
COLECCIÓN:
Eduación en acción. Praxis,
currículo y subjetividades

Del álgebra a las funciones
trascendentes: un recorrido
formativo

CEVALLOS AYON EDWIN RAMON  
GUERRERO ZAMBRANO MARCOS FRANCISCO  

PRIMERA EDICIÓN

AUTORÍA





Del álgebra a las funciones 
trascendentes: un recorrido formativo

Autores

Cevallos Ayon Edwin Ramon
Universidad Estatal de Milagro

ecevallosa@unemi.edu.ec
https://orcid.org/0000-0002-3337-2009

Guerrero Zambrano Marcos Francisco 
Universidad Estatal de Milagro

mguerreroz@unemi.edu.ec
https://orcid.org/0000-0002-1028-7477 





5

©️ Ediciones RISEI, 2025

Todos los derechos reservados.
Este libro se distribuye bajo la licencia Creative Commons Atribución CC 
BY 4.0 Internacional.

Las opiniones expresadas en esta obra son responsabilidad exclusiva de 
sus autores y no reflejan necesariamente la posición la editorial.

Editorial: Ediciones RISEI
Colección Educación en acción: Praxis, currículo y subjetividades
Título del libro: Del álgebra a las funciones trascendentes: un recorrido 
formativo
Autoría: Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco
Edición: Primera edición
Año: 2025
ISBN digital: 978-9942-596-06-2
DOI: https://doi.org/10.63624/risei.book-978-9942-596-06-2

Coordinación editorial: Jorge Maza-Córdova y Tomás Fontaines-Ruiz
Corrección de estilo: Unidad de Redacción y Estilo
Diagramación y diseño: Unidad de Diseño
Revisión por pares: Sistema doble ciego de revisión externa

Machala – Ecuador, diciembre de 2025

Este libro fue diagramado en InDesign.
Disponible en: https://editorial.risei.org/
Contacto: info@risei.org

https://doi.org/10.63624/risei.book-978-9942-596-06-2
https://editorial.risei.org/
mailto:info@risei.org




7

Prólogo

La palabra álgebra proviene del árabe al-ŷabr, que significa 
“recomponer” o “restaurar”. Este término apareció por primera 
vez en un libro escrito alrededor del año 825 por el matemá-
tico persa Al-Jwārizmī, titulado Al-kitāb al-mujtaṣar fī ḥisāb al-ŷabr 
wa-l-muqābala, que se traduce como El compendio sobre el cál-
culo por reducción y comparación. En esa obra, al-ŷabr se usaba 
para describir la acción de mover términos negativos de un 
lado al otro de la ecuación para hacerlos positivos, mientras 
que al-muqābala se refería al proceso de simplificar y equilibrar 
los términos semejantes.

Con el paso del tiempo, este libro fue traducido al latín en el 
siglo XII, lo que permitió que tanto las ideas como el término 
“álgebra” llegaran a Europa. Desde entonces, la palabra comen-
zó a usarse para nombrar el arte de resolver ecuaciones. Su 
evolución conceptual hizo que dejara de entenderse únicamente 
como un conjunto de técnicas aplicadas a ecuaciones simples, 
para convertirse progresivamente en un campo más abstracto y 
estructurado dentro de las matemáticas. Este cambio marcó un 
punto de inflexión en el desarrollo del pensamiento matemático 
en la Edad Media y el Renacimiento.

En la actualidad, el álgebra constituye una de las ramas fun-
damentales de las matemáticas, pues no solo estudia la mani-
pulación de ecuaciones, sino también expresiones algebraicas, 
relaciones, estructuras y sistemas numéricos de gran comple-
jidad. Gracias a su capacidad de generalización y abstracción, 
el álgebra se ha consolidado como una herramienta esencial 
en áreas como la ciencia, la tecnología, la economía y la inge-
niería, donde permite modelar problemas, analizar situaciones 
complejas y encontrar soluciones aplicables en la vida real.
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Introducción

El tránsito del álgebra hacia las funciones trascendentes constitu-
ye uno de los via jes intelectuales más profundos del aprendizaje 
matemático: un recorrido que conduce desde la manipulación 
de símbolos hasta la interpretación de fenómenos complejos 
que explican la naturaleza, la economía o el comportamiento 
humano. Este libro, Del álgebra a las funciones trascendentes: un 
recorrido formativo, surge con el propósito de acompañar ese 
trayecto, articulando el rigor conceptual con una mirada peda-
gógica orientada a la comprensión y la exploración.

En sus capítulos, el texto propone una secuencia que avanza 
desde las ecuaciones e inecuaciones elementales hasta los mo-
delos funcionales que describen el crecimiento, la periodicidad 
y la oscilación. Cada sección busca construir puentes entre los 
diferentes niveles de abstracción, de modo que el estudiante 
pueda reconocer la continuidad entre las operaciones básicas 
del álgebra y la lógica delñ cambio que caracteriza al cálculo. 

La obra se apoya en tres pilares fundamentales: la riguro-
sidad conceptual, la coherencia didáctica y la conexión con la 
experiencia. Cada capítulo combina la exposición teórica con 
ejemplos contextualizados, ejercicios de exploración y reflexiones 
pedagógicas que permiten resignificar los contenidos. Las tec-
nologías digitales se incorporan no como accesorios, sino como 
instrumentos para pensar, modelar y verificar.

En el capítulo inicial, el álgebra se presenta como un lenguaje 
universal que permite describir relaciones entre cantidades y es-
tructuras; posteriormente, el estudio de los sistemas, las funciones 
algebraicas y las transformaciones gráficas prepara el terreno 
para adentrarse en el análisis de las funciones trascendentes, 
núcleo del cuarto capítulo. 

Más allá de la formalidad matemática, este libro propone una 
mirada formativa. Enseñar funciones trascendentes significa formar 
pensamiento reversible, flexible y analítico; significa también com-
prender que detrás de cada ecuación hay un modelo del mundo. 
Cada capítulo culmina con una síntesis reflexiva que invita al diálogo 
entre la teoría, la práctica y la didáctica. En última instancia, Del ál-
gebra a las funciones trascendentes busca que el lector reconozca 
en la matemática un lenguaje vivo: un modo de mirar, de preguntar 
y de construir sentido en un universo en constante transformación.





Contenido

Capítulo I	 16

Ecuaciones e inecuaciones algebraicas

Introducción
Conceptos fundamentales del álgebra
Ecuaciones e inecuaciones algebraicas
Inecuaciones algebraicas
Resolución de problemas con ecuaciones e inecuaciones
Conclusiones
Referencias

Capítulo II	 54

Sistemas de ecuaciones e inecuaciones algebraicas

Introducción
Fundamentos conceptuales
Resolución de sistemas de ecuaciones
Estrategias didácticas y recursos tecnológicos para el aprendi-
zaje de los sistemas de ecuaciones
Conclusiones
Referencias



Capítulo III	 86

Funciones algebraicas y sus propiedades

Introducción
Concepto y representación de las funciones
Clasificación y tipos de funciones algebraicas
Transformaciones y análisis gráfico
Conclusiones
Referencias

Capítulo IV	 124

Funciones trascendentes y sus propiedades

Introducción
Funciones exponenciales y logarítmicas
Funciones trigonométricas 
Funciones trascendentes: aplicaciones, enseñanza y conexiones 
interdisciplinarias 
Conclusiones
Referencias



índice de tabla y figuras

Capítulo I

Índice de tablas
Tabla 1. Propiedades de las potencias
Tabla 2. Propiedades de las potencias
Tabla 3. Descripción de la forma general de la ecuación cuadrática
Tabla 4. Descripción de la forma general de la ecuación racional
Tabla 5. Descripción de la forma general de la ecuación radical
Tabla 6. Estrategia de resolución de polinomios
Tabla 7. Estrategia de resolución de inecuaciones polinómicas 
raciones
Tabla 8. Fórmulas de factorización
Tabla 9. Ejemplos de ejercicios de traducción del lenguaje natural 
al algebraico
Tabla 10. Ejemplos de ejercicios procedimentales y algorimiticos
Tabla 11. Ejemplos de ejercicios de análisis gráfico
Tabla 12. Ejemplos de ejercicios de aplicación contextualizada
Tabla 13. Ejemplos de ejercicios exploratorios y abiertos
Tabla 14. Ejemplos de ejercicios con apoyo tecnológico

Índice de figuras
Figura 1. Clasificación de los números reales
Figura 2. Modelo lineal del costo total 
Figura 3. Crecimiento exponencial del capital mediante interés 
compuesto.
Figura 4. Crecimiento exponencial del capital mediante interés 
compuesto.
Figura 5. Aplicación física de las propiedades de los radicales
Figura 6. Representación de función cuadrática
Figura 7. Representación equivalente de la función 
Figura 8. Representación de función cuadrática
Figura 9. Representación de la  función lineal
Figura 10. Representación de la función cuadrática
Figura 11. Representación de la función racional



Figura 12. Representación de la función radical
Figura 13. Representación de función radical
Figura 14. Representación de función radical
Figura 15. Representación de función radical
Figura 16. Representación en Geogebra de una suma al cuadrado
Figura 17. Representación cuadrática
Figura 18. Representación lineal
Figura 19. Representación polinomial
Figura 20. Representación polinomial
Figura 21. Representación valor absoluto

Capítulo II

Índice de tablas
Tabla 1. Descripción del método de Gauss
Tabla 2. Descripción paso a paso método de Gauss
Tabla 3. Descripción método de Cramer
Tabla 4. Descripción paso a paso método de Cramer
Tabla 5. Síntesis comparativa de los métodos gráfico y geométrico

Índice de figuras
Figura 1. Representación del sistema de ecuaciones
Figura 2. Representación de un sistema de ecuaciones no lineales
Figura 3. Representación de un sistema de ecuaciones lineales
Figura 4. Representación de sistema de ecuaciones no lineales 
Figura 5. Representación de sistema compatible determinado
Figura 6. Representación de sistema compatible indeterminado
Figura 7. Representación de sistema incompatible
Figura 8. Representación de sistema incompatible 
Figura 9. Representación de varias soluciones 
Figura 10. Representación de funciones ingreso total
Figura 11. Representación del lanzamiento de dos proyectiles
Figura 12. Representación del sistema de ecuaciones
Figura 13. Representación sistemas lineales de dos variables
Figura 14. Representación de sistemas cuadráticos
Figura 15. Representación de sistemas cuadráticos
Figura 16. Representación de sistemas mixtos
Figura 17. Representación gráfica en Geogebra
Figura 18. Representación gráfica en Desmo



Capítulo III

Índice de tablas
Tabla 1. Representación tabular

Índice de figuras
Figura 1. Representación de la  función 
Figura 2. Representación de la función 
Figura 3. Representación de las funciones 
Figura 4. Representación de la función 
Figura 5. Representación gráfica en Geogebra
Figura 6. Representación gráfica de una función polinómica
Figura 7. Representación gráfica de una función racional
Figura 8. Representación gráfica de una función racional propia
Figura 9. Representación gráfica de puntos de indeterminación
Figura 10. Representación gráfica de funciones con radicales
Figura 11. Representación gráfica de la función 
Figura 12. Representación gráfica de las propiedades de la fun-
ción algebraica 
Figura 13. Representación gráfica de las propiedades de simetría  
Figura 14. Representación gráfica de 
Figura 15. Representación gráfica de 
Figura 16. Representación gráfica de la función inversa de 
Figura 17. Representación gráfica de la función inversa de 
Figura 18. Representación gráfica de la función inversa de 
Figura 19. Representación de traslaciones horizontales
Figura 20. Representación de traslaciones verticales
Figura 21. Reflexión sobre el eje X de la función 
Figura 22. Reflexión sobre el eje X de la función 
Figura 23. Reflexión sobre el eje Y de la función 
Figura 24. Escalamientos horizontales
Figura 25. Escalamientos en funciones con radicales
Figura 26. Transformaciones dinámicas en Geogebra de funcio-
nes cuadráticas
Figura 27. Transformaciones dinámicas en Geogebra de funciones 
cuadráticas
Figura 28. Transformaciones dinámicas en Geogebra de funcio-
nes cuadráticas
Figura 29. Transformaciones dinámicas en Geogebra de funcio-
nes racionales



Capítulo IV

Índice de tablas
Tabla 1. Tabla de signos de las funciones trigonométricas en cada 
cuadrante

Índice de figuras
Figura 1. Representación de la función exponencial y su inversa 
Figura 2. Representación de la función exponencial 
Figura 3. Representación de la función logaritmica
Figura 4. Representación de la solución de la ecuación exponencial
Figura 5. Representación de la solución de la ecuación exponencial
Figura 6. Representación de la solución de la ecuación exponencial
Figura 7. Representación del crecimiento exponencial aplicado 
a las finanzas
Figura 8. Representación del crecimiento exponencial aplicado 
al ámbito educativo
Figura 9. Representación del proceso de depreciación de un vehículo
Figura 10. Representación del proceso de desmotivación en un curso
Figura 11. Representación del proceso de desmotivación en un curso
Figura 12. Representación del proceso de desmotivación en un curso
Figura 13. Representación de la función  y su relación con 
el círculo trigonométrico
Figura 14. Representación de la función  y su relación con 
el círculo trigonométrico
Figura 15. Representación general de la función 
Figura 16. Representación gráfica de la función  y su signo 
en el primero y segundo cuadrante
Figura 17. Representación gráfica de la función  y su inversa
Figura 18. Representación gráfica de la función  y su inversa
Figura 19. Representación gráfica del movimiento de un péndulo
Figura 20. Representación gráfica del movimiento de un péndulo
Figura 21. Representación gráfica del movimiento de un péndulo
Figura 22. Representación gráfica de la función 
Figura 23. Representación gráfica de la función 



ISBN 978-9942-596-06-2 | 2025 
https://editorial.risei.org

Capítulo I

Ecuaciones e inecuaciones 
algebraicas

 

Introducción

El estudio del álgebra constituye uno de los pilares más signifi-
cativos en la formación del pensamiento matemático, pues en 
ella convergen la abstracción, la simbolización y la capacidad de 
generalizar relaciones. Este primer capítulo, titulado Ecuaciones 
e inecuaciones algebraicas, se propone guiar al lector desde 
los fundamentos numéricos hacia la comprensión profunda de 
las igualdades y desigualdades, no como simples ejercicios de 
cálculo, sino como estructuras de razonamiento que modelan 
situaciones reales y promueven el pensamiento lógico. En este 
sentido, comprender una ecuación o una inecuación es apren-
der a traducir un problema verbal en un lenguaje simbólico que 
permite analizar, comparar y resolver con precisión. Así, las ope-
raciones algebraicas dejan de ser una manipulación mecánica 
para convertirse en un modo de pensar, de descubrir patrones 
y de formular conjeturas.
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A lo largo del capítulo, se desarrollan los conceptos esenciales 
del sistema de los números reales, sus propiedades y subcon-
juntos, como punto de partida para abordar la resolución de 
ecuaciones e inecuaciones en diferentes niveles de complejidad. 
La propuesta didáctica no se limita a la exposición teórica, sino 
que incorpora estrategias activas de enseñanza, ejercicios de 
traducción del lenguaje natural al algebraico y el uso de herra-
mientas tecnológicas como GeoGebra y Desmos, que permiten 
visualizar las relaciones entre expresiones y gráficas. Desde esta 
perspectiva, el aprendizaje del álgebra se concibe como un pro-
ceso de construcción de significados que articula los registros 
simbólico, gráfico y verbal, favoreciendo una comprensión inte-
gral del fenómeno matemático.

Este capítulo invita, además, a descubrir el valor cultural y 
formativo del álgebra. Comprender el origen histórico de las 
ecuaciones, desde los aportes de Al-Jwārizmī hasta la forma-
lización moderna con Viète y Descartes, permite reconocer 
que las matemáticas son una creación humana que evoluciona 
al ritmo de las necesidades del pensamiento y la sociedad. 
Resolver ecuaciones e inecuaciones es, en última instancia, re-
solver problemas de la vida cotidiana, científica y tecnológica. 
De ahí que la enseñanza de estos contenidos no deba reducir-
se a la memorización de reglas, sino orientarse a desarrollar 
competencias para razonar, argumentar y aplicar. Este capítulo 
sienta así las bases de un recorrido que llevará al lector del 
álgebra elemental al universo de las funciones trascendentes, 
donde el lengua je simbólico se transforma en una herramienta 
para comprender la dinámica del cambio y la continuidad en 
el mundo que nos rodea.

Conceptos fundamentales del álgebra
El estudio de las ecuaciones e inecuaciones ocupa un lugar 
central en la formación matemática, ya que constituye la base 
sobre la cual se construyen conceptos más avanzados del 
álgebra y el análisis. Resolver una ecuación significa encon-
trar los valores que satisfacen una igualdad, mientras que en 
las inecuaciones el objetivo es determinar los intervalos que 
cumplen con una desigualdad. Estos procedimientos no son 
meramente técnicos, sino que representan un proceso de mo-
delación en el que los estudiantes aprenden a traducir situa-
ciones concretas en expresiones algebraicas. Como señalan 
Stewart (2016) y Blitzer (2018), el traba jo con ecuaciones e 
inecuaciones permite desarrollar habilidades de razonamiento 
lógico, interpretar gráficas y aplicar modelos matemáticos en 
diversos campos del conocimiento.
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Más allá de su utilidad práctica, las ecuaciones e inecuaciones 
favorecen la adquisición de competencias matemáticas funda-
mentales como la comprensión conceptual, la fluidez procedi-
mental y el razonamiento adaptativo (Kilpatrick et al., 2001). Al 
enfrentarse a problemas que involucran igualdades o desigualda-
des, los estudiantes no solo aplican algoritmos, sino que también 
toman decisiones sobre el camino a seguir, validan sus resultados 
y reflexionan sobre su coherencia en el contexto planteado. De 
este modo, su estudio trasciende el aula y se proyecta hacia la 
vida cotidiana, la ciencia y la tecnología, consolidando al álge-
bra como un lenguaje esencial para describir y transformar la 
realidad.

Números reales y subconjuntos
El conjunto de los números reales  constituye el pilar sobre 
el cual se edifica gran parte del pensamiento matemático con-
temporáneo, ya que abarca los números empleados tanto en la 
vida diaria como en el ámbito científico. Representados gráfica-
mente en la recta real, permiten describir magnitudes discretas 
y continuas, y se convierten en una herramienta fundamental 
para modelar fenómenos de diversa naturaleza. Dentro de este 
amplio conjunto se organizan varios subconjuntos, cada uno con 
propiedades específicas que, en su interacción, conforman una 
estructura numérica coherente y de gran riqueza conceptual 
(Stewart, 2016; Blitzer, 2018).

Entre ellos, los números naturales (ℕ) se presentan como los 
primeros que el ser humano utilizó para contar y ordenar objetos: 
1, 2, 3,…. En ciertas definiciones se incluye también el cero, lo cual 
amplía su campo de aplicación. Son el punto de partida para las 
operaciones aritméticas básicas y la base sobre la cual se cons-
truyen sistemas numéricos de mayor complejidad (Sullivan, 2016).

A partir de los naturales surgen los números enteros (ℤ), que 
incorporan tanto al cero como a los números negativos, con-
formando la secuencia …, -3, -2, -1, 0, 1, 2, 3,…. Este subconjunto 
resulta indispensable para representar situaciones que involu-
cran pérdidas, temperaturas bajo cero o posiciones relativas por 
debajo de un punto de referencia, y marca un paso esencial en 
la transición de la aritmética hacia el razonamiento algebraico 
(Stewart, 2016).

Más adelante aparecen los números racionales (ℚ), los cuales 
quedan definidos a partir del cociente entre dos enteros con de-
nominador distinto de cero. Este conjunto incluye a los enteros 
y se distingue porque sus expresiones decimales siempre son 
finitas o periódicas. Su utilidad es evidente en contextos prác-
ticos, como el trabajo con fracciones, proporciones y razones 
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aplicadas en estadística, economía o geometría. Además, po-
seen la propiedad de densidad, lo que significa que entre dos 
racionales siempre se puede encontrar otro, enriqueciendo así 
su estructura (Blitzer, 2018).

En contraste, los números irracionales  no admiten 
representación como fracción de enteros, y sus decimales son 
infinitos y no periódicos. Entre los ejemplos más conocidos se 
encuentran π  estrechamente ligado a la 
geometría de los círculos; , fundamental en 
procesos de crecimiento continuo; y raíces no exactas como 

 Estos números complementan a los racio-
nales para conformar el conjunto completo de los reales, cuya 
importancia radica en la posibilidad de describir magnitudes 
continuas y servir de base al análisis matemático (Sullivan, 2016).

La clasificación de los números reales (véase Figura 1) se suele 
representar de manera jerárquica: los naturales  corresponden 
al conteo inicial; al agregar el cero y los negativos surgen los ente-
ros ; al introducir fracciones y decimales periódicos o finitos se 
obtienen los racionales ; mientras que los irracionales  
completan la estructura con sus decimales infinitos no periódicos. 
Todos estos subconjuntos, integrados, conforman el universo de los 
números reales (ℝ), que encuentran su representación en la recta real

Figura 1.
Clasificación de los números reales

Nota: Elaboración propia.

En conjunto, los números reales y sus subconjuntos forman un 
sistema sólido y coherente que no solo sustenta los fundamentos 
del álgebra y el cálculo, sino que también permite comprender 
y describir fenómenos de la vida real en campos diversos como 
resulta ser la física y economía, así como tecnología. De ahí que 
su enseñanza en los primeros niveles de la formación matemática 
sea decisiva: constituyen la base conceptual desde la cual se cons-
truyen razonamientos más complejos y se desarrollan habilidades 
de pensamiento lógico y abstracto (Stewart, 2016; Blitzer, 2018).

En el lenguaje matemático, además de los números, aparecen 
las letras, a, b, c, x, y,…, que usamos para representar valores que 
pueden variar. A estas representaciones se les llama variables. 
Con ellas expresamos relaciones de igualdad o desigualdad: por 
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ejemplo, si dos variables representan el mismo número, escribi-
mos a = b, leído como “a es igual a b”; mientras que, si representan 
valores distintos, utilizamos a ≠ b, que se lee “a no es igual a b”.

Los números no se limitan a ser simples instrumentos de cál-
culo; también guardan historias y misterios que han fascinado a 
generaciones de matemáticos. Un caso representativo es el de 
los números primos, descritos como los “átomos” de la aritmética 
porque no pueden descomponerse en otros más pequeños: su 
definición es sencilla, solo son divisibles entre uno y ellos mis-
mos (Ribenboim, 2016). Sin embargo, su distribución en la recta 
numérica sigue siendo un enigma, pues  a pesar de siglos de 
estudio, no se ha encontrado un patrón definitivo que explique 
cómo aparecen, lo que mantiene vivo un campo de investigación 
apasionante (Crandall & Pomerance, 2005). Más allá de su impor-
tancia teórica en la factorización de enteros, los números primos 
cumplen hoy un papel esencial en la vida cotidiana: constituyen 
la base de sistemas de criptografía que resguardan la seguridad 
digital en la que confiamos constantemente.

Dentro de la teoría de números, los números perfectos ocupan 
un lugar especial. Se llaman así porque son aquellos cuya suma 
de divisores propios, es decir, de todos excepto el número mismo, 
coincide exactamente con su valor. El ejemplo más elemental es 
el 6, ya que 1 + 2 + 3 = 6; otro caso clásico es el 28, pues 1 + 2 + 4 
+ 7 + 14 = 28. Desde tiempos antiguos, estas cifras fueron vistas 
como símbolos de equilibrio y perfección (Stewart, 2016). Con el 
avance de la matemática se descubrió su relación con los primos 
de Mersenne, lo que ha permitido, gracias a la potencia de las 
computadoras modernas, identificar números perfectos cada vez 
más grandes. Aunque su utilidad práctica se centra sobre todo en 
la investigación teórica, constituyen un claro ejemplo de cómo la 
matemática busca patrones profundos y armonías ocultas incluso 
en los aspectos más sencillos de la aritmética.

Finalmente, los llamados números amigos o amistosos mues-
tran una relación todavía más singular y es que se trata de 
pares de números enteros que cumplen la condición de que 
la suma de los divisores propios de uno coincide con el otro, y 
viceversa. El caso más conocido es el par (220, 284): la suma 
de los divisores de 220 es 284, y la de los divisores de 284 es 
220. Este tipo de números fue visto en la antigüedad como un 
símbolo de amistad y cooperación, por la reciprocidad que 
encarnan (Burton, 2011). 

En definitiva, ya sea a través de su utilidad práctica o de las 
curiosidades que encierran, los números muestran que detrás 
de cada símbolo hay historias, problemas abiertos y conexiones 
inesperadas. Esta riqueza conceptual prepara el terreno para 
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adentrarse en el estudio de las ecuaciones e inecuaciones, donde 
las letras y los números conviven para dar forma a un lenguaje 
capaz de describir, con precisión y belleza, tanto la realidad como 
los propios misterios de la matemática.

El Teorema fundamental de la aritmética expresa que todo 
número entero mayor que 1 puede expresarse de manera única 
como un producto de números primos, salvo el orden en que se 
escriban los factores. Por ejemplo:   y 

El Teorema Fundamental de la Aritmética es una de esas ideas 
que ayudan a entender cómo está construido el mundo de los 
números. Según Hardy y Wright (2008), todos los números ente-
ros mayores que uno se pueden formar a partir de los números 
primos, que son como los “ladrillos básicos” de la aritmética. 
Dicho de otro modo, si uno descompone cualquier número, siem-
pre llega a los mismos elementos primos, sin importar el orden 
en que se los multiplique. Esta propiedad, que parece sencilla, 
encierra una verdad profunda: todo número tiene una estructura 
interna que se sostiene en los primos.

Desde la enseñanza, este teorema puede ser una gran oportu-
nidad para trabajar la idea de que las matemáticas no son una 
lista de fórmulas, sino una forma de pensar. Al guiar a los estu-
diantes a descubrir por sí mismos cómo los números se descom-
ponen en factores primos, el aprendizaje se vuelve más activo y 
significativo. La experiencia de “construir” o “desarmar” números 
refuerza la comprensión de la multiplicación, la divisibilidad y la 
estructura del sistema numérico.

En el fondo, Hardy y Wright (2008) nos recuerdan que las 
matemáticas se parecen mucho a la vida: todo lo grande se com-
pone de cosas pequeñas, y entender esas partes nos permite ver 
el conjunto con más claridad. Los números primos son, en cierto 
modo, una metáfora del aprendiza je mismo: para entender lo 
complejo, hay que empezar por lo esencial.

La propuesta se apoya en dos ideas esenciales: la existencia, 
que asegura que siempre es posible descomponer un entero en 
factores primos, y la unicidad, que afirma que esta factorización 
solo puede darse de una forma, sin importar el orden de los fac-
tores (Apostol, 2013). La importancia de este resultado radica en 
que ofrece un marco de certeza y consistencia a toda la teoría 
de números, pues sin él no sería posible organizar de manera 
sistemática la estructura de los enteros.}

Propiedades fundamentales en el Sistema de números reales
El sistema de números reales posee una serie de propiedades 
fundamentales que garantizan la coherencia de las operaciones 
aritméticas y algebraicas. Entre ellas se encuentran:
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1.	 Propiedades de la adición y multiplicación: Incluyen
la conmutativa 

la asociativa
,

y la existencia del elemento neutro (0 en la suma, 1 en la 
multiplicación).

2.	 Propiedades de inverso: Para cada número real existe un 
opuesto aditivo  y, salvo el cero, un inverso 
multiplicativo

 

3.	 Propiedad distributiva: Relaciona suma y multiplicación, 
garantizando que .

4.	Propiedad de orden: Los reales están totalmente ordenados, 
es decir, para cualesquiera a y b, se cumple una y solo una 
de estas condiciones: .

5.	 Propiedad de densidad: Entre dos números reales distintos 
siempre existe al menos otro número real.

6.	Propiedad del supremo o completitud: Todo conjunto no 
vacío de números reales acotado superiormente tiene un 
mínimo de sus cotas superiores (llamado supremo). Esta 
propiedad distingue a ℝ de los números racionales (Apostol, 
2013).

Estas propiedades resultan esenciales en la construcción del 
cálculo diferencial e integral, pues permiten justificar la con-
tinuidad, los límites y la convergencia de sucesiones y series. 
Además, tienen aplicaciones directas en el análisis de funciones, 
en la resolución de ecuaciones algebraicas y en el modelado de 
fenómenos físicos y sociales. Su aprendizaje no solo aporta a la 
formación matemática rigurosa, sino que también desarrolla la 
capacidad de razonar lógicamente y aplicar la matemática en 
contextos diversos (Anton et al., 2013)

EJEMPLO 1 Uso de propiedades fundamentales
Una persona compra 3 paquetes de galletas que cuestan 2 dó-
lares cada uno, además de 2 litros de leche a 1,50 dólares cada 
litro. ¿Cuál es el costo total de la compra?
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Figura 2.
Modelo lineal del costo total 

Nota: Elaboración propia.

Solución:
Planteamiento de la operación: 

•	 Transformación: 
•	 Factorizando: 
•	 Conmutativa y asociativa: 
•	
•	            
Respuesta: El costo total de la compra es 9 dólares.

Apoyo didáctico: Al costo depender de dos variables 
 (x: paquetes de galletas e y: litros de leche 

), se sugiere orientar el debate en  fijar una de ellas (litros de 
leche) y obtener .

EJEMPLO 2: Uso de propiedades fundamentales
Un inversionista deposita 1000 dólares en una cuenta de ahorros 
que ofrece un interés compuesto anual del 5 %. Si mantiene su 
capital durante 2 años sin realizar retiros ni depósitos adicio-
nales, determine el monto acumulado al final del período utili-
zando la fórmula del interés compuesto 
.(véase Figura 3)

Figura 3.
Crecimiento exponencial del capital mediante interés compuesto.

Nota: Elaboración propia.
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Solución:
Planteamiento de la operación: 

Transformación:  Aplicación de propiedad distributiva y 
potenciación: 

•	
•	
•	

Cálculo final: 
Respuesta: El monto total es de 1102,50 dólares.
Apoyo didáctico: Se sugiere orientar el debate en términos de 

que el interés compuesto genera un crecimiento exponencial del 
capital, donde los intereses producen nuevos intereses, recomen-
dándose elaborar una tabla.

Exponentes y radicales
Dentro del estudio del álgebra, los exponentes y radicales consti-
tuyen dos nociones esenciales que permiten dar orden y claridad 
a expresiones que, sin ellos, resultarían extensas o poco mane-
jables. El exponente, entendido como una notación abreviada 
para expresar la multiplicación repetida de un número por sí 
mismo, ha servido históricamente para simplificar operaciones 
y avanzar hacia un lenguaje matemático más compacto y ex-
presivo (Stewart, 2016). Así, cuando escribimos , evitamos la 
repetición de , lo cual refleja la potencia de la no-
tación algebraica para expresar con precisión ideas complejas 
en forma concisa.

Los exponentes surgen como una forma abreviada de expre-
sar la multiplicación repetida de un mismo número. En términos 
generales, si “a” es un número real y “n” un número natural, la 
potencia  se define como el producto de “a” por sí mismo “n” 
veces:

Esta notación, que a simple vista parece un recurso de eco-
nomía simbólica, encierra una gran riqueza conceptual, pues 
permite extender la noción de potencia a exponentes enteros, 
racionales e incluso reales. Stewart (2016) señala que la potencia 
constituye una de las primeras herramientas de abstracción en 
álgebra, ya que permite generalizar operaciones más allá del 
simple conteo aritmético.
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Tabla 1.
Propiedades de las potencias

Propiedad Expresión general Ejemplo 

Producto de potencias 
con igual base

Cociente de potencias 
con igual base

Potencia de una 
potencia

Potenc ia  de  un 
producto

Potenc ia  de  un 
cociente

Exponente cero

Exponentes negativos

Nota. Elaboración propia.

Ejemplo 3: Crecimiento de una población de bacterias
En un laboratorio de biología, un grupo de estudiantes investiga 
el crecimiento de una población de bacterias en condiciones 
controladas. Se sabe que, en promedio, la población se duplica 
cada 3 horas. Al inicio del experimento, se cuentan 500 bacterias 
en la muestra. La situación se modela con la fórmula del creci-
miento exponencial:

, donde: P(t) es el número de bacterias después 
de t horas,  la población inicial  el factor de cre-
cimiento, al duplicarse cada 3 horas (véase Figura 4). ¿Cuántas 
bacterias habrá después de 12 horas?

Figura 4.
Crecimiento exponencial del capital mediante interés compuesto.

Nota: Elaboración propia.

Solución: .
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Apoyo didáctico: Se sugiere orientar el debate en términos del 
reconocimiento de que, en solo medio día, la población inicial se 
multiplicó por 16. Este resultado permite a los estudiantes com-
prender cómo los exponentes no son solo reglas abstractas, sino 
herramientas para modelar fenómenos reales como el crecimiento 
biológico. De esta forma, los estudiantes visualizan que las poten-
cias y sus propiedades son el lenguaje matemático que describe 
procesos de la vida real: lo que antes era una multiplicación repe-
tida, ahora se traduce en entender la rapidez de expansión de or-
ganismos vivos o incluso la propagación de virus y contaminantes.

El conjunto de estas propiedades asegura que las potencias 
no sean simples operaciones, sino un sistema coherente y 
estructurado que se conecta con múltiples áreas de la mate-
mática. Desde el álgebra elemental hasta el cálculo avanzado, 
las reglas de los exponentes permiten justificar transformacio-
nes, simplificar expresiones y resolver ecuaciones de diversa 
índole. Apostol (2013) afirma que la consistencia de estas 
propiedades refleja la naturaleza lógica de la matemática: 
cada nueva extensión (exponentes negativos, fraccionarios 
o reales) se fundamenta en la necesidad de mantener la co-
herencia interna del sistema.

 Apoyo didáctico: En el plano pedagógico, enseñar exponentes 
va más allá de transmitir reglas mecánicas. Es necesario pro-
mover la comprensión del “por qué” detrás de cada propiedad, 
mostrando cómo se derivan unas de otras y cómo encuentran 
aplicación en contextos reales como por ejemplo el cálculo del 
interés compuesto, el crecimiento de una población bacteriana 
o la reducción de contaminantes en procesos químicos permiten 
a los estudiantes conectar la teoría con situaciones significativas 
de su entorno (Sullivan, 2016; Stewart, 2016).

En el marco del álgebra elemental, los radicales representan la 
operación inversa a la potenciación. Mientras que los exponentes 
expresan la multiplicación repetida de un número, los radicales 
permiten identificar qué valor, al ser elevado a cierta potencia, 
reproduce el número original. Formalmente, si , entonces 
“a” es la raíz “n”- ésima de “b”, lo que se escribe como . Así, 
los radicales extienden el campo de las operaciones aritméticas 
y se convierten en una herramienta clave para la resolución de 
ecuaciones y la simplificación de expresiones algebraicas (Larson 
& Edwards, 2019). 

Elementos de un radical
En la expresión , se distinguen cuatro componentes esenciales:

1.	 Índice (n): indica el grado de la raíz. Cuando no aparece 
explícito, se asume que es 2 (raíz cuadrada).
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2.	 Radicando (a): el número o expresión de la cual se extrae 
la raíz.

3.	Signo radical ( ): símbolo que introduce la operación.
4.	Resultado (raíz): el valor que, al elevarse al índice, devuelve 

el radicando.

Esta notación se consolidó históricamente en el siglo XVI, cuan-
do los matemáticos europeos comenzaron a emplear el símbolo 

 de manera sistemática. Desde entonces, los radicales han 
constituido un puente entre la aritmética básica y los desarrollos 
posteriores del análisis matemático (Burton, 2011). El trabajo con 
radicales se apoya en un conjunto de propiedades que garantizan 
la coherencia de las operaciones

Propiedades fundamentales de los radicales
1.	 Producto de radicales con igual índice:

.

2.	 Cociente de radicales con igual índice:

3.	 Radical de un radical:

4.	Transformación a exponente fraccionario:

Estas propiedades permiten simplificar expresiones algebraicas 
complejas, resolver ecuaciones que involucran raíces y conectar el 
concepto de radical con el de exponente racional (Sullivan, 2016).

EJEMPLO 4: En una práctica de laboratorio de Física (Véase 
Figura 5), los estudiantes deben calcular la velocidad con la 
que llega al suelo un objeto en caída libre desde una altura 
determinada.
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Figura 5.
Aplicación física de las propiedades de los radicales

Nota: Elaboración propia.

La fórmula a utilizar es:  donde  y 
m es la altura desde la cual se deja caer el objeto. 

Calcular la velocidad final aplicando las propiedades de los ra-
dicales en cada paso del procedimiento.

Solución: 
1.	 Altura inicial

2.	 Cálculo de velocidad: 

 

pero como 

por tanto: .

Apoyo didáctico: La relevancia de exponentes y radicales se 
observa también en su papel como puerta de entrada al cálculo 
diferencial e integral. Apostol (2013) destaca que gran parte de 
las propiedades de límites y derivadas se apoyan en la manipu-
lación de potencias y raíces, lo que convierte a este epígrafe en 
un peldaño fundamental para la formación matemática superior. 
En definitiva, su estudio permite transitar de la aritmética a un 
pensamiento algebraico más abstracto, preparando el terreno 
para comprender los fenómenos de cambio y continuidad que 
se abordan en el cálculo.

Ecuaciones e inecuaciones algebraicas
El origen de las ecuaciones se remonta a las civilizaciones an-
tiguas, mucho antes de que existiera la notación algebraica 
moderna. Los babilonios (alrededor del 2000 a. C.) resolvían 
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problemas de áreas y volúmenes que hoy traduciríamos en 
ecuaciones cuadráticas, aunque lo hacían mediante métodos 
geométricos y procedimientos numéricos. De manera similar, 
los egipcios empleaban el llamado método de la falsa posición 
para resolver ecuaciones lineales en problemas relacionados 
con repartos o cálculos de granos y jornales (Katz, 2009). 

Con la obra de Al-Jwārizmī en el siglo IX, particularmente su 
tratado Al-kitāb al-mujtaṣar fī ḥisāb al-ŷabr wa-l-muqābala, la noción 
de ecuación adquirió una estructura sistemática. En este texto, 
el matemático persa clasificó y resolvió ecuaciones cuadráticas 
a través de métodos geométricos, marcando un punto de in-
flexión en la historia del álgebra (Burton, 2011). Posteriormente, 
con François Viète en el siglo XVI y René Descartes en el XVII, 
se consolidó el uso de letras para representar incógnitas y pa-
rámetros, lo que permitió formalizar la notación algebraica que 
utilizamos hasta hoy (Katz, 2009). De esta evolución histórica 
se desprende que la ecuación no es solo una herramienta mate-
mática, sino también un producto cultural que refleja el avance 
del pensamiento abstracto.

Trabajar con ecuaciones e inecuaciones no es solo “despejar 
incógnitas, es aprender a modelar relaciones, contrastar su-
puestos y decidir con base en evidencias simbólicas y gráficas. 
Desde una perspectiva histórica, las ecuaciones nacen como 
respuesta a problemas concretos de reparto, medición y co-
mercio; más tarde se consolidan como lengua je de la ciencia. 

Una ecuación es una igualdad con una o más incógnitas 
cuyo objetivo es determinar todos los valores que la hacen 
verdadera. En forma general: .  
Esta observación sitúa a resolver ecuaciones como un proble-
ma de ceros de funciones y, por tanto, enlaza directamente 
con la interpretación gráfica y con técnicas analíticas y nu-
méricas (Sullivan, 2016; Stewart, 2016) (véase Figura 6).. En 
el aula, resulta clave distinguir entre identidades (verdaderas 
para todo x del dominio) y ecuaciones condicionales (verda-
deras solo para ciertos x) (Blitzer, 2018).

Al desarrollar la igualdad  obtenemos  
(véase Figura 7). La igualdad se cumple para todo , tal y 
como se muestra en las figuras siguientes:
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Figura 6.
Representación de función cuadrática

Nota: Elaboración propia.

Figura 7.
Representación equivalente de la función 

Nota: Elaboración propia.

La ecuación lineal  se transforma en  (véase 
Figura 8) y tiene como solución . Asimismo, la ecuación 

 se transforma en  y tiene 
como soluciones .

Para transformar ecuaciones con sentido, se aplican prin-
cipios de equivalencia. Sumar o restar la misma expresión 
a ambos lados, o multiplicar y dividir por una cantidad no 
nula, preserva el conjunto de soluciones. Elevar ambos lados 
a una potencia par o aplicar funciones no inyectivas puede 
introducir soluciones extra. Por eso se valida al final susti-
tuyendo en la ecuación original. (Larson & Edwards, 2019; 
Stewart, 2016).
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Figura 8.
Representación de función cuadrática

Nota: Elaboración propia.

Tipos frecuentes de ecuaciones 
1.	 Lineales: Se resuelven por aislamiento de la incógnita mediante 

transformaciones elementales. Su interpretación gráfica como 
rectas facilita el análisis de existencia y unicidad de solución.

Figura 9.
Representación de la  función lineal

Nota: Elaboración propia.

Tabla 2.
Propiedades de las potencias

Forma general: 

Ejemplo

Estrategia Expandir, agrupar términos semejantes y aislar la 
incógnita.

Resolución

Comprobación Lado izquierdo: 

Lado derecho: 
Nota. Elaboración propia.
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2.	 Cuadráticas: Completar el cuadrado y la fórmula general no 
son meros “trucos”. Son ventanas conceptuales que conec-
tan álgebra y geometría a través de parábolas, vértices y 
ejes de simetría. La factorización, cuando es posible, ofrece 
la vía más directa y conecta con el análisis de signos para 
inecuaciones asociadas.

Figura 10.
Representación de la función cuadrática

Nota: Elaboración propia.

Tabla 3.
Descripción de la forma general de la ecuación cuadrática

Forma general: 

Ejemplo

Estrategia Aplicar la fórmula general: 

Completar el cuadrado con 

Resolución

Comprobación Lado izquierdo: 
Lado derecho: 0
Lado izquierdo: 
Lado derecho: 0  

Nota. Elaboración propia.

3.	 Racionales: Requieren identificar restricciones del dominio, 
eliminar denominadores con cuidado y verificar raíces “ex-
trañas”, “espurias” o no válidas. La representación gráfica 
con asíntotas ayuda a anticipar el comportamiento y a in-
terpretar resultados.
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Figura 11.
Representación de la función racional

Nota: Elaboración propia.

Tabla 4.
Descripción de la forma general de la ecuación racional

Forma general: 

Ejemplo

Estrategia Identificar el dominio, eliminar denominado-
res y verificar soluciones “extrañas”.

Resolución

Comprobación Lado izquierdo:

Lado derecho: 3
Nota. Elaboración propia.

4.	Radicales y con valores absolutos: Implican trabajar con 
definiciones pieza a pieza. Al resolver |x − a| = b se abordan 
dos ecuaciones lineales. Las radicales exigen aislar el radi-
cal y elevar con cautela, validando al final.

Figura 12.
Representación de la función radical

Nota: Elaboración propia.
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Tabla 5.
Descripción de la forma general de la ecuación radical

Forma general:
 

Ejemplo

Estrategia Aislar el radical, considerar condiciones de existen-
cia y elevar al cuadrado con validación final.

Resolución

Comprobación Lado izquierdo: 
Lado derecho: 

Nota: Elaboración propia.

Valor absoluto.  Desdoblar en dos ecuaciones lineales:

                            Solución: .
 

Por otra parte, las ecuaciones polinómicas de grado superior a 2 
amplían el horizonte de las lineales y cuadráticas porque articulan, 
en un mismo objeto, estructura algebraica, comportamiento gráfico 
y técnicas de factorización y aproximación. Enseñarlas no consiste 
solo en “encontrar raíces”, sino en promover una lectura estructural: 
identificar patrones, reducir la complejidad, estimar cuántas solucio-
nes reales son plausibles y justificar los procedimientos de manera 
transparente. Este enfoque integra álgebra, análisis y modelación 
(Apostol, 2013; Anton et al., 2013; Larson & Edwards, 2019).

Desde la historia, los métodos cerrados para cúbicas y cuarti-
cas fueron hitos renacentistas que culminaron en fórmulas gene-
rales, mientras que los trabajos de Galois y Abel demostraron la 
imposibilidad de una fórmula por radicales para el grado cinco 
en general. Comprender este arco histórico ayuda a situar el 
valor pedagógico de los métodos cualitativos y numéricos en el 
aula contemporánea (Katz, 2009; Stillwell, 2010)
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Un polinomio  define una 
ecuación . Por el Teorema Fundamental del Álgebra, 
toda ecuación polinómica de grado “n” posee “n” raíces en el pla-
no complejo, contando multiplicidades. En , puede haber desde 
0 hasta “n” raíces reales. La multiplicidad regula el contacto de 
la gráfica con el eje “x”: multiplicidad impar cruza, multiplicidad 
par toca y regresa. Conjugación compleja: si los coeficientes 
son reales, las raíces no reales aparecen en pares conjugados 
(Apostol, 2013; Stewart, 2016).

Estrategias generales de resolución
1.	 Factorización estructural: Buscar productos notables, ex-

tracción de factor común, agrupación y uso de identidades.

2.	Cambios de variable: Reducen la ecuación a otra de menor 
grado o más simple: bicuadráticas , ecuaciones 
recíprocas o palíndromas, simetrías del tipo .

3.	Teorema de la raíz racional y división sintética: Probar 
candidatos  y factorizar cuando funciona.

4.	Regla de los signos de Descartes y cotas de raíces: Estiman 
número de raíces reales positivas/negativas y acotan su 
tamaño; útil para decidir dónde buscar.

5.	Métodos cerrados en casos especiales: Cúbicas y cuár-
ticas admiten fórmulas; didácticamente conviene priori-
zar estructura y casos prototípicos antes que la técnica 
completa.

6.	Aproximación numérica: Bisección, Newton o secante para 
raíces reales, justificando existencia con continuidad y 
cambio de signo.

7.	 Lectura gráfica y derivadas: Máximos, mínimos y puntos 
de inflexión dan claves sobre cantidad y localización de 
raíces reales (Stewart, 2016; Larson & Edwards, 2019).

Figura 13.
Representación de función radical

Nota: Elaboración propia.
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Tabla 6.
Estrategia de resolución de polinomios

Ejemplo

Estrategia Buscar candidatos  

Resolución

ó

Comprobación Lado izquierdo: 

Lado izquierdo: 

Lado izquierdo: 

Nota. Elaboración propia.

Inecuaciones algebraicas
Las inecuaciones forman parte esencial del desarrollo del pen-
samiento algebraico, pues permiten establecer comparaciones, 
restricciones y condiciones de validez en múltiples situaciones. 
A diferencia de las ecuaciones, cuyo propósito es determinar los 
valores exactos que satisfacen una igualdad, las inecuaciones 
se centran en describir conjuntos de soluciones que cumplen 
con una relación de desigualdad, ya sea de tipo estricta (<, >) 
o no estricta (≤, ≥). Esta característica abre la posibilidad de 
representar gráficamente intervalos y regiones en la recta real 
o en el plano, lo cual constituye una herramienta fundamental 
en la modelación matemática (Larson & Edwards, 2019; Stewart, 
2016).

El origen de las inecuaciones se vincula con la necesidad de 
cuantificar límites y rangos.El concepto moderno de desigualdad 
se consolidó en los siglos XVII y XVIII con el desarrollo del aná-
lisis matemático, especialmente con las contribuciones de Euler 
y Cauchy, quienes establecieron desigualdades fundamentales 
aplicables a series y funciones (Apostol, 2007).

Tipología de inecuaciones
Las inecuaciones pueden clasificarse según la naturaleza de las 
expresiones involucradas:
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1.	 Lineales: se resuelven de manera similar a las ecuaciones 
lineales, considerando el cambio de sentido al multiplicar 
o dividir por un número negativo.

2.	 Cuadráticas y polinómicas: requieren factorización, identi-
ficación de raíces y análisis de signos en intervalos.

3.	 Racionales: se analizan considerando tanto las raíces 
del numerador como las restricciones impuestas por el 
denominador.

4.	Con valor absoluto: se descomponen en casos o se inter-
pretan geométricamente como distancias en la recta real.

5.	 Exponenciales y logarítmicas: su resolución se fundamenta 
en la monotonía de estas funciones y en la restricción de 
sus dominios.

6.	Trigonométricas: se trabajan en un período fundamental y 
luego se generalizan debido a la periodicidad de las fun-
ciones (Sullivan, 2016).

Método clásico para resolver inecuaciones polinómicas y 
racionales
El método clásico para resolver inecuaciones polinómicas y ra-
cionales es la tabla de signos, que consiste en:

1.	 Factorizar la expresión.
2.	 Determinar los puntos críticos (raíces y discontinuidades).
3.	 Estudiar el signo de la expresión en cada intervalo.
4.	Seleccionar los intervalos que cumplen la condición de 

desigualdad.
El estudio de las inecuaciones abre la puerta a una concep-

ción más amplia del álgebra, en la que no se busca una solución 
única, sino un espacio de posibilidades. Esta mirada es esencial 
para comprender fenómenos del mundo real y para el desarrollo 
posterior del cálculo y el análisis matemático. (véase Figura 14)

Como señala Schoenfeld (1985) traba jar con inecuaciones 
impulsa la formación de heurísticas, la capacidad de generalizar 
y la construcción de un pensamiento matemático flexible.

Figura 14.
Representación de función radical

Nota: Elaboración propia.
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Tabla 7.
Estrategia de resolución de inecuaciones polinómicas raciones

Forma general: 

Ejemplo

Estrategia Se determinan los ceros del numerador y del 
denominador.
Estos puntos dividen la recta real en intervalos.
Se analiza el signo de la expresión racional en cada 
intervalo.
Finalmente, se seleccionan los intervalos que cum-
plen la desigualdad planteada.

Resolución Puntos críticos: 

Solución: 

Comprobación Analizar el comportamiento de los signos de  
en la recta numérica  

Nota: Elaboración propia.

Resolución de problemas con ecuaciones e inecuaciones
La resolución de problemas que involucran ecuaciones e inecua-
ciones constituye un eje esencial en la formación matemática, ya 
que permite al estudiante aplicar los conocimientos adquiridos 
para interpretar y transformar situaciones de la realidad. Sin em-
bargo, más allá de esta estructura clásica, diversos autores han 
destacado que la resolución de problemas es también un medio 
para fomentar el pensamiento crítico, la modelación y el desarrollo 
de competencias argumentativas. En este sentido, el proceso no 
solo busca hallar una respuesta, sino también promover una ac-
titud investigativa y reflexiva frente al conocimiento matemático.

En el plano didáctico, Schoenfeld (1985) sostiene que resolver 
problemas no es un proceso lineal, sino una actividad de explora-
ción en la que intervienen heurísticas, control metacognitivo y la 
disposición del estudiante para perseverar ante la incertidumbre. 
Así, cuando un alumno enfrenta una ecuación cuadrática en un 
contexto físico o una inecuación racional en un problema eco-
nómico, no solo activa algoritmos, sino que pone en juego estra-
tegias cognitivas y actitudes frente al desafío. En la misma línea, 
Mason, Burton y Stacey (2010) subrayan que el acto de resolver 
problemas debe entenderse como un proceso creativo, en el cual 
la formulación del problema y la reflexión sobre los resultados 
son tan valiosas como la obtención de la solución numérica.
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En términos de aplicaciones, Stewart (2016) y Larson y 
Edwards (2019) destacan que las ecuaciones y las inecua-
ciones son la base para la modelación de fenómenos físicos 
y económicos. Por ejemplo, la ecuación exponencial describe 
procesos de crecimiento poblacional o financiero, mientras que 
una inecuación puede delimitar el rango de factibilidad en un 
problema de optimización industrial. Apostol (2013) recuerda 
que la fuerza de las matemáticas no reside solo en resolver 
operaciones, sino en traducir relaciones del mundo real a es-
tructuras abstractas y, posteriormente, en interpretar esas 
abstracciones con sentido práctico.

Desde un enfoque semiótico, Duval (2006) plantea que la com-
prensión real de una ecuación o inecuación depende de la arti-
culación entre diferentes registros de representación: algebraico, 
gráfico y tabular. Este planteamiento se traduce en la necesidad 
de que el estudiante contraste sus soluciones algebraicas con 
representaciones visuales mediante tecnologías digitales como 
GeoGebra o Desmos, lo que permite validar los resultados y 
fortalecer la intuición. En efecto, la visualización gráfica de una 
inecuación en el plano cartesiano facilita comprender por qué 
ciertos valores son parte de la solución y otros no, fortaleciendo 
la idea de restricción y dominio.

Por otro lado, Godino y Batanero (1998) insisten en que la 
resolución de problemas con ecuaciones e inecuaciones debe 
concebirse como una práctica cultural y social, ya que el cono-
cimiento matemático se construye en interacción con el entorno 
y no puede desligarse de sus contextos de uso. Esto implica que 
el docente debe diseñar problemas significativos vinculados con 
fenómenos ambientales, sociales o tecnológicos, en lugar de 
limitarse a ejercicios mecánicos descontextualizados. 

Autores como (Kilpatrick et al., 2001) han argumentado que la 
resolución de problemas a través de ecuaciones e inecuaciones 
fortalece las cinco dimensiones de la competencia matemática: 
comprensión conceptual, fluidez procedimental, estrategias de 
resolución, razonamiento adaptativo y disposición productiva. 
En otras palabras, un estudiante que trabaja con este tipo de 
problemas no solo aprende a resolver, sino también a pensar 
matemáticamente, a justificar y a transferir conocimientos a 
nuevas situaciones.

En este sentido, la resolución de problemas en el aula no 
debe entenderse como una simple actividad cognitiva, sino 
como una oportunidad para reflexionar sobre el mundo y trans-
formarlo. Resolver una inecuación, por ejemplo, puede con-
vertirse en una experiencia significativa cuando el problema 
representa una situación social concreta, como la distribución 
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desigual de recursos o las diferencias de oportunidades entre 
comunidades. En ese proceso, el estudiante deja de ser un 
receptor pasivo y se transforma en un sujeto crítico que inter-
preta, cuestiona y propone.

Estrategias frecuentes para resolver problemas
En la práctica educativa, las estrategias para resolver problemas 
con ecuaciones e inecuaciones no se limitan a la aplicación de 
algoritmos, sino que constituyen procesos de pensamiento que 
integran comprensión conceptual, razonamiento lógico y uso de 
herramientas diversas. A continuación, se profundiza en cada una 
de las estrategias presentadas:

Modelación algebraica: la modelación algebraica es el paso 
inicial para traducir una situación verbal en una expresión 
simbólica. Según Blum y Leiss (2007), modelar implica cons-
truir un puente entre el mundo real y el lengua je matemático, 
lo cual requiere identificar las variables, establecer relacio-
nes y formular la ecuación o inecuación correspondiente. Por 
ejemplo, al expresar que “el doble de un número menos cinco 
es igual a siete”, el estudiante debe reconocer que el número 
desconocido es la variable “x”, y que la relación se expresa 
como . 

El lenguaje natural presenta diversas formas que los estudian-
tes deben aprender a interpretar:

1.	 Comparaciones y relaciones verbales: expresiones como “es 
igual a”, “es mayor que” o “es menor que” corresponden a 
los símbolos matemáticos =, > o <. Por ejemplo, “la edad de 
Ana es mayor que la de Pedro” puede representarse como 
a > p.

2.	 Operaciones implícitas: frases como “el doble de un núme-
ro”, “la tercera parte de una cantidad” o “un número aumen-
tado en cinco” se transforman en expresiones algebraicas 
como . En este caso, la comprensión de mul-
tiplicación, división y suma se traduce desde estructuras 
lingüísticas coloquiales.

3.	Secuencias temporales o condicionales: enunciados como 
“dentro de tres años” o “si se descuenta un 10 %” se expre-
san como . Aquí, el lenguaje cotidiano conlleva 
transformaciones algebraicas que implican operaciones 
sobre la variable.

4.	Problemas narrativos: cuando el enunciado incluye una si-
tuación más extensa, como “la suma de dos números conse-
cutivos es igual a 20”, el estudiante debe reconocer que los 
números pueden representarse como , y formular 
la ecuación .
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De esta manera, la modelación algebraica, apoyada en el 
análisis del lenguaje natural, no solo fortalece la destreza de 
traducir enunciados a expresiones, sino que también muestra al 
estudiante que el álgebra es un medio para representar fenóme-
nos de su entorno cotidiano. Como sostiene Godino y Batanero 
(1998), comprender las formas de representación y los signifi-
cados institucionales y personales de los objetos matemáticos 
resulta clave para lograr aprendizajes significativos.

Análisis gráfico: el análisis gráfico permite visualizar las solucio-
nes de ecuaciones e inecuaciones a través de la representación 
de funciones en el plano cartesiano.

Figura 15.
Representación de función radical

Nota: Elaboración propia.

Duval (2006) destaca que la conversión entre registros se-
mióticos es esencial para consolidar la comprensión. En el caso 
de una inecuación cuadrática, la interpretación del signo de la 
parábola asociada posibilita identificar intervalos de validez sin 
necesidad de cálculos extensos. Además, la gráfica ofrece una 
verificación inmediata: el estudiante puede contrastar si los re-
sultados algebraicos corresponden con las zonas del plano que 
satisfacen la condición.

Métodos de factorización y sustitución: La factorización es un 
proceso importante en matemáticas, puesto que se puede usar 
para reducir el estudio de una expresión complicada al estudio 
de varias expresiones más sencillas. Por ejemplo, las propieda-
des del polinomio  se pueden determinar al examinar los 
factores .

Estos métodos constituyen estrategias algebraicas que favore-
cen la simplificación de expresiones y la resolución de sistemas. 
Según Stewart (2016), la factorización no es solo una técnica 
operativa, sino un procedimiento que revela la estructura interna 
de los polinomios, facilitando la identificación de raíces.
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La sustitución, por su parte, permite reducir problemas comple-
jos a expresiones más simples, un recurso fundamental en sistemas 
de ecuaciones o en expresiones que requieren pasos intermedios. 
Su uso desarrolla en el estudiante la capacidad de reconocer pa-
trones y aplicar propiedades algebraicas con flexibilidad.

Suele ser difícil factorizar polinomios de grado mayor a 2. En 
casos sencillos, pueden ser útiles las siguientes fórmulas para 
factorizar.

Tabla 8.
Fórmulas de factorización

Fórmula Ejemplos

Diferencia de dos cuadrados

Diferencia de dos cubos

Suma  de cubos

Nota. Elaboración propia

 Apoyo tecnológico: el uso de tecnologías digitales ampli-
fica las posibilidades de análisis y verificación. Herramientas 
como GeoGebra o Desmos permiten representar gráficamen-
te funciones, comprobar soluciones y explorar de manera in-
teractiva los efectos de variar parámetros. Godino y Batanero 
(1998) resaltan que el software no debe concebirse solo como 
un medio de cálculo, sino como un entorno para la experi-
mentación y la construcción de significados. Al integrar tec-
nología, el estudiante desarrolla habilidades de visualización 
y adquiere confianza al constatar que sus procedimientos 
algebraicos coinciden con la representación gráfica.

Estas plataformas no solo permiten representar conceptos 
de forma dinámica, sino que también invitan a experimentar, 
conjeturar y comprobar ideas de manera autónoma. En este 
sentido, Pierce y Stacey (2010) destacan que los programas 
de análisis matemático ofrecen oportunidades pedagógicas 
únicas, ya que facilitan la exploración de relaciones entre 
expresiones algebraicas, gráficas y numéricas, generando 
un espacio de aprendiza je más interactivo y significativo. 
Integrar este tipo de recursos en el aula contribuye a for-
talecer la comprensión conceptual y la motivación de los 
estudiantes frente a la matemática.
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Figura 16.
Representación en Geogebra de una suma al cuadrado

Nota. Elaboración propia

La incorporación de tecnologías digitales en la enseñanza de 
las matemáticas no consiste simplemente en trasladar los ejerci-
cios del papel a una pantalla. Supone, más bien, repensar la forma 
en que los estudiantes construyen y comunican sus ideas. En este 
proceso, el rol del docente es decisivo, porque no se trata solo 
de usar un programa, sino de guiar al estudiante hacia un uso 
reflexivo y significativo de la herramienta. Laborde (2002) explica 
que la integración tecnológica exige una mediación pedagógica 
que combine el conocimiento matemático con el conocimiento 
instrumental, de modo que el software se convierta en un medio 
para explorar, visualizar y comprender los conceptos, y no en un 
fin en sí mismo.

Además, investigaciones recientes muestran que los entornos 
digitales estimulan la motivación intrínseca y el aprendiza je 
activo, en tanto sitúan al alumno como protagonista en la ex-
ploración y construcción de saberes (Pierce & Stacey, 2010). 
La incorporación de estas herramientas contribuye, así, a una 
educación matemática más significativa, que fomenta tanto la 
comprensión conceptual como la autonomía en la resolución 
de problemas.

Tipología de ejercicios para ecuaciones e inecuaciones
La enseñanza de las ecuaciones e inecuaciones adquiere senti-
do cuando los ejercicios propuestos no se limitan a la repetición 
mecánica, sino que se convierten en experiencias formativas que 
movilizan distintas dimensiones de la competencia matemática. 
La literatura especializada subraya que una tipología diversa 
de actividades permite transitar de lo simple a lo complejo, y de 
lo cerrado a lo abierto, favoreciendo tanto el dominio técnico 
como la capacidad de interpretar y modelar fenómenos reales 
(Kilpatrick et al, 2001; Godino, Batanero & Font, 2007).
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1.	 Ejercicios de traducción del lenguaje natural al algebraico
Los ejercicios de traducción del lengua je natural al algebrai-
co son fundamentales porque ayudan al estudiante a pasar 
de la intuición verbal a la precisión simbólica. En este tipo 
de tareas, la persona debe identificar relaciones, cantidades 
y condiciones dentro de una situación descrita con pala-
bras, y luego expresarlas mediante expresiones, ecuaciones 
o funciones. 

Tabla 9.
Ejemplos de ejercicios de traducción del lenguaje natural al algebraico

# Enunciado Expresión 
matemática

Variables

1 La suma de tres 
veces un número 
y el doble de otro 
número es igual a 
veinte.

(x, y): números reales

2 La edad de Ana 
aumentada en cin-
co años equivale al 
doble de la edad 
de su hermano.

(a): edad de Ana; (h): 
edad del hermano

3 El triple de un nú-
mero disminuido 
en cuatro es igual 
a ese número au-
mentado en ocho.

(x): número real

4 Si a la mitad de un 
número le agrega-
mos siete, obtene-
mos quince.

(x): número real

5 La diferencia entre 
el cuadrado de un 
número y seis es 
igual a ese mismo 
número.

 (x): número real 

Nota. Elaboración propia

Apoyo didáctico: Se sugiere al docente trabajar con ejercicios 
de traducción del lenguaje natural al algebraico para que los es-
tudiantes aprendan a identificar variables y relaciones presentes 
en situaciones cotidianas y expresarlas en forma de ecuaciones 
o inecuaciones. 
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Esta práctica favorece la comprensión del álgebra como un 
lenguaje de representación y modelación, y no como un con-
junto de símbolos abstractos. Tal como señala Duval (2006), la 
conversión entre registros verbales y algebraicos resulta clave 
para superar las dificultades de comprensión y dar significado 
a los objetos matemáticos.

2.	 Ejercicios procedimentales y algorítmicos
Los ejemplos de ejercicios procedimentales y algorítmicos son 
importantes porque ayudan al estudiante a “ver” cómo se mueve 
una idea matemática cuando pasa del papel a la acción. No se 
trata solo de seguir pasos, sino de entender por qué cada mo-
vimiento tiene sentido y cómo ese proceso se convierte en una 
herramienta que después puede aplicar en otras situaciones. 
Además, estos ejercicios sirven como puente entre la teoría y la 
práctica: permiten que conceptos que a veces parecen abstractos 
se vuelvan más concretos, más cercanos y, sobre todo, más útiles 
en su propio aprendizaje.

Tabla 10.
Ejemplos de ejercicios procedimentales y algorimiticos

# Enunciado Expresión matemática Tipo

1 Encuentra el número 
que, al multiplicarlo 
por 2 y sumarle 5, da 
como resultado 11.

Lineal

2 Halla los valores de 
(x) cuyo cuadrado, al 
restarle 5 veces el nú-
mero y sumarle 6, da 
cero.

Cuadrática

3 Determina los núme-
ros cuya distancia al 3 
en la recta real no su-
pera 4 unidades.

Valor 
absoluto

4 Encuentra los valores 
de (x) que anulan el 
polinomio de tercer 
grado dado.

Polinómica

5 Resuelve para qué va-
lores de (x) la fracción

resulta positiva.

Racional 

Nota. Elaboración propia
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Apoyo didáctico: Se recomienda al profesor proponer ejerci-
cios procedimentales y algorítmicos que fortalezcan la destreza 
en la manipulación simbólica y el dominio de reglas algebraicas. 
Resolver ecuaciones lineales, cuadráticas o inecuaciones racio-
nales permite a los estudiantes afianzar la fluidez procedimental 
necesaria para enfrentar problemas más complejos. Como des-
tacan Hiebert y Lefevre (1986), la práctica sistemática de estos 
procedimientos debe acompañarse de comprensión conceptual, 
evitando que el aprendiza je se reduzca a la mera aplicación 
mecánica de algoritmos.

3.	 Ejercicios de análisis gráfico y verificación
Los ejercicios de análisis gráfico y verificación son fundamentales 
porque permiten que el estudiante contraste lo que calcula con 
lo que observa, creando una relación más clara entre el proce-
dimiento algebraico y su representación visual. Al detenerse a 
revisar un gráfico, el estudiante confirma si su resultado tiene 
sentido, si la pendiente coincide, si el punto realmente pertene-
ce a la curva o si el comportamiento de la función refleja lo que 
esperaba.

Tabla 11.
Ejemplos de ejercicios de análisis gráfico

# Enunciado Expresión 
matemática

Tipo de ecuación

1 Determina grá-
ficamente la 
región donde la 
parábola está 
por encima del 
eje x.

Figura 17.
Representación cuadrática

Nota: Elaboración propia.

2 R e p r e s e n t a 
gráficamente la 
recta y deter-
mina dónde su 
valor es mayor 
que 4.

Figura 18.
Representación lineal

Nota: Elaboración propia.
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3 Analiza gráfica-
mente cuándo 
el polinomio de 
cuarto grado es 
no negativo.

Figura 19.
Representación polinomial

Nota: Elaboración propia.

4 Determina grá-
ficamente para 
qué valores de 
(x) la fracción 
es menor que 
cero.

Figura 20.
Representación polinomial

Nota: Elaboración propia.

5 R e p r e s e n t a 
gráf icamente 
y determina la 
solución de la 
inecuación con 
valor absoluto.

Figura 21.
Representación valor 
absoluto

Nota: Elaboración propia
Nota. Elaboración propia

Apoyo didáctico: Se recomienda al profesor integrar ejercicios de 
análisis gráfico y verificación para que los estudiantes contrasten las 
soluciones algebraicas con representaciones visuales. Al trabajar 
con ecuaciones e inecuaciones en el plano cartesiano, se favorece la 
validación de resultados y se refuerza la comprensión conceptual al 
articular distintos registros de representación, como subraya Duval 
(2006). De este modo, los alumnos no solo aplican procedimientos, 
sino que aprenden a verificar y dar sentido a las soluciones obtenidas.

4.	Ejercicios de aplicación contextualizada
Los ejercicios de aplicación contextualizada son valiosos porque 
conectan la matemática con situaciones reales que el estudiante 
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reconoce y comprende. Cuando un problema surge de un esce-
nario cercano el aprendizaje deja de ser únicamente simbólico 
y se vuelve significativo.

 Estos ejercicios permiten que el estudiante intuya para qué sirven 
los conceptos, cómo se usan y por qué es útil dominarlos. Además, 
al enfrentarse a contextos más abiertos y variados, desarrolla la ca-
pacidad de seleccionar estrategias, justificar decisiones y adaptar 
los conocimientos matemáticos a situaciones nuevas. 

Tabla 12.
Ejemplos de ejercicios de aplicación contextualizada

# Enunciado Expresión 
matemática

Tipo de 
ecuación

1 Una empresa produce 
 artículos. Los ingre-

sos son  y los 
costos 
.¿Cuántos artículos debe 
vender para que los ingre-
sos igualen a los costos?

Lineal

2 La altura de un objeto lan-
zado desde el suelo sigue 

.  ¿ En 
qué momentos está en el 
suelo?

Cuadrática

3 Una cooperativa reparte 
beneficios según 
donde  son las aporta-
ciones en miles de dólares. 
¿Para qué valores de x el 
beneficio es al menos 0,5?

Racional

4 La ganancia (en miles 
de USD) se modela por 

. 
¿Para qué niveles de ven-
tas la ganancia es cero 
(puntos de equilibrio)?

Cúbica

5 a población de un pueblo 
es 5000 y aumenta 200 
personas por año. ¿En qué 
año superará los 10000 
habitantes?

Lineal

Nota: Elaboración propia.
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Apoyo didáctico: Se sugiere al profesor proponer ejercicios 
de aplicación contextualizada que acerquen las ecuaciones e 
inecuaciones a situaciones reales como cálculos de costos, bene-
ficios o tiempos de proceso. Estos problemas, además de motivar, 
favorecen la modelación matemática y la comprensión concep-
tual, permitiendo que los estudiantes vean el valor del álgebra 
en contextos auténticos (Blum & Leiss, 2007; Godino, Batanero 
& Font, 2007).

5.	 Ejercicios exploratorios y abiertos
Los ejercicios exploratorios y abiertos son esenciales porque 
invitan al estudiante a pensar más allá de una única respuesta 
posible y a moverse con mayor libertad dentro de las ideas 
matemáticas. En lugar de seguir un camino ya marcado, estos 
ejercicios le permiten probar, comparar, equivocarse, a justar 
y volver a intentar, desarrollando una forma de razonamien-
to más flexible y creativa. Cuando el estudiante descubre 
patrones por sí mismo o encuentra diferentes maneras de 
abordar una misma situación, siente que la matemática no 
es un conjunto rígido de reglas, sino un espacio donde puede 
formular preguntas y tomar decisiones. Este tipo de tareas 
despierta curiosidad, fomenta la autonomía intelectual y ayu-
da a construir una comprensión más profunda y personal de 
los conceptos.

Apoyo didáctico: Se sugiere al docente incorporar en la 
planificación ejercicios exploratorios que permitan a los es-
tudiantes abordar un mismo problema desde diferentes enfo-
ques, fomentando así la creatividad y el pensamiento flexible. 
Este tipo de tareas no debe reducirse a la búsqueda de una 
única respuesta, sino que ha de propiciar la reflexión sobre los 
procedimientos empleados, la comparación de estrategias y 
la justificación de decisiones. Como señalan Mason, Burton y 
Stacey (2010), los ejercicios abiertos estimulan la autonomía 
intelectual y el razonamiento adaptativo, al invitar al alumno 
a experimentar con distintas rutas de solución y a construir 
confianza en sus propias capacidades matemáticas.



50

Ecuaciones e inecuaciones algebraicas

Tabla 13.
Ejemplos de ejercicios exploratorios y abiertos

# Enunciado Expresión 
matemática

Tipo

1 Encuentra todos los pares de nú-
meros consecutivos cuya multi-
plicación sea igual a 72. ¿Existen 
distintas formas de comprobarlo?

Cuadrática

2 Propón distintos valores de que 
cumplan que la diferencia entre su 
cuadrado y el doble del número 
sea menor que 15. ¿Qué estrate-
gias puedes usar para justificar tu 
elección?

Inecuación 
cuadrática

3 Explora los valores de  que ha-
cen que la fracción sea mayor 
que 3. ¿Cómo puedes representarlo 
numérica o gráficamente?

Inecuación 
racional

4 Investiga qué valores de  cum-
plen que la raíz cuadrada de  
sea igual a . ¿Cómo verifica-
rías tus soluciones?

Radical

5 Describe y representa los números 
cuya distancia al 7 en la recta real 
no supere 4 unidades. ¿De qué ma-
neras diferentes se puede interpre-
tar esta condición?

V a l o r 
absoluto

Nota: Elaboración propia.

6.	Ejercicios con apoyo tecnológico
Los ejercicios con apoyo tecnológico ofrecen al estudiante una 
forma más dinámica y visual de interactuar con las ideas mate-
máticas. Al utilizar herramientas como GeoGebra, calculadoras 
gráficas o simuladores, puede experimentar con parámetros, ob-
servar cambios en tiempo real y comprobar rápidamente si sus 
conjeturas tienen sentido. Esta interacción inmediata favorece la 
comprensión, ya que permite explorar situaciones que, de manera 
tradicional, serían más lentas o difíciles de representar. Además, la 
tecnología amplía las posibilidades de análisis: ayuda a verificar 
resultados, comparar métodos y visualizar comportamientos que 
fortalecen la intuición matemática. De este modo, la tecnología 
no reemplaza el razonamiento, sino que actúa como un medio 
para profundizarlo y hacerlo más accesible.
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Tabla 14.
Ejemplos de ejercicios con apoyo tecnológico 

# Enunciado Ideas de solución / 
Caminos posibles

Preguntas guía

1 Una empresa de men-
sajería cobra 7 dólares 
de tarifa fija y 2 dólares 
por cada paquete. Si el 
presupuesto máximo 
es 19 dólares, ¿cuán-
tos paquetes pueden 
enviarse?

Algebra: resolver 
 

Gráfico: in-
tersección de 

 

¿Qué signifi-
ca el punto de 
intersección? 
¿Qué ocurre si 
el presupuesto 
cambia?

2 U n a  p e l o ta  s i -
gue la trayectoria 

. 
¿En qué distancias toca 
el suelo? ¿Cómo cam-
bia la parábola si mo-
dificas los coeficientes?

Factorización, comple-
tar el cuadrado, fór-
mula general. Gráfico 
de la parábola y raíces. 
Extensión: usar desli-
zadores en a, b, c.

¿Qué represen-
ta cada inter-
sección con el 
eje x? ¿Cómo 
se interpreta el 
vértice?

3 Se estudia el índi-
ce de rendimiento 

Determina 
en qué intervalos el ren-
dimiento es positivo.

Línea de signos: ana-
lizar raíces y asíntota. 
Gráfico: observar dón-
de la curva está sobre 
el eje x. Extensión: ge-
neralizar a 

¿Por qué  
no pertenece al 
dominio? ¿Qué 
intervalos gene-
ran ?

4 Un sensor  mide 
 y un planifi-

cador predice  
Encuentra los valores 
de x donde coinciden 
ambos modelos y veri-
fica raíces extrañas.

Algebra: elevar al 
cuadrado, resolver y 
comprobar. Gráfico: 
intersección de 

 

¿Qué condicio-
nes de dominio 
deben cumplir-
se? ¿Siempre 
hay solución?

5 En una evaluación de 
matemáticas, la califi-
cación objetivo es de 
8/10. Se acepta una 
tolerancia de hasta 6 
décimas  para 
considerar que el estu-
diante está dentro del 
rango esperado. 

Representa grá-
ficamente to-
das las califica-
ciones posibles 
que cumplen 
con este crite-
rio y determina 
el intervalo de 
aceptación.

Nota: Elaboración propia.
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Apoyo didáctico: Se recomienda al docente integrar recursos 
tecnológicos como GeoGebra o Desmos no solo para agilizar 
cálculos, sino para promover espacios de experimentación que 
fortalezcan la comprensión conceptual y permitan validar resul-
tados de manera interactiva. Tal como señalan Godino y Batanero 
(1998), estas herramientas favorecen la construcción de signifi-
cados matemáticos, mientras que Duval (2006) destaca su valor 
en la articulación de distintos registros de representación. 

Conclusiones

El recorrido por este primer capítulo permite comprender que 
el álgebra no es solo una colección de reglas o procedimientos, 
sino un modo de pensar que posibilita organizar, simbolizar y 
comprender la realidad desde la lógica de las relaciones. El es-
tudio de los números reales, sus propiedades, los exponentes y 
radicales, así como la resolución de ecuaciones e inecuaciones, 
sienta las bases para una comprensión más profunda del cálculo 
y de la modelación matemática. 

De igual manera, la propuesta didáctica que acompaña el 
desarrollo teórico resalta la importancia de enseñar el álgebra 
desde la comprensión y no desde la mera repetición. Los ejem-
plos, las estrategias de resolución y el uso de recursos tecnoló-
gicos permiten visualizar las ecuaciones e inecuaciones como 
herramientas para interpretar y transformar el entorno. De esta 
forma, el capítulo invita al docente y al estudiante a descubrir en 
el álgebra un camino hacia el razonamiento, la creatividad y la 
reflexión crítica, donde aprender a resolver es también aprender 
a pensar con sentido.
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Capítulo II

Sistemas de ecuaciones e 
inecuaciones algebraicas

 

Introducción

En este segundo capítulo, dedicado a los sistemas de ecuaciones e 
inecuaciones algebraicas, el estudiante se enfrenta al reto de analizar 
situaciones donde varias condiciones actúan al mismo tiempo. No se 
trata solo de resolver igualdades o desigualdades aisladas, sino de 
descubrir cómo interactúan entre sí para definir un punto común, una 
región o un equilibrio. Este paso desde lo individual hacia lo relacional 
representa un avance en la madurez algebraica: el pensamiento deja 
de mirar ecuaciones por separado y aprende a verlas como parte de 
un entramado de relaciones que modelan fenómenos del mundo real.

En este contexto, los sistemas se convierten en un lenguaje 
para describir simultáneamente varias realidades: el cruce de 
dos caminos, la intersección de demandas y recursos, o el punto 
donde se equilibran fuerzas opuestas. Resolverlos exige articular 
razonamiento simbólico, interpretación gráfica y sentido numéri-
co, combinando lo analítico con lo visual. Las estrategias clásicas 
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(sustitución, igualación o reducción) cobran un nuevo valor cuando 
se interpretan como expresiones de un mismo principio de cohe-
rencia: todo sistema busca un punto donde las condiciones se ar-
monizan. El apoyo de herramientas tecnológicas como GeoGebra 
o Desmos permite, además, visualizar esa convergencia, haciendo 
tangible la idea de solución como encuentro entre representacio-
nes distintas de una misma verdad matemática.

Este capítulo no pretende limitarse a la técnica, sino invitar al lector a 
pensar el sistema como metáfora del propio conocimiento: un espacio 
donde múltiples caminos convergen para dar sentido a una misma rea-
lidad. Cada método, cada representación y cada verificación aportan 
una mirada diferente, pero complementaria. De este modo, el estudio 
de los sistemas de ecuaciones e inecuaciones se presenta como un 
ejercicio de pensamiento integrador, que prepara el camino para los 
capítulos siguientes, donde las funciones algebraicas y trascendentes 
revelarán su poder para describir, con elegancia y precisión, los pa-
trones y leyes que rigen la naturaleza y la sociedad.

Fundamentos conceptuales
El estudio de los sistemas de ecuaciones e inecuaciones constituye 
un eje central en la formación algebraica, ya que permite trabajar 
con situaciones donde intervienen varias condiciones de manera 
simultánea. En términos generales, un sistema de ecuaciones se 
compone de dos o más ecuaciones que deben resolverse al mismo 
tiempo para encontrar los valores de las incógnitas que satisfacen 
todas ellas. De forma paralela, un sistema de inecuaciones está for-
mado por desigualdades cuya solución corresponde a un conjunto 
de valores o regiones que cumplen las condiciones establecidas. 
Estos sistemas, como señalan Stewart (2016) y Blitzer (2018), no solo 
constituyen un recurso algebraico, sino también un lenguaje formal 
para representar y analizar fenómenos complejos de la realidad.

En lo que respecta a su clasificación, los sistemas se dividen 
en lineales y no lineales. Los sistemas lineales se caracterizan 
por la presencia de ecuaciones o inecuaciones de primer grado, 
cuyas gráficas corresponden a rectas en el plano o hiperplanos 
en dimensiones superiores. Este tipo de sistemas resulta de gran 
importancia porque ofrece soluciones que pueden interpretarse 
como puntos de intersección de rectas, vértices de polígonos 
o regiones poligonales. Por otro lado, los sistemas no lineales 
incluyen expresiones cuadráticas, cúbicas, radicales o de otro 
tipo, cuyas soluciones adoptan formas más complejas: curvas, 
parábolas, circunferencias o incluso superficies en el espacio 
tridimensional. Esta diversidad de casos hace que los estudiantes 
deban desarrollar tanto la destreza algorítmica como la capaci-
dad de interpretar gráficas y regiones solución (Sullivan, 2016).
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Otro aspecto clave en la comprensión de los fundamentos es 
la discusión sobre los tipos de soluciones. Un sistema puede ser:

•	 Compatible determinado, cuando presenta una única solu-
ción que satisface todas las condiciones;

•	 Compatible indeterminado, cuando tiene infinitas solucio-
nes que cumplen el sistema;

•	 Incompatible, cuando no existe ningún valor que satisfaga 
simultáneamente todas las expresiones.

Este análisis es esencial, pues ayuda al estudiante a entender 
que resolver un sistema no siempre implica encontrar un único 
resultado numérico, sino también reconocer situaciones de im-
posibilidad o de múltiples soluciones (Anton et al. , 2013).

La importancia de los sistemas en la modelación matemática se 
evidencia en numerosos campos. En economía, los sistemas linea-
les permiten calcular el punto de equilibrio entre costos e ingresos; 
en física, se aplican para determinar el punto de intersección de 
trayectorias o fuerzas; en biología, ayudan a describir el crecimien-
to poblacional bajo restricciones; y en ingeniería, son la base de 
modelos de optimización y programación lineal. En este sentido 
Kilpatrick et al. (2001) destacan que este tipo de problemas fa-
vorece el desarrollo integral de las competencias matemáticas, al 
exigir comprensión conceptual, fluidez procedimental, estrategias 
de resolución, razonamiento adaptativo y disposición productiva.

En el ámbito educativo, comprender los fundamentos de los 
sistemas de ecuaciones e inecuaciones supone, además, formar 
en el pensamiento algebraico como herramienta de modelación. 
No se trata solo de manipular símbolos, sino de ofrecer a los 
estudiantes la oportunidad de interpretar situaciones, plantear 
modelos y validar sus soluciones en diferentes contextos. Así, 
los fundamentos conceptuales de este tema constituyen no solo 
un contenido matemático, sino también una vía para fortalecer 
la autonomía intelectual, la capacidad crítica y la transferencia 
del conocimiento a escenarios de la vida real.

Definición de sistemas de ecuaciones e inecuaciones
Un sistema de ecuaciones algebraicas puede entenderse como 
un conjunto finito de ecuaciones en las que intervienen las mis-
mas incógnitas y que deben cumplirse de manera simultánea. 
La resolución de un sistema busca determinar los valores de las 
variables que satisfacen todas las condiciones propuestas. Este 
concepto se generaliza de forma natural a partir de la idea de una 
sola ecuación: mientras que en una expresión aislada se procura 
identificar los valores que verifican una igualdad, en un sistema 
se requiere encontrar las soluciones comunes a todas ellas. Según 
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Stewart (2016), esta interacción simultánea convierte a los siste-
mas en una herramienta fundamental para modelar situaciones 
reales que no pueden explicarse con una sola ecuación.
La forma general de un sistema de ecuaciones lineales con “m” 
ecuaciones y “n” incógnitas se puede expresar como:

donde los coeficientes  y los términos independientes  son 
números reales. Este planteamiento, abordado de manera sis-
temática por Blitzer (2018) y Anton et al.  (2013), permite tratar 
sistemas sencillos de dos variables hasta sistemas de mayor 
dimensión que se resuelven mediante métodos matriciales.
Por otra parte, un sistema de inecuaciones algebraicas se define 
como el conjunto de desigualdades en las que aparecen las mismas 
incógnitas, y cuya solución corresponde a los valores que satis-
facen simultáneamente todas las restricciones. Su forma general 
puede escribirse como:

donde cada  es una expresión algebraica en varias variables. 
Estas representaciones generan, en el plano o en el espacio, 
regiones factibles que reflejan las soluciones posibles. Como 
señala Sullivan (2016), la interpretación gráfica de los sistemas 
de inecuaciones es esencial, pues permite visualizar áreas de 
validez que constituyen la base de la programación lineal y de 
múltiples aplicaciones en ciencias económicas y de la ingeniería.

En síntesis, los sistemas de ecuaciones e inecuaciones alge-
braicas constituyen un marco conceptual amplio para trabajar 
con situaciones en las que interactúan múltiples condiciones. Su 
estudio no solo fortalece las habilidades algebraicas, sino que 
también impulsa competencias superiores, como el razonamiento 
adaptativo y la capacidad de modelación (Kilpatrick et al., 2001).

Clasificación: lineales y no lineales
La clasificación de los sistemas de ecuaciones e inecuaciones en 
lineales y no lineales constituye un aspecto esencial del álgebra, 
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ya que determina tanto los métodos de resolución como la for-
ma en que se interpretan las soluciones. Esta distinción no es 
meramente formal, sino que responde a la necesidad de organi-
zar y comprender los diferentes tipos de relaciones que pueden 
establecerse entre variables. Como señalan Anton et al.(2013), 
reconocer si un sistema es lineal o no lineal permite elegir las 
estrategias adecuadas de resolución y facilita la transición del 
cálculo simbólico a la interpretación geométrica y aplicada.

Un sistema lineal está compuesto por ecuaciones en las que 
las variables aparecen con exponente uno y no se multiplican 
entre sí. Su forma general en dos incógnitas es:

donde . Gráficamente, este sistema re-
presenta dos rectas en el plano, cuya intersección corresponde 
a la solución. Por ejemplo: 

La primera ecuación describe una recta que pasa por los pun-
tos (0,5) y (5,0), mientras que la segunda se representa como una 
recta que corta al eje “y” en (-1) y al eje “x” en (0.5) (véase Figura 
1). Su punto de intersección, (2,3), constituye la solución única.

Figura 1.
Representación del sistema de ecuaciones

Nota: Elaboración propia.

Según Stewart (2016), este enfoque permite a los estudiantes 
comprender que la resolución de un sistema lineal equivale a 
encontrar un punto común que satisface ambas condiciones. En 
contraste, un sistema no lineal incluye al menos una ecuación o 
inecuación en la que las variables aparecen elevadas a expo-
nentes distintos de uno, o se presentan en productos, raíces u 
otras formas algebraicas. Un ejemplo clásico en dos variables es:
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La primera ecuación representa una circunferencia de radio 
5 centrada en el origen, y la segunda una recta (véase Figura 
2). La intersección entre ambas curvas da como resultado dos 
posibles soluciones: (3,4) y (4,3).

Figura 2.
Representación de un sistema de ecuaciones no lineales

Nota: Elaboración propia.

Este ejemplo ilustra lo señalado por Blitzer (2018), quien sos-
tiene que los sistemas no lineales enriquecen la comprensión 
geométrica, ya que sus soluciones no siempre corresponden a 
un único punto, sino a la interacción de curvas con diferentes 
formas y propiedades.

De manera análoga, en el caso de sistemas de inecuaciones, los 
lineales delimitan regiones poligonales en el plano, como ocurre 
en programación lineal (véase figura 3). Por ejemplo:

define un triángulo en el primer cuadrante que representa la 
región factible de soluciones.

Figura 3.
Representación de un sistema de ecuaciones lineales

Nota: Elaboración propia.
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En cambio, un sistema no lineal de inecuaciones, como:

describe la intersección entre el disco de radio 3 y el semiplano 
superior respecto a la recta , lo que genera una región curva 
más compleja (véase Figura 4). Sullivan (2016) enfatiza que estas 
representaciones ayudan al estudiante a reconocer que resolver 
un sistema de inecuaciones no consiste únicamente en calcular 
valores, sino en delimitar espacios de validez.

Figura 4.
Representación de sistema de ecuaciones no lineales 

Nota: Elaboración propia.

En conclusión, la clasificación de los sistemas en lineales y 
no lineales proporciona un marco conceptual que organiza la 
enseñanza y el aprendiza je del álgebra. Mientras los sistemas 
lineales ofrecen procedimientos estandarizados y soluciones 
interpretables como intersecciones de rectas o planos, los no li-
neales introducen al estudiante en un terreno más amplio, donde 
la diversidad de formas y soluciones potencia la capacidad de 
modelación y razonamiento adaptativo (Kilpatrick et al., 2001).

Tipos de soluciones 
El estudio de los tipos de soluciones en los sistemas de ecua-
ciones e inecuaciones es un componente fundamental en la for-
mación matemática, ya que permite comprender que la resolu-
ción no siempre conduce a un resultado único, sino que puede 
derivar en diferentes escenarios. Identificar estos casos no solo 
es relevante desde un punto de vista algebraico, sino también 
pedagógico, pues dota a los estudiantes de herramientas para 
razonar de forma flexible y crítica frente a distintos problemas 
(Duval, 2006).

En esencia, un sistema de ecuaciones o inecuaciones busca 
determinar los valores que satisfacen de manera simultánea 
todas las condiciones planteadas. Sin embargo, dependiendo 
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de la naturaleza de las expresiones involucradas y de las re-
laciones entre ellas, los resultados posibles se agrupan en tres 
categorías principales: sistemas compatibles determinados, 
sistemas compatibles indeterminados y sistemas incompatibles 
(Anton et al., 2013).

Sistemas compatibles determinados
Un sistema es compatible determinado cuando existe una 
única solución que satisface todas las condiciones. En los 
sistemas lineales de dos variables, este caso corresponde 
gráficamente al punto de intersección de dos rectas no para-
lelas. Desde una perspectiva geométrica más amplia, se trata 
del cruce único entre planos o hiperplanos en dimensiones 
superiores. 

Por ejemplo, el sistema:

posee una única solución . Este resultado refleja 
que ambas rectas comparten un solo punto común (véase 
Figura 5). 

Stewart (2016) señala que este caso ejemplifica la unicidad 
de las condiciones, lo que se interpreta en contextos aplicados 
como un equilibrio exacto, por ejemplo, entre ingresos y gastos 
en economía o entre fuerzas en mecánica.

Figura 5.
Representación de sistema compatible determinado

Nota: Elaboración propia.

Sistemas compatibles indeterminados
Un sistema es compatible indeterminado cuando existen infinitas 
soluciones. En los sistemas lineales de dos variables, este caso 
ocurre cuando ambas ecuaciones representan rectas coinciden-
tes, es decir, la misma recta expresada con formas algebraicas 
distintas. Gráficamente, todas las coordenadas de la recta común 
constituyen soluciones del sistema. En términos algebraicos, esta 
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situación revela que el sistema no está suficientemente definido 
para restringir una única respuesta, lo que genera un conjunto 
infinito de posibilidades (Blitzer, 2018). Por ejemplo, el sistema:

representa dos ecuaciones equivalentes (véase Figura 6); al 
simplificar, ambas corresponden a la misma recta.

Figura 6.
Representación de sistema compatible indeterminado

Nota: Elaboración propia.

Este caso es especialmente interesante desde la modelación, 
pues refleja fenómenos donde múltiples configuraciones cumplen 
las condiciones. En programación lineal, por ejemplo, las regiones 
factibles infinitas muestran que existe una familia de soluciones 
óptimas, lo cual exige utilizar criterios adicionales para selec-
cionar entre ellas (Sullivan, 2016).

Sistemas incompatibles
Un sistema es incompatible cuando no existe ningún valor que 
satisfaga simultáneamente todas las ecuaciones o inecuaciones. 
En los sistemas lineales de dos variables, esto ocurre cuando las 
rectas son paralelas y distintas, de modo que nunca se intersecan 
(véase Figura 7).

Figura 7.
Representación de sistema incompatible

Nota: Elaboración propia.
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Algebraicamente, esto equivale a encontrar contradicciones 
como:

que claramente no pueden cumplirse al mismo tiempo. Este tipo de 
resultados no debe interpretarse como un fracaso en el cálculo, sino 
como evidencia de la inconsistencia de las condiciones planteadas. 
Apostol (2007) destaca que este escenario introduce en los estu-
diantes la noción de imposibilidad matemática, útil para analizar 
modelos en los que las restricciones resultan mutuamente exclu-
yentes, como sucede en ciertos problemas económicos o físicos.

En contraste, los sistemas no lineales enriquecen de manera 
significativa el panorama de los tipos de soluciones, ya que las 
curvas involucradas (circunferencias, parábolas, hipérbolas, elip-
ses, entre otras) permiten múltiples configuraciones geométricas.

Un ejemplo clásico es la intersección entre una recta y una 
circunferencia (véase Figura 8):

•	 Puede haber dos soluciones, cuando la recta corta a la cir-
cunferencia en dos puntos.

•	 Puede haber una solución única, cuando la recta es tangente 
y toca la circunferencia en un solo punto.

•	 Puede no haber ninguna solución, si la recta no toca la 
circunferencia.

Figura 8.
Representación de sistema incompatible 

Nota: Elaaboración propia.

Estos casos ejemplifican cómo el análisis gráfico proporciona 
al estudiante una forma inmediata de visualizar la existencia y el 
número de soluciones sin necesidad de resolver algebraicamente 
todo el sistema (Apostol, 2007).

De manera similar, la intersección de dos parábolas puede 
generar hasta dos soluciones, mientras que la de una parábola 
con una hipérbola puede originar varias soluciones dependiendo 
de sus posiciones relativas (véase Figura 9).
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Figura 9.
Representación de varias soluciones 

Nota: Elaboración propia.

Stewart (2016) resalta que estos escenarios no lineales obli-
gan a desarrollar habilidades de anticipación y de razonamiento 
visual, en tanto que los estudiantes deben prever el número de 
soluciones posibles antes de efectuar cálculos detallados.

Importancia de los sistemas en la modelación matemática
Los sistemas de ecuaciones e inecuaciones constituyen un núcleo 
esencial en la modelación matemática porque permiten repre-
sentar situaciones complejas en las que intervienen múltiples 
variables y restricciones de manera simultánea. No se trata única-
mente de resolver expresiones algebraicas, sino de comprender 
cómo estas estructuras se convierten en un lenguaje universal 
para traducir fenómenos reales en términos matemáticos. Según 
Blum y Leiss (2007), la modelación matemática es un proceso 
cíclico que inicia en una situación del mundo real, se transforma 
en un modelo simbólico, se resuelve con herramientas matemá-
ticas y luego retorna al contexto, enriqueciendo la comprensión 
y la toma de decisiones.

La representación de la complejidad en contextos reales
Los sistemas de ecuaciones son herramientas privilegiadas 
porque condensan interacciones entre magnitudes. Un ejemplo 
clásico en economía es el cálculo del punto de equilibrio entre 
ingresos y costos:

donde  representa los ingresos por la venta de “x” unidades 
y  los costos asociados. Resolver este sistema permite iden-
tificar el nivel de producción en el cual no se generan pérdidas 
ni ganancias, concepto central en la administración de empresas 
(Sullivan, 2016).

En la física, los sistemas lineales permiten calcular el punto 
de encuentro entre trayectorias de partículas o determinar el 
equilibrio de fuerzas en un cuerpo rígido. En biología, se utilizan 
para describir interacciones poblacionales como los modelos 
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depredador-presa de Lotka y Volterra, que combinan ecuaciones 
no lineales para anticipar ciclos de crecimiento y decrecimiento 
en especies (Anton et al., 2013). En ingeniería, se aplican para la 
optimización de recursos, el diseño de estructuras y la progra-
mación de procesos industriales.

Por su parte, los sistemas de inecuaciones se han consolidado 
como la base de la programación lineal, técnica utilizada para 
maximizar beneficios o minimizar costos en contextos donde 
existen restricciones. La región factible generada por las inecua-
ciones delimita el espacio de posibles soluciones, dentro del cual 
se localizan los valores óptimos. Stewart (2016) enfatiza que este 
enfoque resulta indispensable en logística, transporte, planifica-
ción de la producción o gestión de inventarios.

Más allá del cálculo: integración de condiciones y restricciones
La importancia de los sistemas radica en su capacidad para 
integrar diversas condiciones que, de forma aislada, serían in-
suficientes. Resolver un sistema significa encontrar el punto de 
intersección entre múltiples exigencias, lo que se traduce geomé-
tricamente en intersecciones de rectas, planos o curvas, y con-
ceptualmente en soluciones que satisfacen simultáneamente 
todas las restricciones planteadas (Larson & Edwards, 2019).

De esta manera, los sistemas de ecuaciones e inecuaciones sim-
bolizan un espacio de negociación entre variables: en economía, 
entre oferta y demanda; en física, entre fuerzas; en biología, entre es-
pecies; en la vida cotidiana, entre recursos limitados y necesidades 
crecientes. Apostol (2007) resalta que esta perspectiva dota a las 
matemáticas de un valor heurístico, pues no solo resuelven proble-
mas, sino que ayudan a plantear escenarios y prever consecuencias.

Ejemplo económico: Una empresa produce dos artículos, “x” y 
“y”. El ingreso total está dado por , mientras que los 
costos de producción se expresan como . 
Resolver el sistema  permite encontrar combinaciones de 
“x” y “y” donde la empresa no obtiene pérdidas ni ganancias 
(véase Figura 10).

Figura 10.
Representación de funciones ingreso total

Nota: Elaboración propia.
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Punto de equilibrio:   es decir  
con restricciones naturales: . El punto de equilibrio está 
dado por todas las parejas (x,y) que satisfacen  con 

 . Debajo de esa recta hay pérdidas; por encima, hay ganancias.
Ejemplo físico: Dos proyectiles lanzados desde distintos puntos 

siguen trayectorias parabólicas. Sus ecuaciones descritas en la 
generan un sistema cuya resolución indica si las trayectorias se 
cruzan en el espacio-tiempo. (véase Figura 11). 

Buscamos si las trayectorias se cruzan en el espacio-tiempo 
(t,y), es decir, un mismo instante t con la misma altura “y”.  Las 
trayectorias se cruzan en  y 12.2 unidades de altura.

Figura 11.
Representación del lanzamiento de dos proyectiles

Nota: Elaboración propia.

Resolución de sistemas de ecuaciones
La resolución de sistemas de ecuaciones constituye un eje central 
en el aprendizaje del álgebra, pues permite comprender cómo 
diferentes condiciones pueden cumplirse simultáneamente en un 
mismo contexto. Desde una perspectiva histórica y formativa, los 
métodos de resolución surgieron como respuesta a problemas 
prácticos de comercio, astronomía o ingeniería, y posteriormente 
se consolidaron en un cuerpo teórico que hoy resulta indispen-
sable en la enseñanza de la matemática (Katz, 2009).

Resolver un sistema implica determinar los valores de las incóg-
nitas que satisfacen de manera conjunta todas las ecuaciones plan-
teadas, lo que en términos geométricos se traduce en la búsqueda 
de intersecciones entre líneas, planos o curvas (Stewart, 2016). Esta 
doble dimensión, algebraica y geométrica, dota al estudio de los sis-
temas de una riqueza conceptual que favorece tanto el desarrollo de 
habilidades analíticas como la construcción de una intuición visual.

Métodos algebraicos: sustitución, igualación, reducción, Gauss 
y Cramer
El aprendizaje de los métodos algebraicos de resolución de siste-
mas de ecuaciones es un paso decisivo en la formación matemáti-
ca, pues permite comprender cómo distintas condiciones pueden 
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cumplirse de manera simultánea. Estos procedimientos no deben 
ser vistos únicamente como técnicas rutinarias, sino como estra-
tegias de razonamiento que fortalecen la capacidad de análisis y 
la flexibilidad cognitiva (Godino, Batanero & Font, 2007). Entre los 
más utilizados en el ámbito escolar y universitario se encuentran 
el método de sustitución, el método de igualación y el método de 
reducción, cada uno con características propias que los hacen más 
adecuados según el tipo de sistema y el contexto de aplicación.

Método de sustitución
El método de sustitución se fundamenta en despejar una variable 
en una de las ecuaciones y reemplazarla en las demás, reduciendo 
gradualmente el número de incógnitas hasta obtener una solución. 
Este procedimiento es especialmente intuitivo, pues el estudiante 
logra visualizar cómo una condición se integra en otra. Según 
Johnson y Riess (2018), la sustitución fomenta la comprensión del 
concepto de “variable dependiente”, es decir, cómo el valor de 
una incógnita queda condicionado por otra dentro del sistema.

Ejemplo: Para comprobar el nivel de razonamiento de los es-
tudiantes de enseñanza General Básica, se aplicó una prueba de 
razonamiento de 20 preguntas sobre contenidos resolución de 
sistemas de ecuaciones. Por cada respuesta correcta se asigna 
tres puntos, y por cada incorrecta se restan dos. Si un estudian-
te obtiene 88 puntos, ¿cuántas preguntas respondió de manera 
correcta y cuántas de manera incorrecta?

Solución
•	 Considerar a “x” como la cantidad de respuestas correctas 

dadas por un estudiante.
•	 Considerar a “y” como la cantidad de respuestas incorrectas 

dadas por un estudiante. 
•	 Formalizar el sistema de ecuaciones de acuerdo a las exi-

gencias del problema.

“Se despeja una variable en una de las ecuaciones y se sus-
tituye en la otra.”

Se sustituye  en la ecuación (1) 
obteniéndose así 
Sustituir  en la ecuación (2)
obteniendo:  (3)

para obtener 
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Respuesta: El estudiante respondió de manera correcta 16 
preguntas y 4 de manera incorrecta y puede comprobar geomé-
tricamente el resultado (véase Figura 12)

Figura 12.
Representación del sistema de ecuaciones

Nota: Elaboración propia.

El método es recomendable cuando alguna ecuación presenta 
una variable con coeficiente 1 o -1, ya que simplifica el despeje 
(Larson & Edwards, 2019).

Método de igualación
Este procedimiento consiste en despejar la misma incógnita en 
ambas ecuaciones y luego igualar los resultados obtenidos. El 
valor pedagógico del método radica en reforzar la noción de 
equivalencia algebraica, al mostrar que dos expresiones distintas 
pueden representar el mismo valor de una variable (Aparicio & 
Cantoral, 2015).

Si aplicamos el método de igualación al sistema anterior:

Despejar x en las ecuaciones (1) y (2). Para obtener las ecua-
ciones (3) y (4).

al igualar las ecuaciones (3) y (4) obtenemos la ecuación (5) 

que al resolverla obtenemos y = 4 y al sustituir en (1) o en (2) 
obtenemos  x = 16.

De acuerdo con Blitzer (2018), este método es muy útil cuando 
las dos ecuaciones son fácilmente manipulables, ya que reduce el 
sistema a una comparación directa. Además, permite desarrollar 
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la capacidad de los estudiantes para reconocer cuándo dos re-
presentaciones algebraicas corresponden al mismo valor de una 
incógnita, lo que refuerza la idea de consistencia interna en el 
sistema.

Método de reducción
El método de reducción, también llamado de eliminación, se 
apoya en la combinación de ecuaciones para cancelar una de las 
incógnitas. Implica multiplicar alguna de las ecuaciones por un 
número conveniente para obtener coeficientes opuestos y luego 
sumar o restar. Este método constituye la base de técnicas más 
avanzadas como el uso de determinantes o el método de Gauss, 
por lo que su enseñanza prepara el terreno para un estudio más 
abstracto de los sistemas lineales (Anton et al., 2013).

Ejemplo

Se intenta eliminar una de las incógnitas en el sistema de 
ecuaciones para resolver inicialmente una ecuación de primer 
grado. Se multiplica por - 6 la ecuación (1) para obtener el sis-
tema siguiente

al sumar ambas ecuaciones obtenemos: , de donde 
y =4. Al sustituir y =4 en (1) se obtiene x =16. 

Stewart (2016) indica que el método de reducción resulta más 
sistemático que los anteriores, sobre todo cuando los coeficientes 
no favorecen un despeje inmediato. Además, guarda una relación 
natural con el álgebra matricial, lo que lo convierte en un recurso 
idóneo para la transición a cursos avanzados de matemáticas.

Métodos de Gauss y Cramer
La resolución de sistemas de ecuaciones lineales ha sido uno 
de los temas fundacionales del álgebra y, posteriormente, del 
álgebra lineal. Con el crecimiento de las ciencias aplicadas y el 
aumento en la complejidad de los problemas, surgió la necesidad 
de contar con métodos más estructurados que los tradicionales 
de sustitución, igualación o reducción. Entre los procedimientos 
más influyentes se encuentran el método de Gauss, también 
conocido como eliminación gaussiana, y la regla de Cramer, am-
bos con raíces históricas profundas y una enorme vigencia en la 
actualidad. Strang (2016) señala que el valor de estos métodos 
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radica no solo en su poder de cálculo, sino también en su ca-
pacidad para conectar ideas fundamentales de la matemática 
como matrices, determinantes, independencia lineal y existencia 
de soluciones.

El método de Gauss: sistematicidad y generalización
El método de Gauss se presenta como un algoritmo general que 
transforma un sistema de ecuaciones en una matriz aumentada 
sobre la que se aplican operaciones elementales por filas hasta 
obtener una forma escalonada. Dichas operaciones (intercambiar 
filas, multiplicarlas por un escalar o sumar múltiplos de una fila 
a otra) no alteran el conjunto de soluciones del sistema, lo que 
garantiza la validez del procedimiento (Lay, 2016).

Más allá de lo operativo, el método de Gauss permite clasificar 
los sistemas lineales en:

•	 Compatibles determinados, cuando la matriz escalonada 
conduce a una solución única.

•	 Compatibles indeterminados, cuando quedan variables li-
bres que generan infinitas soluciones.

•	 Incompatibles, cuando aparece una contradicción del tipo 
0 =1.

Este procedimiento no solo resuelve, sino que revela la estruc-
tura interna del sistema. Según Anton et al. (2013), la eliminación 
gaussiana constituye la base de la enseñanza de álgebra lineal, 
pues conecta con conceptos como el rango de una matriz y la 
noción de consistencia de un sistema.

Ejemplo:
Resolver el sistema: 
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Tabla 1.
Descripción del método de Gauss

Idea central
Transformar el sistema lineal  en su matriz aumentada  y 
aplicar operaciones elementales por filas que no cambian el conjunto 
de soluciones hasta obtener forma escalonada. Luego se resuelve por 
sustitución regresiva. Este procedimiento es sistemático, escalable 
y revela la estructura del sistema: pivotes, rango, compatibilidad y 
número de soluciones (Lay, 2016; Strang, 2016).

1.	 Operaciones elementales por filas
•	 Intercambiar dos filas: .
•	 Multiplicar una fila por un escalar no nulo: .
•	 Sumar a una fila un múltiplo de otra: .
•	 Estas operaciones preservan el conjunto de soluciones del sis-

tema (Anton et al., 2013).

2.	 Objetivo intermedio: forma escalonada (REF)
Una matriz está en forma escalonada si:

•	 Toda fila no nula aparece sobre cualquier fila nula.
•	 El primer elemento no nulo de cada fila (pivote) queda a la 

derecha del pivote de la fila superior.
•	 Debajo de cada pivote hay ceros.

Con la REF se hace sustitución regresiva de arriba a abajo. Si además 
se anulan los elementos encima de cada pivote y se normalizan pivo-
tes a 1, se obtiene la forma escalonada reducida, que corresponde a 
Gauss - Jordan. Para Gauss puro basta la REF (Lay, 2016).

3.	 Algoritmo práctico con pivoteo parcial
Para robustez numérica se recomienda pivoteo parcial: en cada co-
lumna del pivote, seleccionar como fila pivote la que tenga mayor 
|coeficiente| en esa columna y permutarla a la posición actual. Esto 
reduce errores de redondeo en cómputo y evita pivotes cercanos a 
0 (Golub y Van Loan, 2013; Trefethen y Bau, 1997).

Bucle por columnas :
1.	 Elegir fila pivote “p” con  y permutar  si 

es necesario.
2.	 Para cada fila i>, calcular el multiplicador  y hacer 

 con lo que se crean ceros debajo del pivote.
3.	 Repetir en la siguiente columna.
4.	 Con la REF, resolver hacia atrás.

Si aparece una fila del tipo [0  0  …0∣c],  con  el sistema es 
incompatible. Si quedan menos pivotes que variables, hay infinitas 
soluciones con variables libres (Strang, 2016). 

Nota: Elaboración propia.
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Tabla 2.
Descripción paso a paso método de Gauss

Matriz aumentada 2 1 -1 1

1 -1 2 3

3 2 1 4

Paso 1. Pivote en columna 1
Conviene tener pivote 1 arriba. 
Intercambiamos 

1 -1 2 3

2 1 -1 1

3 2 1 4

Paso 2. Crear ceros debajo del 
pivote 

1 -1 2 3

0 3 -5 -5

0 5 -5 -5

Paso 3. Pivote en columna 2 y 
anulación.
Tomamos  como pivote 
en columna 2. Eliminamos 
la entrada de . Para no 
introducir fracciones, usa-
mos una combinación: Para 
no introducir fracciones, 
usamos una combinación: 

1 -1 -2 3

0 3 -5 -5

0 0 -10 -10

Paso 4. Sustitución regresiva De la tercera fila: 
.

De la segunda:
.

De la primera: 
.

Solución única

Nota: Elaboración propia.

Detección rápida de casos con Gauss
•	 Incompatible: Aparece una fila [0  0  …0∣c]  con .
•	 Infinitas soluciones: Quedan menos pivotes que variables. 

Parametrizar con variables libres.
•	 Única solución: Hay un pivote por cada variable.
 Apoyo didáctico: El método de Gauss constituye un procedi-

miento sistemático para resolver sistemas de ecuaciones lineales, 
basado en transformar la matriz aumentada mediante operacio-
nes elementales por filas hasta obtener una forma escalonada 
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que facilite la sustitución regresiva. Su valor radica en que no 
solo permite hallar soluciones únicas, sino también identificar 
casos de sistemas incompatibles o con infinitas soluciones, lo que 
fortalece la comprensión estructural del problema (Lay, 2016). 
Además, este método constituye la base de los algoritmos com-
putacionales utilizados en programas matemáticos actuales y 
conecta con nociones más avanzadas como el rango, la indepen-
dencia lineal y la invertibilidad de matrices (Strang, 2016; Larson 
& Edwards, 2019).

Tabla 3.
Descripción método de Cramer

Idea central
La regla de Cramer, atribuida al matemático suizo Gabriel Cramer 
(1704-1752), establece que un sistema de “n” ecuaciones lineales con 
nnn incógnitas tiene solución única si y solo si el determinante de la 
matriz de coeficientes es distinto de cero. En ese caso, cada incógnita 
puede obtenerse como el cociente entre dos determinantes:

donde:

•	 A es la matriz de coeficientes.
•	  es la matriz que se obtiene al reemplazar la columna i de A 

por el vector de términos independientes.

Si , el sistema puede ser indeterminado o incompatible, 
y la regla de Cramer no se aplica (Strang, 2016; Stewart, 2016).

Procedimiento paso a paso

1.	 Formar la matriz de coeficientes A con los coeficientes de las 
incógnitas.

2.	 Calcular el determinante . Si , detenerse: el 
sistema no tiene solución única.

Para cada incógnita :

•	 Reemplazar la columna i de A por el vector de términos 
independientes.

•	 Llamar a esa nueva matriz .​
•	 Calcular 
•	 Aplicar la fórmula:

•	 Repetir para todas las incógnitas. 
Nota: Elaboración propia.
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Ejemplo:
Resolver el sistema:

Tabla 4.
Descripción paso a paso método de Cramer

Paso 1. Matriz de coeficientes y  
determinante

1 2 -1

2 -1 1

1 1 1

Paso 2. Cálculo de cada incógnita

Para x: 3 2 -1

1 -1 1

4 1 1

Para y: 1 3 -1

2 1 1

1 1 1

Para z: 1 2 3

2 -1 1

1 1 4

Solución única

Nota: Elaboración propia.

Apoyo didáctico: La regla de Cramer se convierte en un recur-
so pedagógico valioso cuando se trabaja con sistemas de 2x2 
y 3x3, ya que permite calcular soluciones de manera directa y 
accesible. Su mayor aporte radica en reforzar la comprensión 
de la relación entre determinantes, invertibilidad y existencia 
de soluciones únicas, lo que conecta la práctica algebraica con 
conceptos fundamentales del álgebra lineal (Larson & Edwards, 
2019). Aunque su aplicación no resulta eficiente en sistemas de 
gran tamaño, su enseñanza fomenta la articulación entre pro-
cedimientos operativos y bases teóricas. En este sentido, como 
advierte Apostol (2007), el determinante no solo funciona como 
medida de escala en transformaciones lineales, sino que tam-
bién actúa como criterio que garantiza o limita la unicidad de 
las soluciones.
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Método gráfico y análisis geométrico
El método gráfico constituye una de las aproximaciones más 
intuitivas y formativas para la resolución de sistemas de ecua-
ciones algebraicas. Su valor pedagógico radica en que permite 
a los estudiantes visualizar las soluciones como puntos de inter-
sección de curvas, lo cual enlaza de manera directa el álgebra 
con la geometría. Desde esta perspectiva, resolver un sistema 
no se reduce a manipular símbolos, sino a comprender que cada 
ecuación representa un conjunto de puntos en el plano (o en el 
espacio) y que la solución corresponde al lugar geométrico co-
mún a todas ellas.

En el caso de los sistemas lineales de dos variables, las ecua-
ciones representan rectas en el plano cartesiano (véase Figura 
13). El análisis gráfico permite interpretar tres situaciones básicas:

•	 Una solución única: Las rectas se cortan en un punto, lo que 
corresponde a un sistema compatible determinado.

•	 Infinitas soluciones: Las rectas coinciden, lo que refleja un 
sistema compatible indeterminado.

•	 Ninguna solución: Las rectas son paralelas y no se intercep-
tan, lo que da lugar a un sistema incompatible.

Figura 13.
Representación sistemas lineales de dos variables

Nota: Elaboración propia.

Este enfoque fomenta en el estudiante la comprensión de 
que la existencia y naturaleza de las soluciones dependen de la 
posición relativa de las rectas y no únicamente de los cálculos 
algebraicos. Como señala Stewart (2016), esta correspondencia 
entre ecuaciones y gráficas constituye una poderosa herramienta 
de razonamiento, pues vincula la abstracción algebraica con la 
representación visual.

En sistemas no lineales, el método gráfico adquiere mayor 
riqueza. Resolver un sistema que involucra una parábola y una 
recta, o una circunferencia y una recta, implica analizar cuántos 
puntos de intersección son posibles: ninguno, uno o dos, según 
la posición relativa de las curvas. En contextos más avanzados, 
el encuentro entre curvas como parábolas, hipérbolas o elipses 
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lleva al estudiante a reconocer que las soluciones algebraicas no 
solo son números, sino también coordenadas que tienen sentido 
geométrico (Larson & Edwards, 2019).

El análisis geométrico que acompaña al método gráfico am-
plía esta perspectiva, ya que no se limita a trazar curvas, sino a 
estudiar sus propiedades y relaciones en el espacio cartesiano. 
Así, conceptos como pendiente, paralelismo, perpendicularidad, 
vértices, focos o ejes de simetría enriquecen la interpretación 
de los sistemas. De este modo, el aprendizaje de los métodos 
algebraicos (sustitución, igualación, reducción) se complementa 
con una visión estructural que integra el álgebra simbólica, la 
geometría analítica y la intuición visual (Anton et al., 2013).

En definitiva, el método gráfico y el análisis geométrico no son 
simples recursos didácticos, sino fundamentos esenciales para 
comprender la naturaleza de los sistemas de ecuaciones. Su 
integración en el aula contribuye a formar un pensamiento alge-
braico sólido, en el que la resolución de problemas se entiende 
como la interacción entre distintos registros de representación: 
simbólico, geométrico y tecnológico (Duval, 2006).

Apoyo didáctico: En la práctica educativa, el método gráfi-
co resulta especialmente valioso en los niveles iniciales, pues 
ayuda a construir la idea de solución como intersección, antes 
de introducir procedimientos más abstractos. Además, con el 
apoyo de tecnologías digitales como GeoGebra o Desmos, 
los estudiantes pueden explorar dinámicamente cómo cam-
bian las soluciones al modificar parámetros, lo que fortalece 
la comprensión conceptual y promueve la experimentación 
(Hohenwarter & Jones, 2007).
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Tabla 5.
Síntesis comparativa de los métodos gráfico y geométrico

Aspecto Método gráfico Análisis 
geométrico

Similitudes

Definición Representación 
visual de las ecua-
ciones para iden-
tificar la solución 
como punto(s) de 
intersección.

Estudio de las pro-
piedades estructu-
rales y relaciona-
les de las curvas 
generadas por las 
ecuaciones.

Ambos interpre-
tan las ecuacio-
nes como lugares 
geométricos en el 
plano o el espacio.

O b j et i v o 
principal

Encontrar solu-
ciones mediante 
la intersección 
visible de las 
gráficas.

Comprender por 
qué y cómo sur-
gen esas solucio-
nes, explorando 
propiedades como 
pendiente, simetría 
o tangencia.

Ambos buscan de-
terminar las solu-
ciones comunes del 
sistema.

Ámbito de 
aplicación

Útil en siste-
mas sencillos 
(dos incógnitas). 
Limitado para sis-
temas de mayor 
dimensión o solu-
ciones exactas.

Válido para siste-
mas lineales y no 
lineales en dos o 
más variables, in-
cluso en contextos 
tridimensionales.

Ambos sirven de 
apoyo a la mode-
lación matemá-
tica en diversas 
ciencias.

Valor pe-
dagógico

Favorece la intui-
ción visual y la 
comprensión ini-
cial del concepto 
de solución.

Promueve la com-
prensión estructu-
ral, la capacidad 
de análisis y el ra-
zonamiento crítico.

Ambos fortalecen 
el pensamiento al-
gebraico mediante 
la conexión entre ál-
gebra y geometría.

Tecnología 
asociada

Programas como 
GeoGebra o 
Desmos facilitan 
la representación 
visual y la valida-
ción inmediata.

Las mismas herra-
mientas permiten 
explorar propie-
dades más profun-
das de las curvas y 
superficies.

En ambos casos, la 
tecnología actúa 
como un puente 
entre lo simbólico 
y lo gráfico. 

Nota: Elaboración propia.

Sistemas no lineales: cuadráticos y mixtos
El estudio de los sistemas no lineales constituye un punto de in-
flexión en la formación algebraica, pues sitúa al estudiante frente 
a problemas en los que la linealidad ya no es suficiente para 
describir relaciones. A diferencia de los sistemas lineales, que se 
representan mediante rectas o planos, los sistemas no lineales 
involucran curvas más complejas tales como como: parábolas, 
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circunferencias, hipérbolas, exponenciales, radicales y que re-
quieren un análisis más elaborado. Este tránsito, como señalan 
Larson y Edwards (2019), fomenta una comprensión más amplia 
del álgebra, vinculándola directamente con la geometría y la 
modelación de fenómenos reales.

Sistemas cuadráticos
Los sistemas cuadráticos incluyen al menos una ecuación de 
segundo grado en dos variables. Sus soluciones se interpretan 
como los puntos de intersección entre rectas y curvas cuadráticas 
(parábolas, circunferencias, elipses, hipérbolas). La diversidad de 
casos permite explorar múltiples configuraciones geométricas, lo 
que enriquece tanto el análisis algebraico como el razonamiento 
visual.

Por ejemplo, consideremos el sistema:

Aquí, la primera ecuación describe una circunferencia de radio 
5 centrada en el origen, y la segunda una recta de pendiente 1 
que corta al eje y en (0,1) (véase Figura 14). Al resolver por sus-
titución, obtenemos una ecuación cuadrática:

Figura 14.
Representación de sistemas cuadráticos

Nota: Elaboración propia.

La factorización conduce a dos soluciones:  y 
. Sustituyendo en la recta, las soluciones completas son  y 

. Desde la perspectiva gráfica, se identifican claramente 
los dos puntos de intersección entre la circunferencia y la recta. 

Según Stewart (2016), este tipo de problemas ilustra de ma-
nera ejemplar cómo los métodos algebraicos y geométricos con-
vergen en un mismo resultado, fortaleciendo el pensamiento 
multirrepresentacional del estudiante.
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En contraste, si la recta fuera , al sustituir en la circun-
ferencia se obtiene , lo que no admite soluciones 
reales (véase Figura 15).

Figura 15.
Representación de sistemas cuadráticos

Nota: Elaboración propia.

Geométricamente, esto significa que la recta no intercepta la 
circunferencia. Este ejemplo evidencia cómo la inexistencia de 
soluciones adquiere sentido a partir de la posición relativa de 
las gráficas (Blitzer, 2018).

Sistemas mixtos
Los sistemas mixtos combinan ecuaciones de distinta natura-
leza: lineales con cuadráticas, exponenciales con racionales, 
radicales con polinómicas, entre otros. Su riqueza radica en que 
obligan a los estudiantes a integrar diferentes estrategias de 
resolución y, en ocasiones, a emplear aproximaciones numéri-
cas o gráficas cuando las soluciones exactas son inaccesibles 
(véase Figura 16).

Un ejemplo clásico es el sistema:

Figura 16.
Representación de sistemas mixtos

Nota: Elaboración propia.
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Al elevar al cuadrado, se obtiene una ecuación cuadrática: 
. Tras simplificar, surge , cuyas 

soluciones son

La recta  corta una sola vez a la curva  
(creciente, cóncava hacia abajo en . Por eso, tras descartar la 
raíz extrínseca introducida al cuadrar, queda una única intersección.

 La verificación de soluciones en sistemas mixtos resulta un 
aspecto pedagógico clave, ya que no toda respuesta obtenida 
mediante transformaciones algebraicas corresponde a una so-
lución válida dentro del dominio de la función. Casos como la 
elevación al cuadrado o el trabajo con radicales suelen generar 
raíces extrínsecas que deben ser descartadas tras comprobar-
las en la ecuación original. Este proceso, como señalan Sullivan 
(2016) y Larson y Edwards (2019), permite que los estudiantes 
comprendan la diferencia entre manipulación simbólica y validez 
matemática, promoviendo así un aprendizaje reflexivo más allá 
del simple cálculo mecánico.

Desde una perspectiva didáctica, el énfasis en la validación 
desarrolla en los estudiantes la capacidad crítica y la autonomía 
intelectual. Según Duval (2006), pasar de lo simbólico a lo gráfico 
o a lo numérico fortalece la comprensión al articular distintos re-
gistros de representación. Además, trabajar con ejemplos donde 
aparezcan soluciones espurias ayuda a los alumnos a distinguir 
entre “resultado algebraico” y “solución matemática aceptable”, 
lo que Blum y Leiss (2007) consideran esencial para la mode-
lación en contextos reales. En este sentido, el aula se convierte 
en un espacio para pensar matemáticamente (Mason, Burton & 
Stacey, 2010), explorando, verificando y justificando cada paso 
con coherencia conceptual.

	
Estrategias didácticas y recursos tecnológicos para el apren-

dizaje de los sistemas de ecuaciones
El estudio de los sistemas de ecuaciones representa una 
oportunidad didáctica privilegiada para articular los ra-
zonamientos algebraicos, geométricos y funcionales en la 
enseñanza media y superior. Su tratamiento exige diseñar 
ambientes de aprendiza je que integren actividades signifi-
cativas, tecnologías digitales y una evaluación orientada a 
la comprensión conceptual más que a la memorización de 
procedimientos. A continuación, se describen estrategias 
que favorecen dicho proceso.
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Tipología de ejercicios: procedimentales, gráficos, contextuali-
zados y exploratorios
La selección y secuenciación de ejercicios condiciona el tipo de 
pensamiento algebraico que los estudiantes desarrollan. Según 
Rico (2018), una enseñanza reducida a la práctica rutinaria re-
fuerza un pensamiento instrumental, mientras que la diversifi-
cación de tareas amplía la comprensión estructural del álgebra. 
En el caso de los sistemas de ecuaciones, se distinguen cuatro 
tipos de ejercicios didácticamente complementarios:

•	 Procedimentales, centrados en el dominio de métodos al-
gebraicos como sustitución, igualación, reducción, Cramer 
o Gauss, enfatizando la precisión y el orden lógico del ra-
zonamiento simbólico.

Ejemplo: Resolver el sistema por el método de sustitución:

•	 Gráficos, orientados a la interpretación del punto de inter-
sección de rectas o curvas, favoreciendo el pensamiento 
visual. 

Ejemplo: Representar en GeoGebra las rectas:

 observando el punto donde se cruzan.
	
•	 Exploratorios, abiertos a múltiples soluciones o caminos, donde 

los estudiantes elaboran conjeturas y verifican sus resultados.

Ejemplo: Dos servicios de transporte cobran tarifas diferen-
tes: uno tiene una tarifa base de $2 más $0.5 por kilómetro, y 
otro $1 más $0.7 por kilómetro. Plantee un sistema que permita 
determinar a partir de qué distancia ambos servicios cuestan 
lo mismo. 

•	 Contextualizados, que vinculan los sistemas con situaciones 
reales, como la comparación de tarifas, mezclas químicas 
o modelos económicos.

Ejemplo: Diseñe un sistema que no tenga solución y justifique 
por qué. 
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La combinación equilibrada de estas tipologías permite avanzar 
desde la práctica algorítmica hacia la modelación matemática y 
la reflexión metacognitiva sobre los procedimientos empleados.

Uso de tecnologías digitales como GeoGebra y Desmos
Las herramientas tecnológicas ofrecen un medio privilegiado para 
conectar las representaciones algebraicas y gráficas de un sistema, 
permitiendo que el estudiante observe cómo una expresión simbólica 
toma forma en el plano. GeoGebra, por ejemplo, facilita este tránsito 
al mostrar de manera simultánea las ecuaciones que se estudian y 
su comportamiento visual. Al mover un deslizador o modificar un 
valor, el cambio se refleja de inmediato en la pantalla, lo que ayuda 
a comprender mejor la relación entre parámetros y resultados. Esta 
dinámica vuelve el aprendizaje más intuitivo, ya que el estudiante no 
se limita a seguir pasos, sino que puede explorar y comprobar por sí 
mismo cómo interactúan las variables dentro del sistema.

Además, la posibilidad de visualizar puntos de intersección, tra-
yectorias o transformaciones en tiempo real refuerza la compren-
sión funcional de los conceptos. Cuando el estudiante identifica de 
manera clara dónde se cruzan las curvas o cómo se desplazan al 
alterar algún elemento, la idea matemática deja de ser una abs-
tracción y se convierte en una experiencia observable. Esto no solo 
fortalece la comprensión conceptual, sino que también promueve 
una actitud más investigativa y autónoma frente al aprendizaje. 
En este sentido, plataformas como GeoGebra se vuelven aliadas 
potentes para desarrollar una mirada más profunda, crítica y sig-
nificativa sobre las matemáticas (Pardo & Gómez, 2019).

Figura 17.
Representación gráfica en Geogebra

Nota: Elaboración propia.

Desmos, por su parte, se ha convertido en una herramienta 
muy cercana para los estudiantes porque les permite experi-
mentar con las matemáticas sin sentir la presión de instalar pro-
gramas o configurar entornos complicados. Basta con abrir una 
pestaña del navegador para comenzar a mover parámetros, ob-
servar cambios en gráficos y comprobar cómo se comportan las 
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funciones en tiempo real. Esa inmediatez genera una sensación 
de descubrimiento que muchas veces resulta más motivadora 
que una explicación tradicional, ya que el propio estudiante pue-
de comprobar qué ocurre cuando modifica un número, a justa un 
deslizador o compara diferentes representaciones.

Además, su interfaz sencilla y visual hace que el aprendizaje 
se sienta más accesible, especialmente para quienes necesitan 
apoyos concretos para comprender ideas abstractas. Desmos 
no solo ayuda a ver el resultado final, sino también a explorar el 
“camino” que sigue una función o una ecuación, lo que favorece 
la comprensión profunda y la autonomía para investigar por 
cuenta propia. En este sentido, la plataforma funciona como un 
espacio seguro para equivocarse, probar alternativas y construir 
intuiciones matemáticas que luego pueden trasladarse con ma-
yor seguridad al trabajo formal en clase.

Por ejemplo, al variar los coeficientes de dos rectas (véase 
Figura 18), el estudiante puede observar en tiempo real cómo 
cambia la posición del punto de intersección, comprendiendo el 
concepto de dependencia lineal.

Figura 18.
Representación gráfica en Desmo

Nota: Elaboración propia.

Estas plataformas fomentan lo que Drijvers y Boon (2021) deno-
minan “pensamiento algebraico mediado por tecnología”, donde 
los entornos digitales se convierten en herramientas cognitivas 
que amplían la capacidad de visualización y argumentación del 
estudiante. Además, el uso de Wolfram Alpha o Symbolab puede in-
tegrarse como apoyo para la verificación y autoevaluación, siem-
pre que el docente guíe la reflexión sobre los pasos seguidos por 
el programa y las posibles fuentes de error humano o algorítmico.

Conclusiones

El estudio de los sistemas de ecuaciones e inecuaciones permi-
te comprender cómo distintas condiciones pueden cumplirse 
al mismo tiempo en una misma situación. Más allá de resolver 
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ecuaciones por rutina, se trata de aprender a interpretar cómo las 
variables se relacionan entre sí y cómo esas relaciones pueden 
representarse en el plano o en contextos reales. Resolver un sis-
tema no es solo encontrar números, sino entender el significado 
de esas soluciones y su coherencia con el problema planteado. 

Desde la enseñanza, este tema cobra valor cuando se com-
bina la explicación teórica con la experimentación y el uso de 
recursos visuales o tecnológicos. Métodos como la sustitución, la 
reducción o el de Gauss permiten ver el orden interno del álgebra, 
mientras que herramientas como GeoGebra o Desmos ayudan a 
descubrir visualmente el punto donde las rectas o las curvas se 
cruzan, haciendo más tangible el concepto de solución. 
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Capítulo III

Funciones algebraicas y sus 
propiedades

 

Introducción

Llegar al estudio de las funciones significa alcanzar un punto 
de madurez en el pensamiento matemático. En este capítulo, el 
lector se adentra en el mundo de las funciones algebraicas, donde 
las relaciones dejan de ser simples ecuaciones para convertirse 
en modelos que explican cómo una magnitud influye en otra. 
Comprender una función es entender que detrás de cada número 
hay una historia de dependencia y cambio, una manera de repre-
sentar los vínculos que existen entre los fenómenos del entorno. 
De ahí que el estudio de las funciones no sea solo una cuestión 
de cálculo, sino una experiencia intelectual que invita a mirar la 
realidad desde la lógica de las relaciones y las transformaciones.

Las funciones algebraicas poseen una riqueza que combina pre-
cisión y belleza. Cada una describe un comportamiento particular: la 
recta expresa la constancia, la parábola refleja la simetría, los polino-
mios superiores muestran la complejidad del movimiento. Su análisis 



87

Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

enseña a reconocer patrones, a anticipar tendencias y a conectar 
el pensamiento algebraico con la interpretación geométrica. En ese 
proceso, el estudiante aprende que una gráfica no es una simple 
curva, sino una forma de pensar visualmente, de interpretar cómo los 
números dialogan entre sí para dar sentido a una situación concreta.

Este capítulo invita, además, a asumir una actitud explorato-
ria. Las herramientas tecnológicas, como GeoGebra o Desmos, 
se convierten en aliados para descubrir, verificar y visualizar las 
propiedades de las funciones, fortaleciendo la comprensión y el 
razonamiento. Más que resolver ejercicios, se trata de aprender 
a observar el comportamiento de las variables, a conjeturar y a 
contrastar resultados. De esta manera, el estudio de las funciones 
algebraicas se transforma en un espacio donde el rigor se com-
bina con la creatividad, preparando al lector para un nuevo nivel 
de comprensión: el de las funciones trascendentes, en las que el 
lenguaje del álgebra se expande para describir los procesos más 
sutiles y fascinantes de la naturaleza y del pensamiento humano.

Concepto y representación de las funciones
La idea de función, tan natural hoy para describir la dependen-
cia entre dos magnitudes, es el resultado de un largo proceso 
histórico en el que las matemáticas pasaron de observar rela-
ciones empíricas a formalizarlas en lengua je simbólico. En la 
Antigüedad, las civilizaciones griega y babilónica ya reconocían 
conexiones entre variables, por ejemplo, al relacionar la longitud 
de una cuerda con el tono musical o el tiempo con la distancia 
recorrida, aunque sin un concepto explícito de función (Katz, 
2009). Estas primeras intuiciones se manifestaban más como 
proporciones geométricas o tablas de correspondencia que 
como fórmulas algebraicas.

Evolución histórica del concepto de función
Durante el siglo XVII, con el surgimiento del pensamiento moder-
no, el concepto comenzó a adquirir forma. René Descartes, en La 
Géométrie (1637), estableció el vínculo entre el álgebra y la geo-
metría al introducir el sistema de coordenadas cartesianas, lo que 
permitió representar relaciones mediante ecuaciones. Su aporte 
sentó las bases para concebir una función como una relación 
entre variables expresable en forma analítica. Paralelamente, 
Pierre de Fermat exploró ideas similares al estudiar curvas me-
diante ecuaciones, anticipando el uso funcional de la variable 
independiente. Más adelante, Gottfried Wilhelm Leibniz fue el 
primero en emplear el término functio hacia 1692, al referirse a 
cualquier cantidad dependiente de otra dentro de una expresión 
matemática (Burton, 2011).
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El siglo XVIII consolidó el concepto gracias a la obra de Leonhard 
Euler, quien en su Introductio in analysin infinitorum (1748) definió una 
función como una expresión analítica formada por una o más variables 
independientes. Esta definición, aunque aún restringida a expresiones 
algebraicas y trascendentes continuas, marcó un punto de inflexión 
al integrar la notación moderna , que permanece vigente hasta 
hoy. Joseph-Louis Lagrange amplió posteriormente la idea al estudiar 
funciones derivables y sus expansiones en series, sentando las bases 
del análisis matemático clásico (Boyer & Merzbach, 2011).

Durante el siglo XIX, el desarrollo del análisis riguroso y de 
la teoría de conjuntos transformó profundamente la noción de 
función. Dirichlet formuló en 1837 una definición más general y 
abstracta: una función es una correspondencia que asigna a cada 
elemento de un conjunto “x” un único valor “y”, sin necesidad de 
que exista una ley analítica explícita entre ellos. Esta concepción 
liberó el concepto de su dependencia con la geometría o la con-
tinuidad, y abrió paso a las funciones discontinuas, definidas por 
tramos o mediante condiciones lógicas. Posteriormente, Riemann 
y Weierstrass formalizaron los criterios de continuidad y deri-
vabilidad, dotando al análisis de una precisión conceptual que 
influyó en toda la matemática moderna (Apostol, 2013).

Ya en el siglo XX, el avance de la topología, la teoría de conjuntos 
y la informática extendió aún más el concepto. Las funciones pasaron 
a entenderse como relaciones entre estructuras, no necesariamente 
numéricas, y su estudio se proyectó en múltiples campos: la física, 
la economía, la estadística y la programación computacional. En la 
educación matemática, autores como Dubinsky y Harel (1992) desta-
caron que el aprendizaje del concepto de función implica un cambio 
cognitivo profundo: el estudiante debe pasar de ver la función como 
una fórmula a comprenderla como una correspondencia general.

En síntesis, el concepto de función ha evolucionado desde una in-
tuición geométrica y empírica hasta convertirse en una herramienta 
abstracta y universal para modelar relaciones de dependencia en 
cualquier ámbito del conocimiento. Esta trayectoria histórica no 
solo refleja el progreso del pensamiento matemático, sino también 
la capacidad del ser humano para reconocer patrones, formalizar 
relaciones y construir significados cada vez más complejos.

Definición formal y correspondencia entre variables
Comprender el concepto formal de función implica adentrarse en 
una de las ideas más poderosas de la matemática: la relación de 
dependencia entre magnitudes. Una función no es simplemente 
una fórmula o una ecuación, sino un modo de expresar cómo 
el cambio en una cantidad influye directamente sobre otra. En 
términos generales, una función es una correspondencia que, a 
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cada elemento de un conjunto denominado dominio, le asigna un 
único elemento de otro conjunto llamado codominio. Este princi-
pio de correspondencia única es lo que distingue a las funciones 
de otras relaciones más generales (Apostol, 2013; Stewart, 2016).

En notación moderna, se escribe , donde A representa 
el dominio y B el codominio, de modo que para cada  existe 
un único valor  . El conjunto de todos los valores obtenidos, 
es decir, los resultados de aplicar la función, se denomina rango o 
imagen. Esta formalización, consolidada a partir de los trabajos de 
Dirichlet y Cauchy en el siglo XIX, permitió unificar bajo un mismo 
concepto las relaciones algebraicas, geométricas y analíticas que 
anteriormente se consideraban separadas (Boyer & Merzbach, 2011).

Desde una perspectiva algebraica, la función puede enten-
derse como una regla de correspondencia que asocia valores 
numéricos siguiendo una ley determinada

Por ejemplo, en la función  (véase Figura 1), cada 
valor de “x” genera uno y solo un valor de . Aquí, la variable 
independiente “x” actúa como punto de partida, mientras que la 
variable dependiente  expresa el resultado de aplicar 
la ley de correspondencia.

Figura 1.
Representación de la  función 

Nota: Elaboración propia.

Sin embargo, esta aparente simplicidad esconde una gran 
riqueza conceptual, pues detrás de cada función existe una 
estructura lógica que modela fenómenos de crecimiento, movi-
miento, costo, probabilidad o cambio (Larson & Edwards, 2019).

El carácter funcional de las matemáticas se hace evidente 
cuando se analiza cómo las variables interactúan. En la vida 
cotidiana, casi todo fenómeno puede expresarse mediante una 
relación funcional: la distancia recorrida depende del tiempo, 
la temperatura depende de la altitud, o la ganancia económica 
depende del número de productos vendidos. En todos estos ca-
sos, las matemáticas ofrecen una manera precisa de describir y 
predecir comportamientos, trasladando el lenguaje de la realidad 
al lenguaje simbólico.
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Didácticamente, la noción de correspondencia entre varia-
bles se construye de manera progresiva. Los estudiantes suelen 
iniciarse reconociendo patrones numéricos o gráficos antes de 
comprender el rigor formal de la definición. Según Duval (2006), 
este proceso requiere transitar entre diferentes registros de repre-
sentación: verbal, tabular, algebraico y gráfico, para interiorizar 
que una misma relación puede expresarse de múltiples maneras. 

Ejemplo: Un depósito de agua contiene inicialmente 5 litros. 
Cada minuto, la válvula de drenaje libera 1 litro de agua de for-
ma constante. La cantidad de agua que queda en el depósito se 
puede expresar mediante la función  (véase la Figura 
2). donde “y” representa la cantidad de agua (en litros) y “x” el 
tiempo transcurrido (en minutos).

Figura 2.
Representación de la función 

Nota: Elaboración propia.

Esta función muestra una correspondencia lineal decreciente: a 
medida que transcurre el tiempo, el volumen de agua disminuye 
de manera regular hasta vaciarse por completo. En este caso, la 
cantidad de agua depende del tiempo: a cada minuto transcu-
rrido le corresponde una cantidad única de agua restante.

  Apoyo didáctico: Este ejemplo permite comprender que una 
función expresa una correspondencia única entre dos variables. 
Aquí, el tiempo “x” determina directamente el volumen de agua “y”.

•	 El registro verbal conecta el contexto con el lenguaje simbólico.
•	 El registro tabular facilita la detección del patrón de cambio 

constante.
•	 El registro algebraico formaliza y generaliza la relación.
•	 El registro gráfico ofrece una representación visual del com-

portamiento lineal.

Como destaca Duval (2006), el aprendizaje profundo del con-
cepto de función requiere coordinación entre los distintos regis-
tros de representación, lo que posibilita al estudiante interpretar, 
traducir y explicar una misma relación desde diversas perspec-
tivas matemáticas.
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Dominio, rango y notación funciona
En el estudio de las funciones, comprender el dominio, el rango y 
la notación funcional es fundamental para interpretar correcta-
mente la relación entre las variables y el significado matemático 
de cada expresión. Estos tres componentes definen el alcance 
y la coherencia de una función, pues permiten establecer con 
precisión qué valores son válidos para la variable independiente, 
qué resultados pueden obtenerse y cómo se expresa la corres-
pondencia entre ambas. Como señala Stewart (2016), dominar 
estas ideas no solo refuerza la comprensión algebraica, sino que 
también prepara al estudiante para interpretar el comportamien-
to de los modelos en contextos reales.

El dominio representa el conjunto de todos los valores que 
puede asumir la variable independiente, es decir, los números 
que tienen sentido dentro de la relación funcional. Determinar 
el dominio de una función implica reconocer las restricciones 
naturales del modelo: evitar divisiones entre cero, raíces pares 
de números negativos o expresiones que no poseen significado 
en el campo de los números reales.

Por ejemplo, en la función  , el dominio excluye el 
valor x = 4 porque haría indefinida la operación. De forma similar, 
en  ,  los valores válidos son aquellos donde  
(véase Figura 3). Como subrayan Larson y Edwards (2019), iden-
tificar el dominio no es un proceso mecánico, sino un ejercicio 
de razonamiento que combina intuición, análisis algebraico y 
sentido del contexto.

Figura 3.
Representación de las funciones 

Nota: Elaboración propia.

El rango, también conocido como imagen, es el conjunto de 
valores que puede tomar la variable dependiente. Se obtiene 
evaluando la función sobre todos los elementos del dominio y 
analizando los resultados posibles. En el caso de f(x)= x^2 (Figura 
4), por ejemplo, el rango está formado por los números reales 
no negativos, ya que el cuadrado de cualquier número no puede 
ser negativo.



92

Funciones algebraicas y sus propiedades

Figura 4.
Representación de la función 

Nota: Elaboración propia.

Comprender el rango permite predecir el comportamiento de 
la función y anticipar su representación gráfica, estableciendo 
límites superiores e inferiores para los valores de salida (Blitzer, 
2018). Además, el estudio del rango enseña a los estudiantes a 
interpretar las funciones no solo como ecuaciones estáticas, sino 
como procesos de transformación donde cada valor de entrada 
produce un efecto determinado.

La notación funcional  fue introducida por Euler en 
el siglo XVIII para simplificar la escritura de las correspondencias 
entre variables. Al expresar , se indica que la variable 
dependiente “y” depende de “x” mediante la regla o ley de for-
mación definida por “f”. Esta notación, aparentemente sencilla, 
encierra una gran profundidad conceptual, ya que permite visua-
lizar la relación entre las variables como una operación mental 
de transformación. Apostol (2013) explica que esta forma simbó-
lica fue clave para el desarrollo del análisis matemático, porque 
unificó el estudio de ecuaciones, curvas y fenómenos bajo una 
misma estructura formal.

  Apoyo didáctico: Desde una mirada didáctica, comprender 
dominio, rango y notación funcional requiere promover la ar-
ticulación entre diferentes registros de representación: verbal, 
tabular, algebraico y gráfico. Duval (2006) argumenta que la 
comprensión auténtica de una función surge cuando el estu-
diante logra pasar de un registro a otro sin perder el significado 
de la relación.

El uso de herramientas tecnológicas como GeoGebra o Desmos 
resulta particularmente valioso para analizar el dominio y el ran-
go, pues permite observar de manera dinámica cómo la variación 
de “x” altera el comportamiento de . Según Hohenwarter y 
Jones (2007), estas tecnologías fortalecen la conexión entre el 
razonamiento algebraico y la interpretación geométrica, ayudan-
do al estudiante a comprender que cada expresión funcional es 
un modelo que describe una situación del mundo real.
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Formas de representación: verbal, tabular, algebraica y gráfica
El estudio de las funciones adquiere verdadero sentido cuando 
se comprende que no existe una única manera de representarlas. 
En la práctica matemática, las funciones se manifiestan a través 
de distintos lenguajes (verbal, tabular, algebraico y gráfico) que, 
en conjunto, conforman un sistema de significados complemen-
tarios. Como afirma Duval (2006), comprender una función no 
depende solo de manipular símbolos, sino de ser capaz de cam-
biar de registro sin perder el sentido de la relación. Este tránsito 
entre formas de representación es el que permite al estudiante 
conectar lo concreto con lo abstracto, lo numérico con lo visual, 
y lo intuitivo con lo formal.

La representación verbal constituye el punto de partida más 
natural, porque utiliza el lenguaje cotidiano para describir cómo 
una magnitud depende de otra. Frases como “la distancia reco-
rrida aumenta a medida que pasa el tiempo” o “la temperatura 
disminuye al ascender en altitud” son ejemplos de relaciones 
funcionales expresadas en palabras. Esta forma inicial, como 
señalan Hiebert y Lefevre (1986), es esencial para que el estu-
diante construya significado antes de enfrentarse al simbolismo. 
Traducir una situación verbal en términos matemáticos implica 
interpretar, abstraer y seleccionar las variables relevantes, lo 
que convierte el lenguaje natural en una puerta de entrada a la 
modelación algebraica. 

Por su parte, la representación tabular organiza los datos en 
pares ordenados que muestran la relación entre las variables. 
Esta forma es muy útil para explorar patrones numéricos y re-
gularidades en contextos reales. Según Sullivan (2016), traba-
jar con tablas permite al estudiante visualizar cómo pequeños 
cambios en la variable independiente generan variaciones en la 
dependiente, fortaleciendo la noción de continuidad y cambio. 
Larson y Edwards (2019) añaden que la representación tabular 
actúa como un puente entre el pensamiento aritmético y el pen-
samiento algebraico. En el aula, este tipo de tareas promueve 
la observación, la comparación y la búsqueda de reglas que ex-
pliquen el comportamiento de los datos, preparando el terreno 
para la formulación de la expresión algebraica.

La representación algebraica, en cambio, ofrece la forma 
más compacta y general del pensamiento funcional. A través 
de una fórmula, se expresa la regla que vincula las variables: 

 o .
Esta notación, introducida por Euler en el siglo XVIII, permite 

calcular, predecir y analizar con precisión el comportamiento de 
las funciones. Apostol (2013) destaca que el álgebra traduce el ra-
zonamiento lógico en un lenguaje universal, capaz de representar 
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desde relaciones simples hasta sistemas complejos. Sin embargo, 
Duval (2006) advierte que la dificultad de muchos estudiantes 
radica en mantener el significado al pasar del enunciado verbal 
a la fórmula, pues este salto exige una conversión cognitiva que 
no es automática. 

Finalmente, la representación gráfica aporta una visión global 
del comportamiento de la función. A través del plano cartesiano, 
las relaciones se convierten en formas visuales que permiten 
interpretar con facilidad tendencias, máximos, mínimos, inter-
secciones y simetrías.

Tabla 1.
Representación tabular

x

1 7 0

2 9 0

3 11 2

4 13 6

5 15 12
Nota: Elaboración propia.

Blitzer (2018) afirma que la gráfica transforma la función en un 
objeto perceptible, capaz de comunicar ideas matemáticas de ma-
nera inmediata. Además, según Stewart (2016), las representaciones 
visuales favorecen el razonamiento intuitivo y ayudan a detectar 
propiedades que en el lenguaje algebraico pueden pasar inadver-
tidas (véase Figura 5). 

El uso de herramientas tecnológicas como GeoGebra o Desmos 
amplía aún más estas posibilidades, al permitir experimentar con los 
parámetros y observar en tiempo real cómo se modifica la forma de 
la función (Hohenwarter & Jones, 2007). Esta interacción directa entre 
lo simbólico y lo visual convierte la enseñanza en una experiencia 
exploratoria que estimula la curiosidad y la comprensión profunda.

Figura 5.
Representación gráfica en Geogebra

Nota: Elaboración propia.
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Apoyo didáctico: Desde una mirada didáctica más amplia, 
Godino y Batanero (1998) sostienen que la comprensión de los 
objetos matemáticos se construye socialmente a través del in-
tercambio entre diferentes formas de representación y de los 
significados que cada una encierra. En este sentido, las cuatro 
representaciones no son etapas lineales, sino espacios interde-
pendientes de pensamiento. La verbal conecta con la experiencia, 
la tabular organiza los datos, la algebraica formaliza la regla y 
la gráfica la hace visible. Solo al articularlas entre sí se alcanza 
una comprensión integral del concepto de función. Como con-
cluye Duval (2006), enseñar a relacionar registros es enseñar a 
pensar matemáticamente, pues permite al estudiante pasar de 
manipular signos a comprender relaciones.

En definitiva, cada forma de representación ofrece una ventana 
distinta hacia la comprensión de las funciones. La enseñanza de 
este tema no debería reducirse a la práctica mecánica de fór-
mulas, sino convertirse en un proceso de exploración donde los 
estudiantes puedan ver, decir, calcular y argumentar la misma 
relación desde diferentes perspectivas.

Clasificación y tipos de funciones algebraicas
Las funciones algebraicas constituyen el núcleo del pensamiento 
matemático escolar y universitario. A través de ellas se modelan 
las formas más elementales de relación entre magnitudes y se 
establece el vínculo entre el razonamiento simbólico y la realidad 
cuantitativa. Su estudio no se limita a la manipulación de expre-
siones, sino que permite comprender cómo el lenguaje algebrai-
co estructura el pensamiento lógico y el análisis funcional. Tal 
como explica Stewart (2016), una función algebraica es aquella 
que puede expresarse mediante un número finito de operaciones 
de suma, resta, multiplicación, división o radicación aplicadas 
a la variable independiente. Esto las distingue de las funciones 
trascendentes, como las exponenciales, logarítmicas o trigo-
nométricas, que requieren procesos infinitos o no algebraizables.

Históricamente, el concepto de función algebraica emergió 
en el siglo XVII con los trabajos de Descartes y Viète, quienes 
establecieron una conexión entre expresiones simbólicas y re-
presentaciones geométricas. Descartes introdujo el sistema de 
coordenadas cartesianas que permitió visualizar relaciones al-
gebraicas en el plano, mientras que Viète consolidó el uso de 
letras para representar cantidades variables. Desde entonces, 
las funciones algebraicas se convirtieron en una herramienta 
central para describir fenómenos naturales, físicos y económicos 
mediante leyes expresables en forma de ecuaciones (Boyer & 
Merzbach, 2011).
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Funciones polinómicas: lineales, cuadráticas, cúbicas y de grado 
superior
En términos generales, las funciones algebraicas se clasifican 
según su estructura y grado, destacando las funciones polinó-
micas, racionales, con radicales y con valor absoluto. Cada una 
representa una forma particular de dependencia entre variables, 
y su análisis permite al estudiante reconocer regularidades, si-
metrías y comportamientos de cambio. Según Larson y Edwards 
(2019), esta clasificación no solo tiene valor formal, sino que 
ayuda a desarrollar la intuición sobre el comportamiento de los 
modelos matemáticos y su utilidad en la resolución de problemas 
reales. Las funciones polinómicas son las más básicas y, al mis-
mo tiempo, las más versátiles. Se expresan en la forma general 

, donde los coeficientes 
a_i son números reales y el exponente mayor n determina su 
grado (véase Figura 6).

Figura 6.
Representación gráfica de una función polinómica

Nota: Elaboración propia.

Cada una modela una forma distinta de variación: las lineales 
representan relaciones proporcionales y trayectorias rectas; las 
cuadráticas, movimientos parabólicos como la caída libre o la 
trayectoria de un proyectil; y las cúbicas, fenómenos con puntos 
de inflexión, donde la curvatura cambia de sentido (Blitzer, 2018). 
Stewart (2016) señala que los polinomios constituyen una base 
conceptual imprescindible porque sus propiedades sirven como 
modelo para comprender funciones más complejas en el cálculo.

Las funciones racionales, en cambio, amplían el horizonte alge-
braico al incorporar divisiones entre polinomios. Se definen como:

 

donde  y  son polinomios y  (véase Figura 
7). Este tipo de funciones introduce conceptos avanzados como 
puntos de indeterminación, asíntotas verticales y horizontales, y 
discontinuidades, elementos esenciales para el estudio posterior 
de los límites. 
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Figura 7.
Representación gráfica de una función racional

Nota: Elaboración propia.

Sullivan (2016) destaca que el análisis de funciones racionales 
prepara al estudiante para razonar sobre el comportamiento 
infinitesimal, pues obliga a distinguir entre valores permitidos, 
prohibidos y límites de aproximación. Además, su representación 
gráfica revela cómo los comportamientos algebraicos se tradu-
cen en estructuras geométricas, mostrando la profunda conexión 
entre ambos campos.

Esta estructura, aparentemente simple, encierra una enor-
me riqueza conceptual. Según Stewart (2016), las funciones 
racionales representan un punto de encuentro entre el álgebra 
y el análisis, pues en ellas aparece de manera natural la noción 
de restricción del dominio y de comportamiento límite, que 
serán fundamentales en el estudio del cálculo diferencial e 
integral. La condición  no solo es una exigencia alge-
braica, sino una frontera que marca los límites de existencia 
de la función. Allí donde el denominador se anula, la función 
deja de estar definida, generando los denominados puntos 
de indeterminación.

La estructura de una función racional puede adoptar múltiples 
formas, pero todas comparten la característica de expresar una 
relación no lineal entre las variables. Si el grado del polinomio 
del numerador es menor que el del denominador, se dice que 
la función es propia; si es igual o mayor, se denomina impropia. 
Este criterio, más allá de su formalismo, permite anticipar el tipo 
de comportamiento que tendrá la función en el infinito. 

Por ejemplo, en  ,

el crecimiento del denominador provoca que los valores de 
tiendan a cero a medida que “x” aumenta, lo cual se tra-

duce gráficamente en una asíntota horizontal (véase Figura 
8). En cambio, si el grado del numerador es mayor, la fun-
ción tenderá hacia el infinito, mostrando una asíntota oblicua 
(Sullivan, 2016).
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Figura 8.
Representación gráfica de una función racional propia

Nota: Elaboración propia.

El dominio de una función racional está formado por todos 
los números reales excepto aquellos que anulan el denominador. 
Determinarlo implica resolver la ecuación  y excluir 
sus soluciones del conjunto de los números reales. En el ejemplo 
anterior,  produce los valores  y 

, los cuales son puntos de indeterminación. Esto significa 
que, en dichos valores, la función no existe, y su representación 
gráfica mostrará discontinuidades o rupturas verticales. Como 
señalan Larson y Edwards (2019), este análisis del dominio pre-
para el pensamiento del estudiante para comprender la noción 
de continuidad y de límite, al identificar que no todos los valores 
producen resultados válidos en una función racional.

Los puntos de indeterminación son, por tanto, elementos esen-
ciales en el estudio de este tipo de funciones. En el plano carte-
siano, suelen manifestarse como asíntotas verticales o huecos 
en la gráfica, dependiendo de si el término problemático del 
denominador se cancela o no con un factor del numerador. Si, 
por ejemplo,

(véase Figura 9), la función presenta un hueco en  ya que 
el factor se simplifica y una asíntota vertical en , donde el 
denominador permanece nulo.

Figura 9.
Representación gráfica de puntos de indeterminación

Nota: Elaboración propia.
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Stewart (2016) explica que estos casos son didácticamen-
te valiosos porque ayudan a los estudiantes a distinguir entre 
errores de cálculo y restricciones estructurales de la función. 
Comprender la diferencia entre una discontinuidad evitable y 
una no evitable implica desarrollar una mirada más analítica y 
rigurosa del comportamiento funcional.

Desde una perspectiva gráfica, las funciones racionales mues-
tran comportamientos muy variados: pueden presentar inter-
secciones con los ejes, asíntotas, simetrías y regiones donde los 
valores de  crecen o decrecen abruptamente. Blitzer (2018) 
destaca que la visualización de estos rasgos facilita la compren-
sión del dominio y de los puntos de indeterminación, ya que el 
estudiante puede “ver” las consecuencias de las restricciones 
algebraicas.

En este sentido, el uso de herramientas tecnológicas como 
GeoGebra o Desmos resulta de gran valor pedagógico, pues 
permite observar en tiempo real cómo la modificación de los 
coeficientes afecta la forma y las discontinuidades de la gráfica 
(Hohenwarter & Jones, 2007).

  Apoyo didáctico: Las funciones racionales son una oportuni-
dad privilegiada para vincular el razonamiento algebraico con 
la interpretación gráfica. Duval (2006) sostiene que el aprendi-
za je significativo ocurre cuando el estudiante logra coordinar 
distintos registros de representación, de modo que la estructura 
algebraica de la función se refleje coherentemente en su gráfica 
y en su descripción verbal. El análisis del dominio y de los pun-
tos de indeterminación favorece esta articulación, al mostrar 
que detrás de cada símbolo existe un significado geométrico y 
conceptual. Por ello, enseñar funciones racionales no debería 
limitarse a simplificar fracciones algebraicas, sino a promover 
la comprensión de cómo las operaciones modifican los espacios 
de validez y las formas de representación.

Otra categoría importante son las funciones con radicales, 
que incluyen raíces cuadradas, cúbicas u otras expresiones 
radicales. Estas funciones presentan restricciones en el domi-
nio, ya que los valores negativos ba jo una raíz par no tienen 
solución real.

Por ejemplo, en la función , el dominio está limi-
tado a  (Figura 10). Larson y Edwards (2019) afirman que 
este tipo de funciones permite introducir la noción de “condición 
de existencia”, enseñando al estudiante que el significado de 
una función depende del conjunto en el cual está definida. Su 
análisis promueve una comprensión rigurosa de los conceptos 
de dominio y rango, que son el fundamento del pensamiento 
funcional moderno.
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Figura 10.
Representación gráfica de funciones con radicales

Nota: Elaboración propia.

Por otra parte, las funciones con valor absoluto completan la 
clasificación básica de las funciones algebraicas. Su expresión 
general,  (véase Figura 11), representa la distancia de un 
número al origen de la recta real, sin importar su signo. La gráfica 
de esta función tiene forma de “V” y muestra una “discontinuidad 
en la pendiente”, lo que la convierte en un excelente ejemplo para 
analizar la noción de no derivabilidad en un punto. Según Duval 
(2006), el estudio de este tipo de funciones ayuda a los estudian-
tes a comprender que el significado de una expresión algebraica 
no es solo simbólico, sino también geométrico y conceptual. 

Figura 11.
Representación gráfica de la función 

Nota: Elaboración propia.

Propiedades fundamentales de las funciones algebraicas
Las funciones algebraicas constituyen el eje estructural del pen-
samiento matemático elemental, pues permiten comprender 
la naturaleza de las relaciones entre variables y las leyes que 
gobiernan su comportamiento. Estas funciones, expresadas me-
diante un número finito de operaciones de suma, resta, multipli-
cación, división y radicación, representan la base sobre la cual se 
construyen los modelos matemáticos más complejos. Su estudio 
no solo tiene un valor formal, sino que, como destaca Stewart 
(2016), ofrece una vía para desarrollar el razonamiento lógico y 
la capacidad de abstracción necesarias para avanzar hacia el 
cálculo y las funciones trascendentes.
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Desde una perspectiva conceptual, las funciones algebraicas 
poseen propiedades fundamentales que las caracterizan y las 
diferencian de otros tipos de funciones. Dichas propiedades se 
refieren a su dominio y rango, su continuidad, su simetría, su com-
portamiento de crecimiento o decrecimiento y su intersección con 
los ejes coordenados.

Cada una de ellas brinda información esencial para interpretar, 
representar y analizar el comportamiento de una función, tanto 
de manera simbólica como gráfica. Sullivan (2016) señala que 
el dominio y el rango son los primeros elementos a considerar, 
pues definen el conjunto de valores para los cuales la función 
tiene sentido matemático.

Si tomamos el caso particular  (figura 12), 
su dominio es ℝ, mientras que su rango es , dado que 
el vértice se encuentra en el punto (2,-1).

Figura 12.
Representación gráfica de las propiedades de la función algebraica 

Nota: Elaboración propia.

Otra propiedad esencial es la continuidad, entendida como la 
ausencia de rupturas, saltos o huecos en la gráfica de la función 
dentro de su dominio. Las funciones polinómicas son continuas 
en todo , lo que las convierte en modelos ideales para describir 
procesos naturales sin interrupciones, como trayectorias o varia-
ciones de temperatura (Larson & Edwards, 2019). En cambio, las 
funciones racionales o radicales pueden presentar discontinui-
dades, puntos de indeterminación o asíntotas, lo que enriquece 
su estudio desde el punto de vista analítico y gráfico. Apóstol 
(2013) explica que el análisis de la continuidad en las funciones 
algebraicas es una introducción natural al concepto de límite, 
que más adelante permitirá comprender el cambio infinitesimal 
y la derivabilidad.

La función radical . está definida únicamente 
para , ya que la raíz cuadrada de un número negativo no 
pertenece al conjunto de los reales. En este caso, el dominio es 

, y la función es continua en todo su dominio, pues no 
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presenta saltos ni rupturas a partir de su punto inicial (2,0). Sin 
embargo, no es continua en todo , porque para  no existe 
valor real de .

El comportamiento de crecimiento y decrecimiento constituye 
otra de las propiedades fundamentales. A través del análisis de 
los signos y valores de la variable independiente, se determina 
en qué intervalos la función aumenta o disminuye. Por ejemplo, 
la función lineal  crece si , mientras que una 
función cuadrática  presenta un punto de 
cambio denominado vértice, que marca la transición entre cre-
cimiento y decrecimiento. Stewart (2016) subraya que el análisis 
del crecimiento no solo tiene implicaciones algebraicas, sino tam-
bién interpretativas, ya que permite representar procesos físicos 
o económicos que dependen del tiempo o de otras variables.

La simetría es otra propiedad distintiva. Una función se consi-
dera par si cumple  como ocurre con las funciones 
cuadráticas o las de la forma  e impar si  
(véase Figura13), como sucede con las cúbicas o las de tipo 

Figura 13.
Representación gráfica de las propiedades de simetría  

Nota: Elaboración propia.

Esta característica, además de simplificar el análisis gráfico, 
revela patrones de comportamiento que reflejan la estructura de 
la función. Blitzer (2018) destaca que la simetría no solo facilita la 
interpretación visual, sino que también fomenta la comprensión 
estructural, ya que enseña a los estudiantes a identificar inva-
riantes en medio del cambio.

Otra propiedad clave es la intersección con los ejes coorde-
nados, que se determina al calcular los valores de la función 
cuando x=0 (intersección con el eje “Y”) y cuando  
(intersección con el eje “X”). Estas intersecciones permiten 
ubicar puntos de referencia en la gráfica y comprender el sig-
nificado algebraico de las raíces o ceros de la función. Según 
Duval (2006), estos procesos de traducción entre los registros 
simbólico y gráfico son esenciales en la enseñanza del álgebra, 
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ya que ayudan al estudiante a establecer conexiones entre ex-
presiones analíticas y representaciones visuales, fortaleciendo 
su comprensión conceptual.

Composición de funciones e interpretación gráfica
La composición de funciones representa uno de los conceptos 
más significativos en el estudio del pensamiento algebraico y 
funcional, ya que permite comprender cómo distintas relacio-
nes se integran para formar nuevas dependencias. A través de 
la composición, una función se aplica sobre el resultado de otra, 
generando una transformación encadenada que revela la natu-
raleza dinámica del lenguaje matemático. Formalmente, si se 
tienen dos funciones “f” y “g”, la composición se define como 

, lo que significa que primero se evalúa  
y luego se aplica “f” al resultado. Esta estructura, como señala 
Stewart (2016), constituye una herramienta fundamental para 
modelar procesos complejos donde una variable intermedia co-
necta distintos fenómenos, como ocurre en la física, la economía 
o la biología.

Desde una perspectiva conceptual, la composición de funcio-
nes permite encadenar dependencias: una magnitud depende 
de otra, que a su vez depende de una tercera. Así, el pensamiento 
funcional se expande, pasando de relaciones simples a relaciones 
compuestas. Sullivan (2016) explica que este tipo de razonamien-
to desarrolla en el estudiante una visión sistémica del cambio, 
pues le permite reconocer cómo una modificación en la variable 
inicial afecta indirectamente a las demás

Por ejemplo, si

muestra cómo la función cuadrática (Figura 14), al ser “transfor-
mada” por una función lineal, genera una nueva ley de corres-
pondencia que conserva la naturaleza algebraica, pero altera su 
representación gráfica.

Figura 14.
Representación gráfica de 

Nota: Elaboración propia.
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La estructura de la composición evidencia una de las propie-
dades más potentes de las funciones: su capacidad de transfor-
mar espacios. Cada función actúa como una regla que asigna un 
conjunto de valores de entrada a un conjunto de salida; cuando 
se componen, esas transformaciones se encadenan, generando 
nuevas representaciones. Larson y Edwards (2019) subrayan 
que comprender la composición exige distinguir entre el orden 
de aplicación y la naturaleza de las funciones:  no es lo 
mismo que , y esta diferencia se refleja directamente en 
la forma de las gráficas (Figura 15). Este aspecto adquiere re-
levancia en el cálculo, donde la composición es la base para el 
estudio de la derivada de funciones compuestas, conocida como 
la regla de la cadena.

Figura 15.
Representación gráfica de 

Nota: Elaboración propia.

Desde el punto de vista gráfico, la composición de funciones 
puede interpretarse como una transformación progresiva del 
plano cartesiano. Cada función altera de manera específica las 
coordenadas del conjunto original. Por ejemplo, si  produce 
una deformación parabólica y  aplica un desplazamiento o 
una dilatación, la composición integrará ambas transfor-
maciones, resultando en una gráfica más compleja. Blitzer (2018) 
destaca que esta perspectiva visual es esencial para desarrollar 
la intuición matemática, ya que permite identificar cómo las 
operaciones algebraicas se reflejan geométricamente. Las tras-
laciones, reflexiones y escalas verticales o horizontales no son 
meras modificaciones formales, sino expresiones de la manera en 
que una función transforma a otra dentro del espacio cartesiano.

Apoyo didáctico: Desde un enfoque didáctico, la composición 
de funciones permite introducir al estudiante en el pensamien-
to relacional. Duval (2006) afirma que aprender matemáticas 
implica dominar la capacidad de pasar de un registro de repre-
sentación a otro sin perder el significado de la relación. En este 
contexto, la composición ofrece un terreno ideal para integrar los 
registros algebraico y gráfico: lo que en una ecuación se expresa 
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como una sustitución formal, en la gráfica se traduce en una 
deformación o desplazamiento visible. Comprender este vínculo 
ayuda a superar la visión mecanicista de la matemática, reem-
plazándola por una comprensión profunda del proceso funcional.

Además, la composición posee propiedades formales que for-
talecen el razonamiento abstracto. Entre ellas destacan la no 
conmutatividad, ya mencionada, y la asociatividad, según la cual 

. Estas propiedades, lejos de ser meras 
curiosidades simbólicas, reflejan cómo el orden y la estructura 
determinan los resultados en los sistemas matemáticos. Apostol 
(2013) considera que la comprensión de estas relaciones es un 
paso indispensable hacia el pensamiento estructural, pues per-
mite visualizar las funciones como objetos que se combinan y se 
transforman entre sí dentro de un mismo marco lógico.

Función inversa: definición, condiciones y representación
La función inversa ocupa un lugar central en el estudio de las fun-
ciones algebraicas, pues expresa de manera simbólica y gráfica 
la idea de reversibilidad en las relaciones matemáticas. Mientras 
una función establece una correspondencia entre un conjunto de 
valores de entrada (dominio) y un conjunto de valores de salida 
(rango), su inversa deshace esa correspondencia, intercambiando 
los papeles de ambas variables. Así, si una función “f” transforma 
“x” en “y”, su inversa  transforma “y” en “x” (Figura 16). 

En palabras de Stewart (2016), la función inversa no solo re-
vierte una operación, sino que refleja la estructura bidireccional 
del pensamiento funcional, mostrando cómo toda relación puede 
ser entendida desde dos perspectivas complementarias.

Figura 16.
Representación gráfica de la función inversa de 

Nota: Elaboración propia.

Formalmente, se dice que una función “f” posee una inversa 
si y solo si es biyectiva, es decir, inyectiva (cada valor de salida 
corresponde a un único valor de entrada) y sobreyectiva (cada 
valor del rango es alcanzado por algún elemento del dominio). 
Esta condición garantiza que el proceso pueda “revertirse” sin 
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ambigüedades. Si , entonces. Apostol (2013) destaca 
que la noción de inversa traduce el principio de simetría en el 
ámbito funcional, mostrando que las leyes matemáticas pueden 
expresarse en doble sentido sin perder su coherencia interna.

En términos gráficos, la función inversa se representa como 
el reflejo de la función original respecto a la recta y=x. Esta si-
metría visual revela la correspondencia mutua entre los pares 
ordenados (x,y) y (y,x).

Por ejemplo, si , su inversa es: 

La gráfica de  puede obtenerse intercambiando las coordena-
das de todos los puntos de ”f” lo cual genera una imagen especular 
respecto a la diagonal del primer cuadrante. Sullivan (2016) resalta 
que este enfoque visual ayuda a los estudiantes a comprender el 
concepto de reversibilidad más allá del simbolismo algebraico, pues 
permite identificar que una función y su inversa son, en esencia, 
transformaciones opuestas dentro del mismo espacio cartesiano.

Por ejemplo, la función cuadrática  no es inyectiva 
(véase Figura 17), ya que tanto  como ; para 
cada valor positivo del rango existen dos valores en el dominio.

Figura 17.
Representación gráfica de la función inversa de 

Nota: Elaboración propia.

El proceso de obtención de una función inversa es, en sí mismo, 
una aplicación del razonamiento algebraico. Los pasos básicos son:

1.	 Escribir la función en forma de ecuación: .
2.	 Intercambiar las variables: .
3.	Despejar “y” en términos de “x”, obteniendo así .

Este procedimiento, según Larson y Edwards (2019), no solo 
enseña técnicas de manipulación algebraica, sino también la 
capacidad de interpretar el sentido de una relación funcional, lo 
cual resulta indispensable para abordar posteriormente temas 
como la derivación de funciones inversas o la transformación de 
modelos en ciencias aplicadas. No obstante, no todas las funcio-
nes poseen una inversa definida en todo su dominio
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En estos casos, es necesario restringir el dominio para que la 
función se vuelva uno a uno. De este modo, si se limita  
al dominio x ≥ 0, la función resulta inyectiva y su inversa será 

. Blitzer (2018) explica que este tipo de razona-
mientos refuerza la comprensión del papel que juega el dominio 
en la estructura funcional, al demostrar que la existencia de la 
inversa depende de la unicidad de las correspondencias.

Desde una perspectiva más general, las funciones lineales, 
racionales, radicales y polinómicas de grado impar suelen po-
seer inversas globales o parciales, dependiendo de su forma. Por 
ejemplo, la función cúbica  (figura 18) tiene inversa en 
todo , dada por:

Figura 18.
Representación gráfica de la función inversa de 

Nota: Elaboración propia.

En cambio, las funciones racionales pueden presentar restric-
ciones derivadas de los puntos de indeterminación o de disconti-
nuidades, lo que exige analizar cuidadosamente su dominio antes 
de determinar la inversa. Stewart (2016) señala que este proceso 
constituye una introducción natural al pensamiento analítico, 
donde cada propiedad algebraica tiene un reflejo geométrico 
y conceptual.

Apoyo didáctico: la enseñanza de las funciones inversas debe 
vincular el razonamiento simbólico con la visualización. Duval 
(2006) sostiene que la comprensión profunda surge cuando el 
estudiante logra articular distintos registros de representación: 
verbal, algebraico, tabular y gráfico, sin perder el significado 
de la relación. En este sentido, el estudio de la función inversa 
ofrece una oportunidad privilegiada para practicar la traducción 
entre registros, pues lo que algebraicamente se expresa como 
el intercambio de variables, gráficamente se visualiza como una 
simetría. Hohenwarter y Jones (2007) subrayan que el uso de 
herramientas digitales como GeoGebra permite explorar esta si-
metría de manera interactiva, reforzando la comprensión del vín-
culo entre las operaciones simbólicas y sus efectos geométricos.
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Transformaciones y análisis gráfico
El estudio de las transformaciones y el análisis gráfico de las fun-
ciones constituye un momento clave en la formación matemática, 
porque permite comprender cómo los cambios en una expresión 
simbólica se reflejan directamente en su representación visual. 
Al desplazar, reflejar o escalar una función base, el estudiante 
desarrolla una percepción más profunda del vínculo entre el ál-
gebra y la geometría, entendiendo que cada modificación tiene 
un significado y un efecto concreto sobre la forma de la curva. 
Esta relación entre símbolo y figura convierte al análisis gráfico en 
una experiencia exploratoria y dinámica, donde el razonamiento 
abstracto se complementa con la observación visual. El uso de 
herramientas tecnológicas como GeoGebra o Desmos amplía aún 
más esta experiencia, pues ofrece la posibilidad de manipular los 
parámetros en tiempo real y observar cómo las transformaciones 
actúan sobre la función, promoviendo una comprensión intuitiva, 
creativa y significativa del comportamiento matemático.

Traslaciones horizontales y verticales
El estudio de las traslaciones de funciones es uno de los primeros 
acercamientos que permite a los estudiantes comprender que el 
álgebra no se limita a la manipulación simbólica, sino que consti-
tuye un lenguaje que describe movimientos, transformaciones y 
relaciones entre magnitudes. En términos generales, una traslación 
consiste en desplazar la gráfica de una función sin modificar su 
forma ni su orientación, lo que introduce la idea de invariancia 
estructural, es decir, que el comportamiento de la función se con-
serva aunque cambie su posición en el plano (Stewart, 2016).

Desde el punto de vista analítico, si  es una función base, 
entonces  produce una traslación horizontal, mientras 
que  genera una traslación vertical. El parámetro “h” 
controla el desplazamiento a lo largo del eje “x”: si , la grá-
fica se mueve hacia la derecha, y si , se desplaza hacia la 
izquierda. Por su parte, el parámetro “k” determina el desplaza-
miento a lo largo del eje “y”: valores positivos mueven la función 
hacia arriba, y negativos, hacia abajo. Esta dualidad es la base 
del concepto de familias de funciones, donde los cambios en 
los parámetros generan versiones desplazadas de una misma 
estructura algebraica (Larson & Edwards, 2019).

Comprender las traslaciones permite visualizar la dependencia 
funcional entre variables: cada punto (x,y) de la función original 
se convierte en (x+h, y+k) después de aplicar la transformación.

Este proceso puede representarse mediante vectores de 
traslación

,
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que expresan el desplazamiento simultáneo en ambas direccio-
nes del plano. Tal representación vectorial resulta útil para intro-
ducir la noción de transformación geométrica, un puente natural 
entre el álgebra y la geometría analítica (Anton et al.  2020).

Por ejemplo, para la función cuadrática , la 
transformación

genera un movimiento de la parábola tres unidades hacia la de-
recha (Figura 19). Este tipo de desplazamiento no altera la forma 
ni la concavidad de la gráfica, sino únicamente s u ubicación 
sobre el eje “x” (Larson & Edwards, 2019).

Figura 19.
Representación de traslaciones horizontales

Nota: Elaboración propia.

En cambio, las traslaciones verticales se producen al sumar o res-
tar un valor fuera del argumento de la función, es decir,  o 

. Si se agrega un valor positivo “k”, la gráfica se traslada hacia 
arriba, y si se resta, se desplaza hacia abajo. 

Este tipo de modificación refleja la acción de un operador constante 
sobre el rango de la función, alterando los valores de salida, pero con-
servando la relación estructural entre las variables (Anton et al., 2020).

Un ejemplo ilustrativo lo constituye la familia de funciones 
cuadráticas:

En ella, el vértice se traslada desde el origen al punto (h,k), conser-
vando la forma parabólica. Al modificar los valores de “h” y “k” en un 
entorno dinámico, el estudiante observa cómo la parábola se des-
plaza, pero no cambia su curvatura ni su concavidad, lo que refuerza 
la idea de estructura invariante. Por ejemplo, la transformación:

(véase Figura 20) desplaza la parábola original  cuatro 
unidades verticalmente hacia arriba.
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Figura 20.
Representación de traslaciones verticales

Nota: Elaboración propia.

De acuerdo con Tall y Vinner (1981), esta experiencia visual 
ayuda a construir una imagen conceptual del objeto matemático, 
facilitando el paso del pensamiento operacional al estructural.

Apoyo didáctico: las traslaciones se convierten en una opor-
tunidad para desarrollar pensamiento funcional y visualización 
dinámica. Según Godino, Batanero y Font (2007), los estudiantes 
deben ser capaces de pasar del registro algebraico al gráfico y vi-
ceversa, comprendiendo que los símbolos en una ecuación tienen 
un correlato geométrico que puede interpretarse visualmente. 

Esta articulación entre registros semióticos favorece el apren-
dizaje significativo, ya que permite al estudiante establecer re-
laciones y anticipar efectos de los parámetros sin necesidad de 
realizar cálculos extensos.

Reflexiones respecto a los ejes de coordenadas
En el contexto de las funciones algebraicas, las reflexiones res-
pecto a los ejes de coordenadas constituyen un recurso funda-
mental para comprender la simetría y el comportamiento gráfico 
de polinomios, racionales y radicales. Estas transformaciones 
permiten observar cómo el signo que acompaña a una variable 
o a toda la función modifica su orientación en el plano cartesiano 
sin alterar su estructura algebraica esencial.

En términos didácticos, estudiar las reflexiones es enseñar al 
estudiante a “leer” la ecuación como una descripción de mo-
vimientos y formas, no solo como una relación numérica entre 
variables (Godino, Batanero & Font, 2007). Desde el punto de 
vista algebraico, cuando se refleja una función respecto al eje 
“x” (Figura 21), se obtiene la transformación .
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Figura 21.
Reflexión sobre el eje X de la función 

Nota: Elaboración propia.

Esta operación cambia el signo de todos los valores del rango, es 
decir, convierte las salidas positivas en negativas y viceversa. En las 
funciones polinómicas, este efecto produce un giro de 180° en torno 
al eje horizontal, sin modificar los ceros ni el grado de la función.

Por otro lado, la reflexión respecto al eje “y” se expresa como 
. En este caso, no se modifica el rango, sino el dominio: los 

valores positivos de “x” se asocian a los negativos y viceversa. Este 
tipo de simetría es común en funciones pares, como  
o , cuyas gráficas son invariantes ante esta transfor-
mación. En cambio, las funciones impares, como  o 

 (Figura 22), presentan simetría respecto al origen, ya 
que satisfacen la condición .

Figura 22.
Reflexión sobre el eje X de la función 

Nota: Elaboración propia.

En el caso de una función racional, como , la reflexión 
respecto al eje “y” intercambia los cuadrantes I y II, mientras que la 
reflexión respecto al eje “x” intercambia los cuadrantes I y IV. Este 
doble movimiento evidencia que las simetrías algebraicas determi-
nan la distribución de los signos de las variables, lo cual es crucial 
para el estudio de discontinuidades y límites (Anton et al., 2020).

En el caso de las funciones radicales, las reflexiones requie-
ren mayor atención debido a las restricciones de dominio. Por 
ejemplo, la función  (Figura 23) está definida solo 
para .
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Figura 23.
Reflexión sobre el eje Y de la función 

Nota: Elaboración propia

Su reflexión respecto al eje “y”, , no tiene sig-
nificado real, ya que generaría números imaginarios. En cambio, 
la reflexión respecto al eje “x”,  es válida y produce una 
imagen simétrica en el cuarto cuadrante. Este análisis ayuda a 
los estudiantes a reconocer que no todas las transformaciones 
son posibles dentro del conjunto de los números reales, lo que 
refuerza la necesidad de comprender las condiciones de exis-
tencia de una función (Stewart, 2016).

Apoyo didáctico: Las reflexiones en funciones algebraicas tienen 
un alto valor formativo porque fomentan la visualización y la antici-
pación analítica. Cuando el estudiante aprende a identificar el signo 
que produce una inversión gráfica, puede predecir el comporta-
miento sin necesidad de calcular puntos. Este tipo de razonamiento 
contribuye a la generalización funcional, entendida como la capa-
cidad de reconocer regularidades algebraicas en diversas familias 
de funciones (Sfard, 1991). Además, al comparar funciones como 

, se estimula el pensamiento compara-
tivo y la comprensión de invariantes estructurales, dos competencias 
esenciales en el tránsito del álgebra elemental al análisis.

El uso de herramientas tecnológicas, como GeoGebra, resulta 
particularmente potente en este proceso, pues permite superponer 
gráficas y observar de manera dinámica la simetría entre la función 
original y su reflejada. Al activar deslizadores que modifican el signo 
o la variable, el estudiante construye una imagen conceptual (Tall 
& Vinner, 1981) que refuerza su comprensión de la correspondencia 
algebraico-geométrica. Esta experiencia visual transforma la re-
flexión en un proceso exploratorio, donde el conocimiento surge del 
contraste entre la ecuación simbólica y su representación gráfica.

Escalamientos y compresiones de una función base
En el estudio de las funciones algebraicas, los escalamientos y 
compresiones constituyen un tema de especial relevancia por-
que permiten comprender cómo una misma estructura funcional 
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puede adquirir diferentes configuraciones geométricas sin per-
der su identidad matemática. Estas transformaciones ponen de 
manifiesto la relación profunda entre el lenguaje simbólico del 
álgebra y el lenguaje visual de la geometría analítica, al mostrar 
que los coeficientes numéricos son operadores de cambio que 
alteran la proporción, la amplitud y la pendiente de las curvas. 
Como señalan Anton et al. (2020), dominar la interpretación de 
los parámetros multiplicativos es esencial para comprender el 
comportamiento de modelos algebraicos, ya que estos paráme-
tros controlan la escala de crecimiento de las funciones.

Desde una perspectiva formal, si se considera una función 
base , los escalamientos verticales se obtienen mediante la 
expresión , donde el parámetro “a” multiplica directa-
mente los valores del rango. Cuando , se produce un esti-
ramiento vertical, lo que amplifica las distancias de los puntos 
respecto al eje “x”; mientras que cuando , se genera 
una compresión vertical, que acerca la gráfica hacia dicho eje.

Esta transformación afecta la magnitud de los valores de salida, 
pero no modifica la estructura algebraica ni el dominio de la fun-
ción. En cambio, los escalamientos horizontales se expresan median-
te : si , la función se comprime horizontalmente; si 
0<b<1, se estira horizontalmente. La diferencia fundamental radica en 
que, en los escalamientos horizontales, el efecto del parámetro “b” es 
inverso al valor que toma, lo cual resulta especialmente interesante 
para analizar el impacto del cambio de variable (Stewart, 2016).

La interpretación geométrica de estas transformaciones puede 
observarse con claridad en funciones polinómicas. En una función 
cuadrática general , el valor de “a” determina el grado de 
curvatura de la parábola (Figura 24). Si , la gráfica se vuelve 
más angosta, reflejando un crecimiento más pronunciado; si , 
la parábola se abre, evidenciando un comportamiento más gradual.

Figura 24.
Escalamientos horizontales

Nota: Elaboración propia.

Este mismo principio se extiende a las funciones cúbicas 
, donde “a” regula la pendiente de inflexión. En ambos 

casos, los escalamientos revelan la relación entre el coeficiente 
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multiplicativo y la variación local de la función, sentando las bases 
conceptuales para la comprensión de la derivada como medida 
del cambio (Larson & Edwards, 2019).

En las funciones radicales, como , el parámetro 
“a” determina la velocidad con la que la función crece: valores 
mayores de “a” hacen que la raíz crezca más rápidamente, mien-
tras que valores menores la suavizan. Este comportamiento es 
particularmente útil en contextos aplicados donde el análisis de 
elasticidades o tasas de crecimiento requiere interpretar cómo 
los factores de escala modifican el modelo funcional (Anton et 
al., 2020).

Figura 25.
Escalamientos en funciones con radicales

Nota: Elaboración propia.

En las funciones racionales y radicales, el efecto de los es-
calamientos es igualmente revelador. Si se considera la función 
racional , un factor vertical “a” modifica la separación 
de las ramas respecto a los ejes asintóticos, generando una ex-
pansión o contracción simétrica. En cambio, un factor horizontal 
“b” altera la posición de las asíntotas sin modificar su forma, 
mostrando que las relaciones de proporcionalidad afectan tanto 
al dominio como al rango.

Apoyo didáctico: los escalamientos y compresiones favorecen 
el desarrollo del pensamiento relacional y la comprensión del 
comportamiento global de una función. Godino, Batanero y Font 
(2007) sostienen que el aprendizaje significativo de las funciones 
depende de la capacidad del estudiante para coordinar distintos 
registros semióticos. Los escalamientos se prestan de manera 
natural a esta coordinación, ya que el cambio de un coeficiente 
en la expresión algebraica tiene un efecto visual inmediato en 
la gráfica. La enseñanza de estas transformaciones debería, por 
tanto, fomentar la observación dinámica, el uso de conjeturas y 
la verificación empírica mediante representaciones interactivas. 

Desde una mirada más profunda, los escalamientos y com-
presiones no son meras transformaciones gráficas, sino una ma-
nifestación de la proporcionalidad estructural del álgebra. La 
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comprensión de estas transformaciones contribuye al desarrollo 
del pensamiento multiplicativo, un proceso cognitivo que permite 
entender el cambio relativo entre magnitudes y que constituye 
la base de nociones avanzadas como la pendiente, la elasticidad 
y la tasa de variación (Sfard, 1991). En otras palabras, cuando el 
estudiante percibe que “multiplicar por dos” no solo cambia los 
valores de la función, sino también la escala de su representación, 
está construyendo una comprensión operativa y estructural del 
significado del número en el contexto funcional.

Uso de GeoGebra y Desmos para explorar transformaciones
El empleo de herramientas tecnológicas como GeoGebra y 
Desmos ha revolucionado la manera en que se enseña y apren-
de la noción de función en el aula. Estas plataformas facilitan la 
observación directa de cómo los parámetros influyen en la forma, 
posición y orientación de una gráfica, haciendo visible aquello 
que en el plano algebraico suele permanecer abstracto. Según 
Artigue (2018), la integración de entornos digitales en la enseñan-
za de las matemáticas transforma la relación del estudiante con 
el conocimiento, porque permite construir significado a través 
de la experimentación y la visualización.

Transformaciones en funciones lineales y cuadráticas
Las funciones lineales constituyen el punto de partida ideal para 
explorar transformaciones básicas. En una función de la forma 

, el parámetro “m” determina la inclinación de la 
recta, mientras que “b” define su desplazamiento vertical. En 
GeoGebra, al manipular los deslizadores de estos parámetros, los 
estudiantes observan cómo la recta gira o se traslada sobre el 
plano cartesiano. Este ejercicio, aparentemente simple, permite 
comprender intuitivamente el concepto de pendiente y cómo las 
variaciones numéricas afectan directamente la representación 
gráfica. De acuerdo con Kieran (2018), tales experiencias fortale-
cen la capacidad de los estudiantes para reconocer regularidades 
funcionales y conectar diferentes registros de representación 
matemática.

En las funciones cuadráticas

(Figura 26), los parámetros cumplen un papel más complejo: “a” 
controla la apertura y orientación de la parábola, mientras que 
“h“ y “b” determinan la posición del vértice. GeoGebra y Desmos 
permiten que los estudiantes visualicen cómo la parábola se 
desplaza o se estira conforme cambian estos valores. 
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Figura 26.
Transformaciones dinámicas en Geogebra de funciones cuadráticas

Nota: Elaboración propia.

Esta visualización facilita la comprensión estructural de la 
función, sin recurrir a cálculos formales. En palabras de Duval 
(2006), comprender una función implica poder traducirla entre 
registros algebraicos, gráficos y numéricos, proceso que estas 
herramientas potencian de forma natural.

Transformaciones en funciones cúbicas y de valor absoluto
Al explorar funciones cúbicas, como:

(Figura 27), los estudiantes descubren comportamientos gráficos 
que combinan simetrías y cambios de curvatura. En Desmos, el 
movimiento de los deslizadores permite visualizar cómo la grá-
fica se “estrecha” o “ensancha” al modificar “a”, y cómo el punto 
central cambia de posición con “h” y “b”. 

Esta experiencia ofrece una visión dinámica del cambio gra-
dual en el comportamiento de la función sin recurrir al análisis 
derivativo, fomentando una comprensión basada en la observa-
ción directa del desplazamiento y la deformación (Stewart, 2021).

Figura 27.
Transformaciones dinámicas en Geogebra de funciones cuadráticas

Nota: Elaboración propia.

Las funciones de valor absoluto, , permi-
ten analizar transformaciones con un punto angular bien defi-
nido. En GeoGebra, los estudiantes pueden identificar cómo los 
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parámetros modifican la posición del vértice y la inclinación de 
las ramas, comprendiendo el efecto de los desplazamientos hori-
zontales y verticales. Este tipo de función resulta particularmente 
útil para reflexionar sobre simetrías y sobre cómo una misma 
estructura algebraica puede producir diferentes configuraciones 
visuales.

Figura 28.
Transformaciones dinámicas en Geogebra de funciones cuadráticas

Nota: Elaboración propia.

Las funciones racionales, como , ofrecen una 
excelente oportunidad para comprender el efecto de los pará-
metros sobre la posición de las asíntotas y la forma de las ramas. 
GeoGebra y Desmos permiten mostrar cómo un cambio en “h” 
traslada la gráfica horizontalmente, moviendo la asíntota ver-
tical, mientras que “b” provoca un desplazamiento vertical de 
toda la función (Figura 29). Este tipo de exploraciones permite 
discutir con los estudiantes el concepto de dominio restringido 
sin necesidad de cálculos avanzados. Según Blitzer (2019), la 
visualización de este tipo de funciones refuerza la comprensión 
de los límites de definición y la naturaleza del comportamiento 
extremo de las funciones algebraicas.

Figura 29.
Transformaciones dinámicas en Geogebra de funciones racionales

Nota: Elaboración propia.

Las funciones radicales, como , permiten 
abordar el papel de los parámetros en la forma y el inicio de la 
gráfica. Los deslizadores en Desmos hacen evidente cómo el 
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parámetro “h” define el punto de partida del dominio y cómo 
“a” influye en el “ritmo” de crecimiento de la curva. Estas re-
presentaciones fomentan una comprensión más cualitativa del 
comportamiento funcional, invitando a los estudiantes a razonar 
sobre los efectos de cada parámetro antes de recurrir a cualquier 
cálculo formal.

Potencial didáctico y cognitivo de la exploración visual
Tanto GeoGebra como Desmos promueven un aprendizaje visual 
e inductivo, donde el estudiante pasa de la observación particular 
a la generalización. En lugar de memorizar fórmulas de trans-
formación, el alumno construye significados a partir de lo que 
ve y manipula. Esta interacción entre símbolo y representación 
concreta fortalece lo que Tall (2013) denomina pensamiento pro-
ceptual: la capacidad de concebir una función como un proceso 
(una acción que transforma) y como un objeto (una forma que 
se puede analizar y comparar).

Desde el punto de vista pedagógico, el uso de estos entornos 
tecnológicos favorece la diversidad de estilos de aprendiza-
je. Los estudiantes pueden explorar a su propio ritmo, verificar 
conjeturas, corregir errores y compartir observaciones con sus 
compañeros. Como señalan Hohenwarter, Lavicza y Scher (2007), 
GeoGebra no es solo una herramienta de representación, sino 
un entorno de experimentación que convierte la abstracción 
matemática en una experiencia cognitiva tangible.

De la observación al razonamiento funcional
El análisis de las transformaciones mediante GeoGebra y Desmos 
permite a los estudiantes razonar visualmente sobre el compor-
tamiento de las funciones sin recurrir a derivadas ni a proce-
dimientos algebraicos complejos. Al manipular parámetros, se 
evidencia la idea fundamental de que cada número cumple un 
papel estructural dentro de la función: controlar su dirección, 
desplazamiento o forma. Esta comprensión visual prepara el 
terreno para la generalización de patrones en funciones más 
complejas, como las exponenciales o logarítmicas, donde el sig-
nificado de los parámetros se conserva, aunque cambie la ex-
presión algebraica.

Ejercicios exploratorios y abiertos para el análisis gráfico
El aprendizaje profundo de las funciones algebraicas se construye 
cuando los estudiantes dejan de resolver mecánicamente ecuacio-
nes y comienzan a explorar gráficas, conjeturar regularidades y jus-
tificar transformaciones. En este proceso, los ejercicios exploratorios 
y abiertos se convierten en una estrategia clave para vincular lo 
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simbólico y lo visual, promoviendo un pensamiento algebraico flexi-
ble. Como señala Godino (2003), la comprensión funcional emerge 
cuando los estudiantes logran interpretar los objetos matemáticos 
desde distintas representaciones y contextos.

El sentido de los ejercicios exploratorios y abiertos
Un ejercicio exploratorio invita al estudiante a descubrir cómo 
se comporta una función ante variaciones en sus parámetros o 
condiciones iniciales. Los ejercicios abiertos, por su parte, no exi-
gen una única respuesta, sino que promueven el razonamiento, la 
comparación y la argumentación. Según Pólya (2014), aprender 
matemáticas implica experimentar la incertidumbre del proble-
ma, buscar regularidades y generalizar conclusiones: una prác-
tica científica en miniatura.

La enseñanza moderna del álgebra especialmente en su vínculo 
con la geometría y la visualización, se fortalece cuando el estudiante 
es protagonista del descubrimiento. En palabras de Duval (2006), 
la comprensión matemática se logra al coordinar los diferentes 
registros de representación: el simbólico, el gráfico y el numérico.

Ejercicios exploratorios con funciones lineales y afines
Comenzar con funciones lineales favorece la comprensión intui-
tiva del cambio constante y la pendiente. Actividades como las 
siguientes permiten un trabajo significativo:

•	 Ejemplo 1: Explora en GeoGebra las gráficas de  
cuando “m” toma los valores 1, 2, -1 y -3. Describe cómo 
cambia la inclinación de la recta. Este ejercicio estimula la 
observación de patrones, el uso del lenguaje natural y la 
articulación entre la noción de pendiente y dirección.

•	 Ejemplo 2: Crea dos rectas con pendientes distintas que se 
crucen en el punto (2,3). Explica qué condiciones deben cum-
plir sus ecuaciones. Aquí se integran los conceptos de inter-
sección, sistema lineal y análisis gráfico, generando reflexión 
sobre las relaciones entre ecuaciones y puntos comunes.

Según Kieran (2018), este tipo de exploraciones desarrollan 
una comprensión estructural del álgebra, entendida como la ha-
bilidad para reconocer relaciones invariantes a través de distintas 
representaciones.

Ejercicios abiertos con funciones cuadráticas
Las funciones cuadráticas son ideales para la experimentación 
con parámetros y simetrías. En lugar de pedir al estudiante que “di-
buje una parábola”, se lo desafía a explorar sus transformaciones:

•	 Ejemplo 3: Investiga cómo cambia la gráfica de
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Elabora una tabla donde describas los efectos de cada parámetro. 
Este ejercicio fomenta la observación sistemática y la formulación 
de conclusiones generales sobre apertura, orientación y posición.

•	 Ejemplo 4: Diseña una parábola que tenga vértice en (–1, 
3) y que pase por el punto (1, 7). Determina su ecuación y 
explica cómo la encontraste. Este tipo de pregunta estimula 
el pensamiento inverso y la modelación: el estudiante parte 
de la representación gráfica o de condiciones geométricas 
para reconstruir la expresión algebraica.

•	 Ejemplo 5: Compara las funciones

  y . 

Indica en qué se parecen y en qué difieren sus gráficas. Al compa-
rar simultáneamente tres funciones, el estudiante identifica patrones, 
reflexiona sobre traslaciones y reflexiones, y desarrolla pensamiento 
analógico.

De acuerdo con Radford (2014), este tipo de experiencias concre-
tan el pensamiento semiótico, donde el alumno da sentido a los sím-
bolos matemáticos a través de la observación, la palabra y la acción.

Ejercicios con funciones cúbicas, racionales y radicales
Para avanzar hacia una comprensión más amplia del comporta-
miento gráfico, los ejercicios exploratorios deben incluir diversi-
dad funcional, no solo aquellas de segundo grado:

•	 Ejemplo 6: Analiza las gráficas de

 y .

¿Qué cambios observas al modificar los parámetros? Este 
ejercicio permite descubrir la idea de simetría rotacional y la 
influencia del signo del coeficiente en la orientación.

•	 Ejemplo 7: Explora en Desmos la función . 
Describe cómo cambian las asíntotas cuando alteras los va-
lores de “h” y “b”. A través de la observación, el estudiante 
comprende que las transformaciones no solo afectan la for-
ma, sino también las restricciones del dominio.

•	 Ejemplo 8: Dibuja

para distintos valores de “k” y “k”. Explica cómo el punto inicial 
de la curva se desplaza. Este tipo de ejercicios es útil para traba-
jar la noción de dominio y rango de manera visual, sin necesidad 
de fórmulas ni derivadas.
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Como afirma Blitzer (2019), la experimentación con familias 
de funciones genera conexiones entre las representaciones al-
gebraicas y geométricas, permitiendo al estudiante desarrollar 
una intuición sobre el comportamiento global de las funciones.

Ejercicios de síntesis y comparación entre funciones
Los ejercicios de análisis comparativo favorecen la generalización 
y la transferencia de conocimientos. Por ejemplo:

•	 Ejemplo 9: Coloca en una misma vista las funciones 
,  y . ¿Qué diferencias encuentras en la 
forma y crecimiento de cada una? Este ejercicio estimula el 
pensamiento variacional y la capacidad de comparar tasas 
de cambio visualmente.

•	 Ejemplo 10: Propón una función algebraica que combine 
características de las funciones anteriores. Explica qué parte 
de su ecuación influye más en su forma. El estudiante asume 
un rol de diseñador de funciones, consolidando su com-
prensión de los parámetros como elementos estructurales.

Dimensión didáctica y cognitiva
El enfoque exploratorio se sustenta en la idea de que el cono-
cimiento se construye activamente mediante la interacción con 
representaciones visuales. Como sostiene Artigue (2018), el 
aprendizaje se potencia cuando las tareas invitan al estudiante 
a manipular, observar, registrar y comunicar lo que descubre. En 
este proceso, herramientas como GeoGebra y Desmos no son 
simples recursos gráficos, sino laboratorios conceptuales donde 
la matemática se experimenta.

Además, los ejercicios abiertos promueven un aula inclusiva: 
cada estudiante puede llegar a conclusiones válidas desde dis-
tintos niveles de razonamiento, generando diversidad de res-
puestas y fomentando el diálogo matemático. De acuerdo con el 
diseño Universal para el aprendizaje (CAST, 2018), las actividades 
deben ofrecer múltiples formas de participación y expresión, 
adaptándose a las diferencias cognitivas y comunicativas de los 
aprendices.

Conclusiones

El estudio de las funciones algebraicas permitió comprender cómo 
las variaciones en los parámetros modifican la forma, posición y 
orientación de sus gráficas, revelando la estrecha relación entre el 
lenguaje algebraico y la representación visual. A lo largo del capí-
tulo se evidenció que analizar las funciones desde una perspectiva 
gráfica no solo enriquece la comprensión conceptual, sino que 
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también despierta el interés por descubrir patrones, formular con-
jeturas y justificar razonamientos. La observación, la exploración 
y la comparación se consolidan, así como estrategias clave para 
que el estudiante construya significado y desarrolle una mirada 
más profunda y flexible sobre el comportamiento de las funciones.

En el ámbito educativo, las actividades abiertas y exploratorias 
presentadas favorecen el aprendizaje activo y la autonomía inte-
lectual. Cuando el estudiante manipula, experimenta y reflexiona 
sobre las transformaciones gráficas, la matemática deja de ser 
un conjunto de reglas para convertirse en una herramienta de 
interpretación y razonamiento. Este enfoque promueve la cu-
riosidad, el pensamiento crítico y la conexión entre lo simbólico 
y lo visual, aspectos esenciales para avanzar hacia el estudio 
de las funciones trascendentes y el desarrollo de competencias 
analíticas que perduren más allá del aula.
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Capítulo IV

Funciones trascendentes y sus 
propiedades

 

Introducción

El estudio de las funciones trascendentes marca uno de los momentos 
más significativos del aprendizaje matemático, porque en ellas el 
pensamiento se abre a la comprensión del cambio en su forma más 
profunda. Las funciones exponenciales, logarítmicas y trigonomé-
tricas permiten describir procesos que van más allá de lo que las 
funciones algebraicas pueden expresar. A través de ellas es posible 
entender el crecimiento de una población, el comportamiento de 
una onda o la manera en que la luz se atenúa con la distancia. Este 
capítulo busca que el estudiante descubra en las funciones trascen-
dentes no solo un conjunto de fórmulas, sino un modo de pensar los 
fenómenos naturales y sociales con precisión, belleza y sentido.

Cada una de estas funciones encierra una historia y una in-
terpretación distinta del mundo. La función exponencial mues-
tra cómo algo puede crecer o decrecer sin límite, reflejando el 
ritmo de la vida y el paso del tiempo. El logaritmo, su inversa, 
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revela la forma en que la mente humana percibe la magnitud 
de los cambios: no de manera lineal, sino proporcional. Las fun-
ciones trigonométricas, por su parte, condensan la esencia de 
la periodicidad: el movimiento de los planetas, la vibración del 
sonido, las oscilaciones del corazón. En conjunto, las funciones 
trascendentes componen una sinfonía matemática donde cada 
una aporta su propio tono para explicar la armonía de lo real.

Más allá del cálculo y las propiedades, este capítulo invita a con-
templar las funciones trascendentes como un encuentro entre la abs-
tracción y la experiencia. En ellas, la matemática se vuelve lenguaje 
del movimiento, instrumento para comprender la regularidad y el 
misterio que habitan en lo cotidiano. A través de ejemplos, repre-
sentaciones gráficas y aplicaciones, el lector podrá ver cómo estos 
conceptos conectan la razón con la intuición, lo simbólico con lo 
visual y lo teórico con lo vivencial. Aprender funciones trascendentes 
es, finalmente, aprender a mirar el mundo desde una perspectiva 
más amplia, donde la lógica y la belleza se unen para revelar las 
leyes que sostienen el cambio y la continuidad en la naturaleza.

Funciones exponenciales y logarítmicas
Las funciones exponenciales y logarítmicas constituyen un pilar 
esencial del pensamiento trascendente, pues describen fenóme-
nos donde el cambio no es uniforme, sino proporcional al estado 
mismo de la magnitud. Su comprensión implica una transición 
cognitiva desde la proporcionalidad lineal hacia una concep-
ción multiplicativa del cambio, que se manifiesta en procesos 
de crecimiento, decrecimiento y escala. A lo largo de la historia 
de la matemática, estas funciones han permitido explicar con 
precisión el comportamiento de sistemas naturales y sociales, 
desde el crecimiento poblacional hasta la propagación de ondas 
o la evolución del capital financiero. En este sentido, su estudio 
no solo tiene valor teórico, sino también epistémico, al permitir 
que el estudiante reconozca la estructura matemática que sub-
yace en la realidad (Stewart, 2016; Sullivan, 2016; Larson, 2021).

Definición, propiedades y relación de inversa
La función exponencial, expresada como  con , se ca-
racteriza por un crecimiento o decrecimiento que depende del valor 
actual de la variable, lo que le otorga un comportamiento autorrefe-
rencial. Tal como explica Stewart (2016), la idea de “crecimiento pro-
porcional al estado” permite modelar desde la reproducción de una 
especie hasta la acumulación de intereses en una cuenta bancaria. 

La función logarítmica, definida como , surge como 
la inversa conceptual de la exponencial y responde a una necesidad 
histórica: medir el tiempo o la magnitud necesaria para alcanzar un 
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determinado resultado de crecimiento. Napier, al crear los logaritmos 
en el siglo XVII, buscaba precisamente simplificar los cálculos multi-
plicativos transformándolos en sumas, lo que cambió para siempre 
la forma de trabajar con grandes números (Eves, 2010).

La relación de inversión entre ambas funciones se refleja no solo al-
gebraicamente, sino también en el plano gráfico. La simetría respecto 
a la recta y = x revela la conexión bidireccional entre los procesos de 
crecimiento exponencial y los de escala logarítmica. Sullivan (2016) 
subraya que enseñar esta dualidad fomenta la comprensión relacio-
nal del concepto de función, más allá de la manipulación de fórmulas, 
y prepara el terreno para los temas de cálculo diferencial e integral.

Por ejemplo: La función  tiene como inversa 
 (Figura 1). Mientras f(x) crece sin límite a medida 

que “x” aumenta,  se incrementa lentamente, mostrando la 
naturaleza opuesta de los procesos que representan: expansión 
acelerada versus crecimiento desacelerado.

Figura 1.
Representación de la función exponencial y su inversa 

Nota: Elaboración propia.

Entre las propiedades fundamentales de la función exponencial 
(Figura 2 ) se destacan las siguientes:

1.	 Dominio y recorrido: Su dominio es todo número real, mien-
tras que su recorrido está restringido a valores positivos, 
f(x) > 0. Esto refleja su naturaleza estrictamente positiva, 
lo que la hace útil para representar magnitudes físicas y 
económicas que no pueden adoptar valores negativos.

Figura 2.
Representación de la función exponencial 

Nota: Elaboración propia.
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2.	Crecimiento o decrecimiento monótono: Si , la fun-
ción crece de forma indefinida; si   , decrece 
tendiendo a cero. Esta dualidad ilustra la versatilidad 
del modelo para representar tanto procesos expansivos 
como disipativos.

3.	 Punto de intersección: Todas las exponenciales pasan por el 
punto (0,1), dado que . Este punto sirve como referencia 
para la construcción de la gráfica.

4.	Multiplicación de potencias: Cumple la ley  , que 
expresa la coherencia de la función bajo la composición de 
exponentes.

5.	 División de potencias: La expresión   permite 
simplificar operaciones cuando se comparan valores de la 
misma base.

6.	Potencia de una potencia: La propiedad  garan-
tiza la estabilidad del sistema exponencial ante transforma-
ciones sucesivas. 

Estas relaciones dotan a la función exponencial de una estruc-
tura algebraica sólida, que respeta las reglas de proporcionali-
dad multiplicativa y asegura su coherencia interna en cualquier 
contexto de aplicación (Sullivan, 2016).

Propiedades fundamentales de la función logarítmica
Las propiedades de la función logarítmica derivan directamen-
te de su condición de inversa de la exponencial. Larson (2021) 
señala que esta correspondencia inversa no solo es formal, sino 
que también posee un significado cognitivo profundo: permite al 
estudiante comprender que el logaritmo no mide una cantidad, 
sino la potencia necesaria para generar una cantidad.

Figura 3.
Representación de la función logaritmica

Nota: Elaboración propia.

1.	 	Dominio y recorrido: La función está definida solo para 
, y su recorrido abarca todos los números reales. Esta 

restricción refleja que no existen logaritmos de números 
negativos ni de cero.
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2.	 Punto característico: Todo logaritmo de la base es igual a 
1, es decir, , y el logaritmo de 1 siempre es cero, 

.
3.	 	Suma de logaritmos:

que corresponde a la multiplicación de potencias en la función 
inversa.

4.	Resta de logaritmos: , que expresa la 
relación inversa con la división de potencias.

5.	 Potencia dentro del argumento: , lo que permite 
linealizar expresiones exponenciales.

6.	Cambio de base:

una propiedad que posibilita el uso de cualquier base conve-
niente para el cálculo. 

Estas propiedades reflejan una estructura simétrica respecto 
a la exponencial: toda operación de multiplicación o división 
en el dominio se convierte en una suma o resta en el logaritmo. 
Este principio constituye la base de su aplicación en las escalas 
logarítmicas, en la acústica, la química o la ingeniería de datos 
(Artigue, 2018).

Resolución de ecuaciones exponenciales y logarítmicas
El estudio de las ecuaciones exponenciales y logarítmicas consti-
tuye un paso esencial en la transición desde el álgebra elemental 
hacia el pensamiento trascendente. En este ámbito, el estudiante 
no solo aplica procedimientos operativos, sino que desarrolla la 
capacidad de interpretar y transformar expresiones que modelan 
procesos de crecimiento, transformación o escala. Resolver este 
tipo de ecuaciones implica comprender la relación de inversa 
entre las funciones , lo que permite 
pasar de una forma exponencial a su equivalente logarítmica y 
viceversa (Stewart, 2016; Sullivan, 2016).

Ecuaciones exponenciales
Una ecuación exponencial es aquella en la que la incógnita apa-
rece en el exponente, como en . Su resolución se basa 
en dos principios:

1.	 Igualación de bases, cuando los términos pueden expresar-
se con la misma base.

2.	 Aplicación del logaritmo, cuando la igualación directa no 
es posible.
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Ejemplo 1. Resolver . Como , se obtiene 
, se puede constatar que los exponentes son iguales: 

por lo tanto: . Geométricamente se puede 
constatar (Figura 4).

Figura 4.
Representación de la solución de la ecuación exponencial

Nota: Elaboración propia.

Este tipo de ejercicio fomenta la comprensión estructural de 
la potencia y el reconocimiento de patrones numéricos en los 
exponentes, habilidades fundamentales en el desarrollo del pen-
samiento algebraico (Godino & Batanero, 1998).

Ejemplo 2. Aplicación del logaritmo
Resolver .  Al no ser posible expresar 20 como po-

tencia de 3, se aplica logaritmo en ambos lados. Puede ser base 
10 o natural; da igual (cambio de base).

aplicando propiedades

despejar el término lineal

de donde

. Geométricamente se puede comprobar 
dicha solución (Figura 5). Esta técnica, según Stewart (2016), 
permite “liberar” el exponente y transformarlo en una expresión 
lineal, consolidando el vínculo conceptual entre las potencias y 
los logaritmos.
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Figura 5.
Representación de la solución de la ecuación exponencial

Nota: Elaboración propia.

Ecuaciones logarítmicas 
Una ecuación logarítmica es aquella en la que la incógni-
ta aparece dentro de un logaritmo, como en . 
Resolverla requiere el uso de la definición inversa del logaritmo: 

Esta propiedad constituye la base para transformar ecuacio-
nes logarítmicas en ecuaciones exponenciales equivalentes.

Ejemplo 3. Transformación inversa:
Resolver: .  Por definición, , de 

donde x=9.

Ejemplo 4. Ecuación con suma de logaritmos.
Resolver: 

Por definición inversa: 
desarrollando obtenemos

resolviendo la ecuación cuadrática:

Como el dominio del logaritmo exige , se conserva solo 
, la figura muestra el resultado obtenido.

Figura 6.
Representación de la solución de la ecuación exponencial

Nota: Elaboración propia.
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Este ejemplo evidencia la necesidad de considerar las restricciones 
de dominio propias de la función logarítmica, aspecto que refuerza 
la rigurosidad conceptual y el pensamiento lógico (Larson, 2021).

Apoyo didáctico: Las ecuaciones exponenciales y logarítmicas 
no deben enseñarse como un conjunto de reglas aisladas, sino 
como expresiones interdependientes que representan distintos 
puntos de vista de un mismo fenómeno. Artigue (2018) y Tall 
(2013) coinciden en que el aprendiza je significativo de estas 
ecuaciones se potencia cuando los estudiantes visualizan sus 
soluciones en el plano cartesiano, observando cómo las curvas 

 interceptan con rectas horizontales o dia-
gonales para representar los valores buscados.

Apoyo didáctico: Desde una perspectiva pedagógica, Godino 
y Batanero (1998) sostienen que enseñar estas ecuaciones me-
diante la resignificación del error favorece la comprensión: el 
estudiante aprende más al analizar por qué una solución no per-
tenece al dominio que al limitarse a la aplicación mecánica de 
propiedades. En este sentido, las herramientas tecnológicas como 
GeoGebra y Desmos se convierten en mediadores poderosos 
para la exploración de soluciones, promoviendo la articulación 
entre lo simbólico, lo numérico y lo gráfico (Artigue, 2018).

Modelos de crecimiento, decrecimiento y escala logarítmica
La observación del crecimiento y decrecimiento en la naturaleza, 
la economía o la tecnología revela una constante: todo cambia 
de manera proporcional a su propio estado. Esa es la esencia de 
los modelos exponenciales y logarítmicos. Su comprensión no se 
limita a resolver ecuaciones, sino a entender los ritmos del mundo: 
cómo algo se multiplica, cómo se atenúa, o cómo una pequeña 
variación inicial puede transformarse en un cambio gigantesco.

Crecimiento exponencial: cuando lo pequeño se multiplica
Imaginemos una población de bacterias en condiciones óptimas: 
cada individuo se divide en dos cada hora. Si comenzamos con una 
sola célula, al cabo de cinco horas habrá  células; después 
de diez horas, . Este crecimiento, descrito por la función 

, muestra cómo el cambio depende del valor actual 
del fenómeno, no de una cantidad fija (Boyce & DiPrima, 2017).

Stewart (2016) explica que este modelo se aplica también 
en finanzas, donde el interés compuesto genera un incremento 
continuo del capital. Por ejemplo, una inversión de 1000 dólares 
al 5% anual crece según  (Figura 7), lo que 
significa que después de 10 años el capital asciende a 1648,72 
dólares. La “magia” del crecimiento exponencial radica en la re-
troalimentación acumulativa: cuanto más se tiene, más se gana.
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Figura 7.
Representación del crecimiento exponencial aplicado a las finanzas

Nota: Elaboración propia.

En el ámbito educativo, el modelo de crecimiento exponencial 
permite comprender cómo el aprendizaje y la motivación se re-
troalimentan de manera acumulativa cuando existen condiciones 
adecuadas de enseñanza, acompañamiento y práctica soste-
nida. Tal como plantea Stewart (2016), el crecimiento continuo 
en sistemas dinámicos se basa en pequeños incrementos que 
se acumulan y se potencian con el tiempo. De forma análoga, el 
aprendiza je humano no avanza de manera lineal: cada nueva 
comprensión amplía la base sobre la cual se construyen conoci-
mientos posteriores.

Por ejemplo, El progreso del conocimiento puede modelarse 
mediante la función: , donde  representa 
el porcentaje de dominio después de “t” semanas. Luego de 8 
semanas, el nivel de comprensión se aproxima al 66 %, mostrando 
cómo la retroalimentación acumulativa genera un aprendizaje 
cada vez más rápido a medida que el estudiante consolida sa-
beres previos y los conecta con nuevos contenidos.

El aprendiza je de una lengua extranjera, un estudiante que 
comienza con un vocabulario básico de 100 palabras y estudia 
con una tasa de incremento del 10 % semanal, puede modelar 
su progreso mediante la función  (Figura 8). 
Después de 10 semanas, el estudiante dominaría aproximada-
mente 271 palabras.

Figura 8.
Representación del crecimiento exponencial aplicado al ámbito 
educativo

Nota: Elaboración propia.
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Este crecimiento no solo refleja la memorización, sino la co-
nexión semántica entre los términos aprendidos, que acelera 
la adquisición de nuevos significados. Según Krashen(1982), la 
exposición comprensible y constante genera una adquisición 
lingüística natural que crece en espiral, reforzándose con cada 
experiencia comunicativa.

Del mismo modo, en matemáticas, el modelo puede describir 
cómo la práctica diaria y el refuerzo conceptual incrementan la 
comprensión de manera acumulativa. Un alumno que compren-
de el 40 % de los conceptos al inicio de un módulo y mejora un 
12 % por semana, puede alcanzar cerca del 100 % de dominio 
en apenas dos meses. Este proceso refleja lo que Bruner (1997) 
denominó currículo en espiral, donde el conocimiento se revisita 
en niveles cada vez más complejos, permitiendo una profundi-
zación progresiva.

Apoyo didáctico: En educación superior, el modelo exponen-
cial también ayuda a explicar cómo se desarrolla la compe-
tencia investigativa en los estudiantes. Durante los primeros 
semestres, el progreso suele ser lento; sin embargo, cuando el 
estudiante domina la lectura académica y la formulación de 
problemas, la productividad investigativa aumenta acelera-
damente. Como señala Biggs (2005), el aprendiza je profundo 
emerge cuando el estudiante comprende la estructura subya-
cente de las tareas y comienza a transferir su conocimiento a 
nuevas situaciones.

En contextos de formación docente, el modelo también pue-
de aplicarse al desarrollo profesional continuo. Un maestro 
que participa regularmente en comunidades de aprendiza je, 
lecturas colaborativas y talleres, mejora su desempeño peda-
gógico a una tasa que puede estimarse mediante el mismo 
principio de crecimiento acumulativo. La retroalimentación 
reflexiva y el intercambio entre pares generan un efecto mul-
tiplicador del saber docente. Schön (1983) lo llamó reflexión 
en la acción, un proceso mediante el cual la experiencia se 
convierte en conocimiento práctico y el crecimiento profe-
sional se acelera.

Otro ámbito ilustrativo es el aprendizaje mediado por tec-
nología. Cuando los estudiantes utilizan plataformas adapta-
tivas, como Moodle o GeoGebra, el sistema a justa los niveles 
de dificultad según sus respuestas, potenciando la práctica 
deliberada. Ericsson (2006) mostró que la repetición guia-
da con retroalimentación inmediata produce un crecimiento 
exponencial en la adquisición de habilidades complejas, al 
reforzar las conexiones neuronales asociadas con el dominio 
experto.
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En conjunto, estos ejemplos revelan que el crecimiento expo-
nencial en educación no depende únicamente del tiempo o la 
cantidad de práctica, sino de la calidad de la interacción peda-
gógica y de la estructura cognitiva acumulativa que se constru-
ye. Tal como señala Vygotsky (1979), el aprendizaje socialmente 
mediado amplía la zona de desarrollo próximo del estudiante, 
generando un avance que se acelera conforme aumenta su au-
tonomía y capacidad autorreguladora.

Así, el modelo exponencial, más allá de su origen en las finan-
zas o la biología, ofrece una metáfora poderosa para comprender 
los procesos de aprendiza je humano: cuanto más aprende el 
estudiante, más capaz se vuelve de aprender, y cuanto mayor es 
su comprensión, más profunda se hace su motivación por seguir 
aprendiendo.

Decrecimiento exponencial: cuando el tiempo erosiona lo existente
Así como algunos procesos crecen aceleradamente, otros se des-
gastan de forma continua y proporcional. La temperatura de 
un objeto caliente que se enfría en una habitación, la cantidad 
de medicamento en el cuerpo o la intensidad de una sustancia 
radiactiva siguen el mismo principio matemático: cada instante 
se pierde una fracción del valor restante. Este comportamiento 
puede expresarse mediante , donde “k” indica la ra-
pidez del descenso (Murray, 2002).

Pensemos en un café caliente sobre la mesa: su temperatu-
ra desciende con rapidez al principio y más lentamente des-
pués. Newton formuló este comportamiento con la ecuación 

, donde  es la temperatura am-
biente y  la temperatura del café justo cuando se coloca sobre 
la mesa.

Un ejemplo cotidiano es la depreciación de un automóvil. 
Si su valor disminuye cada año en un 15%, la función exponen-
cial negativa muestra cómo el precio se reduce con mayor 
rapidez al principio y más lentamente con el tiempo, de esta 
manera la función , representa cómo el precio 

 se reduce de manera más rápida al principio y luego más 
lentamente con el tiempo. Este tipo de modelo se extiende a 
fenómenos sociales, como la disminución del interés por una 
tendencia o el olvido progresivo de una información aprendida. 

Por ejemplo, si un vehículo nuevo cuesta 20 000 dó-
lares, después de cinco años su valor aproximado sería 

 dólares (Figura 9). Este fenómeno ilustra 
cómo la pérdida es significativa en los primeros años, estabi-
lizándose gradualmente.
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Figura 9.
Representación del proceso de depreciación de un vehículo

Nota: Elaboración propia.

En términos educativos, este comportamiento puede com-
pararse con la disminución de la motivación inicial en un curso 
si no se mantiene el estímulo o el refuerzo, como señalan Deci 
y Ryan (2000) en su teoría de la autodeterminación. El mismo 
principio explica la disminución del interés en una tendencia o 
práctica educativa. Supongamos que un grupo de estudiantes 
utiliza una aplicación de gamificación que al inicio despierta 
gran entusiasmo. En las primeras semanas, el uso es intenso; 
sin embargo, después de dos meses la participación disminuye 
drásticamente. El comportamiento puede modelarse mediante 

, donde  es el interés inicial y “k” la tasa de pérdida 
de motivación. Este fenómeno se observa en la difusión de inno-
vaciones: según Rogers (2003), toda novedad educativa sigue 
una curva de adopción donde el entusiasmo inicial declina si no 
se introducen elementos de renovación o sentido pedagógico.

Un ejemplo concreto se encuentra en las aulas virtuales: un 
curso en Moodle puede comenzar con 100 % de participación, 
pero, sin retroalimentación ni interacción, el interés de los estu-
diantes puede descender al 40 % en pocas semanas (Figura 10). 
La falta de estímulo, de sentido o de reconocimiento provoca un 
decrecimiento motivacional que responde a una función expo-
nencial negativa.

Figura 10.
Representación del proceso de desmotivación en un curso

Nota: Elaboración propia.
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Como sostienen Deci y Ryan (2000), la motivación autónoma 
requiere satisfacción de tres necesidades básicas: competencia, 
autonomía y relación; cuando estas no se atienden, el interés 
se erosiona con rapidez. El decrecimiento exponencial también 
se manifiesta en la curva del olvido, formulada por Hermann 
Ebbinghaus (1885). Este investigador demostró experimental-
mente que la memoria se deteriora con gran rapidez después del 
aprendizaje y luego lo hace de manera más lenta, a justándose 
al modelo:  donde  es el conocimiento inicial 
y  lo que se recuerda al cabo del tiempo “t”. 

Por ejemplo, un estudiante que domina el 100 % de una lección 
puede retener solo un 60 % al cabo de un día y un 30 % tras una 
semana si no repasa el contenido. Sin embargo, la aplicación de 
estrategias como la repetición espaciada, el aprendizaje signifi-
cativo (Ausubel, 1983) o la evaluación formativa (Black & Wiliam, 
2009) puede contrarrestar esta tendencia natural al olvido. 

En la práctica, esto implica que un docente que refuerza los 
aprendizajes de forma periódica, vinculándolos con experiencias 
previas, ayuda a que la curva de olvido se “aplane”, es decir, 
que el conocimiento se mantenga más tiempo en la memoria 
de largo plazo.

Escalas logarítmicas: una nueva forma de medir el cambio
Las escalas logarítmicas nacen de la necesidad de representar fe-
nómenos que varían en proporciones muy grandes. Tukey (1977) 
explica que estas escalas revelan patrones ocultos y facilitan la 
comparación entre fenómenos aparentemente dispares. Ejemplos 
comunes de escalas logarítmicas son el pH, donde cada unidad 
representa un cambio de diez veces en la concentración de iones 
de hidrógeno, o los decibelios, que miden la intensidad del sonido 
en proporciones multiplicativas (IUPAC, 2014). También la escala 
de Richter, usada para clasificar terremotos, condensa enormes 
variaciones de energía en una escala comprensible.

En la escala de Richter, que mide la magnitud de los terremo-
tos, cada punto adicional representa un aumento de diez veces 
en la amplitud de las ondas sísmicas y una 31,6 veces más energía 
liberada. Por ejemplo, un terremoto de magnitud 6,0 libera una 
31,6 veces más energía que uno de 5,0 y casi 1000 veces más 
que uno de 4,0. El modelo logarítmico que describe esta relación 
es: , donde A es la amplitud registrada y  la 
amplitud mínima perceptible por los sismógrafos.

Si el registro muestra una amplitud  entonces  
 es igual a 6 (Figura 11). Esto significa que un au-

mento de una sola unidad en la escala equivale a multiplicar la 
amplitud por 10, no a “sumar uno”. En el aula, este ejemplo ayuda 
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a los estudiantes a reinterpretar la magnitud como proporción, 
no como suma, comprendiendo el poder de los logaritmos para 
representar fenómenos naturales (Serway & Jewett, 2014).

Figura 11.
Representación del proceso de desmotivación en un curso

Nota: Elaboración propia.

Funciones trigonométricas 
Las funciones trigonométricas constituyen un punto de conver-
gencia entre el álgebra, la geometría y el análisis matemático. 
Desde una perspectiva formativa, representan una vía privile-
giada para comprender la periodicidad y el movimiento en la 
naturaleza, al mismo tiempo que revelan la elegancia con la que 
las matemáticas logran describir los fenómenos del mundo real. 
Su estudio trasciende la simple manipulación de razones entre 
lados de triángulos: introduce al estudiante en un lenguaje sim-
bólico capaz de expresar vibraciones, oscilaciones y repeticiones 
que se encuentran tanto en el sonido de una cuerda como en la 
órbita de los planetas. 

Comprender una función como el seno o el coseno no solo 
implica resolver ecuaciones, sino reconocer patrones de cambio 
rítmico que articulan la continuidad entre el tiempo, el espacio 
y la magnitud (Stewart, 2016). En este sentido, las funciones 
trigonométricas actúan como un puente cognitivo que conecta 
la experiencia empírica del movimiento con su representación 
abstracta y algebraica (Thomas et al., 2019).

Definición a partir del círculo unitario.
Históricamente, las funciones trigonométricas surgen del estudio 
de los triángulos y de la medición de los astros. Sin embargo, 
su formalización moderna se apoya en el círculo unitario, una 
construcción geométrica que permite extender el dominio de los 
ángulos más allá de los 90° y conectar la geometría con el análi-
sis. Si consideramos un punto P(x,y) en la circunferencia unitaria, 
de radio 1 y centrada en el origen (Figura 12), el ángulo αmedido 
desde el eje positivo de las abscisas genera las proyecciones 

α α . 
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Figura 12.
Representación del proceso de desmotivación en un curso

Nota: Elaboración propia.

De esta manera, las funciones seno y coseno se interpre-
tan como coordenadas del punto móvil sobre la circunferencia 
(Larson & Edwards, 2019). En este triangulo se cumple además  

, que se deduce directamente del teore-
ma de Pitágoras y es conocida como identidad fundamental 
trigonométrica.

La imagen presenta una representación geométrica del seno 
de un ángulo a partir del círculo unitario, una construcción fun-
damental en la comprensión de las funciones trigonométricas. En 
el gráfico, se observa un círculo centrado en el origen O, sobre el 
cual se proyecta un radio que forma un ángulo de β  (Figura 
13). El punto terminal de este radio, marcado en rojo, determina 
la altura o valor del seno del ángulo considerado. 

Esta proyección vertical desde el punto sobre la circunferencia 
hasta el eje “y” permite visualizar que el valor de θ  corres-
ponde a la coordenada “y” del punto en el círculo unitario, mien-
tras que el coseno está asociado a la coordenada “x”. La función 
seno de un ángulo β se define como la ordenada del punto P(x, y) 
en el círculo unitario asociado al ángulo central correspondiente: 

β .

Figura 13.
Representación de la función  y su relación con el círculo 
trigonométrico

Nota: Elaboración propia.
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El coseno del ángulo β  se define como la abscisa del punto 
P(x, y) sobre el círculo unitario: β .

El círculo unitario no solo unifica las nociones de ángulo y 
longitud de arco, sino que también permite definir las restantes 
funciones trigonométricas:

θ θ
θ θ θ

θ θ θ θ θ

Esta conexión entre lo geométrico y lo analítico permite com-
prender que las funciones trigonométricas son manifestaciones 
diferentes de una misma estructura funcional compleja, cuya 
naturaleza es periódica, continua y diferenciable, pero también 
profundamente simbólica del movimiento y la oscilación.

Propiedades, periodicidad y simetrías
Las funciones trigonométricas son periódicas, lo que significa que 
repiten sus valores en intervalos regulares. El seno y el coseno 
presentan un período fundamental de π , mientras que la tangen-
te y la cotangente tienen un período de π . Se puede comprobar 
las siguientes igualdades: 

π π π

Esta propiedad las convierte en modelos ideales para describir 
fenómenos cíclicos como las vibraciones, las ondas y los ritmos 
biológicos (Stewart, 2016).

Figura 14.
Representación de la función  y su relación con el círculo 
trigonométrico

Nota: Elaboración propia.

Además, las funciones trigonométricas obedecen a iden-
tidades fundamentales, entre las cuales destaca además de 
la identidad pitagórica otras como: , 

.  En la práctica docente, estas propieda-
des pueden explorarse mediante herramientas digitales como 
GeoGebra, donde la manipulación de parámetros en funciones del 
tipo  (Figura 14) permite visualizar 
los efectos de la amplitud (A), el período π , el desfase (C) y 
la traslación vertical (D). 
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Figura 15.
Representación general de la función 

Nota: Elaboración propia.

Según Hohenwarter y Jones (2007), el uso de software diná-
mico fomenta la comprensión conceptual al vincular la expresión 
simbólica con su representación gráfica y su interpretación 
física.

Comprensión de signos y valores notables en el círculo unitario
La comprensión de los signos y valores notables en el círculo 
unitario representa uno de los aprendizajes más significativos 
dentro del estudio de las funciones trigonométricas. No se trata 
únicamente de memorizar posiciones o ángulos, sino de interpre-
tar el significado geométrico y funcional de cada punto del círcu-
lo, comprendiendo cómo los signos de seno, coseno y tangente 
expresan la dirección y la orientación del movimiento angular. 
Este conocimiento conecta la visualización geométrica con la 
abstracción algebraica, consolidando el pensamiento analítico 
del estudiante.

En el primer cuadrante, ambas coordenadas son positivas: 
el seno y el coseno crecen simultáneamente desde 0 hasta 1. 
En el segundo cuadrante, el seno se mantiene positivo mientras 
el coseno cambia de signo, lo que produce la inversión en la 
dirección horizontal del punto. Estas variaciones reflejan, sin 
cálculo alguno, los cambios de crecimiento y decrecimiento de 
las funciones cuando se trasladan al plano cartesiano. Como 
explica Zill (2018), los signos son el “lengua je visual” de la fun-
ción: cada cuadrante indica no solo el valor numérico sino el 
sentido del movimiento.

Cuando el ángulo crece en sentido antihorario, la proyección 
horizontal (X) corresponde al coseno y la vertical (Y) al seno. 
Así, el círculo unitario transforma el estudio de triángulos estáti-
cos en un análisis de posiciones dinámicas. Según Thomas et al. 
(2014), esta representación permite visualizar la continuidad y 
periodicidad de las funciones sin necesidad de derivadas, pues 
la regularidad geométrica del círculo basta para predecir el com-
portamiento de los valores.
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Cada cuadrante del círculo unitario refleja una combinación 
de signos que dependen de la posición del punto (x,y).

Tabla 1.
Tabla de signos de las funciones trigonométricas en cada cuadrante

Cuadrante Intervalo 
angular

Signo de 
θ

Signo de 
θ

Signo de 
θ

I θ π (+) (+) (+)

II π θ π (+) (-) (-)

III π θ π (-) (-) (+)

IV π θ π (-) (+) (-)

Nota: Elaboración propia.

En el primer cuadrante, ambas coordenadas son positivas: el 
seno y el coseno crecen simultáneamente desde 0 hasta 1. En el 
segundo cuadrante, el seno se mantiene positivo mientras el co-
seno cambia de signo, lo que produce la inversión en la dirección 
horizontal del punto. 

Estas variaciones reflejan, sin cálculo alguno, los cambios de 
crecimiento y decrecimiento de las funciones cuando se trasla-
dan al plano cartesiano. Como explica Zill (2018), los signos son 
el “lenguaje visual” de la función: cada cuadrante indica no solo 
el valor numérico sino el sentido del movimiento.

Los valores notables de seno y coseno correspondientes a 
ángulos de 0°,30°,45°,60°0°, 30° surgen del análisis de triángu-
los isósceles y equiláteros inscritos en el círculo. Estos valores 
se extienden a los demás cuadrantes aplicando las simetrías 
del círculo. Por ejemplo, si  (Figura 15), 
porque comparten la misma proyección vertical. En cambio, 

 debido al cambio de signo del eje x.

Figura 16.
Representación gráfica de la función  y su signo en el primero 
y segundo cuadrante

Nota: Elaboración propia.
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Boyce y DiPrima (2017) subrayan que este razonamiento es 
fundamental en el aprendizaje conceptual: no se trata de recor-
dar valores, sino de entender su origen geométrico y su cohe-
rencia estructural.

Las simetrías del círculo son esenciales para relacionar los 
valores de diferentes ángulos. Dos ángulos se consideran suple-
mentarios si suman 180° y opuestos si difieren en 180°. Estas 
relaciones generan equivalencias funcionales:

1.	 θ θ
2.	 θ θ
3.	 θ θ
4.	 θ θ

A través de estas simetrías, los valores del primer cua-
drante sirven para reconstruir los de toda la circunferencia. 
Stewart (2016) destaca que esta generalización refuerza la 
comprensión estructural del sistema trigonométrico, pues 
permite traba jar con equivalencias sin necesidad de recurrir 
a fórmulas derivadas.

Ecuaciones trigonométricas
El estudio de las ecuaciones trigonométricas constituye un paso 
esencial en la comprensión de las funciones trascendentes, pues 
permite conectar la estructura algebraica con la periodicidad 
y las simetrías propias del mundo trigonométrico. Resolver una 
ecuación trigonométrica implica identificar todos los ángulos 
que satisfacen una determinada relación funcional, lo que exige 
reconocer la naturaleza periódica y múltiple de las soluciones. 
Como señala Stewart (2016), mientras las ecuaciones algebraicas 
admiten un número finito de soluciones, las trigonométricas se 
extienden de manera infinita, repitiéndose en intervalos regulares.

Una ecuación trigonométrica es toda igualdad que involucra 
una o más funciones trigonométricas, tales como el seno, el co-
seno, la tangente o sus recíprocas. Su objetivo es determinar los 
valores del ángulo θ\thetaθ que satisfacen la igualdad.

Ejemplo general: θ ,  Resolver esta ecuación no 
solo consiste en hallar el ángulo principal que cumple la con-
dición, sino también todos aquellos que producen el mis-
mo valor de seno, teniendo en cuenta la periodicidad de la 
función. 

Según Thomas et al. (2014), comprender una ecuación tri-
gonométrica implica entender que el círculo unitario funciona 
como un espacio de soluciones repetitivas: cada valor de seno 
o coseno reaparece en diferentes cuadrantes, lo que da lugar a 
una familia infinita de soluciones.
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La estrategia más formativa para resolver ecuaciones trigo-
nométricas consiste en representarlas en el círculo unitario, pues 
cada solución corresponde a un punto o conjunto de puntos sobre 
la circunferencia.

Los puntos cuya altura es  corresponden a los ángulos de   
 y . Por la periodicidad de la función seno, las soluciones 

generales son:

θ π π θ π π

Este razonamiento, que surge de la observación geométrica, 
permite al estudiante visualizar cómo una misma razón trigo-
nométrica se repite en distintos cuadrantes, fortaleciendo la 
comprensión de la periodicidad (Boyce & DiPrima, 2017).

Las ecuaciones trigonométricas pueden clasificarse en sim-
ples, cuadráticas, compuestas y reducibles:

1.	 Simples: implican una sola función, como θ .
2.	 Cuadráticas: involucran términos como 

θ θ .

3.	Compuestas: combinan diferentes funciones, por ejemplo,
 θ θ

4.	Reductibles: requieren el uso de identidades trigonométri-
cas para simplificarse, como θ θ .

Al resolver por ejemplo θ θ , podemos 
considerar los siguientes momentos:

1.	 Al Sustituir θ  se obtiene la ecuación: 
.

2.	 Factorizando
.

3.	 Regresar al cambio de variable: θ  para obtener 
los siguientes casos:

Caso A: θ θ π π .

Caso B: θ θ π π θ π π .

Conjunto de soluciones generales:

θ π π π π π π .

En π π π π



144

Funciones trascendentes y sus propiedades

La variedad de ecuaciones trigonométricas refleja la riqueza 
del pensamiento trascendente. En cada caso, el estudiante apren-
de a transformar una expresión en otra equivalente, revelando 
la simetría del círculo y la regularidad del movimiento periódico. 
Como subraya Stewart (2016), la resolución de estas ecuaciones 
es una experiencia de razonamiento funcional que une la geo-
metría, el álgebra y la intuición analítica.

Funciones inversas y restricciones de dominio
Comprender las funciones inversas constituye un paso decisivo 
en el recorrido formativo que lleva del álgebra a las funciones 
trascendentes. En este proceso, el estudiante aprende que in-
vertir una función no solo significa “despejar una variable”, sino 
comprender la relación recíproca entre causa y efecto en un sis-
tema funcional. Las funciones trigonométricas y exponenciales, 
al extenderse más allá del comportamiento lineal o polinómico, 
requieren una atención especial a las restricciones de dominio, 
pues su carácter periódico o no inyectivo impide definir una in-
versa sin una selección adecuada de intervalos.

En su sentido más amplio, una función inversa se define como 
aquella que revierte el efecto de otra. Si una función f transforma 
un elemento “x” en un valor “y”, su inversa  transforma ese 
mismo “y” de nuevo en “x”: 

Esta idea, simple en apariencia, encierra una de las nociones 
más poderosas del análisis: la posibilidad de deshacer una ope-
ración dentro de un sistema de correspondencias. Según Stewart 
(2016), comprender la función inversa implica desarrollar una 
“conciencia bidireccional del cambio”, es decir, la capacidad de 
ver una misma relación desde dos perspectivas complementarias: 
la de la causa y la del efecto.

Para que una función posea inversa, debe ser inyectiva y so-
breyectiva, es decir, cada elemento del dominio se asocia con un 
único elemento del codominio, y cada valor posible está repre-
sentado en la imagen. Sin embargo, muchas funciones trascen-
dentes, como las trigonométricas o exponenciales, no cumplen 
estas condiciones de manera global, lo que obliga a introducir 
las restricciones de dominio como herramienta de coherencia 
matemática.

Las restricciones de dominio no deben entenderse como 
una limitación arbitraria, sino como un acto de precisión con-
ceptual. En las funciones trigonométricas, por ejemplo, la pe-
riodicidad genera repeticiones infinitas de valores, lo que im-
pide establecer una relación uno a uno entre ángulo y razón 
trigonométrica. Para restaurar esa unicidad, se selecciona un 
intervalo donde la función sea estrictamente monótona (cre-
ciente o decreciente).
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De acuerdo con Thomas et al. (2014), el propósito de la res-
tricción es “preservar la identidad funcional y garantizar la re-
versibilidad”. Por ello, los intervalos convencionales de definición 
para las inversas son:

1.	
π π

2.	 π

3.	
π π

Estas restricciones garantizan que cada valor de salida de las 
funciones inversas sea único, evitando contradicciones. Boyce 
y DiPrima (2017) señalan que este principio de restricción es 
fundamental en el estudio de ecuaciones trascendentes, ya que 
permite determinar ángulos, magnitudes y tiempos de manera 
unívoca dentro de modelos físicos y geométricos

Las funciones trigonométricas inversas: arcoseno, arco coseno, 
arco tangente, arco cotangente, arco secante y arco secante, 
representan el paso de las razones a los ángulos. Si las funciones 
seno, coseno o tangente establecen relaciones entre catetos y án-
gulos en un triángulo rectángulo, sus inversas permiten reconstruir 
el ángulo a partir de una razón conocida. Geométricamente, una 
función y su inversa (Figura 16) son reflejos especulares respecto 
a la línea . Este principio de simetría es particularmente 
visible en las funciones seno y arcoseno: si se gráfica  
y luego se refleja la curva sobre dicha diagonal, se obtiene la 
gráfica de .

Esta reflexión representa un cambio de perspectiva entre va-
riable independiente y dependiente. Lo que antes era una mag-
nitud vertical (valor del seno) se convierte ahora en un despla-
zamiento horizontal (ángulo), y viceversa.

Figura 17.
Representación gráfica de la función  y su inversa

Nota: Elaboración propia.
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Stewart (2016) destaca que esta visualización contribu-
ye a comprender el carácter relacional de la función: “invertir 
una función es observar el mismo fenómeno desde su reverso 
geométrico”.

Apoyo didáctico: En este sentido, enseñar las funciones in-
versas no se reduce a operar algebraicamente, sino que implica 
guiar al estudiante hacia una comprensión profunda del compor-
tamiento funcional desde una perspectiva espacial y conceptual. 
Comprender la inversa de una función supone reconocer cómo 
cada punto del plano se refleja en torno a la bisectriz , 
transformando entradas en salidas y viceversa. Este proceso no 
solo favorece la visualización de la simetría y la correspondencia 
entre direcciones y magnitudes, sino que también estimula el 
razonamiento geométrico, la interpretación gráfica y la conexión 
entre distintas representaciones. El docente puede aprovechar 
herramientas digitales como GeoGebra para que el estudiante 
experimente con la gráfica original y su inversa, observe los 
cambios en tiempo real y descubra por sí mismo la relación 
entre ambas.

 El concepto de inversa no se limita a las funciones trigonomé-
tricas. En el campo de las funciones exponenciales y logarítmicas, 
la relación inversa adquiere un significado complementario. La 
función exponencial   es estrictamente creciente en todo R, por 
lo que su inversa se define sin necesidad de restricciones adi-
cionales: .

Aquí, el logaritmo no solo revierte la acción de la exponencial 
(Figura 17), sino que también transforma una multiplicación en 
una suma, evidenciando la naturaleza estructuralmente inversa 
de ambas operaciones (Thomas et al., 2014).

Figura 18.
Representación gráfica de la función  y su inversa

Nota: Elaboración propia.

La relación entre estas dos funciones, como explica Zill (2018), 
ilustra la universalidad del concepto de inversión: toda opera-
ción matemática implica un proceso recíproco que equilibra el 
sistema funcional.



147

Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

El estudio de las funciones inversas y las restricciones de do-
minio constituye una experiencia de pensamiento matemático 
integral. Enseña a reconocer los límites del sistema para conser-
var su coherencia, a establecer correspondencias únicas dentro 
de la multiplicidad y a pensar la función como un proceso rever-
sible, simétrico y consciente de sí mismo. En el recorrido que va 
del álgebra al análisis, este aprendizaje representa una madurez 
intelectual: comprender no solo cómo una función actúa, sino 
también cómo puede ser deshecha para revelar la estructura 
que la sustenta.

Funciones trascendentes: aplicaciones, enseñanza y conexio-
nes interdisciplinarias 
Las funciones trascendentes constituyen el soporte matemático 
que permite describir los movimientos y transformaciones del 
mundo físico. En ellas se encuentra la síntesis de un pensamiento 
que va más allá del cálculo numérico: una forma de comprender 
los ritmos, las oscilaciones y los equilibrios que estructuran la rea-
lidad. Como sostiene Stewart (2016), “las funciones trascendentes 
no son un artificio del análisis, sino una traducción matemática 
de los procesos naturales”. 

	
Aplicaciones en movimientos ondulatorios, geometría y física

En el campo de la física y la geometría, estas funciones expresan 
leyes de regularidad y continuidad: el movimiento de los astros, 
la vibración de una cuerda, la propagación de la luz, la expansión 
térmica o el decaimiento radiactivo. Su estudio revela la conexión 
entre el lenguaje simbólico de la matemática y los principios 
universales de la naturaleza.

Funciones trigonométricas y el lenguaje de las ondas
Las funciones seno y coseno representan los cimientos del aná-
lisis de los movimientos ondulatorios. La razón de su presencia 
en múltiples fenómenos reside en su periodicidad, que refleja la 
repetición de los estados en el tiempo. En una onda armónica 
simple, la ecuación ω φ  describe la posición “y 
de una partícula en función del tiempo, donde A es la amplitud,  
ω la frecuencia angular y φ la fase inicial. Esta forma funcional 
permite modelar fenómenos tan diversos como la vibración de 
una cuerda de guitarra, el desplazamiento del pistón de un motor, 
el comportamiento de las mareas o la variación de la corriente 
alterna. 

Thomas et al. (2014) explican que el vínculo entre la geo-
metría circular y el movimiento oscilatorio constituye una 
de las primeras unificaciones conceptuales del pensamiento 
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científico moderno: el círculo proyectado sobre un eje se 
convierte en una onda senoidal, y con él, la geometría se 
hace dinámica.Un ejemplo significativo es el movimiento de 
un péndulo ideal (Figura 18), cuya trayectoria angular, para 
pequeñas oscilaciones, puede aproximarse por una función 
del tipo:

θ θ

donde g es la aceleración de la gravedad y L la longitud del 
péndulo.

Figura 19.
Representación gráfica del movimiento de un péndulo

Nota: Elaboración propia.

El movimiento armónico que describe el péndulo es, en esencia, 
una proyección temporal de la circularidad geométrica. Para un 
péndulo ideal de longitud que se separa un ángulo inicial 
pequeño de θ y se suelta sin velocidad inicial. Usa  
para determinar la ecuación del movimiento, periodo y frecuencia.

Ondas complejas y superposición armónica
Cuando varias ondas interactúan, su combinación se expresa me-
diante la superposición de funciones trigonométricas. En acústica 
y electromagnetismo, esta propiedad explica la interferencia de 
ondas, los patrones de resonancia y la formación de armónicos. 
La ecuación general de una onda compuesta es:  

ω φ

una expresión que representa la superposición de múltiples fre-
cuencias y fases. Zill (2018) señala que este principio es la base 
matemática de la teoría de Fourier, mediante la cual cualquier se-
ñal periódica puede descomponerse en una suma infinita de senos 
y cosenos. Esta idea revolucionó la física y la ingeniería, al permitir 
el análisis de vibraciones, señales eléctricas y ondas sonoras.
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Geometría dinámica y parametrización de trayectorias
En geometría, las funciones trascendentes permiten describir cur-
vas y trayectorias mediante ecuaciones paramétricas. Una cir-
cunferencia de radio r se expresa como: θ θ. 
Esta relación entre periodicidad y desplazamiento lineal describe 
movimientos helicoidales presentes en estructuras naturales como 
el ADN o los remolinos de agua y en sistemas mecánicos, como 
los resortes o tornillos. Imaginemos una partícula que se desplaza 
siguiendo la forma de un resorte con radio r = 2 cm, avanzando 1 cm 
por cada vuelta completa (Figura 19).  El movimiento se describe 
con las ecuaciones paramétricas: θ θ π θ
. donde: “x” y “y” determinan la posición circular de la partícula en 
el plano, z representa el desplazamiento vertical, θ es el ángulo en 
radianes que mide el avance en torno al eje.

Figura 20.
Representación gráfica del movimiento de un péndulo

Nota: Elaboración propia.

Si la partícula da una vuelta completa, θ π , la partícula 
se encuentra un centímetro más arriba que su punto inicial, 
completando una hélice.Según Boyce y DiPrima (2017), la 
geometría paramétrica basada en funciones trascendentes 
no solo ofrece una descripción espacial, sino que también 
expresa la temporalidad del movimiento: cada punto no es 
estático, sino un instante dentro de una trayectoria. De este 
modo, la geometría se integra con la física en un lengua je 
común del cambio.

La función exponencial y los procesos de variación continua
La función exponencial describe todos aquellos fenóme-
nos donde la tasa de cambio es proporcional al valor presente. 
Aparece en la desintegración radiactiva, en el crecimiento po-
blacional, en la difusión del calor y en la carga y descarga de 
condensadores eléctricos. Por ejemplo, el enfriamiento de un 
cuerpo se modela con la ley de Newton:
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donde  es la temperatura ambiente y  la inicial. Este tipo 
de modelos muestra cómo la función exponencial actúa como un 
puente entre la matemática y la naturaleza, describiendo la forma 
en que los sistemas evolucionan hacia el equilibrio. Imagina que 
sirves una taza de café recién hecho. La temperatura al momento 
de servirlo es de 85 grados Celsius, y lo dejas reposar sobre una 
mesa en una habitación que está a 25 grados Celsius. Pasados 
10 minutos, decides medir la temperatura del café y descubres 
que ha bajado a 60 grados. Surge entonces una pregunta bas-
tante común:

¿qué temperatura tendrá el café después de 20 minutos?
A partir de la relación anterior se obtiene una función expo-

nencial del tipo:
 (Figura 21)

De aquí se puede comprobar que después de 20 minutos, la tem-
peratura del café habrá descendido hasta unos 45 grados Celsius, 
acercándose cada vez más a la temperatura del ambiente.

Figura 21.
Representación gráfica del movimiento de un péndulo

Nota: Elaboración propia.

Thomas et al. (2014) afirman que la relevancia de las funciones ex-
ponenciales radica en su capacidad para expresar tanto el crecimiento 
ilimitado como la disipación progresiva, dos tendencias opuestas pero 
complementarias que gobiernan los procesos físicos y biológicos.

Funciones hiperbólicas.
Las funciones hiperbólicas constituyen una extensión natural 
del estudio de las funciones exponenciales y logarítmicas, ya 
que surgen de combinaciones particulares de estas y describen 
relaciones geométricas en la hipérbola del mismo modo en que 
las funciones trigonométricas lo hacen en la circunferencia. Su 
comprensión no solo tiene un interés puramente matemático, 
sino también un profundo valor en el análisis de fenómenos físi-
cos, en la teoría de relatividad, en la ingeniería eléctrica y en el 
modelado de sistemas dinámicos continuos.
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En esencia, las funciones hiperbólicas se definen a partir de la 
función exponencial. Así, la función seno hiperbólico y la función 
coseno hiperbólico se expresan como:

Estas definiciones guardan una analogía profunda con las fun-
ciones trigonométricas circulares, aunque presentan propiedades 
geométricas diferentes: mientras el seno y el coseno se relacionan 
con el círculo unitario , sus equivalentes hiperbólicos 
se asocian con la hipérbola  (figura 22).

Figura 22.
Representación gráfica de la función 

Nota: Elaboración propia.

Esta relación, resaltada por Stewart (2016), permite visualizar 
el comportamiento de las funciones hiperbólicas como un reflejo 
geométrico en el plano de los números reales, donde la simetría 
y la proporción adquieren un nuevo significado.

Una característica notable de las funciones hiperbólicas es que 
satisfacen la identidad: , que recuerda a la 
identidad pitagórica de las funciones trigonométricas, aunque 
con signo opuesto. Este detalle, aparentemente simple, refleja 
una diferencia estructural profunda: mientras las funciones trigo-
nométricas oscilan entre valores máximos y mínimos, las hiperbó-
licas crecen indefinidamente, mostrando un comportamiento no 
oscilatorio que las hace ideales para describir procesos de cre-
cimiento o decaimiento que no se repiten de manera periódica.

Históricamente, las funciones hiperbólicas ocuparon un lugar 
destacado en la búsqueda de una matemática capaz de repre-
sentar con fidelidad las formas que la naturaleza adopta. Leibniz, 
Huygens y los hermanos Bernoulli las utilizaron para describir 
la curva catenaria, es decir, la forma que adopta un cable sus-
pendido entre dos puntos fijos bajo su propio peso. Esa curva se 
expresa mediante la función:  donde “a” depende 
del peso y la tensión del material. Boyer (2011) destaca que este 
descubrimiento cambió la forma de concebir la matemática apli-
cada: el comportamiento de un objeto físico podía explicarse a 
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partir de una relación puramente algebraica. Esta idea marcó 
un paso decisivo en la unión entre la abstracción matemática y 
la observación empírica.

Imaginemos un puente de 400 metros de largo, cuyos cables 
cuelgan entre dos torres, alcanzando una profundidad máxima 
de 40 metros en el punto central (Figura 22). Si quisiéramos 
describir matemáticamente la forma de ese cable, podríamos 
usar la función: .

Figura 23.
Representación gráfica de la función 

Nota: Elaboración propia.

Esta fórmula no es un simple artificio algebraico: repre-
senta una ley física que asegura el equilibrio de las fuerzas. 
Cada punto del cable está en perfecta compensación entre 
el peso que tira hacia aba jo y la tensión que lo sostiene. 
De ahí que la forma catenaria sea considerada la curva del 
equilibrio natural.

Este principio se aplica en puentes como el Golden Gate de 
San Francisco o el Puente de la Bahía, donde los ingenieros 
diseñan la estructura teniendo en cuenta la tensión, el peso y 
la distancia entre las torres. Boyer (2011) explica que esta curva 
fue descubierta por Huygens, Leibniz y los hermanos Bernoulli, 
quienes demostraron que ninguna otra forma podía soportar 
mejor su propio peso. Su hallazgo transformó la ingeniería mo-
derna y demostró que la matemática no solo describe el mun-
do, sino que también puede anticipar sus leyes más estables.

Más allá de su origen geométrico, las funciones hiperbóli-
cas también poseen una dimensión simbólica y conceptual. 
Feynman (2011) señala que estas funciones aparecen en la des-
cripción del espacio-tiempo dentro de la teoría de la relatividad 
especial, donde reemplazan a las funciones trigonométricas 
para expresar transformaciones que no implican rotación, sino 
expansión o contracción. Esta presencia en la física moderna 
demuestra que las hipérbolas, más que simples curvas, repre-
sentan una manera de comprender el movimiento y la estructura 
del universo.
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Apoyo didáctico: Desde la enseñanza y la formación matemá-
tica, el estudio de las funciones hiperbólicas permite desarrollar 
una visión más integrada del conocimiento. Larson y Edwards 
(2019) subrayan que introducir estas funciones en el aula no debe 
limitarse a su manipulación algebraica, sino que debe invitar a 
reflexionar sobre sus significados geométricos y sus aplicacio-
nes. Al explorarlas, el estudiante descubre que la matemática no 
se reduce a fórmulas, sino que expresa las leyes de equilibrio y 
simetría que gobiernan la realidad.

En definitiva, las funciones hiperbólicas son una puerta hacia 
la comprensión de los procesos que no se repiten, pero que con-
servan un orden profundo. Su estudio, lejos de ser un ejercicio 
meramente formal, revela la capacidad del pensamiento mate-
mático para unir lo abstracto con lo tangible, lo estático con lo 
dinámico. Comprenderlas significa reconocer que el crecimiento, 
la expansión y el equilibrio también tienen una geometría propia, 
escrita con el lenguaje de las hipérbolas.

Estrategias didácticas para su enseñanza y visualización
Enseñar las funciones trascendentes es, en esencia, enseñar a 
mirar la realidad desde una nueva perspectiva. No basta con 
transmitir sus fórmulas ni con demostrar sus propiedades; lo ver-
daderamente valioso es lograr que el estudiante descubra que 
detrás de cada símbolo hay una forma de interpretar el mundo. 
Cada función   describe una manera distinta en la que los fenóme-
nos naturales, físicos o sociales cambian, crecen o se estabilizan 
con el tiempo. Por eso, las estrategias didácticas deben permitir 
que el alumno vea, sienta y comprenda esa relación viva entre 
las matemáticas y lo que ocurre a su alrededor.

Una estrategia inicial consiste en comenzar desde la expe-
riencia, desde lo observable y significativo. Antes de introducir 
una ecuación, es posible partir de un experimento sencillo: medir 
cómo se enfría un líquido, cómo se acumulan los intereses en una 
cuenta de ahorro o cómo aumenta el número de bacterias en 
un cultivo. Estas situaciones acercan al estudiante a los patrones 
de cambio real y lo invitan a reconocer que esos comportamien-
tos pueden representarse con una función trascendente. Como 
señalan Godino y Batanero (1998), el conocimiento matemático 
adquiere sentido cuando el estudiante logra conectar el símbolo 
con la situación y con el significado que ese símbolo encierra. 
No se trata de memorizar expresiones, sino de descubrir lo que 
representan.

En un segundo momento, resulta fundamental visualizar el 
comportamiento de las funciones. Las herramientas tecnológicas, 
como GeoGebra, Desmos o los simuladores de PhET, ofrecen un 
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espacio donde las ecuaciones se convierten en curvas dinámicas. 
El estudiante puede modificar valores, desplazar parámetros, ob-
servar transformaciones y descubrir regularidades sin perder la 
conexión con la intuición visual. Por ejemplo, al manipular el valor 
de “k” en la función , puede ver cómo la curva pasa de un 
crecimiento acelerado a un decrecimiento suave, comprendiendo 
de forma natural el papel del parámetro. Duval (1999) advierte 
que la visualización no debe verse como un complemento esté-
tico del cálculo, sino como un modo de pensamiento que permi-
te acceder al significado. Ver cómo una función “se mueve” es, 
en realidad, comprender cómo se comporta el fenómeno que 
representa.

Otra estrategia poderosa es el uso de preguntas generadoras. 
Estas no buscan respuestas inmediatas, sino despertar la curio-
sidad y provocar reflexión. Por ejemplo: ¿Por qué la curva de un 
cable suspendido tiene una forma distinta a la de una parábola?, 
¿qué sucede con una población si su tasa de crecimiento se man-
tiene constante?, ¿por qué el sonido o la luz disminuyen su inten-
sidad de manera exponencial? Este tipo de preguntas conduce al 
descubrimiento y al asombro, dos emociones intelectuales que 
facilitan el aprendizaje. Freire (1997) recordaba que enseñar es un 
acto profundamente dialógico: el conocimiento no se impone, se 
construye en interacción con la realidad y con los otros. En el aula 
de matemáticas, esa interacción se traduce en experimentación, 
debate y construcción compartida de significados.

Desde el punto de vista metodológico, es útil combinar la explo-
ración guiada con la resolución de problemas reales. En lugar de 
enseñar la función logarítmica como la inversa de la exponencial 
desde el primer momento, puede invitarse a los estudiantes a ex-
plorar situaciones donde esta aparece de manera natural: el nivel 
de intensidad sonora, la escala Richter de los sismos o la medición 
del pH en química. En cada caso, los datos empíricos conducen 
a la necesidad de una función que crezca lentamente y describa 
relaciones no lineales. Así, la abstracción no se presenta como un 
salto forzado, sino como una consecuencia natural de la experiencia.

En esta línea, Kaput (1992) subraya el valor de las represen-
taciones digitales múltiples. Una función no se entiende por su 
ecuación aislada, sino por la relación entre sus distintos modos 
de representación: el gráfico, la tabla de valores, la expresión 
simbólica y la descripción verbal. Alternar entre estos registros 
como propone Duval (2006) permite que el estudiante construya 
un conocimiento más flexible, capaz de adaptarse a distintas 
situaciones. El desafío del docente está en promover esa movili-
dad entre registros, ayudando a los estudiantes a descubrir que 
el pensamiento matemático no es estático, sino transformador.
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Otra estrategia clave consiste en fomentar el uso reflexivo del 
error. Cuando los estudiantes grafican una función de manera 
incorrecta o confunden los efectos de un parámetro, el error se 
convierte en una oportunidad para pensar. Analizar por qué la 
curva no se comportó como se esperaba es una forma de cons-
truir comprensión. Desde una visión freireana, el error no es un 
fracaso, sino un punto de partida para el diálogo entre lo que el 
estudiante piensa y lo que la matemática explica.

Por último, la enseñanza de las funciones trascendentes debe 
situarse en un marco más amplio: el de la educación para el 
pensamiento relacional y crítico. Al comprender cómo una fun-
ción describe un proceso natural, el estudiante no solo aprende 
matemáticas, sino también una forma de leer el mundo. Observa 
regularidades, identifica modelos y comprende que el cambio 
puede expresarse mediante leyes que son, a la vez, precisas y 
poéticas. La matemática, en este sentido, no es una colección 
de fórmulas abstractas, sino un lenguaje que revela la estructura 
profunda de la realidad.

En síntesis, enseñar funciones trascendentes implica hacerlas 
visibles: no como ecuaciones muertas en un libro, sino como re-
presentaciones vivas de los procesos que nos rodean. La visuali-
zación, la experimentación, el diálogo y la tecnología son caminos 
que devuelven humanidad a la enseñanza matemática, haciendo 
que el aprendizaje sea una experiencia de descubrimiento y no 
de repetición. Solo así el estudiante podrá reconocer que, detrás 
de cada gráfica o parámetro, se esconde una historia sobre cómo 
la naturaleza cambia, evoluciona y busca equilibrio.

Conclusiones

El estudio de las funciones trascendentes permite comprender 
la matemática como una forma de pensamiento que trasciende 
los números y se convierte en un lenguaje para interpretar el 
mundo. A través de las funciones exponenciales, logarítmicas e 
hiperbólicas, se revela la capacidad humana de abstraer los pro-
cesos del entorno y representarlos mediante modelos precisos 
y universales. Estas funciones no solo describen fenómenos de 
crecimiento, equilibrio o expansión, sino que también reflejan 
la búsqueda constante de patrones y estructuras en la natura-
leza. Enseñar y aprender funciones trascendentes implica, por 
tanto, desarrollar una mirada que reconoce la conexión entre el 
símbolo y la experiencia, entre el razonamiento lógico y la intui-
ción. Comprender su comportamiento es comprender, en última 
instancia, la manera en que el cambio se organiza y se expresa 
en la realidad.
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Desde una perspectiva formativa, la enseñanza de las funcio-
nes trascendentes invita a replantear la relación entre teoría y 
práctica. La visualización, la experimentación y el uso de recur-
sos tecnológicos favorecen la construcción de significados más 
profundos, donde la abstracción se acompaña de comprensión y 
sentido. El aula se transforma en un espacio de descubrimiento, 
donde el estudiante no solo aprende a operar con expresiones 
matemáticas, sino a interpretarlas y aplicarlas a situaciones rea-
les. De esta forma, el tránsito desde el álgebra hacia las funcio-
nes trascendentes se convierte en un proceso que fortalece la 
autonomía intelectual, la capacidad crítica y el pensamiento 
analítico, cualidades esenciales para entender la complejidad 
del mundo contemporáneo.

Referencias

Artigue, M. (2018). Digital tools and mathematics teaching and 
learning: Conceptual frameworks and developments. Springer. 
ISBN 978-3-319-74371-9.

Ausubel, D. P. (1983). Psicología educativa: Un punto de vista 
cognoscitivo. Trillas.

Biggs, J. (2005). Teaching for quality learning at university. 
McGraw-Hill Education.

Black, P., & Wiliam, D. (2009). Developing the theory of 
formative assessment. Educational Assessment, Evaluation 
and Accountability, 21(1), 5–31. https://doi.org/10.1007/
s11092-008-9068-5

Boyce, W. E., & DiPrima, R. C. (2017). Elementary differential 
equations and boundary value problems (10th ed.). Wiley.

Boyer, C. B. (2011). A history of mathematics (3rd ed.). Wiley.
Bruner, J. S. (1997). La educación, puerta de la cultura. Visor.
Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal 

pursuits: Human needs and the self‐determination of behavior. 
Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/
S15327965PLI1104_01

Duval, R. (1999). Representation, vision and visualization: Cognitive 
functions in mathematical thinking. Basic Issues for Learning, 
3(1), 3–26.

Duval, R. (2006). Un análisis cognitivo de los problemas de 
comprensión en el aprendizaje de las matemáticas. Educational 
Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/
s10649-006-0400-z 

Ebbinghaus, H. (1913). Memory: A contribution to experimental 
psychology. Teachers College, Columbia University. (Trabajo 
original publicado en 1885).

https://doi.org/10.1007/s11092-008-9068-5
https://doi.org/10.1007/s11092-008-9068-5
https://doi.org/10.1207/S15327965PLI1104_01
https://doi.org/10.1207/S15327965PLI1104_01
https://doi.org/10.1007/s10649-006-0400-z 
https://doi.org/10.1007/s10649-006-0400-z 


157

Cevallos Ayon Edwin Ramon / Guerrero Zambrano Marcos Francisco

Eves, H. (2010). Introducción a la historia de las matemáticas (6.ª 
ed.). Thomson Learning.

Feynman, R. (2011). Física: Principios con aplicaciones. 
Addison-Wesley.

Freire, P. (1997). Pedagogía de la autonomía: Saberes necesarios 
para la práctica educativa. Siglo XXI.

Godino, J. D., & Batanero, C. (1998). Didáctica de las matemáticas 
para maestros. Proyecto Sur.

Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry 
and algebra: The case of GeoGebra. Proceedings of the British 
Society for Research into Learning Mathematics, 27(3), 126–131.

IUPAC. (2014). Quantities, units and symbols in physical chemistry 
(3rd ed.). Royal Society of Chemistry.

Kaput, J. J. (1992). Technology and mathematics education. In 
D. A. Grouws (Ed.), Handbook of research on mathematics 
teaching and learning (pp. 515–556). Macmillan.

Krashen, S. D. (1982). Principles and practice in second language 
acquisition. Pergamon Press.

Larson, R. (2021). Precalculus (11th ed.). Cengage Learning.
Larson, R., & Edwards, B. H. (2019). Calculus of a single variable 

(12th ed.). Cengage Learning.
Malthus, T. R. (2008). An essay on the principle of population. 

Oxford University Press. (Trabajo original publicado en 1798).
Murray, J. D. (2002). Mathematical biology. I: An introduction (3rd 

ed.). Springer. https://doi.org/10.1007/b98868
Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
Schön, D. A. (1983). The reflective practitioner: How professionals 

think in action. Basic Books.
Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and 

engineers with modern physics (9th ed.). Cengage Learning.
Stewart, J. (2016). Cálculo de una variable: Trascendentes 

tempranas (8.ª ed.). Cengage Learning.
Sullivan, M. (2016). Algebra and trigonometry (10th ed.). Pearson.
Tall, D. (2013). How humans learn to think mathematically: Exploring 

the three worlds of mathematics. Cambridge University Press. 
https://doi.org/10.1017/CBO9781139565202

Thomas, G. B., Weir, M. D., Hass, J., & Giordano, F. R. (2014). Cálculo 
de una variable (13.ª ed.). Pearson Educación.

Thomas, G. B., & Weir, M. D. (2019). Thomas’ calculus (14th ed.). 
Pearson. (Edición 2019; distintas variantes en “SI Units”/US).

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
Vygotsky, L. S. (1979). El desarrollo de los procesos psicológicos 

superiores. Crítica.
Zill, D. G. (2018). Advanced engineering mathematics (7th ed.). 

Jones & Bartlett Learning.

https://doi.org/10.1007/b98868
https://doi.org/10.1017/CBO9781139565202

	Capítulo I
	Ecuaciones e inecuaciones algebraicas
	Introducción
	Conceptos fundamentales del álgebra
	Ecuaciones e inecuaciones algebraicas
	Inecuaciones algebraicas
	Resolución de problemas con ecuaciones e inecuaciones

	Conclusiones
	Referencias


	Capítulo II
	Sistemas de ecuaciones e inecuaciones algebraicas
	Introducción
	Fundamentos conceptuales
	Resolución de sistemas de ecuaciones
	Estrategias didácticas y recursos tecnológicos para el aprendizaje de los sistemas de ecuaciones

	Conclusiones
	Referencias


	Capítulo III
	Funciones algebraicas y sus propiedades
	Introducción
	Concepto y representación de las funciones
	Clasificación y tipos de funciones algebraicas
	Transformaciones y análisis gráfico

	Conclusiones
	Referencias


	Capítulo IV
	Funciones trascendentes y sus propiedades
	Introducción
	Funciones exponenciales y logarítmicas
	Funciones trigonométricas 
	Funciones trascendentes: aplicaciones, enseñanza y conexiones interdisciplinarias 

	Conclusiones
	Referencias


	Capítulo I
	Figura 1.
	Clasificación de los números reales
	Figura 2.
	Modelo lineal del costo total 
	Figura 3.
	Crecimiento exponencial del capital mediante interés compuesto.
	Figura 4.
	Crecimiento exponencial del capital mediante interés compuesto.
	Figura 5.
	Aplicación física de las propiedades de los radicales
	Figura 6.
	Representación de función cuadrática
	Figura 7.
	Representación equivalente de la función f(x)
	Figura 8.
	Representación de función cuadrática
	Figura 9.
	Representación de la  función lineal
	Figura 10.
	Representación de la función cuadrática
	Figura 11.
	Representación de la función racional
	Figura 12.
	Representación de la función radical
	Figura 13.
	Representación de función radical
	Figura 14.
	Representación de función radical
	Figura 15
	Representación de función radical
	Figura 16.
	Representación en Geogebra de una suma al cuadrado
	Figura 17.
	Representación cuadrática
	Figura 18.
	Representación lineal
	Figura 19.
	Representación polinomial
	Figura 20.
	Representación polinomial
	Figura 21.
	Representación valor absoluto


	Capítulo II
	Figura 1.
	Representación del sistema de ecuaciones
	Figura 2.
	Representación de un sistema de ecuaciones no lineales
	Figura 3.
	Representación de un sistema de ecuaciones lineales
	Figura 4.
	Representación de sistema de ecuaciones no lineales 
	Figura 5.
	Representación de sistema compatible determinado
	Figura 6.
	Representación de sistema compatible indeterminado
	Figura 7.
	Representación de sistema incompatible
	Figura 8.
	Representación de sistema incompatible 
	Figura 9.
	Representación de varias soluciones 
	Figura 10.
	Representación de funciones ingreso total
	Figura 11.
	Representación del lanzamiento de dos proyectiles
	Figura 12.
	Representación del sistema de ecuaciones
	Figura 13.
	Representación sistemas lineales de dos variables
	Figura 14.
	Representación de sistemas cuadráticos
	Figura 15.
	Representación de sistemas cuadráticos
	Figura 16
	Representación de sistemas mixtos
	Figura 17.
	Representación gráfica en Geogebra
	Figura 18.
	Representación gráfica en Desmo


	Capítulo III
	Figura 1.
	Representación de la  función ￼
	Figura 2.
	Representación de la función ￼
	Figura 3.
	Representación de las funciones ￼
	Figura 4.
	Representación de la función ￼
	Figura 5.
	Representación gráfica en Geogebra
	Figura 6.
	Representación gráfica de una función polinómica
	Figura 7.
	Representación gráfica de una función racional
	Figura 8.
	Representación gráfica de una función racional propia
	Figura 9.
	Representación gráfica de puntos de indeterminación
	Figura 10.
	Representación gráfica de funciones con radicales
	Figura 11.
	Representación gráfica de la función ￼
	Figura 12.
	Representación gráfica de las propiedades de la función algebraica ￼
	Figura 13.
	Representación gráfica de las propiedades de simetría  
	Figura 14
	Representación gráfica de ￼
	Figura 15
	Representación gráfica de ￼
	Figura 16
	Representación gráfica de la función inversa de ￼
	Figura 17.
	Representación gráfica de la función inversa de ￼
	Figura 18.
	Representación gráfica de la función inversa de ￼
	Figura 19.
	Representación de traslaciones horizontales
	Figura 20.
	Representación de traslaciones verticales
	Figura 21.
	Reflexión sobre el eje X de la función ￼
	Figura 22
	Reflexión sobre el eje X de la función ￼
	Figura 23.
	Reflexión sobre el eje Y de la función ￼
	Figura 24.
	Escalamientos horizontales
	Figura 25.
	Escalamientos en funciones con radicales
	Figura 26.
	Transformaciones dinámicas en Geogebra de funciones cuadráticas
	Figura 27.
	Transformaciones dinámicas en Geogebra de funciones cuadráticas
	Figura 28.
	Transformaciones dinámicas en Geogebra de funciones cuadráticas
	Figura 29
	Transformaciones dinámicas en Geogebra de funciones racionales


	Capítulo IV
	Figura 1.
	Representación de la función exponencial y su inversa 
	Figura 2.
	Representación de la función exponencial 
	Figura 3.
	Representación de la función logaritmica
	Figura 4.
	Representación de la solución de la ecuación exponencial
	Figura 5.
	Representación de la solución de la ecuación exponencial
	Figura 6.
	Representación de la solución de la ecuación exponencial
	Figura 7.
	Representación del crecimiento exponencial aplicado a las finanzas
	Figura 8.
	Representación del crecimiento exponencial aplicado al ámbito educativo
	Figura 9
	Representación del proceso de depreciación de un vehículo
	Figura 10.
	Representación del proceso de desmotivación en un curso
	Figura 11.
	Representación del proceso de desmotivación en un curso
	Figura 12.
	Representación del proceso de desmotivación en un curso
	Figura 13.
	Representación de la función sen(x) y su relación con el círculo trigonométrico
	Figura 14.
	Representación de la función sen(x) y su relación con el círculo trigonométrico
	Figura 15.
	Representación general de la función sen(x)
	Figura 16.
	Representación gráfica de la función sen(x) y su signo en el primero y segundo cuadrante
	Figura 17.
	Representación gráfica de la función sen(x) y su inversa
	Figura 18.
	Representación gráfica de la función sen(x) y su inversa
	Figura 19.
	Representación gráfica del movimiento de un péndulo
	Figura 20.
	Representación gráfica del movimiento de un péndulo
	Figura 21.
	Representación gráfica del movimiento de un péndulo
	Figura 22.
	Representación gráfica de la función senh x
	Figura 23.
	Representación gráfica de la función senh x





