre-
sentacion: verbal, tabular, algebraico y grdafico, para interiorizar
que una misma relacidon puede expresarse de multiples maneras.

Ejemplo: Un depdsito de agua contiene inicialmente 5 litros.
Cada minuto, la valvula de drenaje libera 1 litro de agua de for-
ma constante. La cantidad de agua que queda en el depdsito se
puede expresar mediante la funcion Y = —X + S (véase la Figura
2). donde “y” representa la cantidad de agua (en litros) y “x” el
tiempo transcurrido (en minutos).

Figura 2.
Representacion de la funcién f(:c) =—T+95

L L -

Nota: Elaboraciéon propia.

Esta funcién muestra una correspondencia lineal decreciente: a
medida que transcurre el tiempo, el volumen de agua disminuye
de manera regular hasta vaciarse por completo. En este caso, la
cantidad de agua depende del tiempo: a cada minuto transcu-
rrido le corresponde una cantidad Unica de agua restante.

Apoyo diddctico: Este ejemplo permite comprender que una
funcion expresa una correspondencia Unica entre dos variables.
Aqui, el tiempo “x” determina directamente el volumen de agua “y”.

* Elregistro verbalconecta el contexto con el lenguaje simbdlico.

* El registro tabular facilita la deteccion del patrén de cambio

constante.

* Elregistro algebraico formaliza y generaliza la relacién.

* El registro grdfico ofrece una representacion visual del com-

portamiento lineal.

Como destaca Duval (2006), el aprendizaje profundo del con-
cepto de funcion requiere coordinacidon entre los distintos regis-
tros de representacién, lo que posibilita al estudiante interpretar,
traducir y explicar una misma relacién desde diversas perspec-
tivas matematicas.
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Dominio, rango y notacion funciona
En el estudio de las funciones, comprender el dominio, el rango y
la notacion funcional es fundamental para interpretar correcta-
mente la relacién entre las variables y el significado matematico
de cada expresion. Estos tres componentes definen el alcance
y la coherencia de una funcidon, pues permiten establecer con
precision qué valores son validos para la variable independiente,
qué resultados pueden obtenerse y cOmo se expresa la corres-
pondencia entre ambas. Como sefiala Stewart (2016), dominar
estas ideas no solo refuerza la comprension algebraica, sino que
también prepara al estudiante parainterpretar el comportamien-
to de los modelos en contextos reales.

El dominio representa el conjunto de todos los valores que
puede asumir la variable independiente, es decir, los nUmeros
gue tienen sentido dentro de la relacion funcional. Determinar
el dominio de una funcién implica reconocer las restricciones
naturales del modelo: evitar divisiones entre cero, raices pares
de nUmeros negativos o expresiones que no poseen significado
en el campo de los nUmeros reales.

Por ejemplo, en la funcion f(X) = ﬁ , el dominio excluye el
valor x = 4 porque haria indefinida la operacion. De forma similar,
en g(x) = +/x — 1, los valores validos son aquellos donde x > 1
(véase Figura 3). Como subrayan Larson y Edwards (2019), iden-
tificar el dominio no es un proceso mecdnico, sino un ejercicio
de razonamiento que combina intuicidn, andlisis algebraico y
sentido del contexto.

Figura 3.
Representacion de las funciones f($) = :;4 yg(zc) =vz—1

Nota: Elaboraciéon propia.

El rango, también conocido como imagen, es el conjunto de
valores que puede tomar la variable dependiente. Se obtiene
evaluando la funcién sobre todos los elementos del dominio y
analizando los resultados posibles. En el caso de f(x)= x"2 (Figura
4), por ejemplo, el rango estd formado por los nUmeros reales
no negativos, ya que el cuadrado de cualquier nUmero no puede
ser negativo.
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Figura 4.

Representacion de la funcién f(:c) =z?

I|II } ¥ | =
| fie] = & ]

\ /
% //
Nota: Elaboraciéon propia.

Comprender el rango permite predecir el comportamiento de
la funcién y anticipar su representacion grdafica, estableciendo
limites superiores e inferiores para los valores de salida (Blitzer,
2018). Ademds, el estudio del rango ensefia a los estudiantes a
interpretar las funciones no solo como ecuaciones estdticas, sino
como procesos de transformacidén donde cada valor de entrada
produce un efecto determinado.

La notacion funcional (y = f(X)) fue introducida por Euler en
el siglo XVIIl para simplificar la escritura de las correspondencias
entre variables. Al expresar ¥ = f(x , se indica que la variable
dependiente “y” depende de “x” mediante la regla o ley de for-
macion definida por “f”. Esta notacion, aparentemente sencilla,
encierra una gran profundidad conceptual, ya que permite visua-
lizar la relacion entre las variables como una operacién mental
de transformacion. Apostol (2013) explica que esta forma simbo6-
lica fue clave para el desarrollo del andlisis matematico, porque
unificé el estudio de ecuaciones, curvas y fendbmenos bajo una
misma estructura formal.

Apoyo diddctico: Desde una mirada diddctica, comprender
dominio, rango y notacidon funcional requiere promover la ar-
ticulacién entre diferentes registros de representacion: verbal,
tabular, algebraico y grdafico. Duval (2006) argumenta que la
comprension auténtica de una funcidn surge cuando el estu-
diante logra pasar de un registro a otro sin perder el significado
de la relacion.

El uso de herramientas tecnoldgicas como GeoGebra o Desmos
resulta particularmente valioso para analizar el dominio y el ran-
go, pues permite observar de manera dindmica coémo la variacion
de “x” altera el comportamiento de f(x). Segun Hohenwarter y
Jones (2007), estas tecnologias fortalecen la conexion entre el
razonamiento algebraico y la interpretacion geométrica, ayudan-
do al estudiante a comprender que cada expresion funcional es
un modelo que describe una situacién del mundo real.

92



Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

Formas de representacion. verbal, tabular, algebraica y grafica
El estudio de las funciones adquiere verdadero sentido cuando
se comprende que no existe una Unica manera de representarlas.
En la practica matematica, las funciones se manifiestan a través
de distintos lenguajes (verbal, tabular, algebraico y grafico) que,
en conjunto, conforman un sistema de significados complemen-
tarios. Como afirma Duval (2006), comprender una funcién no
depende solo de manipular simbolos, sino de ser capaz de cam-
biar de registro sin perder el sentido de la relaciéon. Este transito
entre formas de representacidon es el que permite al estudiante
conectar lo concreto con lo abstracto, lo numérico con lo visual,
y lo intuitivo con lo formal.

La representacién verbal constituye el punto de partida mas
natural, porque utiliza el lenguaje cotidiano para describir como
una magnitud depende de otra. Frases como “la distancia reco-
rrida aumenta a medida que pasa el tiempo” o “la temperatura
disminuye al ascender en altitud” son ejemplos de relaciones
funcionales expresadas en palabras. Esta forma inicial, como
sefialan Hiebert y Lefevre (1986), es esencial para que el estu-
diante construya significado antes de enfrentarse al simbolismo.
Traducir una situacidon verbal en términos matemdaticos implica
interpretar, abstraer y seleccionar las variables relevantes, lo
gue convierte el lenguaje natural en una puerta de entrada a la
modelacidon algebraica.

Por su parte, la representacién tabular organiza los datos en
pares ordenados que muestran la relacion entre las variables.
Esta forma es muy Util para explorar patrones numéricos y re-
gularidades en contextos reales. SegUn Sullivan (2016), traba-
jar con tablas permite al estudiante visualizar cOmo pequefios
cambios en la variable independiente generan variaciones en la
dependiente, fortaleciendo la nocién de continuidad y cambio.
Larson y Edwards (2019) afiaden que la representacion tabular
actua como un puente entre el pensamiento aritmético y el pen-
samiento algebraico. En el aula, este tipo de tareas promueve
la observacion, la comparacion y la bUusqueda de reglas que ex-
pliquen el comportamiento de los datos, preparando el terreno
para la formulacién de la expresion algebraica.

La representacion algebraica, en cambio, ofrece la forma
mads compacta y general del pensamiento funcional. A través
de una férmula, se expresa la regla que vincula las variables:
f(x) =2x+50g(x) =x*—3x+2.

Esta notacion, introducida por Euler en el siglo XVIII, permite
calcular, predecir y analizar con precision el comportamiento de
las funciones. Apostol (2013) destaca que el dlgebra traduce el ra-
zonamiento l6gico en un lenguaje universal, capaz de representar
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desde relaciones simples hasta sistemas complejos. Sin embargo,
Duval (2006) advierte que la dificultad de muchos estudiantes
radica en mantener el significado al pasar del enunciado verbal
ala formula, pues este salto exige una conversién cognitiva que
no es automdatica.

Finalmente, la representacion grafica aporta una vision global
del comportamiento de la funcion. A través del plano cartesiano,
las relaciones se convierten en formas visuales que permiten
interpretar con facilidad tendencias, mdaximos, minimos, inter-
secciones y simetrias.

Tabla 1.
Representacion tabular

x| f(x)=2x+5 | f(x) =x?—3x+2
| 7/ 0
2 9 0
3 1 2
4 13 6
5 15 12

Nota: Elaboracion propia.

Blitzer (2018) afirma que la grdafica transforma la funcién en un
objeto perceptible, capaz de comunicar ideas matematicas de ma-
nera inmediata. Ademds, segun Stewart (2016), las representaciones
visuales favorecen el razonamiento intuitivo y ayudan a detectar
propiedades que en el lenguaje algebraico pueden pasar inadver-
tidas (véase Figura 5).

El uso de herramientas tecnolégicas como GeoGebra o Desmos
amplia aun mdas estas posibilidades, al permitir experimentar con los
pardmetros y observar en tiempo real como se modifica la forma de
la funcion (Hohenwarter & Jones, 2007). Esta interaccion directa entre
lo simbdlico y lo visual convierte la ensefianza en una experiencia
exploratoria que estimula la curiosidad y la comprensién profunda.

Figura 5.
Representacion grdafica en Geogebra

Nota: Elaboraciéon propia.
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Apoyo diddctico: Desde una mirada didactica mdas amplia,
Godino y Batanero (1998) sostienen que la comprensién de los
objetos matematicos se construye socialmente a través del in-
tercambio entre diferentes formas de representacion y de los
significados que cada una encierra. En este sentido, las cuatro
representaciones no son etapas lineales, sino espacios interde-
pendientes de pensamiento. La verbal conecta con la experiencia,
la tabular organiza los datos, la algebraica formaliza la regla y
la grafica la hace visible. Solo al articularlas entre si se alcanza
una comprension integral del concepto de funcién. Como con-
cluye Duval (2006), ensefiar a relacionar registros es ensefar a
pensar matematicamente, pues permite al estudiante pasar de
manipular signos a comprender relaciones.

En definitiva, cada forma de representacion ofrece una ventana
distinta hacia la comprensiéon de las funciones. La ensefianza de
este tema no deberia reducirse a la practica mecdanica de for-
mulas, sino convertirse en un proceso de exploracién donde los
estudiantes puedan ver, decir, calcular y argumentar la misma
relaciéon desde diferentes perspectivas.

Clasificacion y tipos de funciones algebraicas
Las funciones algebraicas constituyen el nicleo del pensamiento
matematico escolar y universitario. A través de ellas se modelan
las formas mds elementales de relacion entre magnitudes y se
establece el vinculo entre el razonamiento simbdlico y la realidad
cuantitativa. Su estudio no se limita a la manipulacién de expre-
siones, sino que permite comprender como el lenguaje algebrai-
co estructura el pensamiento l6gico y el andlisis funcional. Tal
como explica Stewart (2016), una funcion algebraica es aquella
gue puede expresarse mediante un nUmero finito de operaciones
de suma, resta, multiplicacion, divisién o radicacion aplicadas
a la variable independiente. Esto las distingue de las funciones
trascendentes, como las exponenciales, logaritmicas o trigo-
nométricas, que requieren procesos infinitos o no algebraizables.

Historicamente, el concepto de funcidén algebraica emergio
en el siglo XVII con los trabajos de Descartes y Viete, quienes
establecieron una conexidon entre expresiones simbdlicas y re-
presentaciones geomeétricas. Descartes introdujo el sistema de
coordenadas cartesianas que permitié visualizar relaciones al-
gebraicas en el plano, mientras que Viete consolidé el uso de
letras para representar cantidades variables. Desde entonces,
las funciones algebraicas se convirtieron en una herramienta
central para describir fendmenos naturales, fisicos y econémicos
mediante leyes expresables en forma de ecuaciones (Boyer &
Merzbach, 2011).
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Funciones polinbmicas: lineales, cuadrdticas, cubicas y de grado
superior
En términos generales, las funciones algebraicas se clasifican
segun su estructura y grado, destacando las funciones polin6-
micas, racionales, con radicales y con valor absoluto. Cada una
representa una forma particular de dependencia entre variables,
y su andlisis permite al estudiante reconocer regularidades, si-
metrias y comportamientos de cambio. Segun Larson y Edwards
(2019), esta clasificacion no solo tiene valor formal, sino que
ayuda a desarrollar la intuicidn sobre el comportamiento de los
modelos matemdaticos y su utilidad en la resolucién de problemas
reales. Las funciones polindmicas son las mas basicas y, al mis-
mo tiempo, las mas versatiles. Se expresan en la forma general
f(X) = ayXx  + an_lxnfl + .-+ 4+ a1X + ag, donde los coeficientes
a_i son nuUmeros reales y el exponente mayor n determina su
grado (véase Figura 6).

Figura 6.
Representacion grdafica de una funcidén polindmica

Nota: Elaboraciéon propia.

Cada una modela una forma distinta de variacién: las lineales
representan relaciones proporcionales y trayectorias rectas; las
cuadrdaticas, movimientos parabdlicos como la caida libre o la
trayectoria de un proyectil; y las cUbicas, fendmenos con puntos
deinflexion, donde la curvatura cambia de sentido (Blitzer, 2018).
Stewart (2016) sefiala que los polinomios constituyen una base
conceptual imprescindible porque sus propiedades sirven como
modelo para comprender funciones mds complejas en el cdlculo.

Las funciones racionales, en cambio, amplian el horizonte alge-
braico alincorporar divisiones entre polinomios. Se definen como:

f(x) = 2X)

Q(x)
donde P(x) y Q(x) son polinomios y Q(x) # 0 (véase Figura
7). Este tipo de funciones introduce conceptos avanzados como
puntos de indeterminacién, asintotas verticales y horizontales, y

discontinuidades, elementos esenciales para el estudio posterior
de los limites.
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Figura 7.
Representacién grafica de una funcion racional

Nota: Elaboraciéon propia.

Sullivan (2016) destaca que el andlisis de funciones racionales
prepara al estudiante para razonar sobre el comportamiento
infinitesimal, pues obliga a distinguir entre valores permitidos,
prohibidos y limites de aproximacion. Ademds, su representacion
grafica revela como los comportamientos algebraicos se tradu-
cen en estructuras geométricas, mostrando la profunda conexién
entre ambos campos.

Esta estructura, aparentemente simple, encierra una enor-
me riqueza conceptual. Segun Stewart (2016), las funciones
racionales representan un punto de encuentro entre el dlgebra
y el andlisis, pues en ellas aparece de manera natural la nocion
de restriccion del dominio y de comportamiento limite, que
seran fundamentales en el estudio del cdlculo diferencial e
integral. La condicién Q(X) # 0 no solo es una exigencia alge-
braica, sino una frontera que marca los limites de existencia
de la funcion. Alli donde el denominador se anula, la funcion
deja de estar definida, generando los denominados puntos
de indeterminacion.

La estructura de una funcién racional puede adoptar multiples
formas, pero todas comparten la caracteristica de expresar una
relacién no lineal entre las variables. Si el grado del polinomio
del numerador es menor que el del denominador, se dice que
la funcion es propia; si es igual o mayor, se denomina impropia.
Este criterio, mas alld de su formalismo, permite anticipar el tipo
de comportamiento que tendrd la funcién en el infinito.

2x +1
x24+3x4+2°

el crecimiento del denominador provoca que los valores de
f(x)’[iendon a cero a medida que “x” aumenta, lo cual se tra-
duce grdaficamente en una asintota horizontal (véase Figura
8). En cambio, si el grado del numerador es mayor, la fun-
cion tenderd hacia el infinito, mostrando una asintota oblicua

(Sullivan, 2016).

Por ejemplo, en f(x) =
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Figura 8.
Representaciéon grafica de una funcién racional propia

L 4

Nota: Elaboraciéon propia.

El dominio de una funcién racional estd formado por todos
los nUmeros reales excepto aquellos que anulan el denominador.
Determinarlo implica resolver la ecuacion Q(X) =0y excluir
sus soluciones del conjunto de los nUmeros reales. En el ejemplo
anterior, Q(x) = x2 + 3x + 2 = 0 produce los valores x = —1 y
x = —2, los cuales son puntos de indeterminacion. Esto significa
que, en dichos valores, la funcién no existe, y su representacion
grdafica mostrard discontinuidades o rupturas verticales. Como
sefialan Larson y Edwards (2019), este andlisis del dominio pre-
para el pensamiento del estudiante para comprender la nocién
de continuidad y de limite, al identificar que no todos los valores
producen resultados vdalidos en una funcién racional.

Los puntos de indeterminacion son, por tanto, elementos esen-
ciales en el estudio de este tipo de funciones. En el plano carte-
siano, suelen manifestarse como asintotas verticales o huecos
en la grdafica, dependiendo de si el término problemdtico del
denominador se cancela o no con un factor del numerador. Si,

por ejemplo, B (X_ 2)
= a1

(véase Figura 9), la funcién presenta un hueco enx = 2 ya que
el factor se simplifica y una asintota vertical en x = 1, donde el
denominador permanece nulo.

Figura 9.
Representacion grdfica de puntos de indeterminaciéon

i
i -
i
[

Nota: Elaboraciéon propia.
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Stewart (2016) explica que estos casos son didacticamen-
te valiosos porque ayudan a los estudiantes a distinguir entre
errores de cdlculo y restricciones estructurales de la funcién.
Comprender la diferencia entre una discontinuidad evitable y
una no evitable implica desarrollar una mirada mas analitica y
rigurosa del comportamiento funcional.

Desde una perspectiva grdfica, las funciones racionales mues-
tran comportamientos muy variados: pueden presentar inter-
secciones con los gjes, asintotas, simetrias y regiones donde los
valores de f(x) crecen o decrecen abruptamente. Blitzer (2018)
destaca que la visualizacién de estos rasgos facilita la compren-
sion del dominio y de los puntos de indeterminacién, ya que el
estudiante puede “ver” las consecuencias de las restricciones
algebraicas.

En este sentido, el uso de herramientas tecnoldgicas como
GeoGebra o Desmos resulta de gran valor pedagdgico, pues
permite observar en tiempo real coémo la modificaciéon de los
coeficientes afecta la forma y las discontinuidades de la grafica
(Hohenwarter & Jones, 2007).

Apoyo diddctico: Las funciones racionales son una oportuni-
dad privilegiada para vincular el razonamiento algebraico con
la interpretacion grafica. Duval (2006) sostiene que el aprendi-
zaje significativo ocurre cuando el estudiante logra coordinar
distintos registros de representacion, de modo que la estructura
algebraica de la funcion se refleje coherentemente en su grafica
y en su descripcion verbal. El andlisis del dominio y de los pun-
tos de indeterminacion favorece esta articulacion, al mostrar
que detrds de cada simbolo existe un significado geométrico y
conceptual. Por ello, ensefar funciones racionales no deberia
limitarse a simplificar fracciones algebraicas, sino a promover
la comprension de como las operaciones modifican los espacios
de validez y las formas de representacion.

Otra categoria importante son las funciones con radicales,
que incluyen raices cuadradas, cUbicas u otras expresiones
radicales. Estas funciones presentan restricciones en el domi-
nio, ya que los valores negativos bajo una raiz par no tienen
solucion real.

Por ejemplo, en la funcién f(X) = vX — 1, el dominio estd limi-
tado a X > 1 (Figura 10). Larson y Edwards (2019) afirman que
este tipo de funciones permite introducir la nocién de “condicidon
de existencia”, ensefiando al estudiante que el significado de
una funcion depende del conjunto en el cual estd definida. Su
andlisis promueve una comprension rigurosa de los conceptos
de dominio y rango, que son el fundamento del pensamiento
funcional moderno.
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Figura 10.
Representacién grdafica de funciones con radicales

" ;
| o

Nota: Elaboraciéon propia.

Por otra parte, las funciones con valor absoluto completan la
clasificacion bdasica de las funciones algebraicas. Su expresion
general, f(X) = ‘X| (véase Figura 11), representa la distancia de un
numero al origen de la recta real, sin importar su signo. La grafica
de esta funcidon tiene forma de “V” y muestra una “discontinuidad
en la pendiente”, lo que la convierte en un excelente ejemplo para
analizar la nocién de no derivabilidad en un punto. Segun Duval
(2006), el estudio de este tipo de funciones ayuda a los estudian-
tes a comprender que el significado de una expresion algebraica
no es solo simbdlico, sino también geométrico y conceptual.

Figura 11.
Representacion grdfica de la funcién f(a:) = |gg|

: "

Nota: Elaboracion propia.

Propiedades fundamentales de las funciones algebraicas

Las funciones algebraicas constituyen el eje estructural del pen-
samiento matematico elemental, pues permiten comprender
la naturaleza de las relaciones entre variables y las leyes que
gobiernan su comportamiento. Estas funciones, expresadas me-
diante un nUmero finito de operaciones de suma, resta, multipli-
cacién, division y radicacion, representan la base sobre la cual se
construyen los modelos matematicos mds complejos. Su estudio
no solo tiene un valor formal, sino que, como destaca Stewart
(2016), ofrece una via para desarrollar el razonamiento ldgico y
la capacidad de abstraccién necesarias para avanzar hacia el
cdlculo y las funciones trascendentes.
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Desde una perspectiva conceptual, las funciones algebraicas
poseen propiedades fundamentales que las caracterizan y las
diferencian de otros tipos de funciones. Dichas propiedades se
refieren a su dominio y rango, su continuidad, su simetria, su com-
portamiento de crecimiento o decrecimiento y su interseccion con
los ejes coordenados.

Cada una de ellas brinda informacién esencial para interpretar,
representar y analizar el comportamiento de una funcién, tanto
de manera simbdlica como grdfica. Sullivan (2016) sefala que
el dominio y el rango son los primeros elementos a considerar,
pues definen el conjunto de valores para los cuales la funcién
tiene sentido matematico.

Sitomamos el caso particular f(X) =x>—4x+3 (figura 12),
su dominio es R, mientras que su rango es f(X) > —1, dado que
el vértice se encuentra en el punto (2,-1).

Figura 12.
Representacion grdfica de las propiedades de la funcidon algebraica

flz)

Nota: Elaboraciéon propia.

Otra propiedad esencial es la continuidad, entendida como la
ausencia de rupturas, saltos o huecos en la grdafica de la funcion
dentro de su dominio. Las funciones polindmicas son continuas
entodo R, lo que las convierte en modelos ideales para describir
procesos naturales sin interrupciones, como trayectorias o varia-
ciones de temperatura (Larson & Edwards, 2019). En cambio, las
funciones racionales o radicales pueden presentar discontinui-
dades, puntos de indeterminacion o asintotas, lo que enriquece
su estudio desde el punto de vista analitico y grafico. Apdstol
(2013) explica que el andlisis de la continuidad en las funciones
algebraicas es una introduccion natural al concepto de limite,
que mds adelante permitird comprender el cambio infinitesimal
y la derivabilidad.

La funcion radical f(X) = VX — 2. estd definida Unicamente
para X > 2, ya que la raiz cuadrada de un nUmero negativo no
pertenece al conjunto de los reales. En este caso, el dominio es
[2,00), y la funcion es continua en todo su dominio, pues no
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presenta saltos ni rupturas a partir de su punto inicial (2,0). Sin
embargo, no es continua en todo IR, porque para X < 2 no existe
valor real de f(x).

El comportamiento de crecimiento y decrecimiento constituye
otra de las propiedades fundamentales. A través del andlisis de
los signos y valores de la variable independiente, se determina
en qué intervalos la funcidn aumenta o disminuye. Por ejemplo,
la funciéon lineal f(X) = mXx + b crece sim > 0, mientras que una
funcion cuadratica f(x) = ax’ +bx +c presenta un punto de
cambio denominado vértice, que marca la transicidn entre cre-
cimiento y decrecimiento. Stewart (2016) subraya que el andlisis
del crecimiento no solo tiene implicaciones algebraicas, sino tam-
bién interpretativas, ya que permite representar procesos fisicos
0 econdmicos que dependen del tiempo o de otras variables.

La simetria es otra propiedad distintiva. Una funcion se consi-
dera par si cumple f(—X) =f X) como ocurre con las funciones
cuadrdaticas o las de la formax™, X7, ... eimparsi f(—X) = —f(X)

(\ééose Figural3), como sucede con las cUbicas o las de tipo
X', x5, ...

Figura 13.
Representacion grdfica de las propiedades de simetria

u IE

III 4 I|'I
k |

Nota: Elaboraciéon propia.

Esta caracteristica, ademds de simplificar el andlisis grafico,
revela patrones de comportamiento que reflejan la estructura de
la funcion. Blitzer (2018) destaca que la simetria no solo facilita la
interpretacién visual, sino que también fomenta la comprension
estructural, ya que ensefna a los estudiantes a identificar inva-
riantes en medio del cambio.

Otra propiedad clave es la intersecciéon con los ejes coorde-
nados, que se determina al calcular los valores de la funcién
cuando x=0 (interseccion con el eje “Y”) y cuando f(x) =0
(interseccidén con el eje “X"”). Estas intersecciones permiten
ubicar puntos de referencia en la graficay comprender el sig-
nificado algebraico de las raices o ceros de la funcién. Segun
Duval (2006), estos procesos de traduccion entre los registros
simbolico y grafico son esenciales en la ensefianza del dlgebra,
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ya que ayudan al estudiante a establecer conexiones entre ex-
presiones analiticas y representaciones visuales, fortaleciendo
suU comprension conceptual.

Composicion de funciones e interpretacion grdfica
La composicion de funciones representa uno de los conceptos
mas significativos en el estudio del pensamiento algebraico y
funcional, ya que permite comprender cémo distintas relacio-
nes se integran para formar nuevas dependencias. A través de
la composicidon, una funcion se aplica sobre el resultado de otra,
generando una transformacion encadenada que revela la natu-
raleza dindmica del lenguaje matematico. Formalmente, si se
tienen dos funciones “f”y “g” la composicidon se define como
(f @ g)(x) = f(g(X)), lo que significa que primero se evalta g(X)
y luego se aplica “f” al resultado. Esta estructura, como sefala
Stewart (2016), constituye una herramienta fundamental para
modelar procesos complejos donde una variable intermedia co-
necta distintos fendmenos, como ocurre en la fisica, la economia
o la biologia.

Desde una perspectiva conceptual, la composicion de funcio-
nes permite encadenar dependencias: una magnitud depende
de otra, que a su vez depende de una tercera. Asi, el pensamiento
funcional se expande, pasando de relaciones simples a relaciones
compuestas. Sullivan (2016) explica que este tipo de razonamien-
to desarrolla en el estudiante una visidn sistémica del cambio,
pues le permite reconocer cdémo una modificacion en la variable
inicial afecta indirectamente a las demas

Por ejemplo, si

f(x) = 2X—|—1yg(x) =x2 h(X) = (fog)(x) =2x2+1

muestra coémo la funcion cuadrdatica (Figura 14), al ser “transfor-
mada” por una funcién lineal, genera una nueva ley de corres-
pondencia que conserva la naturaleza algebraica, pero altera su
representaciéon grdafica.

Figura 14.
Representacion grdfica de h(a:) = (f o g) (:C)

Nota: Elaboraciéon propia.
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La estructura de la composicion evidencia una de las propie-
dades mas potentes de las funciones: su capacidad de transfor-
mar espacios. Cada funcién actUa como una regla que asigna un
conjunto de valores de entrada a un conjunto de salida; cuando
se componen, esas transformaciones se encadenan, generando
nuevas representaciones. Larson y Edwards (2019) subrayan
que comprender la composicidon exige distinguir entre el orden
de aplicaciéon y la naturaleza de las funciones: f(g(x)) no es lo
mismo que g(fg(x)) y esta diferencia se refleja directamente en
la forma de las graficas (Figura 15). Este aspecto adquiere re-
levancia en el cdlculo, donde la composicion es la base para el
estudio de la derivada de funciones compuestas, conocida como
la regla de la cadena.

Figura 15.
Representacion grdfica de h(a:) = (g o f) (:C)

*

Nota: Elaboraciéon propia.

Desde el punto de vista grdafico, la composicién de funciones
puede interpretarse como una transformacién progresiva del
plano cartesiano. Cada funcién altera de manera especifica las
coordenadas del conjunto original. Por ejemplo, si g(x) produce
una deformacion parabdlica y f(x) aplica un desplazamiento o
una dilataciéon, la composicion f(g(x))integrord ambas transfor-
maciones, resultando en una grafica mas compleja. Blitzer (2018)
destaca que esta perspectiva visual es esencial para desarrollar
la intuicion matematica, ya que permite identificar como las
operaciones algebraicas se reflejan geométricamente. Las tras-
laciones, reflexiones y escalas verticales o horizontales no son
meras modificaciones formales, sino expresiones de la manera en
que una funcién transforma a otra dentro del espacio cartesiano.

Apoyo diddctico: Desde un enfoque diddctico, la composicién
de funciones permite introducir al estudiante en el pensamien-
to relacional. Duval (2006) afirma que aprender matemdaticas
implica dominar la capacidad de pasar de un registro de repre-
sentacion a otro sin perder el significado de la relacién. En este
contexto, la composicidén ofrece un terreno ideal para integrar los
registros algebraico y grdafico: lo que en una ecuacion se expresa
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como una sustitucion formal, en la grafica se traduce en una
deformacién o desplazamiento visible. Comprender este vinculo
ayuda a superar la vision mecanicista de la matemdtica, reem-
plazdndola por una comprension profunda del proceso funcional.
Ademads, la composicién posee propiedades formales que for-
talecen el razonamiento abstracto. Entre ellas destacan la no
conmutatividad, ya mencionada, y la asociatividad, segun la cual
fo (gOh) = (fog) oh. Estas propiedades, lejos de ser meras
curiosidades simbodlicas, reflejan codmo el orden y la estructura
determinan los resultados en los sistemas matematicos. Apostol
(2013) considera que la comprensién de estas relaciones es un
paso indispensable hacia el pensamiento estructural, pues per-
mite visualizar las funciones como objetos que se combinany se
transforman entre si dentro de un mismo marco légico.

Funcion inversa: definicion, condiciones y representacion
La funcioninversa ocupa un lugar central en el estudio de las fun-
ciones algebraicas, pues expresa de manera simbdlica y grafica
la idea de reversibilidad en las relaciones matematicas. Mientras
una funcidn establece una correspondencia entre un conjunto de
valores de entrada (dominio) y un conjunto de valores de salida
(rango), su inversa deshace esa correspondencia, intercambiando
los papeles de ambas variables. Asi, si una funcion “¢”transforma
“x”en “y” suinversa f~1 transforma “y” en “x” (Figura 16).

En palabras de Stewart (2016), la funcidén inversa no solo re-
vierte una operacion, sino que refleja la estructura bidireccional
del pensamiento funcional, mostrando coémo toda relacién puede
ser entendida desde dos perspectivas complementarias.

Figura 16.
Representacion grdfica de la funcidn inversa de f(x)

Nota: Elaboraciéon propia.

Formalmente, se dice que una funcién “f” posee una inversa
si y solo si es biyectiva, es decir, inyectiva (cada valor de salida
corresponde a un Unico valor de entrada) y sobreyectiva (cada
valor del rango es alcanzado por algun elemento del dominio).
Esta condicion garantiza que el proceso pueda “revertirse” sin
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ambigUedades. Si f(a) = b, entonces. Apostol (2013) destaca
que la nocidn de inversa traduce el principio de simetria en el
ambito funcional, mostrando que las leyes matematicas pueden
expresarse en doble sentido sin perder su coherencia interna.

En términos graficos, la funcién inversa se representa como
el reflejo de la funcidon original respecto a la recta y=x. Esta si-
metria visual revela la correspondencia mutua entre los pares
ordenados (x,y) y (y,x).

Por ejemplo, si f(x) = 2x + 3., su inversa es: f ! (b) = X;3

La grdaficade f1 puede obtenerse intercambiando las coordena-
das de todos los puntos de "f”lo cual genera una imagen especular
respecto ala diagonal del primer cuadrante. Sullivan (2016) resalta
gue este enfoque visual ayuda a los estudiantes a comprender el
concepto de reversibilidad mas allad del simbolismo algebraico, pues
permite identificar que una funcidn y su inversa son, en esencia,
transformaciones opuestas dentro del mismo espacio cartesiano.

Por ejemplo, la funcién cuadratica f(X) = x2 no es inyectiva
(véase Figura 17), ya que tanto f(2) =4 como f(—2) = 4; para
cada valor positivo del rango existen dos valores en el dominio.

Figura 17.
Representacion grdfica de la funcién inversa de f(a:)

*

Nota: Elaboracion propia.

El proceso de obtencion de una funcion inversa es, en si mismo,
una aplicacion del razonamiento algebraico. Los pasos bdsicos son:

1. Escribir la funcién en forma de ecuacién: ¥ = £(x).

2. In’[ercombmr las variables: x = f(y).

3. Despejar “y” en términos de “x”, obteniendo asi ¥ = £~ ( )

Este procedimiento, sequn Larson y Edwards (2019), no solo
ensefia técnicas de manipulacion algebraica, sino también la
capacidad de interpretar el sentido de una relacién funcional, lo
cual resulta indispensable para abordar posteriormente temas
como la derivacién de funciones inversas o la transformacién de
modelos en ciencias aplicadas. No obstante, no todas las funcio-
nes poseen una inversa definida en todo su dominio
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En estos casos, es necesario restringir el dominio para que la
funcién se vuelva uno a uno. De este modo, si se limita f(X) = x2
al dominio x > 0, la funcién resulta inyectiva y su inversa serd
£t (X) = \/i Blitzer (2018) explica que este tipo de razona-
mientos refuerza la comprension del papel que juega el dominio
en la estructura funcional, al demostrar que la existencia de la
inversa depende de la unicidad de las correspondencias.

Desde una perspectiva mds general, las funciones lineales,
racionales, radicales y polindmicas de grado impar suelen po-
seer inversas globales o parciales, dependiendo de su forma. Por
ejemplo, la funcidn cUbica f(X) =x3 (figura 18) tiene inversa en

todo IR, dada por:
f1(x) = x

Figura 18.
Representacion grdfica de la funcidn inversa de f(x)

&

Nota: Elaboraciéon propia.

En cambio, las funciones racionales pueden presentar restric-
ciones derivadas de los puntos de indeterminacion o de disconti-
nuidades, lo que exige analizar cuidadosamente su dominio antes
de determinar la inversa. Stewart (2016) sefiala que este proceso
constituye una introduccién natural al pensamiento analitico,
donde cada propiedad algebraica tiene un reflejo geométrico
y conceptual.

Apoyo diddctico: la ensefianza de las funciones inversas debe
vincular el razonamiento simbdlico con la visualizacién. Duval
(2006) sostiene que la comprensién profunda surge cuando el
estudiante logra articular distintos reqgistros de representacion:
verbal, algebraico, tabular y grafico, sin perder el significado
de la relacion. En este sentido, el estudio de la funcion inversa
ofrece una oportunidad privilegiada para practicar la traduccion
entre registros, pues lo que algebraicamente se expresa como
elintercambio de variables, graficamente se visualiza como una
simetria. Hohenwarter y Jones (2007) subrayan que el uso de
herramientas digitales como GeoGebra permite explorar esta si-
metria de manera interactiva, reforzando la comprension del vin-
culo entre las operaciones simbdlicas y sus efectos geométricos.
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Transformaciones y andlisis grdfico

El estudio de las transformaciones y el andlisis grafico de las fun-
ciones constituye un momento clave en la formacion matemdatica,
porque permite comprender como los cambios en una expresion
simbolica se reflejan directamente en su representacidon visual.
Al desplazar, reflejar o escalar una funcidn base, el estudiante
desarrolla una percepcién mas profunda del vinculo entre el al-
gebra y la geometria, entendiendo que cada modificacién tiene
un significado y un efecto concreto sobre la forma de la curva.
Esta relacion entre simbolo y figura convierte al andlisis grafico en
una experiencia exploratoria y dindmica, donde el razonamiento
abstracto se complementa con la observacion visual. El uso de
herramientas tecnoldégicas como GeoGebra o Desmos amplia alun
mads esta experiencia, pues ofrece la posibilidad de manipular los
pardmetros en tiempo realy observar como las transformaciones
actuan sobre la funciéon, promoviendo una comprensiéon intuitiva,
creativa y significativa del comportamiento matematico.

Traslaciones horizontales y verticales
El estudio de las traslaciones de funciones es uno de los primeros
acercamientos que permite a los estudiantes comprender que el
algebra no se limita a la manipulacion simbdlica, sino que consti-
tuye un lenguaje que describe movimientos, transformaciones y
relaciones entre magnitudes. En términos generales, una traslacion
consiste en desplazar la grafica de una funcidén sin modificar su
forma ni su orientacion, lo que introduce la idea de invariancia
estructural, es decir, que el comportamiento de la funcién se con-
serva aungque cambie su posicion en el plano (Stewart, 2016).

Desde el punto de vista analitico, si f(x) es una funcién base,
entonces f(x— h) produce una traslacion horizontal, mientras
que f(x) + k genera una traslacion vertical. El parametro “h”
controla el desplazamiento a lo largo del eje “x”:sih > 0, la gra-
fica se mueve hacia la derecha, y sih < 0,, se desplaza hacia la
izquierda. Por su parte, el pardmetro “k” determina el desplaza-
miento a lo largo del eje “y”: valores positivos mueven la funcién
hacia arriba, y negativos, hacia abajo. Esta dualidad es la base
del concepto de familias de funciones, donde los cambios en
los pardmetros generan versiones desplazadas de una misma
estructura algebraica (Larson & Edwards, 2019).

Comprender las traslaciones permite visualizar la dependencia
funcional entre variables: cada punto (x,y) de la funcidén original
se convierte en (x+h, y+k) después de aplicar la transformacion.

Este proceso puede representarse mediante vectores de
traslaciéon

%
t = (hk),
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que expresan el desplazamiento simultdneo en ambas direccio-
nes del plano. Tal representacién vectorial resulta Util para intro-
ducir la nocion de transformacién geométrica, un puente natural
entre el dlgebra y la geometria analitica (Anton et al. 2020).

Por ejemplo, para la funcion cuadrdatica f(X) :Xz, la

transformacion
f(x— 3) — (x - 3)?

genera un movimiento de la pardbola tres unidades hacia la de-
recha (Figura 19). Este tipo de desplazamiento no altera la forma
ni la concavidad de la grdafica, sino Unicamente s u ubicacion
sobre el eje “x” (Larson & Edwards, 2019).

Figura 19.
Representacion de traslaciones horizontales

Mi) = &

Nota: Elaboracion propia.

En cambio, las traslaciones verticales se producen al sumar o res-
tar un valor fuera del argumento de la funcion, es decir, f(x) +ko
f(X) — k. Sise agrega un valor positivo “k”, la gréfica se traslada hacia
arriba, y si se restq, se desplaza hacia abajo.

Este tipo de modificacion refleja la accién de un operador constante
sobre el rango de la funciéon, alterando los valores de salida, pero con-
servando la relacion estructural entre las variables (Anton et al, 2020).

Un ejemplo ilustrativo lo constituye la familia de funciones

cuadrdticas:
f(x) =(x—h)’+k

En ellg, el vértice se traslada desde el origen al punto (h,k), conser-
vando la forma parabdlica. Al modificar los valores de “h”y “k” en un
entorno dindmico, el estudiante observa como la pardbola se des-
plaza, pero no cambia su curvatura ni su concavidad, lo que refuerza
la idea de estructura invariante. Por ejemplo, la transformacién:

f(x) =x24+14

2

(véase Figura 20) desplaza la pardbola original f(x) = X“ cuatro

unidades verticalmente hacia arriba.

109



Funciones algebraicas y sus propiedades

Figura 20.
Representacién de traslaciones verticales

flz) = &

Nota: Elaboraciéon propia.

De acuerdo con Tall y Vinner (1981), esta experiencia visual
ayuda a construir una imagen conceptual del objeto matemdatico,
facilitando el paso del pensamiento operacional al estructural.

Apoyo diddctico: las traslaciones se convierten en una opor-
tunidad para desarrollar pensamiento funcional y visualizaciéon
dindmica. Segun Godino, Batanero y Font (2007), los estudiantes
deben ser capaces de pasar del registro algebraico al gréfico y vi-
ceversa, comprendiendo que los simbolos en una ecuacion tienen
un correlato geométrico que puede interpretarse visualmente.

Esta articulacion entre registros semidticos favorece el apren-
dizaje significativo, ya que permite al estudiante establecer re-
laciones y anticipar efectos de los pardmetros sin necesidad de
realizar cdlculos extensos.

Reflexiones respecto a los ejes de coordenadas
En el contexto de las funciones algebraicas, las reflexiones res-
pecto a los ejes de coordenadas constituyen un recurso funda-
mental para comprender la simetria y el comportamiento grdafico
de polinomios, racionales y radicales. Estas transformaciones
permiten observar como el signo que acompafa a una variable
o atodala funcion modifica su orientacion en el plano cartesiano
sin alterar su estructura algebraica esencial.

En términos diddcticos, estudiar las reflexiones es ensefar al
estudiante a “leer” la ecuacién como una descripcién de mo-
vimientos y formas, no solo como una relacién numérica entre
variables (Godino, Batanero & Font, 2007). Desde el punto de
vista algebraico, cuando se refleja una funcion respecto al eje
“x” (Figura 21), se obtiene la transformacion ¥ = _f(X).
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Figura 21.
Reflexion sobre el eje X de la funcién f(a:)

LR

Nota: Elaboraciéon propia.

Esta operacion cambia el signo de todos los valores del rango, es
decir, convierte las salidas positivas en negativas y viceversa. En las
funciones polinédmicas, este efecto produce un giro de 180° en torno
al eje horizontal, sin modificar los ceros ni el grado de la funcién.

Por otro lado, la reflexion respecto al eje “y” se expresa como
f(—x). En este caso, no se modifica el rango, sino el dominio: los
valores positivos de “x”se asocian a los negativos y viceversa. Este
tipo de simetria es comUn en funciones pares, como f(x) = x2
o f(X) = X4, cuyas grdaficas son invariantes ante esta transfor-
macion. En cambio, las funciones impares, como f(X) =x3 0
f(X) = x° (Figura 22), presentan simetria respecto al origen, ya
que satisfacen la condicion f(—X) = —f(X).

Figura 22.
Reflexion sobre el eje X de la funcion f(x)

Nota: Elaboraciéon propia.
o, . 1 o,
En el caso de una funcidn racional, como f(X) =T la reflexion
respecto al eje "y” intercambia los cuadrantes | y I, mientras que la

reflexién respecto al eje “x” intercambia los cuadrantes | y IV. Este

doble movimiento evidencia que las simetrias algebraicas determi-
nan la distribucion de los signos de las variables, lo cual es crucial
para el estudio de discontinuidades y limites (Anton et al., 2020).
En el caso de las funciones radicales, las reflexiones requie-
ren mayor atencién debido a las restricciones de dominio. Por
ejemplo, la funcién f(X) = \/E (Figura 23) estd definida solo

para x > 0.
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Figura 23.
Reflexion sobre el eje Y de la funcién f(ZL')

fis] = 4

Nota: Elaboracion propia

Su reflexion respecto al gje “y”, f(—X) = \/—_X no tiene sig-
nificado real, ya que generaria niUmeros imaginarios. En cambio,
la reflexion respecto al eje “x”, —4/X es vdlida y produce una
imagen simétrica en el cuarto cuadrante. Este andlisis ayuda a
los estudiantes a reconocer que no todas las transformaciones
son posibles dentro del conjunto de los nUmeros reales, o que
refuerza la necesidad de comprender las condiciones de exis-
tencia de una funcion (Stewart, 2016).

Apoyo diddctico: Las reflexiones en funciones algebraicas tienen
un alto valor formativo porque fomentan la visualizaciéon y la antici-
pacidn analitica. Cuando el estudiante aprende a identificar el signo
que produce una inversion grdfica, puede predecir el comporta-
miento sin necesidad de calcular puntos. Este tipo de razonamiento
contribuye a la generalizacién funcional, entendida como la capa-
cidad de reconocer regularidades algebraicas en diversas familias
de funciones (Sfard, 1991). Ademdas, al comparar funciones como
f(x) =x3 — f(X), f(—x), se estimula el pensamiento compara-
tivoy la comprension de invariantes estructurales, dos competencias
esenciales en el transito del dlgebra elemental al andlisis.

El uso de herramientas tecnoldgicas, como GeoGebra, resulta
particularmente potente en este proceso, pues permite superponer
graficas y observar de manera dindmica la simetria entre la funciéon
originaly su reflejada. Al activar deslizadores que modifican el signo
o la variable, el estudiante construye una imagen conceptual (Tall
& Vinner, 1981) que refuerza su comprension de la correspondencia
algebraico-geométrica. Esta experiencia visual transforma la re-
flexion en un proceso exploratorio, donde el conocimiento surge del
contraste entre la ecuacion simbdlica y su representacion grdéfica.

Escalamientos y compresiones de una funcion base
En el estudio de las funciones algebraicas, los escalamientos y
compresiones constituyen un tema de especial relevancia por-
que permiten comprender como una misma estructura funcional
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puede adquirir diferentes configuraciones geométricas sin per-
der su identidad matematica. Estas transformaciones ponen de
manifiesto la relacién profunda entre el lenguaje simbodlico del
algebray el lenguaje visual de la geometria analitica, al mostrar
que los coeficientes numéricos son operadores de cambio que
alteran la proporcién, la amplitud y la pendiente de las curvas.
Como sefalan Anton et al. (2020), dominar la interpretacion de
los pardmetros multiplicativos es esencial para comprender el
comportamiento de modelos algebraicos, ya que estos pardme-
tros controlan la escala de crecimiento de las funciones.

Desde una perspectiva formal, si se considera una funcién
base f(x), los escalamientos verticales se obtienen mediante la
expresion Y = af(x -, donde el paradmetro “a” multiplica directa-
mente los valores del rango. Cuando a > 1, se produce un esti-
ramiento vertical, lo que amplifica las distancias de los puntos
respecto al eje “x”; mientras que cuando 0 < a < 1,, se genera
una compresion vertical, que acerca la grdafica hacia dicho eje.

Esta transformacién afecta la magnitud de los valores de salida,
pero no modifica la estructura algebraica ni el dominio de la fun-
cidn. En cambio, los escalamientos horizontales se expresan median-
tey = f(bX): si b > 1, la funcién se comprime horizontalmente; si
0< b1, se estira horizontalmente. La diferencia fundamental radica en
que, en los escalamientos horizontales, el efecto del pardmetro “b” es
inverso al valor que toma, lo cual resulta especialmente interesante
para analizar el impacto del cambio de variable (Stewart, 2016).

La interpretacién geométrica de estas transformaciones puede
observarse con claridad en funciones polindmicas. En una funcion
cuadratica general f(x) = Xz, el valor de “a” determina el grado de
curvatura de la pardbola (Figura 24). Si \a\ > 1, la gréfica se vuelve
mas angosta, reflejando un crecimiento mas pronunciado; si |a| <1,
la pardbola se abre, evidenciando un comportamiento mas gradual.

Figura 24.
Escalamientos horizontales

L
1

Nota: Elaboracion propia.

Este mismo principio se extiende a las funciones cuUbicas
f(X) = ax3, donde “a” regula la pendiente de inflexion. En ambos
casos, los escalamientos revelan la relacion entre el coeficiente
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multiplicativo y la variacion local de la funcion, sentando las bases
conceptuales para la comprension de la derivada como medida
del cambio (Larson & Edwards, 2019).

En las funciones radicales, como f(X) = \/i el pardmetro
“a” determina la velocidad con la que la funcién crece: valores
mayores de “a” hacen que la raiz crezca mds rapidamente, mien-
tras que valores menores la suavizan. Este comportamiento es
particularmente Util en contextos aplicados donde el andlisis de
elasticidades o tasas de crecimiento requiere interpretar como
los factores de escala modifican el modelo funcional (Anton et
al.,, 2020).

Figura 25.
Escalamientos en funciones con radicales

r —
ry -i-.
_l_.-"'_.d'
’

F

Nota: Elaboraciéon propia.

En las funciones racionales y radicales, el efecto de los es-
calamientos es igualmente revelador. Si se considera la funcion
racional f(X) = % un factor vertical “a” modifica la separacién
de las ramas respecto a los ejes asintéticos, generando una ex-
pansién o contraccién simétrica. En cambio, un factor horizontal
“b” altera la posicion de las asintotas sin modificar su forma,
mostrando que las relaciones de proporcionalidad afectan tanto
al dominio como al rango.

Apoyo diddctico: los escalamientos y compresiones favorecen
el desarrollo del pensamiento relacional y la comprension del
comportamiento global de una funcién. Godino, Batanero y Font
(2007) sostienen que el aprendizaje significativo de las funciones
depende de la capacidad del estudiante para coordinar distintos
registros semioticos. Los escalamientos se prestan de manera
natural a esta coordinacién, ya que el cambio de un coeficiente
en la expresion algebraica tiene un efecto visual inmediato en
la grafica. La ensefianza de estas transformaciones deberia, por
tanto, fomentar la observacién dindmica, el uso de conjeturas y
la verificacion empirica mediante representaciones interactivas.

Desde una mirada mas profunda, los escalamientos y com-
presiones no son meras transformaciones graficas, sino una ma-
nifestacién de la proporcionalidad estructural del dlgebra. La
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comprension de estas transformaciones contribuye al desarrollo
del pensamiento multiplicativo, un proceso cognitivo que permite
entender el cambio relativo entre magnitudes y que constituye
la base de nociones avanzadas como la pendiente, la elasticidad
y la tasa de variacion (Sfard, 1991). En otras palabras, cuando el
estudiante percibe que “multiplicar por dos” no solo cambia los
valores de la funcién, sino también la escala de su representacién,
estd construyendo una comprension operativa y estructural del
significado del nUmero en el contexto funcional.

Uso de GeoGebra y Desmos para explorar transformaciones

El empleo de herramientas tecnolégicas como GeoGebra y
Desmos ha revolucionado la manera en que se ensefia y apren-
de la nocion de funcion en el aula. Estas plataformas facilitan la
observacion directa de codmo los pardmetros influyen en la forma,
posiciéon y orientacion de una grdfica, haciendo visible aquello
que en el plano algebraico suele permanecer abstracto. Segun
Artigue (2018), la integracion de entornos digitales en la ensefian-
za de las matemdaticas transforma la relacion del estudiante con
el conocimiento, porque permite construir significado a través
de la experimentaciéon y la visualizacion.

Transformaciones en funciones lineales y cuadraticas

Las funciones lineales constituyen el punto de partida ideal para
explorar transformaciones bdasicas. En una funcion de la forma
f(x) = mx + b, el pardmetro “m” determina la inclinacién de lo
recta, mientras que “b” define su desplazamiento vertical. En
GeoGebra, al manipular los deslizadores de estos parametros, los
estudiantes observan cémo la recta gira o se traslada sobre el
plano cartesiano. Este ejercicio, aparentemente simple, permite
comprender intuitivamente el concepto de pendientey coémo las
variaciones numeéricas afectan directamente la representacién
grdfica. De acuerdo con Kieran (2018), tales experiencias fortale-
cen la capacidad de los estudiantes para reconocer regularidades
funcionales y conectar diferentes registros de representacion
matematica.

En las funciones cuadraticas

f(x) —a(x—h)>+b

(Figura 26), los pardmetros cumplen un papel mas complejo: “a”
controla la apertura y orientacién de la pardbola, mientras que
“h“y “b” determinan la posiciéon del vértice. GeoGebray Desmos
permiten que los estudiantes visualicen cémo la pardbola se
desplaza o se estira conforme cambian estos valores.
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Figura 26.
Transformaciones dinadmicas en Geogebra de funciones cuadrdticas

Nota: Elaboraciéon propia.

Esta visualizacion facilita la comprension estructural de la
funcién, sin recurrir a cdlculos formales. En palabras de Duval
(2006), comprender una funcidén implica poder traducirla entre
registros algebraicos, graficos y numeéricos, proceso que estas
herramientas potencian de forma natural.

Transformaciones en funciones cubicas y de valor absoluto
Al explorar funciones cUbicas, como:

f(x) =a(x—h)’+b

(Figura 27), los estudiantes descubren comportamientos graficos
que combinan simetrias y cambios de curvatura. En Desmos, el
movimiento de los deslizadores permite visualizar como la graé-
fica se “estrecha” o “ensancha” al modificar “a”,y como el punto
central cambia de posicion con “h”y “b™.

Esta experiencia ofrece una visiéon dindmica del cambio gra-
dual en el comportamiento de la funcidn sin recurrir al andlisis
derivativo, fomentando una comprension basada en la observa-
cion directa del desplazamiento y la deformacion (Stewart, 2021).

Figura 27.
Transformaciones dindmicas en Geogebra de funciones cuadrdticas
fielmalr = k"4 b il
ues

Nota: Elaboracion propia.
Las funciones de valor absoluto, f(x) = a\x — h| + b, permi-

ten analizar transformaciones con un punto angular bien defi-
nido. En GeoGebra, los estudiantes pueden identificar como los
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paradmetros modifican la posicidon del vértice y la inclinaciéon de
las ramas, comprendiendo el efecto de los desplazamientos hori-
zontales y verticales. Este tipo de funcion resulta particularmente
Util para reflexionar sobre simetrias y sobre coOmo una misma
estructura algebraica puede producir diferentes configuraciones
visuales.

Figura 28.
Transformaciones dindmicas en Geogebra de funciones cuadrdticas

fir]l = aie = k| &+ b

Nota: Elaboracion propia.

. . a
Las funciones racionales, como f(X) = %5 + b, ofrecen una

excelente oportunidad para comprender el efecto de los para-
metros sobre la posicion de las asintotas y la forma de las ramas.
GeoGebra y Desmos permiten mostrar como un cambio en “h”
traslada la grafica horizontalmente, moviendo la asintota ver-
tical, mientras que “b” provoca un desplazamiento vertical de
toda la funcion (Figura 29). Este tipo de exploraciones permite
discutir con los estudiantes el concepto de dominio restringido
sin necesidad de cdlculos avanzados. Segun Blitzer (2019), la
visualizacion de este tipo de funciones refuerza la comprensiéon
de los limites de definicion y la naturaleza del comportamiento
extremo de las funciones algebraicas.

Figura 29.
Transformaciones dindmicas en Geogebra de funciones racionales

Nota: Elaboracion propia.

Las funciones radicales, como f{x) = vV/x —h + b, permiten
abordar el papel de los pardmetros €n la forma y el inicio de la
grafica. Los deslizadores en Desmos hacen evidente como el
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pardmetro “h” define el punto de partida del dominio y como
“a” influye en el “ritmo” de crecimiento de la curva. Estas re-
presentaciones fomentan una comprensién mas cualitativa del
comportamiento funcional, invitando a los estudiantes a razonar
sobre los efectos de cada pardmetro antes de recurrir a cualquier

cdlculo formal.

Potencial diddctico y cognitivo de la exploracidon visual

Tanto GeoGebra como Desmos promueven un aprendizaje visual
e inductivo, donde el estudiante pasa de la observacién particular
a la generalizacion. En lugar de memorizar formulas de trans-
formacioén, el alumno construye significados a partir de lo que
ve y manipula. Esta interaccién entre simbolo y representacion
concreta fortalece lo que Tall (2013) denomina pensamiento pro-
ceptual:la capacidad de concebir una funcién como un proceso
(una accidén que transforma) y como un objeto (una forma que
se puede analizar y comparar).

Desde el punto de vista pedagdgico, el uso de estos entornos
tecnoldgicos favorece la diversidad de estilos de aprendiza-
je. Los estudiantes pueden explorar a su propio ritmo, verificar
conjeturas, corregir errores y compartir observaciones con sus
compafieros. Como sefialan Hohenwarter, Laviczay Scher (2007),
GeoGebra no es solo una herramienta de representacion, sino
un entorno de experimentacién que convierte la abstraccion
matematica en una experiencia cognitiva tangible.

De la observacion al razonamiento funcional

El andlisis de las transformaciones mediante GeoGebray Desmos
permite a los estudiantes razonar visualmente sobre el compor-
tamiento de las funciones sin recurrir a derivadas ni a proce-
dimientos algebraicos complejos. Al manipular pardmetros, se
evidencia la idea fundamental de que cada nUmero cumple un
papel estructural dentro de la funcidén: controlar su direccion,
desplazamiento o forma. Esta comprensidon visual prepara el
terreno para la generalizacion de patrones en funciones mas
complejas, como las exponenciales o logaritmicas, donde el sig-
nificado de los pardmetros se conserva, aunque cambie la ex-
presion algebraica.

Ejercicios exploratorios y abiertos para el andlisis grafico
El aprendizaje profundo de las funciones algebraicas se construye
cuando los estudiantes dejan de resolver mecanicamente ecuacio-
nesy comienzan a explorar graficas, conjeturar regularidades y jus-
tificar transformaciones. En este proceso, los ejercicios exploratorios
y abiertos se convierten en una estrategia clave para vincular lo
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simbdlico y lo visual, promoviendo un pensamiento algebraico flexi-
ble. Como sefiala Godino (2003), la comprension funcional emerge
cuando los estudiantes logran interpretar los objetos matemdticos
desde distintas representaciones y contextos.

El sentido de los ejercicios exploratorios y abiertos

Un ejercicio exploratorio invita al estudiante a descubrir como
se comporta una funcidon ante variaciones en sus pardmetros o
condiciones iniciales. Los ejercicios abiertos, por su parte, no exi-
gen una Unica respuesta, sino que promueven el razonamiento, la
comparacién y la argumentacién. Sequn Pélya (2014), aprender
matematicas implica experimentar la incertidumbre del proble-
ma, buscar regularidades y generalizar conclusiones: una prdc-
tica cientifica en miniatura.

La ensefnanza moderna del digebra especialmente en su vinculo
con la geometriay la visualizacién, se fortalece cuando el estudiante
es protagonista del descubrimiento. En palabras de Duval (2006),
la comprensién matematica se logra al coordinar los diferentes
registros de representacion: el simbdlico, el grafico y el numérico.

Ejercicios exploratorios con funciones lineales y afines
Comenzar con funciones lineales favorece la comprension intui-
tiva del cambio constante y la pendiente. Actividades como las
siguientes permiten un trabajo significativo:

* Ejemplol:Exploraen GeoGebralas graficas de f(X) =mx+b
cuando “m” toma los valores 1, 2, -1y -3. Describe como
cambia la inclinacion de la recta. Este ejercicio estimula la
observacion de patrones, el uso del lenguaje natural y la
articulacion entre la nocidén de pendiente y direccién.

* Ejemplo 2: Crea dos rectas con pendientes distintas que se
crucen en el punto (2,3). Explica qué condiciones deben cum-
plir sus ecuaciones. Aqui se integran los conceptos de inter-
seccion, sistema lineal y andlisis grafico, generando reflexion
sobre las relaciones entre ecuaciones y puntos comunes.

Segun Kieran (2018), este tipo de exploraciones desarrollan

una comprension estructural del dlgebra, entendida como la ha-
bilidad para reconocer relaciones invariantes a través de distintas
representaciones.

Ejercicios abiertos con funciones cuadradticas

Las funciones cuadrdticas son ideales para la experimentaciéon

con pardmetros y simetrias. En lugar de pedir al estudiante que “di-

buje una pardbola”, se lo desafia a explorar sus transformaciones:
* Ejemplo 3:Investiga coOmo cambia la grdafica de

f(x) —a(x—h)>+b
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Elabora una tabla donde describas los efectos de cada pardmetro.
Este ejercicio fomenta la observacion sistemdtica y la formulacion
de conclusiones generales sobre apertura, orientacién y posicion.

* Ejemplo 4: Disefia una pardbola que tenga vértice en (-1,

3) y que pase por el punto (1, 7). Determina su ecuacién y
explica como la encontraste. Este tipo de pregunta estimula
el pensamiento inverso y la modelacién: el estudiante parte
de la representacién grafica o de condiciones geométricas
para reconstruir la expresion algebraica.

* Ejemplo 5: Compara las funciones

f(x) = xz,g(x> =(x—2)"+1y h(x) = —2(x—h)*+3.

Indica en qué se parecen y en qué difieren sus graficas. Al compa-
rar simultdneamente tres funciones, el estudiante identifica patrones,
reflexiona sobre traslaciones y reflexiones, y desarrolla pensamiento
analbgico.

De acuerdo con Radford (2014), este tipo de experiencias concre-
tan el pensamiento semiodtico, donde el alumno da sentido a los sim-
bolos matemdticos a través de la observacion, la palabray la accion.

Ejercicios con funciones cubicas, racionales y radicales
Para avanzar hacia una comprension mas amplia del comporta-
miento grafico, los ejercicios exploratorios deben incluir diversi-
dad funcional, no solo aquellas de segundo grado:

* Ejemplo 6: Analiza las grdaficas de

f(x) :X3,g<x) = (x—2)%y h(x) = —(x—4)°+1.

5Qué cambios observas al modificar los pardmetros? Este
ejercicio permite descubrir la idea de simetria rotacional y la
influencia del signo del coeficiente en la orientacion.

* Ejemplo 7: Explora en Desmos la funcion (X) = th + b.
Describe como cambian las asintotas cuando alteras los va-
lores de “h” y “b”. A través de la observacion, el estudiante
comprende que las transformaciones no solo afectan la for-

ma, sino también las restricciones del dominio.

* Ejemplo 8: Dibuja
f(x) =+vx—h+k

para distintos valores de “k” y “k”. Explica cémo el punto inicial
de la curva se desplaza. Este tipo de ejercicios es Util para traba-
jar la nocién de dominio y rango de manera visual, sin necesidad
de formulas ni derivadas.
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Como afirma Blitzer (2019), la experimentacion con familias
de funciones genera conexiones entre las representaciones al-
gebraicas y geométricas, permitiendo al estudiante desarrollar
una intuicién sobre el comportamiento global de las funciones.

Ejercicios de sintesis y comparacidon entre funciones
Los ejercicios de andlisis comparativo favorecen la generalizacién
y la transferencia de conocimientos. Por ejemplo:

e Ejemplo 9:Colocaen unamisma vista las funciones f(x) =X
,f(x) =x3y f(x) = /x. ¢Qué diferencias encuentras en la
forma y crecimiento de cada una? Este ejercicio estimula el
pensamiento variacional y la capacidad de comparar tasas
de cambio visualmente.

* Ejemplo 10: Propdn una funcion algebraica que combine
caracteristicas de las funciones anteriores. Explica qué parte
de su ecuacion influye mas en su forma. El estudiante asume
un rol de disefiador de funciones, consolidando su com-
prension de los pardmetros como elementos estructurales.

2

Dimension diddctica y cognitiva

El enfoque exploratorio se sustenta en la idea de que el cono-
cimiento se construye activamente mediante la interaccién con
representaciones visuales. Como sostiene Artigue (2018), el
aprendizaje se potencia cuando las tareas invitan al estudiante
a manipular, observar, registrar y comunicar lo que descubre. En
este proceso, herramientas como GeoGebra y Desmos no son
simples recursos grdaficos, sino laboratorios conceptuales donde
la matematica se experimenta.

Ademas, los ejercicios abiertos promueven un aula inclusiva:
cada estudiante puede llegar a conclusiones vdlidas desde dis-
tintos niveles de razonamiento, generando diversidad de res-
puestas y fomentando el didlogo matematico. De acuerdo con el
disefio Universal para el aprendizaje (CAST, 2018), las actividades
deben ofrecer multiples formas de participacion y expresion,
adaptandose a las diferencias cognitivas y comunicativas de los
aprendices.

Conclusiones

El estudio de las funciones algebraicas permitié comprender cémo
las variaciones en los pardmetros modifican la forma, posicion y
orientacion de sus grdaficas, revelando la estrecha relacion entre el
lenguaje algebraico y la representacion visual. A lo largo del capi-
tulo se evidencié que analizar las funciones desde una perspectiva
grdfica no solo enriquece la comprension conceptual, sino que
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también despierta el interés por descubrir patrones, formular con-
jeturas y justificar razonamientos. La observacién, la exploracion
y la comparacién se consolidan, asi como estrategias clave para
que el estudiante construya significado y desarrolle una mirada
mas profunda y flexible sobre el comportamiento de las funciones.

En el dmbito educativo, las actividades abiertas y exploratorias
presentadas favorecen el aprendizaje activo y la autonomia inte-
lectual. Cuando el estudiante manipula, experimenta y reflexiona
sobre las transformaciones grdficas, la matematica deja de ser
un conjunto de reglas para convertirse en una herramienta de
interpretacién y razonamiento. Este enfoque promueve la cu-
riosidad, el pensamiento critico y la conexion entre lo simbdlico
y lo visual, aspectos esenciales para avanzar hacia el estudio
de las funciones trascendentes y el desarrollo de competencias
analiticas que perduren mas alld del aula.
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CarituLo IV

Funciones trascendentes y sus
propiedades

Introduccion

Elestudio de las funciones trascendentes marca uno de los momentos
mas significativos del aprendizaje matemdtico, porque en ellas el
pensamiento se abre a la comprension del cambio en su forma mas
profunda. Las funciones exponenciales, logaritmicas y trigonomé-
tricas permiten describir procesos que van mas alld de lo que las
funciones algebraicas pueden expresar. A través de ellas es posible
entender el crecimiento de una poblacion, el comportamiento de
una onda o la manera en que la luz se atenUa con la distancia. Este
capitulo busca que el estudiante descubra en las funciones trascen-
dentes no solo un conjunto de formulas, sino un modo de pensar los
fendmenos naturales y sociales con precision, belleza y sentido.
Cada una de estas funciones encierra una historia y una in-
terpretacion distinta del mundo. La funcién exponencial mues-
tra como algo puede crecer o decrecer sin limite, reflejando el
ritmo de la vida y el paso del tiempo. El logaritmo, su inversa,
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revela la forma en que la mente humana percibe la magnitud
de los cambios: no de manera lineal, sino proporcional. Las fun-
ciones trigonométricas, por su parte, condensan la esencia de
la periodicidad: el movimiento de los planetas, la vibracién del
sonido, las oscilaciones del corazén. En conjunto, las funciones
trascendentes componen una sinfonia matematica donde cada
una aporta su propio tono para explicar la armonia de lo real.
Mas alld del cdlculo y las propiedades, este capitulo invita a con-
templar las funciones trascendentes como un encuentro entre la abs-
traccion y la experiencia. En ellas, la matemdtica se vuelve lenguaje
del movimiento, instrumento para comprender la regularidad y el
misterio que habitan en lo cotidiano. A través de ejemplos, repre-
sentaciones grdaficas y aplicaciones, el lector podrdver como estos
conceptos conectan la razdn con la intuicién, lo simbdlico con lo
visualy lo tedrico con lo vivencial. Aprender funciones trascendentes
es, finalmente, aprender a mirar el mundo desde una perspectiva
mas amplia, donde la I6gica y la belleza se unen para revelar las
leyes que sostienen el cambio y la continuidad en la naturaleza.

Funciones exponenciales y logaritmicas
Las funciones exponenciales y logaritmicas constituyen un pilar
esencial del pensamiento trascendente, pues describen fenéme-
nos donde el cambio no es uniforme, sino proporcional al estado
mismo de la magnitud. Su comprensiéon implica una transicién
cognitiva desde la proporcionalidad lineal hacia una concep-
cion multiplicativa del cambio, que se manifiesta en procesos
de crecimiento, decrecimiento y escala. A lo largo de la historia
de la matemdtica, estas funciones han permitido explicar con
precision el comportamiento de sistemas naturales y sociales,
desde el crecimiento poblacional hasta la propagacién de ondas
o la evolucién del capital financiero. En este sentido, su estudio
no solo tiene valor tedrico, sino también epistémico, al permitir
gue el estudiante reconozca la estructura matematica que sub-
yace en la realidad (Stewart, 2016; Sullivan, 2016; Larson, 2021).

Definicion, propiedades y relacion de inversa
La funcion exponencial, expresada comof(X) = a*cona # 1 seca-
racteriza por un crecimiento o decrecimiento que depende del valor
actual de la variable, lo que le otorga un comportamiento autorrefe-
rencial. Tal como explica Stewart (2016), la idea de “crecimiento pro-
porcional al estado” permite modelar desde la reproduccién de una
especie hasta la acumulacion de intereses en una cuenta bancaria.

La funciéon logaritmica, definida como 81X) = loga X), surge como
la inversa conceptual de la exponencial y responde a una necesidad
histérica: medir el tiempo o la magnitud necesaria para alcanzar un
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determinado resultado de crecimiento. Napier, al crear los logaritmos
en el siglo XVII, buscaba precisamente simplificar los calculos multi-
plicativos transformdndolos en sumas, lo que cambid para siempre
la forma de trabajar con grandes nUmeros (Eves, 2010).

La relacion de inversidn entre ambas funciones se refleja no solo al-
gebraicamente, sino también en el plano grdéfico. La simetria respecto
alarectay = x revela la conexion bidireccional entre los procesos de
crecimiento exponencial y los de escala logaritmica. Sullivan (2016)
subraya que ensefar esta dualidad fomenta la comprensiéon relacio-
nal del concepto de funciéon, maés alld de la manipulacion de formulas,
y prepara el terreno para los temas de cdlculo diferencial e integral.

Por ejemplo: La funcion f(x) = 3% tiene como inversa
g(x) = logs(x) (Figura 1. Mientras f(x) crece sin limite a medida
que “x” aumenta, g(X) se incrementa lentamente, mostrando la
naturaleza opuesta de los procesos que representan: expansion
acelerada versus crecimiento desacelerado.

Figura 1.
Representacién de la funcion exponencial y su inversa
: +

WAn] = baggin]

Nota: Elaboraciéon propia.

Entre las propiedades fundamentales de la funcidon exponencial
(Figura 2 ) se destacan las siguientes:
1. Dominio y recorrido: Su dominio es todo nUmero real, mien-
tras que su recorrido estd restringido a valores positivos,
f(x) > O. Esto refleja su naturaleza estrictamente positiva,
lo que la hace Util para representar magnitudes fisicas y
econbdmicas que no pueden adoptar valores negativos.

Figura 2.
Representacion de la funcion exponencial

Nota: Elaboraciéon propia.
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2. Crecimiento o decrecimiento monétono:Sia > 1, la fun-
cion crece de forma indefinida; si 0 > a <1, decrece
tendiendo a cero. Esta dualidad ilustra la versatilidad
del modelo para representar tanto procesos expansivos
como disipativos.

3. Punto de interseccidn: Todas las exponenciales pasan por el
punto (0,1), dado que al. Este punto sirve como referencia
para la construccion de la grdfica.

4. Multiplicacién de potencias: Cumple la ley a*™¥ = a*a¥ , que
expresa la coherencia de la funcién bajo la composicién de
exponentes. .

5. Divisién de potencias: La expresion a* ¥ = 2= permite

simplificar operaciones cuando se comparan valores de la

misma base.

Potencia de una potencia: La propiedad (a*)" = a* garan-

tiza la estabilidad del sistema exponencial ante transforma-

ciones sucesivas.

Estas relaciones dotan a la funcién exponencial de una estruc-
tura algebraica sdlida, que respeta las reglas de proporcionali-
dad multiplicativa y asegura su coherencia interna en cualquier
contexto de aplicacion (Sullivan, 2016).

o

Propiedades fundamentales de la funcién logaritmica

Las propiedades de la funcidn logaritmica derivan directamen-
te de su condicion de inversa de la exponencial. Larson (2021)
sefala que esta correspondencia inversa no solo es formal, sino
gue también posee un significado cognitivo profundo: permite al
estudiante comprender que el logaritmo no mide una cantidad,
sino la potencia necesaria para generar una cantidad.

Figura 3.
Representacion de la funcion logaritmica

II" =5 I

Nota: Elaboraciéon propia.

1. Dominio y recorrido: La funcion estd definida solo para
x > 0,y su recorrido abarca todos los nUmeros reales. Esta
restriccion refleja que no existen logaritmos de nUmeros
negativos ni de cero.
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2. Punto caracteristico: Todo logaritmo de la base es igual @
1, es decir, loga(a) =1,y el logaritmo de 1 siempre es cero,
log,(a) = 0.

3. Suma de logaritmos:

log, (%) = log, (x) — log, )

que corresponde a la multiplicacién de potencias en la funcion
inversa.
4. Resta de logaritmos: loga(xr) = rloga(x), que expresa la
relacién inversa con la divisiéon de potencias.
5. Potencia dentro del argumento: loga(xy), lo que permite
linealizar expresiones exponenciales.

6. Cambio de base: log, (x)
_ b\X
log, (X) = T

una propiedad que posibilita el uso de cualquier base conve-
niente para el cdlculo.

Estas propiedades reflejan una estructura simétrica respecto
a la exponencial: toda operacién de multiplicacion o division
en el dominio se convierte en una suma o resta en el logaritmo.
Este principio constituye la base de su aplicaciéon en las escalas
logaritmicas, en la acUstica, la quimica o la ingenieria de datos
(Artigue, 2018).

Resolucion de ecuaciones exponenciales y logaritmicas

El estudio de las ecuaciones exponenciales y logaritmicas consti-
tuye un paso esencial en la transicién desde el dlgebra elemental
hacia el pensamiento trascendente. En este dmbito, el estudiante
no solo aplica procedimientos operativos, sino que desarrolla la
capacidad de interpretar y transformar expresiones que modelan
procesos de crecimiento, transformacién o escala. Resolver este
tipo de ecuaciones implica comprender la relacién de inversa
entre las funciones f(X) =a‘y f(X) = loga(X), lo que permite
pasar de una forma exponencial a su equivalente logaritmica y
viceversa (Stewart, 2016; Sullivan, 2016).

Ecuaciones exponenciales
Una ecuacién exponencial es aquella en la que la incégnita apa-
rece en el exponente, como en af(x) = b. Su resolucién se basa
en dos principios:
1. lgualaciéon de bases, cuando los términos pueden expresar-
se con la misma base.
2. Aplicacion del logaritmo, cuando la igualacién directa no
es posible.
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Ejemplo 1. Resolver 2*t1 = 16. Como 2% =16, se obtiene
2xtL — 94 e puede constatar que los exponentes son iguales:
por lo tanto: X+ 1 =4 = x = 3. Geométricamente se puede
constatar (Figura 4).

Figura 4.

Representacién de la solucién de la ecuacion exponencial
1 |
i -

|
*
i

L]

Nota: Elaboraciéon propia.

Este tipo de ejercicio fomenta la comprensién estructural de
la potencia y el reconocimiento de patrones numeéricos en los
exponentes, habilidades fundamentales en el desarrollo del pen-
samiento algebraico (Godino & Batanero, 1998).

Ejemplo 2. Aplicacion del logaritmo

Resolver 321 =20. Al no ser posible expresar 20 como po-
tencia de 3, se aplica logaritmo en ambos lados. Puede ser base
10 o natural; da igual (cambio de base).

10g(32x—1) = 10g(20)
aplicando propiedades

(2x — 1) log(3) = log(20)

despejar el término lineal

_ log(20)
2X — ]. — 10g(3)
de donde (20) ) (60)
_ log(20)+log(3) _ log(60) _ 1
T 2log(3)  ~ 2log(3) 710860 (60)

x ~ 1.8634165139. Geométricamente se puede comprobar
dicha soluciéon (Figura 5). Esta técnica, segun Stewart (2016),
permite “liberar” el exponente y transformarlo en una expresion
lineal, consolidando el vinculo conceptual entre las potencias y
los logaritmos.
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Figura 5.
Representacién de la solucién de la ecuacion exponencial

Nota: Elaboraciéon propia.

Ecuaciones logaritmicas
Una ecuacion logaritmica es aquella en la que la incogni-
ta aparece dentro de un logaritmo, como en 10ga(f(x)) =b

Resolverla requiere el uso de la definicion inversa del logaritmo:
log, (f(x)) =b < f(x) =a®

Esta propiedad constituye la base para transformar ecuacio-
nes logaritmicas en ecuaciones exponenciales equivalentes.

Ejemplo 3. Transformacién inversa:

Resolver: logy(x — 1) = 3. Por definicion, x — 1 = 23 = 8 de

donde x=9.

Ejemplo 4. Ecuacidn con suma de logaritmos.

Resolver: logg(x — 1) + logs(x +2) = 2

Por definicién inversa: (X — 1) (X + 2) — 32
desarrollando obtenemos
(x2 +x—-11 = 0)

resolviendo la ecuacién cuadrdtica:
X = —1j:2\/45
Como el dominio del logaritmo exige x > 1, se conserva solo
X = —1+V3 ~ 2.85, la figura muestra el resultado obtenido.

2
Figura 6.
Representacién de la solucién de la ecuacion exponencial
[1is) = togstx = 1)+ loggln+2)]  ~#
o

Nota: Elaboraciéon propia.
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Este ejemplo evidencia la necesidad de considerar las restricciones
de dominio propias de la funcién logaritmica, aspecto que refuerza
la rigurosidad conceptual y el pensamiento l6gico (Larson, 2021).

Apoyo diddctico: Las ecuaciones exponenciales y logaritmicas
no deben ensefarse como un conjunto de reglas aisladas, sino
como expresiones interdependientes que representan distintos
puntos de vista de un mismo fendmeno. Artigue (2018) y Tall
(2013) coinciden en que el aprendizaje significativo de estas
ecuaciones se potencia cuando los estudiantes visualizan sus
soluciones en el plano cartesiano, observando como las curvas
y = a¥yy = log,(x) interceptan con rectas horizontales o dia-
gonales para representar los valores buscados.

Apoyo diddctico: Desde una perspectiva pedagdgica, Godino
y Batanero (1998) sostienen que ensefiar estas ecuaciones me-
diante la resignificacion del error favorece la comprension: el
estudiante aprende mas al analizar por qué una solucién no per-
tenece al dominio que al limitarse a la aplicacion mecdanica de
propiedades. En este sentido, las herramientas tecnolégicas como
GeoGebra y Desmos se convierten en mediadores poderosos
para la exploraciéon de soluciones, promoviendo la articulaciéon
entre lo simbdlico, lo numérico y lo grafico (Artigue, 2018).

Modelos de crecimiento, decrecimiento y escala logaritmica
La observacion del crecimiento y decrecimiento en la naturaleza,
la economia o la tecnologia revela una constante: todo cambia
de manera proporcional a su propio estado. Esa es la esencia de
los modelos exponenciales y logaritmicos. Su comprension no se
limita a resolver ecuaciones, sino a entender los ritmos del mundo:
cémo algo se multiplica, cémo se atenla, o cdémo una pequefia
variacion inicial puede transformarse en un cambio gigantesco.

Crecimiento exponencial: cuando lo pequeio se multiplica
Imaginemos una poblacién de bacterias en condiciones 6ptimas:
cada individuo se divide en dos cada hora. Si comenzamos con una
sola célula, al cabo de cinco horas habra 2® = 32 células; después
de diez horas, 210 = 1024. Este crecimiento, descrito por la funcion
y(t) =Yoe™ muestra cémo el cambio depende del valor actual
del fendmeno, no de una cantidad fija (Boyce & DiPrima, 2017).
Stewart (2016) explica que este modelo se aplica también
en finanzas, donde el interés compuesto genera un incremento
continuo del capital. Por ejemplo, una inversién de 1000 ddlares
al 5% anual crece segun A(t) = 1000e%%t (Figura 7), lo que
significa que después de 10 afios el capital asciende a 1648,72
dolares. La “magia” del crecimiento exponencial radica en la re-
troalimentaciéon acumulativa: cuanto mas se tiene, mas se gana.
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Figura 7.
Representacién del crecimiento exponencial aplicado a las finanzas
T Il.' =
Fa
/
o
i Ay 1

Nota: Elaboraciéon propia.

En el dmbito educativo, el modelo de crecimiento exponencial
permite comprender coémo el aprendizaje y la motivaciéon se re-
troalimentan de manera acumulativa cuando existen condiciones
adecuadas de ensefianza, acompafiamiento y practica soste-
nida. Tal como plantea Stewart (2016), el crecimiento continuo
en sistemas dindmicos se basa en pequefios incrementos que
se acumulan y se potencian con el tiempo. De forma andloga, el
aprendizaje humano no avanza de manera lineal: cada nueva
comprension amplia la base sobre la cual se construyen conoci-
mientos posteriores.

Por ejemplo, El progreso del conocimiento puede modelarse
mediante la funcién: A(t) = 0.20e"1%, donde A(t) representa
el porcentaje de dominio después de “t” semanas. Luego de 8
semanas, el nivel de comprension se aproxima al 66 %, mostrando
coémo la retroalimentacién acumulativa genera un aprendizaje
cada vez mas rapido a medida que el estudiante consolida sa-
beres previos y los conecta con nuevos contenidos.

El aprendizaje de una lengua extranjera, un estudiante que
comienza con un vocabulario bdasico de 100 palabras y estudia
con una tasa de incremento del 10 % semanal, puede modelar
su progreso mediante la funcién A(t) = 100e%1% (Figura 8).
Después de 10 semanas, el estudiante dominaria aproximada-
mente 271 palabras.

Figura 8.
Representacion del crecimiento exponencial aplicado al dmbito
educativo

Nota: Elaboraciéon propia.
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Este crecimiento no solo refleja la memorizacién, sino la co-
nexion semdadntica entre los términos aprendidos, que acelera
la adquisicion de nuevos significados. Segun Krashen(1982), la
exposicion comprensible y constante genera una adquisicion
lingUistica natural que crece en espiral, reforzdndose con cada
experiencia comunicativa.

Del mismo modo, en matematicas, el modelo puede describir
coémo la practica diaria y el refuerzo conceptual incrementan la
comprension de manera acumulativa. Un alumno que compren-
de el 40 % de los conceptos al inicio de un mdédulo y mejora un
12 % por semana, puede alcanzar cerca del 100 % de dominio
en apenas dos meses. Este proceso refleja lo que Bruner (1997)
denomind curriculo en espiral, donde el conocimiento se revisita
en niveles cada vez mds complejos, permitiendo una profundi-
zacidon progresiva.

Apoyo diddctico: En educacion superior, el modelo exponen-
cial también ayuda a explicar como se desarrolla la compe-
tencia investigativa en los estudiantes. Durante los primeros
semestres, el progreso suele ser lento; sin embargo, cuando el
estudiante domina la lectura académica y la formulacion de
problemas, la productividad investigativa aumenta acelera-
damente. Como sefiala Biggs (2005), el aprendizaje profundo
emerge cuando el estudiante comprende la estructura subya-
cente de las tareas y comienza a transferir su conocimiento a
nuevas situaciones.

En contextos de formacién docente, el modelo tambiéen pue-
de aplicarse al desarrollo profesional continuo. Un maestro
que participa regularmente en comunidades de aprendizaje,
lecturas colaborativas y talleres, mejora su desempefio peda-
gdgico a una tasa que puede estimarse mediante el mismo
principio de crecimiento acumulativo. La retroalimentacion
reflexiva y el intercambio entre pares generan un efecto mul-
tiplicador del saber docente. Schon (1983) lo llamo reflexidn
en la accién, un proceso mediante el cual la experiencia se
convierte en conocimiento practico y el crecimiento profe-
sional se acelera.

Otro dmbito ilustrativo es el aprendizaje mediado por tec-
nologia. Cuando los estudiantes utilizan plataformas adapta-
tivas, como Moodle o GeoGebra, el sistema ajusta los niveles
de dificultad segln sus respuestas, potenciando la practica
deliberada. Ericsson (2006) mostré que la repeticion guia-
da con retroalimentacion inmediata produce un crecimiento
exponencial en la adquisicion de habilidades complejas, al
reforzar las conexiones neuronales asociadas con el dominio
experto.
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En conjunto, estos ejemplos revelan que el crecimiento expo-
nencial en educacion no depende Unicamente del tiempo o la
cantidad de practica, sino de la calidad de la interaccién peda-
goégica y de la estructura cognitiva acumulativa que se constru-
ye. Tal como sefiala Vygotsky (1979), el aprendizaje socialmente
mediado amplia la zona de desarrollo proximo del estudiante,
generando un avance que se acelera conforme aumenta su au-
tonomia y capacidad autorreguladora.

Asi, el modelo exponencial, mdas alld de su origen en las finan-
zas o la biologia, ofrece una metdafora poderosa para comprender
los procesos de aprendizaje humano: cuanto mas aprende el
estudiante, mas capaz se vuelve de aprender, y cuanto mayor es
su comprension, mds profunda se hace su motivacion por seguir
aprendiendo.

Decrecimiento exponencial:cuando el tiempo erosiona lo existente
Asi como algunos procesos crecen aceleradamente, otros se des-
gastan de forma continua y proporcional. La temperatura de
un objeto caliente que se enfria en una habitaciéon, la cantidad
de medicamento en el cuerpo o la intensidad de una sustancia
radiactiva siguen el mismo principio matematico: cada instante
se pierde una fraccion del valor restoﬁn{e. Este comportamiento
puede expresarse mediante ¥ = Y0€ "~ donde “k” indica la ra-
pidez del descenso (Murray, 2002).

Pensemos en un café caliente sobre la mesa: su temperatu-
ra desciende con rapidez al principio y mas lentamente des-
pués. Newton formuld este comportamiento con la ecuacion
T(t) =T, + (To — Ta)e_kt, donde T, es la temperatura am-
bientey Ty la temperatura del café justo cuando se coloca sobre
la mesa.

Un ejemplo cotidiano es la depreciacion de un automovil.
Si su valor disminuye cada afio en un 15%, la funcion exponen-
cial negativa muestra como el precio se reduce con mayor
rapidez al principio y mas lentamente con el tiempo, de esta
manera la funcion V(t) = Ve 1% representa como el precio
V(t) se reduce de manera mas rapida al principio y luego mas
lentamente con el tiempo. Este tipo de modelo se extiende a
fendmenos sociales, como la disminucion del interés por una
tendencia o el olvido progresivo de una informacién aprendida.

Por ejemplo, si un vehiculo nuevo cuesta 20 000 do-
lares, después de cinco afios su valor aproximado seria
20000e %7 &~ 9400 dolares (Figura 9). Este fenomeno ilustra
como la pérdida es significativa en los primeros afios, estabi-
lizdndose gradualmente.
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Figura 9.

Representacién del proceso de depreciacién de un vehiculo

Nota: Elaboraciéon propia.

En términos educativos, este comportamiento puede com-
pararse con la disminucion de la motivacién inicial en un curso
si no se mantiene el estimulo o el refuerzo, como sefalan Deci
y Ryan (2000) en su teoria de la autodeterminacién. El mismo
principio explica la disminucion del interés en una tendencia o
practica educativa. Supongamos que un grupo de estudiantes
utiliza una aplicacion de gamificacion que al inicio despierta
gran entusiasmo. En las primeras semanas, el uso es intenso;
sin embargo, después de dos meses la participacion disminuye
drdsticamente. El comportamiento puede modelarse mediante
I(t) = Ioe_kt, donde Iy es el interés inicialy “k” la tasa de pérdida
de motivacién. Este fenédmeno se observa en la difusion de inno-
vaciones: segun Rogers (2003), toda novedad educativa sigue
una curva de adopcion donde el entusiasmo inicial declina si no
se introducen elementos de renovacién o sentido pedagdgico.

Un ejemplo concreto se encuentra en las aulas virtuales: un
curso en Moodle puede comenzar con 100 % de participacion,
pero, sin retroalimentacién ni interaccion, el interés de los estu-
diantes puede descender al 40 % en pocas semanas (Figura 10).
La falta de estimulo, de sentido o de reconocimiento provoca un

decrecimiento motivacional que responde a una funcidon expo-
nencial negativa.

Figura 10.
Representacion del proceso de desmotivacion en un curso
-'“‘x 5 -
\\ .| L] i ]
. | J

Nota: Elaboracion propia.

135



Funciones trascendentes y sus propiedades

Como sostienen Deciy Ryan (2000), la motivacién autébnoma
requiere satisfacciéon de tres necesidades bdsicas: competencia,
autonomia y relacion; cuando estas no se atienden, el interés
se erosiona con rapidez. El decrecimiento exponencial también
se manifiesta en la curva del olvido, formulada por Hermann
Ebbinghaus (1885). Este investigador demostrd experimental-
mente que la memoria se deteriora con gran rapidez después del
aprendizaje y luego lo hace de manera mas lenta, ajustandose
al modelo: M(t) = Mpe ™ donde My es el conocimiento inicial
y M(t) lo que se recuerda al cabo del tiempo “t”.

Por ejemplo, un estudiante que domina el 100 % de una leccion
puede retener solo un 60 % al cabo de un dia y un 30 % tras una
semana si no repasa el contenido. Sin embargo, la aplicacion de
estrategias como la repeticion espaciada, el aprendizaje signifi-
cativo (Ausubel, 1983) o la evaluaciéon formativa (Black & Wiliam,
2009) puede contrarrestar esta tendencia natural al olvido.

En la prdactica, esto implica que un docente que refuerza los
aprendizajes de forma periédica, vinculandolos con experiencias
previas, ayuda a que la curva de olvido se “aplane”, es decir,
que el conocimiento se mantenga mds tiempo en la memoria
de largo plazo.

Escalas logaritmicas: una nueva forma de medir el cambio

Las escalas logaritmicas nacen de la necesidad de representar fe-
némenos que varian en proporciones muy grandes. Tukey (1977)
explica que estas escalas revelan patrones ocultos y facilitan la
comparacion entre fendmenos aparentemente dispares. Ejemplos
comunes de escalas logaritmicas son el pH, donde cada unidad
representa un cambio de diez veces en la concentracion de iones
de hidrégeno, o los decibelios, que miden la intensidad del sonido
en proporciones multiplicativas (ITUPAC, 2014). También la escala
de Richter, usada para clasificar terremotos, condensa enormes
variaciones de energia en una escala comprensible.

En la escala de Richter, que mide la magnitud de los terremo-
tos, cada punto adicional representa un aumento de diez veces
en la amplitud de las ondas sismicas y una 31,6 veces mdas energia
liberada. Por ejemplo, un terremoto de magnitud 6,0 libera una
31,6 veces mds energia que uno de 5,0 y casi 1000 veces mas
gue uno de 4,0. El modelo logaritmico que describe esta relacion
es: M = logw(AA), donde A es la amplitud registrada y Ay la
amplitud minimooperceptible por los sismoégrafos.

Si el registro muestra una amplitud A = 10°A = 1 entonces
M = 10g10(106) esiguala 6 (Figura 11). Esto significa que un au-
mento de una sola unidad en la escala equivale a multiplicar la
amplitud por 10, no a “sumar uno”. En el aulag, este ejemplo ayuda
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a los estudiantes a reinterpretar la magnitud como proporcion,
no como suma, comprendiendo el poder de los logaritmos para
representar fendmenos naturales (Serway & Jewett, 2014).

Figura 11.
Representacion del proceso de desmotivacion en un curso

&

Nota: Elaboracion propia.

Funciones trigonométricas
Las funciones trigonométricas constituyen un punto de conver-
gencia entre el dlgebra, la geometria y el andlisis matemdtico.
Desde una perspectiva formativa, representan una via privile-
giada para comprender la periodicidad y el movimiento en la
naturaleza, al mismo tiempo que revelan la elegancia con la que
las matematicas logran describir los fenédmenos del mundo real.
Su estudio trasciende la simple manipulacién de razones entre
lados de trigngulos: introduce al estudiante en un lenguaje sim-
bdlico capaz de expresar vibraciones, oscilaciones y repeticiones
que se encuentran tanto en el sonido de una cuerda como en la
orbita de los planetas.

Comprender una funcion como el seno o el coseno no solo
implica resolver ecuaciones, sino reconocer patrones de cambio
ritmico que articulan la continuidad entre el tiempo, el espacio
y la magnitud (Stewart, 2016). En este sentido, las funciones
trigonométricas acttan como un puente cognitivo que conecta
la experiencia empirica del movimiento con su representaciéon
abstracta y algebraica (Thomas et al., 2019).

Definicion a partir del circulo unitario.

Histéricamente, las funciones trigonométricas surgen del estudio
de los trigngulos y de la medicién de los astros. Sin embargo,
su formalizacién moderna se apoya en el circulo unitario, una
construccidon geométrica que permite extender el dominio de los
dngulos mas alld de los 90° y conectar la geometria con el andli-
sis. Si consideramos un punto P(x,y) en la circunferencia unitaria,
de radio 1y centrada en el origen (Figura 12), el dngulo @medido
desde el eje positivo de las abscisas genera las proyecciones
x = cos(a),y = sin(a).
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Figura 12.
Representacién del proceso de desmotivacion en un curso

i

Nota: Elaboraciéon propia.

De esta manera, las funciones seno y coseno se interpre-
tan como coordenadas del punto moévil sobre la circunferencia
(Larson & Edwards, 2019). En este triangulo se cumple ademds
Sen2(x) + COSZ(X) =1, que se deduce directamente del teore-
ma de Pitdgoras y es conocida como identidad fundamental
trigonométrica.

La imagen presenta una representacion geométrica del seno
de un dngulo a partir del circulo unitario, una construccion fun-
damental en la comprension de las funciones trigonométricas. En
el grdfico, se observa un circulo centrado en el origen O, sobre el
cual se proyecta un radio que forma un dngulo de = 68° (Figura
13). El punto terminal de este radio, marcado en rojo, determina
la altura o valor del seno del angulo considerado.

Esta proyeccién vertical desde el punto sobre la circunferencia
hasta el eje “y4” permite visualizar que el valor de Sen(e) corres-
ponde a la coordenada “‘y” del punto en el circulo unitario, mien-
tras que el coseno estd asociado a la coordenada “x”. La funcion
seno de un dngulo B se define como la ordenada del punto P(x, y)
en el circulo unitario asociado al dngulo central correspondiente:

sen(p) =y.

Figura 13.
Representacién de la funcion sen(:z:) y su relacién con el circulo
trigonométrico

Nota: Elaboraciéon propia.
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El coseno del angulo (B) se define como la abscisa del punto
P(x, y) sobre el circulo unitario: COS(B) =X.

El circulo unitario no solo unifica las nociones de angulo y
longitud de arco, sino que también permite definir las restantes
funciones trigonométricas:

tan(0) = izzggi ,cot(0) =

cos(0)
sen(0)

,sec(0) = @,csc(e) = m

Esta conexidén entre lo geométrico y lo analitico permite com-
prender que las funciones trigonométricas son manifestaciones
diferentes de una misma estructura funcional compleja, cuya
naturaleza es periddica, continua y diferenciable, pero también
profundamente simbdlica del movimiento y la oscilacion.

Propiedades, periodicidad y simetrias
Las funciones trigonométricas son periddicas, lo que significa que
repiten sus valores en intervalos regulares. El seno y el coseno
presentan un periodo fundamental de 21, mientras que la tangen-
te y la cotangente tienen un periodo de T. Se puede comprobar
las siguientes igualdades:

cos(x + 2n) = cos(x), tan(x + n) = tan(x), cot(x + n) = cot(x)

Esta propiedad las convierte en modelos ideales para describir
fendmenos ciclicos como las vibraciones, las ondas y los ritmos
bioldgicos (Stewart, 2016).

Figura 14.
Representacion de la funcion sen(m) y su relacion con el circulo
trigonométrico

Nota: Elaboracion propia.

Ademas, las funciones trigonométricas obedecen a iden-
tidades fundamentales, entre las cuales destaca ademds de
la identidad pitagorica otras como: 1+tan2(x) zsecz(x),
1+ cotz(x) = CSCZ(X). En la practica docente, estas propieda-
des pueden explorarse mediante herramientas digitales como
GeoGebra, donde la manipulacidon de pardmetros en funciones del
tipo f(x) = A sen(Bx + C) 4+ D (Figura 14) permite visualizar
los efectos de la amplitud (A), el periodo 2];‘ 5 el desfase (C) y

la traslacion vertical (D).
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Figura 15.
Representacién general de la funcion sen(w)

A= Aaen|BusCD *

Nota: Elaboraciéon propia.

Segun Hohenwarter y Jones (2007), el uso de software dind-
mico fomenta la comprensién conceptual al vincular la expresion
simbdlica con su representacion grafica y su interpretacion
fisica.

Comprension de signos y valores notables en el circulo unitario
La comprension de los signos y valores notables en el circulo
unitario representa uno de los aprendizajes mas significativos
dentro del estudio de las funciones trigonométricas. No se trata
Unicamente de memorizar posiciones o dngulos, sino de interpre-
tar el significado geométrico y funcional de cada punto del circu-
lo, comprendiendo coOmo los signos de seno, coseno y tangente
expresan la direccion y la orientaciéon del movimiento angular.
Este conocimiento conecta la visualizacién geométrica con la
abstraccién algebraica, consolidando el pensamiento analitico
del estudiante.

En el primer cuadrante, ambas coordenadas son positivas:
el seno y el coseno crecen simultdneamente desde 0 hasta 1.
En el segundo cuadrante, el seno se mantiene positivo mientras
el coseno cambia de signo, lo que produce la inversion en la
direccion horizontal del punto. Estas variaciones reflejan, sin
cdlculo alguno, los cambios de crecimiento y decrecimiento de
las funciones cuando se trasladan al plano cartesiano. Como
explica Zill (2018), los signos son el “lenguaje visual” de la fun-
cion: cada cuadrante indica no solo el valor numérico sino el
sentido del movimiento.

Cuando el dngulo crece en sentido antihorario, la proyecciéon
horizontal (X) corresponde al coseno y la vertical (Y) al seno.
Asi, el circulo unitario transforma el estudio de tridngulos estati-
cos en un andlisis de posiciones dindmicas. Segun Thomas et al.
(2014), esta representacion permite visualizar la continuidad y
periodicidad de las funciones sin necesidad de derivadas, pues
la regularidad geométrica del circulo basta para predecir el com-
portamiento de los valores.
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Cada cuadrante del circulo unitario refleja una combinaciéon
de signos que dependen de la posicién del punto (x,y).

Tabla 1.

Tabla de signos de las funciones trigonométricas en cada cuadrante
Cuadrante Intervalo Signo de Signo de Signo de
angular sen(0) cos(0) tan(0)

| 0<0<X (+) (+) (+)

I % <0< (+) () )

n <0< 3Tn ) ) (+

\Y B co<n ) (+) )

Nota: Elaboracion propia.

En el primer cuadrante, ambas coordenadas son positivas: el
seno y el coseno crecen simultGneamente desde O hasta 1. En el
segundo cuadrante, el seno se mantiene positivo mientras el co-
seno cambia de signo, lo que produce la inversidon en la direccidon
horizontal del punto.

Estas variaciones reflejan, sin cdlculo alguno, los cambios de
crecimiento y decrecimiento de las funciones cuando se trasla-
dan al plano cartesiano. Como explica Zill (2018), los signos son
el “lenguaje visual” de la funcién: cada cuadrante indica no solo
el valor numeérico sino el sentido del movimiento.

Los valores notables de seno y coseno correspondientes a
angulos de 0°,30°,45°,60°0°, 30° surgen del andlisis de triGngu-
los isdsceles y equilateros inscritos en el circulo. Estos valores
se extienden a los demdas cuadrantes aplicando las simetrias
del circulo. Por ejemplo, si sen(300) = sen(150°) (Figura 15),
porque comparten la misma proyeccion vertical. En cambio,
sen(150°) = — cos(30°) debido al cambio de signo del eje x.

Figura 16.
Representacion grafica de la funcion sen(m) y su signo en el primero
y segundo cuadrante

Nota: Elaboraciéon propia.
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Boyce y DiPrima (2017) subrayan que este razonamiento es
fundamental en el aprendizaje conceptual: no se trata de recor-
dar valores, sino de entender su origen geométrico y su cohe-
rencia estructural.

Las simetrias del circulo son esenciales para relacionar los
valores de diferentes angulos. Dos dngulos se consideran suple-
mentarios si suman 180° y opuestos si difieren en 180°. Estas
relaciones generan equivalencias funcionales:

1. sen(180° — 0) = sen(0)

2. cos(180° — 0) = — cos(0)

3. sen(360° — 0) = — sen(0)

4. cos(360° — 0) = cos(0)

A través de estas simetrias, los valores del primer cua-
drante sirven para reconstruir los de toda la circunferencia.
Stewart (2016) destaca que esta generalizaciéon refuerza la
comprension estructural del sistema trigonométrico, pues
permite trabajar con equivalencias sin necesidad de recurrir
a férmulas derivadas.

Ecuaciones trigonométricas
El estudio de las ecuaciones trigonométricas constituye un paso
esencial en la comprensidn de las funciones trascendentes, pues
permite conectar la estructura algebraica con la periodicidad
y las simetrias propias del mundo trigonométrico. Resolver una
ecuacién trigonométrica implica identificar todos los dngulos
que satisfacen una determinada relacion funcional, lo que exige
reconocer la naturaleza periédica y multiple de las soluciones.
Como sefiala Stewart (2016), mientras las ecuaciones algebraicas
admiten un numero finito de soluciones, las trigonométricas se
extienden de manera infinita, repitiéndose en intervalos regulares.

Una ecuacién trigonométrica es toda igualdad que involucra
una o mas funciones trigonomeétricas, tales como el seno, el co-
seno, la tangente o sus reciprocas. Su objetivo es determinar los
valores del dngulo \theta que satisfacen la igualdad.

Ejemplo general: Sen(O) = % Resolver esta ecuacion no
solo consiste en hallar el dngulo principal que cumple la con-
dicién, sino también todos aquellos que producen el mis-
mo valor de seno, teniendo en cuenta la periodicidad de la
funcion.

Segun Thomas et al. (2014), comprender una ecuacién tri-
gonomeétrica implica entender que el circulo unitario funciona
como un espacio de soluciones repetitivas: cada valor de seno
o0 coseno reaparece en diferentes cuadrantes, lo que da lugar a
una familia infinita de soluciones.
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La estrategia mas formativa para resolver ecuaciones trigo-
nométricas consiste en representarlas en el circulo unitario, pues
cada solucion corresponde a un punto o conjunto de puntos sobre
la circunferencia.

Los puntos cuya altura es % corresponden a los dngulos de
30° y 150°. Por la periodicidad de la funcién seno, las soluciones
generales son:

=% +2knod = > + 2kn,k € Z

Este razonamiento, que surge de la observacion geométrica,
permite al estudiante visualizar como una misma razon trigo-
nométrica se repite en distintos cuadrantes, fortaleciendo la
comprension de la periodicidad (Boyce & DiPrima, 2017).

Las ecuaciones trigonomeétricas pueden clasificarse en sim-
ples, cuadraticas, compuestas y reducibles:

1. Simples:implican una sola funcién, como COS(@) = %

2. Cuadradticas: involucran términos como

2sen?(0) —sen(0) — 1 =0
3. Compuestas: combinan diferentes funciones, por ejemplo,

sen(0) cos(0) = +

4. Reductibles: requieren el uso de identidades trigonométri-
cas para simplificarse, como ¢cos(20) = sen(0).

Al resolver por ejemplo 2sen’ (9) - Sen(e) —1=0 podemos
considerar los siguientes momentos:
1. Al Sustituir X = sen(O) se obtiene la ecuacidon:

22 —x—-1=0

2. Factorizando

(2X+1)(X—1):0:>X:10x:—

o=

3. Regresar al cambio de variable: X = sen(O) para obtener
los siguientes casos:

Caso A:sen(O) —1=0=1%+2knkeZ

Caso B: Sen<6> = —% = 0= %ﬁ + 2knob = 1? + 2kn, k € Z.

Conjunto de soluciones generales:

0 c {5 + 2kn, 15 4 2kn, LUz +2kn},k€ 7

7 11
En [0,27[) = %7%a 6n
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La variedad de ecuaciones trigonométricas refleja la riqueza
del pensamiento trascendente. En cada caso, el estudiante apren-
de a transformar una expresion en otra equivalente, revelando
la simetria del circulo y la regularidad del movimiento periédico.
Como subraya Stewart (2016), la resolucion de estas ecuaciones
es una experiencia de razonamiento funcional que une la geo-
metria, el dlgebra y la intuicién analitica.

Funciones inversas y restricciones de dominio
Comprender las funciones inversas constituye un paso decisivo
en el recorrido formativo que lleva del dlgebra a las funciones
trascendentes. En este proceso, el estudiante aprende que in-
vertir una funcidn no solo significa “despejar una variable”, sino
comprender la relacidn reciproca entre causa y efecto en un sis-
tema funcional. Las funciones trigonométricas y exponenciales,
al extenderse mas alld del comportamiento lineal o polindmico,
requieren una atencion especial a las restricciones de dominio,
pues su cardcter periédico o no inyectivo impide definir una in-
versa sin una seleccién adecuada de intervalos.

En su sentido mds amplio, una funcién inversa se define como
aquella que revierte el efecto de otra. Si una funcion ftransforma
un elemento “x” en un valor “y”, su inversa f~1 transforma ese
mismo “y” de nuevo en “x” £ (f(x)) = f(X)

Esta ideq, simple en apariencia, encierra una de las nociones
mas poderosas del andlisis: la posibilidad de deshacer una ope-
racién dentro de un sistema de correspondencias. Segun Stewart
(2016), comprender la funcién inversa implica desarrollar una
“conciencia bidireccional del cambio”, es decir, la capacidad de
ver una misma relacion desde dos perspectivas complementarias:
la de la causa y la del efecto.

Para que una funcidn posea inversa, debe ser inyectiva y so-
breyectiva, es decir, cada elemento del dominio se asocia con un
Unico elemento del codominio, y cada valor posible estd repre-
sentado en la imagen. Sin embargo, muchas funciones trascen-
dentes, como las trigonométricas o exponenciales, no cumplen
estas condiciones de manera global, lo que obliga a introducir
las restricciones de dominio como herramienta de coherencia
matematica.

Las restricciones de dominio no deben entenderse como
una limitacién arbitraria, sino como un acto de precisién con-
ceptual. En las funciones trigonométricas, por ejemplo, la pe-
riodicidad genera repeticiones infinitas de valores, lo que im-
pide establecer una relacién uno a uno entre dngulo y razén
trigonométrica. Para restaurar esa unicidad, se selecciona un
intervalo donde la funcidon sea estrictamente monodtona (cre-
ciente o decreciente).
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De acuerdo con Thomas et al. (2014), el propodsito de la res-
triccion es “preservar la identidad funcional y garantizar la re-
versibilidad”. Por ello, los intervalos convencionales de definicion
para las inversas son:

L Lsen ! (x) : [-1,1] > [-5,4]

2. 2.cos!(x) : [-1,1] — [0,n]

3.3.tan"! (x) R — (—%, %)

Estas restricciones garantizan que cada valor de salida de las
funciones inversas sea Unico, evitando contradicciones. Boyce
y DiPrima (2017) sefialan que este principio de restriccion es
fundamental en el estudio de ecuaciones trascendentes, ya que
permite determinar dngulos, magnitudes y tiempos de manera
univoca dentro de modelos fisicos y geométricos

Las funciones trigonométricas inversas: arcoseno, arco coseno,
arco tangente, arco cotangente, arco secante y arco secante,
representan el paso de las razones a los dngulos. Si las funciones
seno, coseno o tangente establecen relaciones entre catetos y an-
gulos en un trigngulo rectangulo, sus inversas permiten reconstruir
el dngulo a partir de una razédn conocida. Geométricamente, una
funcion y suinversa (Figura 16) son reflejos especulares respecto
a la linea y = Xx. Este principio de simetria es particularmente
visible en las funciones seno y arcoseno: si se graficay = sen(x)
y luego se refleja la curva sobre dicha diagonal, se obtiene la
gréficadey = sen~! (X)

Esta reflexion representa un cambio de perspectiva entre va-
riable independiente y dependiente. Lo que antes era una mag-
nitud vertical (valor del seno) se convierte ahora en un despla-
zamiento horizontal (dngulo), y viceversa.

Figura 17.
Representacion grdfica de la funcion sen(a:) y Ssu inversa

Nota: Elaboraciéon propia.
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Stewart (2016) destaca que esta visualizacién contribu-
ye a comprender el carécter relacional de la funcion: “invertir
una funcidon es observar el mismo fendbmeno desde su reverso
geomeétrico”.

Apoyo diddctico: En este sentido, ensefar las funciones in-
versas no se reduce a operar algebraicamente, sino que implica
guiar al estudiante hacia una comprensiéon profunda del compor-
tamiento funcional desde una perspectiva espacialy conceptual.
Comprender la inversa de una funcidn supone reconocer como
cada punto del plano se refleja en torno a la bisectriz ¥ = X,
transformando entradas en salidas y viceversa. Este proceso no
solo favorece la visualizacién de la simetria y la correspondencia
entre direcciones y magnitudes, sino que también estimula el
razonamiento geométrico, la interpretacion grafica y la conexidn
entre distintas representaciones. El docente puede aprovechar
herramientas digitales como GeoGebra para que el estudiante
experimente con la grdafica original y su inversa, observe los
cambios en tiempo real y descubra por si mismo la relacion
entre ambas.

El concepto de inversa no se limita a las funciones trigonomé-
tricas. En el campo de las funciones exponenciales y logaritmicas,
la relacion inversa adquiere un significado complementario. La
funcién exponencial es estrictamente creciente en todo R, por
lo que su inversa se define sin necesidad de restricciones adi-
cionales: f 71 (X) = ln(X),X > 0.

Aqui, el logaritmo no solo revierte la accidn de la exponencial
(Figura 17), sino que también transforma una multiplicacion en
una suma, evidenciando la naturaleza estructuralmente inversa
de ambas operaciones (Thomas et al,, 2014).

Figura 18.
Representacion grdfica de la funcion sen(a:) y Ssu inversa

L

Nota: Elaboraciéon propia.

La relacion entre estas dos funciones, como explica Zill (2018),
ilustra la universalidad del concepto de inversion: toda opera-
ciéon matemdtica implica un proceso reciproco que equilibra el
sistema funcional.
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El estudio de las funciones inversas y las restricciones de do-
minio constituye una experiencia de pensamiento matematico
integral. Ensefia a reconocer los limites del sistema para conser-
var su coherencia, a establecer correspondencias Unicas dentro
de la multiplicidad y a pensar la funcion como un proceso rever-
sible, simétrico y consciente de si mismo. En el recorrido que va
del dlgebra al andlisis, este aprendizaje representa una madurez
intelectual: comprender no solo coémo una funcidon actua, sino
también coémo puede ser deshecha para revelar la estructura
que la sustenta.

Funciones trascendentes: aplicaciones, ensefnanza y conexio-
nes interdisciplinarias
Las funciones trascendentes constituyen el soporte matematico
gue permite describir los movimientos y transformaciones del
mundo fisico. En ellas se encuentra la sintesis de un pensamiento
que va mas alld del cdlculo numérico: una forma de comprender
los ritmos, las oscilaciones y los equilibrios que estructuran la rea-
lidad. Como sostiene Stewart (2016), “las funciones trascendentes
no son un artificio del andlisis, sino una traduccién matematica
de los procesos naturales”.

Aplicaciones en movimientos ondulatorios, geometria y fisica
En el campo de la fisica y la geometria, estas funciones expresan
leyes de regularidad y continuidad: el movimiento de los astros,
la vibraciéon de una cuerda, la propagacion de la luz, la expansiéon
térmica o el decaimiento radiactivo. Su estudio revela la conexidn
entre el lenguaje simbodlico de la matematica y los principios
universales de la naturaleza.

Funciones trigonométricas y el lenguaje de las ondas
Las funciones seno y coseno representan los cimientos del and-
lisis de los movimientos ondulatorios. La razén de su presencia
en multiples fenédmenos reside en su periodicidad, que refleja la
repeticion de los estados en el tiempo. En una onda armonica
simple, la ecuacién y(t) = Asen(wt + (p) describe la posicion “y
de una particula en funciéon del tiempo, donde A es la amplitud,
® |g frecuencia angular y @ la fase inicial. Esta forma funcional
permite modelar fendmenos tan diversos como la vibraciéon de
una cuerda de guitarra, el desplazamiento del pistén de un motor,
el comportamiento de las mareas o la variacién de la corriente
alterna.

Thomas et al. (2014) explican que el vinculo entre la geo-
metria circular y el movimiento oscilatorio constituye una
de las primeras unificaciones conceptuales del pensamiento
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cientifico moderno: el circulo proyectado sobre un eje se
convierte en una onda senoidal, y con él, la geometria se
hace dindmica.Un ejemplo significativo es el movimiento de
un péndulo ideal (Figura 18), cuya trayectoria angular, para
pequefas oscilaciones, puede aproximarse por una funcién

del tipo:
0{t) =00cos| /£t

donde g es la aceleracién de la gravedad y L la longitud del
péndulo.

Figura 19.
Representacion grafica del movimiento de un péndulo

*

& m [ HE o BT 40 < 05 201

Nota: Elaboraciéon propia.

El movimiento armoénico que describe el péndulo es, en esencia,
una proyeccion temporal de la circularidad geométrica. Para un
péndulo ideal de longitud L = 1,00mque se separa un angulo inicial
pequefo de = 1009 se suelta sin velocidad inicial. Usa 8 = 9, 815%
para determinar la ecuacion del movimiento, periodo y frecuencia.

Ondas complejas y superposicion armdnica

Cuando varias ondas interactUan, su combinacidén se expresa me-
diante la superposicién de funciones trigonométricas. En acuUstica
y electromagnetismo, esta propiedad explica la interferencia de
ondas, los patrones de resonancia y la formacién de armonicos.
La ecuacion general de una onda compuesta es:

y(x, t) = Eil A, sen (knx — opt + (Pn)

una expresion que representa la superposicion de multiples fre-
cuencias y fases. Zill (2018) sefiala que este principio es la base
matemdtica de la teoria de Fourier, mediante la cual cualquier se-
fial periédica puede descomponerse en una suma infinita de senos
y cosenos. Estaidea revolucioné la fisica y la ingenieria, al permitir
el andlisis de vibraciones, sefiales eléctricas y ondas sonoras.
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Geometria dindmica y parametrizacion de trayectorias

En geometria, las funciones trascendentes permiten describir cur-
vas y trayectorias mediante ecuaciones paramétricas. Una cir-
cunferencia de radio r se expresa como: X =T1C0s0,y = rseno.
Esta relacion entre periodicidad y desplazamiento lineal describe
movimientos helicoidales presentes en estructuras naturales como
el ADN o los remolinos de agua y en sistemas mecdnicos, como
los resortes o tornillos. Imaginemos una particula que se desplaza
siguiendo la forma de un resorte con radior =2 cm, avanzando 1cm
por cada vuelta completa (Figura 19). El movimiento se describe
con las ecuaciones paramétricas:X = 2¢0s 0,y = 2senf,z = %9
.donde: “x”y “y” determinan la posiciéon circular de la particula en
el plano, z representa el desplazamiento vertical, 8 es el dngulo en
radianes que mide el avance en torno al eje.

Figura 20.
Representacion grdafica del movimiento de un péndulo
!

Nota: Elaboraciéon propia.

Sila particula da una vuelta completa, 6= 27f, la particula
se encuentra un centimetro mds arriba que su punto inicial,
completando una hélice.Seqgun Boyce y DiPrima (2017), la
geometria paramétrica basada en funciones trascendentes
no solo ofrece una descripcidon espacial, sino que también
expresa la temporalidad del movimiento: cada punto no es
estatico, sino un instante dentro de una trayectoria. De este
modo, la geometria se integra con la fisica en un lenguaje
comun del cambio.

La funcion exponencial y los procesos de variacion continua

La funcion exponencial Y = € describe todos aquellos fenéme-
nos donde la tasa de cambio es proporcional al valor presente.
Aparece en la desintegracion radiactiva, en el crecimiento po-
blacional, en la difusién del calor y en la carga y descarga de
condensadores eléctricos. Por ejemplo, el enfriamiento de un
cuerpo se modela con la ley de Newton:

T(t) = Ta+4 (To— Ta)e ™
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donde T, es la temperatura ambiente y Ty la inicial. Este tipo
de modelos muestra coémo la funcidén exponencial actUa como un
puente entre la matematica y la naturaleza, describiendo la forma
en que los sistemas evolucionan hacia el equilibrio. Imagina que
sirves una taza de café recién hecho. La temperatura al momento
de servirlo es de 85 grados Celsius, y lo dejas reposar sobre una
mesa en una habitacion que estd a 25 grados Celsius. Pasados
10 minutos, decides medir la temperatura del café y descubres
que ha bajado a 60 grados. Surge entonces una pregunta bas-
tante comun:

;qué temperatura tendrd el café después de 20 minutos?

A partir de la relacion anterior se obtiene una funcidn expo-
nencial del tipo:

T(t) = 25 + 60e 053¢ (Figura 21)

De aqui se puede comprobar que después de 20 minutos, la tem-
peratura del café habrd descendido hasta unos 45 grados Celsius,
acercdndose cada vez mas a la temperatura del ambiente.

Figura 21.
Representacion grafica del movimiento de un péndulo

L

Nota: Elaboracion propia.

Thomas et al. (2014) afirman que la relevancia de las funciones ex-
ponenciales radica en su capacidad para expresar tanto el crecimiento
ilimitado como la disipacion progresiva, dos tendencias opuestas pero
complementarias que gobiernan los procesos fisicos y bioldgicos.

Funciones hiperbdlicas.

Las funciones hiperbodlicas constituyen una extensién natural
del estudio de las funciones exponenciales y logaritmicas, ya
gue surgen de combinaciones particulares de estas y describen
relaciones geométricas en la hipérbola del mismmo modo en que
las funciones trigonométricas lo hacen en la circunferencia. Su
comprensidon no solo tiene un interés puramente matemdatico,
sino también un profundo valor en el andlisis de fendmenos fisi-
cos, en la teoria de relatividad, en la ingenieria eléctrica y en el
modelado de sistemas dindmicos continuos.
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En esenciaq, las funciones hiperbdlicas se definen a partir de la
funcién exponencial. Asi, la funcién seno hiperbdlico y la funcion
coseno hiperbolico se expresan como:

_ ef—e*
senhx = ~——,

e*+e ™

coshx = 5

Estas definiciones guardan una analogia profunda con las fun-
ciones trigonométricas circulares, aunque presentan propiedades
geométricas diferentes: mientras el seno y el coseno se relacionan
con el circulo unitario x2 + y2 = 1, sus equivalentes hiperbélicos
se asocian con la hipérbola x2 — y2 =1 (figura 22).

Figura 22.
Representaciéon grafica de la funcion senh(m)

Nota: Elaboraciéon propia.

Esta relacion, resaltada por Stewart (2016), permite visualizar
el comportamiento de las funciones hiperbdlicas como un reflejo
geométrico en el plano de los nUmeros reales, donde la simetria
y la proporcién adquieren un nuevo significado.

Una caracteristica notable de las funciones hiperbdlicas es que
satisfacen la identidad:cosh?x — senh?x = 1, que recuerda a la
identidad pitagorica de las funciones trigonométricas, aunque
con signo opuesto. Este detalle, aparentemente simple, refleja
una diferencia estructural profunda: mientras las funciones trigo-
nomeétricas oscilan entre valores maximos y minimos, las hiperbo-
licas crecen indefinidamente, mostrando un comportamiento no
oscilatorio que las hace ideales para describir procesos de cre-
cimiento o decaimiento que no se repiten de manera periddica.

Historicamente, las funciones hiperbdlicas ocuparon un lugar
destacado en la bUsqueda de una matemdatica capaz de repre-
sentar con fidelidad las formas que la naturaleza adopta. Leibniz,
Huygens y los hermanos Bernoulli las utilizaron para describir
la curva catenaria, es decir, la forma que adopta un cable sus-
pendido entre dos puntos fijos bajo su progio peso. Esa curva se
expresa mediante la funcion: ¥ = aCOShg donde “a” depende
del peso y la tension del material. Boyer (2011) destaca que este
descubrimiento cambio la forma de concebir la matematica apli-
cada: el comportamiento de un objeto fisico podia explicarse a
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partir de una relacién puramente algebraica. Esta idea marcé
un paso decisivo en la unidon entre la abstraccion matematica y
la observacion empirica.

Imaginemos un puente de 400 metros de largo, cuyos cables
cuelgan entre dos torres, alcanzando una profundidad maxima
de 40 metros en el punto central (Figura 22). Si quisiéramos
describir matemdaticamente la_forma de ese cable, podriamos
usar la funcion: Y = 100 cos 100 -

Figura 23.
Representaciéon grafica de la funcion senh(x)

Nota: Elaboraciéon propia.

Esta formula no es un simple artificio algebraico: repre-
senta una ley fisica que asegura el equilibrio de las fuerzas.
Cada punto del cable estd en perfecta compensacidon entre
el peso que tira hacia abajo y la tension que lo sostiene.
De ahi que la forma catenaria sea considerada la curva del
equilibrio natural.

Este principio se aplica en puentes como el Golden Gate de
San Francisco o el Puente de la Bahia, donde los ingenieros
disefian la estructura teniendo en cuenta la tensién, el peso y
la distancia entre las torres. Boyer (2011) explica que esta curva
fue descubierta por Huygens, Leibniz y los hermanos Bernoulli,
quienes demostraron que ninguna otra forma podia soportar
mejor su propio peso. Su hallazgo transformé la ingenieria mo-
dernay demostré que la matematica no solo describe el mun-
do, sino que también puede anticipar sus leyes mds estables.

Mds allad de su origen geométrico, las funciones hiperboli-
cas también poseen una dimension simbdlica y conceptual.
Feynman (201) sefala que estas funciones aparecen en la des-
cripcion del espacio-tiempo dentro de la teoria de la relatividad
especial, donde reemplazan a las funciones trigonométricas
para expresar transformaciones que no implican rotacion, sino
expansion o contraccion. Esta presencia en la fisica moderna
demuestra que las hipérbolas, mds que simples curvas, repre-
sentan una manera de comprender el movimiento y la estructura
del universo.
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Apoyo diddctico: Desde la enseffianza y la formacion matema-
tica, el estudio de las funciones hiperbdlicas permite desarrollar
una vision mdas integrada del conocimiento. Larson y Edwards
(2019) subrayan que introducir estas funciones en el aula no debe
limitarse a su manipulacién algebraica, sino que debe invitar a
reflexionar sobre sus significados geométricos y sus aplicacio-
nes. Al explorarlas, el estudiante descubre que la matemdtica no
se reduce a formulas, sino que expresa las leyes de equilibrio y
simetria que gobiernan la realidad.

En definitiva, las funciones hiperbdlicas son una puerta hacia
la comprension de los procesos que no se repiten, pero que con-
servan un orden profundo. Su estudio, lejos de ser un ejercicio
meramente formal, revela la capacidad del pensamiento mate-
matico para unir lo abstracto con lo tangible, lo estatico con lo
dinédmico. Comprenderlas significa reconocer que el crecimiento,
la expansion y el equilibrio también tienen una geometria propia,
escrita con el lenguaje de las hipérbolas.

Estrategias didacticas para su ensefanza y visualizacion
Ensefiar las funciones trascendentes es, en esencia, ensefiar a
mirar la realidad desde una nueva perspectiva. No basta con
transmitir sus formulas ni con demostrar sus propiedades; lo ver-
daderamente valioso es lograr que el estudiante descubra que
detrds de cada simbolo hay una forma de interpretar el mundo.
Cada funcion describe una manera distinta en la que los fendme-
nos naturales, fisicos o sociales cambian, crecen o se estabilizan
con el tiempo. Por eso, las estrategias didacticas deben permitir
que el alumno vea, sienta y comprenda esa relacion viva entre
las matemdticas y lo que ocurre a su alrededor.

Una estrategia inicial consiste en comenzar desde la expe-
riencia, desde lo observable y significativo. Antes de introducir
una ecuacion, es posible partir de un experimento sencillo: medir
coémo se enfria un liquido, cémo se acumulan los intereses en una
cuenta de ahorro o coémo aumenta el nUmero de bacterias en
un cultivo. Estas situaciones acercan al estudiante a los patrones
de cambio realy loinvitan a reconocer que esos comportamien-
tos pueden representarse con una funcién trascendente. Como
sefialan Godino y Batanero (1998), el conocimiento matematico
adquiere sentido cuando el estudiante logra conectar el simbolo
con la situacién y con el significado que ese simbolo encierra.
No se trata de memorizar expresiones, sino de descubrir lo que
representan.

En un segundo momento, resulta fundamental visualizar el
comportamiento de las funciones. Las herramientas tecnoldgicas,
como GeoGebra, Desmos o los simuladores de PhET, ofrecen un
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espacio donde las ecuaciones se convierten en curvas dindmicas.
El estudiante puede modificar valores, desplazar pardmetros, ob-
servar transformaciones y descubrir regularidades sin perder la
conexidon con la intuicion visual. Por ejemplo, al manipular el valor
de “k” enla funciony = ekx, puede ver cOmo la curva pasa de un
crecimiento acelerado a un decrecimiento suave, comprendiendo
de forma natural el papel del parametro. Duval (1999) advierte
que la visualizacion no debe verse como un complemento esteé-
tico del cdlculo, sino como un modo de pensamiento que permi-
te acceder al significado. Ver como una funcién “se mueve” es,
en realidad, comprender coémo se comporta el fendbmeno que
representa.

Otra estrategia poderosa es el uso de preguntas generadoras.
Estas no buscan respuestas inmediatas, sino despertar la curio-
sidad y provocar reflexion. Por ejemplo: ¢ Por qué la curva de un
cable suspendido tiene una forma distinta a la de una pardabola?,
iqué sucede con una poblacion si su tasa de crecimiento se man-
tiene constante?, ; por qué el sonido o la luz disminuyen su inten-
sidad de manera exponencial? Este tipo de preguntas conduce al
descubrimiento y al asombro, dos emociones intelectuales que
facilitan el aprendizaje. Freire (1997) recordaba que ensefiar es un
acto profundamente dialdgico: el conocimiento no se impone, se
construye en interaccion con la realidad y con los otros. En el aula
de matematicas, esa interaccidon se traduce en experimentacion,
debate y construccidon compartida de significados.

Desde el punto de vista metodologico, es Util combinar la explo-
racion guiada con la resolucidon de problemas reales. En lugar de
ensefar la funcién logaritmica como la inversa de la exponencial
desde el primer momento, puede invitarse a los estudiantes a ex-
plorar situaciones donde esta aparece de manera natural: el nivel
de intensidad sonora, la escala Richter de los sismos o la medicién
del pH en quimica. En cada caso, los datos empiricos conducen
a la necesidad de una funcion que crezca lentamente y describa
relaciones no lineales. Asi, la abstraccion no se presenta como un
salto forzado, sino como una consecuencia natural de la experiencia.

En esta linea, Kaput (1992) subraya el valor de las represen-
taciones digitales multiples. Una funcién no se entiende por su
ecuacion aislada, sino por la relacion entre sus distintos modos
de representacion: el grdfico, la tabla de valores, la expresion
simbdlica y la descripcién verbal. Alternar entre estos registros
como propone Duval (2006) permite que el estudiante construya
un conocimiento mas flexible, capaz de adaptarse a distintas
situaciones. El desafio del docente estd en promover esa movili-
dad entre registros, ayudando a los estudiantes a descubrir que
el pensamiento matemdtico no es estdtico, sino transformador.
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Otra estrategia clave consiste en fomentar el uso reflexivo del
error. Cuando los estudiantes grafican una funcién de manera
incorrecta o confunden los efectos de un pardmetro, el error se
convierte en una oportunidad para pensar. Analizar por qué la
curva no se comportd como se esperaba es una forma de cons-
truir comprension. Desde una vision freireana, el error no es un
fracaso, sino un punto de partida para el didlogo entre lo que el
estudiante piensa y lo que la matemdtica explica.

Por Ultimo, la ensefianza de las funciones trascendentes debe
situarse en un marco mdas amplio: el de la educacién para el
pensamiento relacional y critico. Al comprender coémo una fun-
cion describe un proceso natural, el estudiante no solo aprende
matematicas, sino también una forma de leer el mundo. Observa
regularidades, identifica modelos y comprende que el cambio
puede expresarse mediante leyes que son, a la vez, precisas y
poéticas. La matematica, en este sentido, no es una coleccién
de formulas abstractas, sino un lenguaje que revela la estructura
profunda de la realidad.

En sintesis, ensefiar funciones trascendentes implica hacerlas
visibles: no como ecuaciones muertas en un libro, sino como re-
presentaciones vivas de los procesos que nos rodean. La visuali-
zaciéon, la experimentacién, el didlogo y la tecnologia son caminos
que devuelven humanidad a la ensefianza matemdtica, haciendo
gue el aprendizaje sea una experiencia de descubrimiento y no
de repeticion. Solo asi el estudiante podrdareconocer que, detrds
de cada grdafica o pardmetro, se esconde una historia sobre como
la naturaleza cambia, evoluciona y busca equilibrio.

Conclusiones

El estudio de las funciones trascendentes permite comprender
la matematica como una forma de pensamiento que trasciende
los nUmeros y se convierte en un lenguaje para interpretar el
mundo. A través de las funciones exponenciales, logaritmicas e
hiperbodlicas, se revela la capacidad humana de abstraer los pro-
cesos del entorno y representarlos mediante modelos precisos
y universales. Estas funciones no solo describen fendmenos de
crecimiento, equilibrio o expansion, sino que también reflejan
la busqueda constante de patrones y estructuras en la natura-
leza. Ensefiar y aprender funciones trascendentes implica, por
tanto, desarrollar una mirada que reconoce la conexidon entre el
simbolo y la experiencia, entre el razonamiento l6gico y la intui-
cion. Comprender su comportamiento es comprender, en Ultima
instancia, la manera en que el cambio se organiza y se expresa
en la realidad.
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Desde una perspectiva formativa, la ensefianza de las funcio-
nes trascendentes invita a replantear la relacién entre teoria y
practica. La visualizacion, la experimentacion y el uso de recur-
sos tecnoldgicos favorecen la construccidon de significados mas
profundos, donde la abstraccién se acompafia de comprensidn y
sentido. El aula se transforma en un espacio de descubrimiento,
donde el estudiante no solo aprende a operar con expresiones
matematicas, sino a interpretarlas y aplicarlas a situaciones rea-
les. De esta forma, el transito desde el dlgebra hacia las funcio-
nes trascendentes se convierte en un proceso que fortalece la
autonomia intelectual, la capacidad critica y el pensamiento
analitico, cualidades esenciales para entender la complejidad
del mundo contempordneo.
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